This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

Energy Efficiency of Opportunistic Refreshing for
Gain-Cell Embedded DRAM

Binyamin Frankel™, Eyal Sarfati, Davide Rossi, Member, IEEE, and Shmuel Wimer"™, Member, IEEE

Abstract— On-die memories, which are traditionally imple-
mented by SRAM, stop functioning properly when the sup-
ply voltage is scaled down aggressively; hence, embedded
DRAMs (eDRAMs) are used instead. Opportunistic refreshing
was proved to eliminate the performance loss incurred by
the eDRAM refreshing must. We show here that Gain-Cell
eDRAM (GCeDRAM) supplemented with opportunistic refresh-
ing consumes significantly smaller power and energy than SRAM.
Analysis supported by hardware simulations demonstrate that
the same design point achieves maximum performance and min-
imum energy. Replacement of the data memory in the ultra-low
power processor PULPino from SRAM to opportunistically
refreshed GCeDRAM yielded 30% energy savings in the memory,
which translated into 7% savings in the entire processor.

Index Terms—Low-power processors, embedded memories,
memory refreshing, gain-cell.

I. INTRODUCTION

LTRA-LOW power processors have become a crucial
feature in the internet of things (IoT) era, since they
operate at a very low power-supply voltage. On-die mem-
ories, an essential component of any processor, are usually
implemented by SRAM technology that cannot function prop-
erly or reliably at a very low power-supply voltage. SRAM
replacement by CMOS standard-cell latches is an option, but
is very expensive in terms of area and power [1]. Certain
commercial products have replaced SRAM with embedded
dynamic random access memory (eDRAM) technologies [2],
[3], which store their data in special capacitors, but these
significantly increase the manufacturing cost of the processor.
They also suffer from charge destruction during the read
operation that requires immediate, power expensive refreshing
for data restoration. In addition, eDRAMS require mandatory
periodic refreshing caused by charge leakage over time.
A bit-cell type known as the gain-cell (GC) overcomes these
drawbacks [4], [5]. The GC eDRAM (GCeDRAM) is CMOS

Manuscript received 3 November 2022; revised 21 December 2022;
accepted 22 December 2022. This work was supported in part by the Israel
Chief Scientist under the GenPro Consortium of the MAGNET Program. This
article was recommended by Associate Editor P. K. Meher. (Corresponding
author: Shmuel Wimer.)

Binyamin Frankel and Shmuel Wimer are with the Engineering Fac-
ulty, Bar-Ilan University, Ramat-Gan 52900, Israel (e-mail: binyamin.
frankel @gmail.com; wimers @biu.ac.il).

Eyal Sarfati is with the Electrical Engineering Department, Technion—Israel
Institute of Technology, Haifa 32000, Israel (e-mail: eyal.sarfati@gmail.com).

Davide Rossi is with the Department of Electrical, Electronic and Informa-
tion Engineering (DEI), University of Bologna, 40023 Bologna, Italy (e-mail:
davide.rossi@unibo.it).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCS1.2022.3231866.

Digital Object Identifier 10.1109/TCSI1.2022.3231866

I
| [SN |
| MW J_ c | MR
I SN
WBL — RWL

Fig. 1. Two-transistor gain-cell (2T GC). Write takes place through MW
and read through MR. SN is the storage node.

compatible, has low manufacturing costs, and obviates the
need for the read-refresh operation. GCs can have two to five
transistors. Fig. 1 shows a 2T GC. A GC still requires periodic
refreshing due to charge leakage. A key advantage of GC is its
two separate read and write ports, which makes it possible to
design memories supporting simultaneous read and write of;
rows. The GCeDRAM data retention time (DRT) dictates the
refreshing period, which can vary from a few to hundreds of
microseconds [6] depending on the bit-cell structure and the
technology used. An overview of the nature of the leakage of
various GCs is found in [7]. As for any DRAM, GCeDRAM
refreshing blocks the system access, thus causing performance
loss.

In what follows we use the term row and line interchange-
ably. The main drawback of ordinary sequential row-by-row
refreshing is the blockage for read/write (R/W) access of the
central processing unit (CPU) during refreshing. An overview
of the main refreshing algorithms for DRAM/eDRAM can
be found in [8]. Refreshing uses the same ports as for CPU
access. Due to GCeDRAM'’s separate read and write ports,
the read and write of two different rows can take place
simultaneously. Since refreshing requires a read and write
operation, a sequence of contiguous refreshing can be partially
overlapped to deliver an effective refreshing rate of one cycle
per row.

One way to overcome the performance degradation problem
is to use an opportunistic refreshing algorithm that has the
advantage of not intervening in the normal memory access
[9]. Rather, refreshing takes place concurrently with CPUR /W
operations. Whereas performance usually conflicts with power
and energy consumption, this work answers the question of
whether this is the case for opportunistic refreshing. The main
contribution of this study are:

1. Development of an accurate analytical energy model that

agrees with real hardware power simulations.

1549-8328 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Bar Illan University. Downloaded on December 31,2022 at 17:05:42 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2448-8755
https://orcid.org/0000-0002-0651-5393
https://orcid.org/0000-0002-5728-0061

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2
CPU
CPU write —\1 0/
=
jus] w -
Imxr A8 M = =
bit-array | o = | Memory
=
CPU read——ﬁl (OAN
“es CPU ces
A
Lo %xn .
bit?array Q Refreshing
buffer
L |
Fig. 2. A memory array and its associated refreshing buffer.

2. A proof that the same design point achieves both max-
imum performance and minimum energy.

3. Showing by a real processor design that for the same
Vdd, opportunistically refreshed GCeDRAM consumes
considerably smaller power and energy of 30% than
SRAM does.

The rest of the paper is organized as follows. Section 2
presents briefly opportunistic refreshing background. Section 3
studies the relationship between optimal performance and
energy efficiency. Section 4 analyzes energy consumption
followed in Section 5 by optimization of the memory design
parameters for minimum energy. Section 6 presents experi-
mental results and Section 7 draws conclusions.

II. OPPORTUNISTIC REFRESHING

We use M to denote the memory, which for our purposes
is the smallest unit maintaining its own refreshing. This can
be a bank or a smaller unit in a memory, depending on the
memory physical architecture. Opportunistic refreshing in the
case where M access is either for read or for write (denoted as
the R/W cycle) was discussed in [9]. This is the R/W regime
in ultra-low power processor architectures [10] which we used
for this energy study.

Fig. 2. Illustrates how opportunistic refreshing is working.
The upper MUX and lower deMUX transfer the refreshed lines
between the memory M and the refreshing bufferQ. Refresh-
ing takes place sequentially, line-by-line, simultaneously and
in coordination with the CPU access to M. ‘Simultaneously’
means that within the same clock cycle, while the CPU is
reading from or writing into M, the refreshing performs a
counter operation; i.e., writing into or reading from a refreshed
line of M.

Proper refreshing must guarantee that the duration between
two successive refreshes of any line does not exceed the DRT,
denoted by Nprr, and measured in clock cycles. It is obtained
by dividing DRT by the clock cycle duration. The refreshing of
most dynamic memories requires a buffer (FIFO queue). The

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

content of a weakened line is first copied into the buffer and
then written back to strengthen and restore the line’s contents.

Opportunistic refreshing takes place sequentially row-by-
row, but not necessarily contiguously in time. Refreshing stalls
occur in CPU R-cycles if the refreshing buffer is empty or in
W-cycles if the refreshing buffer is full.

Let Nrr denote the refreshing period, measured in clock
cycles. It must ensure the timely refresh of all the Ly rows of
M for any R/W access pattern. The larger the Nrgr, the greater
the likelihood that a higher portion of the refreshing will be
concealed opportunistically and hence a smaller portion (if at
all) will require enforced completion. Moreover, maximizing
NrRr minimizes the ratio of the refreshing energy to the energy
consumed by executing the program’s code instructions. The
longest Nrr that guarantees proper refreshing is [9]:

LNDRT + LMJ

N =
RR)

ey

Let the CPU R-cycle and W-cycle occur with respective
probabilities 0 < u <1 and A = 1 — u. This memory access
model is compatible with the PULPino processor [10] used
in this study, which supports either read or write memory
access by the CPU. The x4 + 4 = 1 assumption is stressed
and pessimistic, since it means that the CPU accesses M on
every cycle. In reality however, there are usually quite a lot
of memory idle cycles where the CPU is executing other
instructions, thus enabling refreshing read and write of two
successive lines in the same cycle.

Let p = 4 / u be the CPU write-to-read probabilities
ratio and denote by Ly the number of Q entries (buffer
lines). Depending on the CPU R/W patterns, it may happen
that opportunistic refreshing is insufficient, a case when a
refreshing completion is enforced, blocking M for CPU access.
The performance loss 0 < y < 1 thus occurred is [9]:

if r (1 _ pLQ)
(1+p) (1= pheth)
Ly (14p) (1=pet!) — Ngrp (1 — pto)
Ner (1 — pLo?)

NRRr > Lm

>

y:

, otherwise

)

Equation (2) captures the memory size Ly, the CPU write-
to-read probabilities ratio p and the refreshing buffer capacity
Lg. The condition for y = 0 implies that opportunistic
refreshing suffices. Otherwise 0 < y and refreshing comple-
tion enforcement must take place.

An opportunistic refreshing system was implemented in [9]
and replaced the data SRAM of an ultra-low power RISC-V
processor called PULPino [10] by GCeDRAM. Fig. 3 shows
the resulting performance, and exhibits similarities of real
hardware simulations to the analytical model (2). The sym-
metry of the surface around 1 = u = 0.5 stems from y
(» =7 (1/p).

When Nrr = Ly refreshing must take place at each cycle;
hence, the CPU access to the memory is always blocked
andl —y = 0. Smaller Ly leaves more cycles for useful CPU
access and performance increases accordingly. Performance
also depends on the R/W probabilities, 0 < x < 1 and

Authorized licensed use limited to: Bar Illan University. Downloaded on December 31,2022 at 17:05:42 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FRANKEL et al..: ENERGY EFFICIENCY OF OPPORTUNISTIC REFRESHING FOR GAIN-CELL EMBEDDED DRAM 3

Lo=2 (a)

performance 1 —y

a®

performance 1 —y

Fig. 3. Memory access performance: analytical model (a), hardware
simulation (b) [9].

A = 1 — u, respectively. For a very small Athe refreshing
buffer Q will often be empty, so it cannot supply rows to write
back into M upon R-cycles. Oppositely and symmetrically,
a very small x will often saturate Q, avoiding reading M’s lines
into Q upon W-cycles. These characteristics are illustrated by
the decline of the performance surface towards the margins
at u =1and u =0.

III. THE RELATIONSHIP BETWEEN OPTIMAL
PERFORMANCE AND ENERGY EFFICIENCY

This work studies the division of an on-die, near CPU
memory (e.g. L1 cache) into smaller physical units. Whereas
the microarchitecture dictates its whole size L beforehand,
its division into smaller refreshable units is subject to opti-
mization. Since each unit M has its own refreshing hardware
overhead, this sole consideration favors to decrease their total
number L/Lyby increasingly. Fig. 3a shows that for a
sufficiently large Nrr/Lm and for some symmetric interval
around ¢ = 4 = 1/2 there is no performance loss, as shown
by the red curves circumscribing the flat surfaces wherey = 0.
This sole consideration favors to decreaseLys. The following
discussion optimizes these conflicting trends.

Since we are interested in keeping Ly as large as possible
while maintaining maximal performance, the red curve in
Fig. 3a defines optimal design points in the following sense.
GivenNprr, Lg, andy, if maximum performance (y = 0) is
achievable, Ly should be selected on this curve. Other than
the flat surface, any combination of Ly and u uniquely defines
the memory access performance.

The above Ly choice aims at reducing the refreshing
control hardware, but only a small portion of the refreshing
energy is associated with it. The dynamic R/W operations of
the memory and refreshing buffer consume most of the energy.

It is interesting to reveal how the optimal energy comply with
the optimal performance curve. As shown subsequently, the
projections on the (Ly,) plane of the maximum performance
curve in Fig. 3a and the minimum refreshing energy curve in
Fig. 7 are identical. In other words, the same design points
yield maximum performance and minimum energy.

Let the nominal execution of a given program require
Nclock cycles. Nominal means that N does not include any
additional clock cycles that may be required for refreshing
completion enforcement. The effective duration of the program
is thusN/(1 — y), where y is the performance loss expres-
sion (2). The effective duration N/(1 — y) is divided into
refreshing periods of length Nrr each. Therefore, there are
[N /(1 —y)] / NRrR refreshing periods, where each the Ly lines
of a refreshable memory unit M are refreshed. Since a refresh
requires a read and write operation from and into both M
and Q, there are a total of 4Ly dynamic refreshing operations.
Recall that the refreshing occurs simultaneously in all L/Ly
M units; thus, the total dynamic energy consumed during the
execution of the program, as measured in terms of dynamic
operations, is

gl N L AL ANL 3)
— X — X M=-——"7.
refresh T (1—y) Nrr L (1—7) Ny
Substitution of (1) in (3) yields
dyn SNL
refresh (4)

(1—17) (Nprt + Lm)

As mentioned above, the performance loss expression (2)
depicted in Fig. 3a has two regions: zero and non-zero loss,
separated by the red curve. We first consider the flat surface
where y = 0, and substitute it into (4). There is

o SNL
(NpRT + LM™)

Since Ly appears in the denominator, the dynamic
refreshing energy minimization requires to increase Ly
(decrease Nrr/LwM), hence approaching the red curve in
Fig. 3a.

Other than y = 0, for every value of Npgrr, p, and Lo
the performance loss y > 0 is uniquely defined by Ly, and
should be determined such that the dynamic refreshing energy
in (4) is minimized. Substituting into (4) the expression for
y > 01in (2) yields after some manipulations

(L > O) (06 N
M, V —
refresh [(1 b Cza) N, (1 ZC;)

where a = (1+4p)(1—ptet),b = p(1—phe) and
¢ = (1 —plo*?). Here again, Ly appears in the denom-
inator. Hence the sign of the term 1 + (b —2a)/c deter-
mines the growth direction ofEfeyf?eSh (LM, y > 0). Substitut-
ing the expressions ofa, b, and ¢ in 1 + (b — 2a)/c yields a
functionf (p). Recall that sincep = A/u, where 0 < u < 1
and A =1 — u, there is 0 < p < oco. It can easily be verified
that f (p) = f (1/p); hence, it is sufficient to find the sign of
f(p) for 0 < p < 1. There is f (0) = —1 and some tedious
derivation shows thatdf /dp < 0, asserting that f (p) < O for
O0=p=1l

Edyn

refresh (Lm,y =0) (5)

E

, (6)

Authorized licensed use limited to: Bar Illan University. Downloaded on December 31,2022 at 17:05:42 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TABLE I
SRAM AND GC Bit-CELL COMPARISON

Bit-cell type SRAM 2T GC 3T GC 4T GC
Area [um?] 0.352 0.152 0.186 0.23
Vdd [mV] 700 700 700 700
Leakage @27°C 9.07 3.27 3.29 3.33
Wbl Cogsec | 1665 56.3 56.9 58.1
Data retention | @27°C 0 32 51 1691.4
time [usec] ™ ggrec o 3.1 414 | 15495

Consequently, the decrease of Ly in (6) reduces the
dynamic refreshing energy. In terms of Fig. 3a,it means climb-
ing along the surface towards the red curve, where the y > 0
scenario stops and turns into the y = 0 scenario discussed
earlier. To conclude, for both y = 0 andy > 0, the zero
performance loss curve in Fig. 3a exhibits minimum refreshing
energy consumption. Section 5 shows this correlation also by
hardware simulations.

IV. POWER ANALYSIS

Bit-cell dynamic power includes a portion proportional to
Lyresulting from the R/W bit-lines. Section 3 showed by
back-of-the-envelope arguments that Ly yielding maximum
performance also minimizes the refreshing energy. Below we
apply a more rigorous analysis to derive an expression of the
energy dependence onLy, based on extracted bit-cell energy
parameters. We then present a back annotated gate-level power
simulations of PULPino [11] to validate the model.

Table I compares the leakage power characteristics of 28nm
SRAM to 2T, 3T and 4T GC bit-cells [5]. The GC choice
tradeoff is clear in terms of area versus DRT. More transistors
increase the DRT, thus decreasing the refreshing overhead,
yielding higher CPU performance. Our design used a 4T GC
bit-cell. Note that although its DRT is long, this is an average
measured in silicon across a large sample, so a conservative
DRT is used. The GCeDRAM design must therefore ensure
wide DRT safety margins. Note as well that the leakage is
independent of the number of transistors in the bit-cell. This
follows since in all GCs the single pass transistor connecting
the write bit-line to the storage node (MW in Fig. 1) produces
most the leakage.

Fig. 2 shows that the refreshing buffer is also a GCeDRAM
memory array comprising Lo lines. Hence the energy con-
sumption analysis should account for M andQ. In terms
of leakage, there is no difference between the bits of M
andQ, so we consider them as an array of Ly + L lines.
Their dynamic power differs though. This follows from the
longer bit-lines of M compared to those of O, in proportion
withLy > Lo, and the different numbers of R/W operations
stemming from their different functions.

Let us amortize the CPU R/W operations occurred in
M during Nrr period. The probability of an R/W-cycle is
typically 0.3 [12], thus yielding 0.3 NrrR/Woperations, where
the typical value of Ngrg is a few thousand. In addition, each
of M’s Ly words is refreshed once during the Nrr period,

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

involving the read and write of both M andQ, thus yielding
a total of 4LR/W operations. The bit-array in Fig. 2 yields
therefore 4Ly + 0.3 Nrr word toggling.

A. Per-Bit Energy Consumption

The experimental results presented in Section 6 are based
on gate-level dynamic power simulations using the parameters
of Table. It provides the per-bit switching energies of 28nm
SRAM and 4T GC bit-cells for reads and writes at 0.7 Volts and
85°C [5]. It lists the GCeDRAM and SRAM per-bit energies
for arrays of 8,256,512 and 1024 lines. Note that though
read and write operations access a single word, the power
consumption is primarily affected by the length of the bit-
lines extending along the entire array. Bit-line energy grows
linearly with the increase in array size.

The SRAM per-bit read energy consists of its word-line
charging energy from O to 1. In addition, the two bit-line
energy grows linearly with increases in array size and is iden-
tical in all transitions. Identity follows from the two bit-lines
which after being pre-charged, always transit oppositely at the
end of a read cycle.

The per-bit write energy consists of the same word-line
charging energy as in read, plus its internal storage node
write energy. The latter depends on whether or not the bit-cell
toggles its value. In addition, the two bit-lines either remain
at the same value or toggle their value. We assume that on
average one line is charged from O to 1, whereas the other
stays at 0.

With respect to the bit-cell energies in GCeDRAM, recall
that it has separate bit-lines for read and write operations. The
read energy depends on whether O or 1 is read. For 0, the
voltage of the pre-charged bit-line decreases by some amount,
so the next read will have to re-charge it. In 1, there is no
such energy consumption and next pre-charge has no cost.
The remaining energy of the read follows from the word-line
load charging, and is similar to 0 and 1.

The write energy has the same word-line load charging
energy in all transitions. If the storage node of the bit-cell
toggles its value, it consumes additional write energy. Here
we are being conservative, by assuming that toggling in both
directions consumes energy, although only charging from 0 to
1 consumes real energy. For the bit-line portion, we are also
conservative, and assume that the bit-line consumes energy
regardless of whether the written value is the same or the
opposite of its previous value. The write energy growth with
the array size is similar to that of SRAM.

Denote by pgﬁo, pgﬁl, pllzﬁo, and pllzﬁ1 the dynamic read
power of a bit-cell for the 0 — 0, 0 — 1, 1 — 0 and
1 — 1 transitions, respectively, as specified in Table II.
p%v_’o, p%v_’l, p%,\?o, and p%,\,_)l are defined similarly for write.
Assuming random words for read and write, each bit has same
probability of O or 1. The respective average bit read and write
power is

pr = 0.25 (pgﬁo +pp 7 g0+ pffl) ,

pw =025 (P50 + P PO+).)

Authorized licensed use limited to: Bar Illan University. Downloaded on December 31,2022 at 17:05:42 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FRANKEL et al..: ENERGY EFFICIENCY OF OPPORTUNISTIC REFRESHING FOR GAIN-CELL EMBEDDED DRAM 5

TABLE 11
SWITCHING ENERGY CONSUMPTION OF SRAM AND 4T GC Bit-CELLS

SRAM [10715 Joule] 47 GC [10715 Joule]
Lines | Bit energy o—)0|1—)1|0—>1|1—)0 Ave. |00 1—»1|0—>1 150 | Ave.
Read 0.140 0.140| 0.073 0.051 0.073 0.062
1
(bit-cell) Write 0.174 I 0.311 0.243 0.269 I 0.394 0.332
Read 0.316 0316 | 0.225 | 0.051 l 0225 | 0.138
8
Write 0.585 | 0.722 0.654 0.625 | 0.750 0.687
Read 6.56 6.56 | 5.62 | 0.051 ‘ 562 | 283
256 -
Write 15.1 | 153 15.2 132 | 133 133
Read 13.0 130 [113 I 0.051 ‘ 13 | 562
512 -
Write 30.2 | 30.3 30.2 26.2 | 26.3 263
Read 259 259 223 | 0.051 ‘ 223 "3
1024 -
Write 60.2 | 60.4 60.3 523 | 523 523

The gray columns in Table II show the per-bit power pr
and pw.

Note also the bit-array peripheral circuits that comprise
the decoders for word access, the input drivers for write and
the output drivers for read). These are an integral part of the
bit-array and may have a secondary effect on how to set Ly
for minimum dynamic power. The analysis ignores them for
the sake of its simplicity. Nevertheless, we will account them
later in the experimental results.

It follows from Table II that the dependence of the per-bit
average dynamic read power pr on Ly satisfies

cell

PR = pRl 4 pit® = ag + prLwm, (®

where the parameter ar is the average dynamic power con-
sumed by the bit-cell alone, and pris a coefficient of the
average bit-line power. Similarly, the bit-cell write power pw
satisfies

pw = P§' + Py = aw + BwLwm, €

where the coefficients are defined analogously for a write
operation.

We further characterize the average per-bit dynamic power
in M, where averaging takes place across a complete refresh-
ing period of Nrr cycles, thus reflecting the energy con-
sumption. Let L be size of the entire memory, divided into
L / Lyrefreshable units of size Ly each. Let x4 andi be CPU
R/WM-cycle probabilities defined before. Since the PULPino
architecture supports only R/WM-cycles and there are also
memory idle cycles, there is u + A < 1. The analysis
below, however, does not depend on this assumption and holds
equally for processors supporting R + WM-cycles, a case
where u + 1 > 1 is possible. Specific values of x and A for
a test bench of 11 known programs are presented in Section
6. The CPU access probability to M is therefore

Ly
=u—, AM=A—.
UM = U L M 2

The per-bit average power consumption of M due to the
workload is

(10)

dyn_M
Pcpu

= UMPR + AMPW. (11)

controllers Performance

surface

reduced

Enforced
refreshing
minimization

shorten
bit-lines

3 pro0®

\

Fig. 4. Variations in memory unit size to minimize energy.

Performance

“u

Substitution of (8), (9) and (10) into (11) yields the following
per-bit dynamic power consumption due to the workload

dyn_ M

Lwm Lm
Pcey = H— - (ar+pBrLM) + iT (aw + pwLwm). (12)

All the parameters in (12) are technology and workload
dependent, except forLyg, which is a design choice, and hence
should be optimized.

A similar analysis applies to the Q array in Fig. 2. Whereas
M’s read and write probabilities are workload dependent, the
number of Q reads from M and Q writes back into M during
the Nrr period are Ly each. Hence, for the Nrr period there
is

1o = M
ﬂ = = —.
0 0 N

The following is thus the per-bit dynamic power consump-
tion of Q due to refreshing

13)

dyn_Q Lm Ly
Pretresh = (or + BrLo) + Nem (aw + BwLg). (14)

The refreshing power is consumed not only by Q but by M as
well, and stems from the Ly reads of Q from M and the Ly
writes back from Q into M, yielding the following refreshing
power consumption

dynM Lwm Lwm
Protrash = N (@R BRI + T (o + BwLn) - (15)

By summing the per-bit dynamic power components in (12),
(14) and (15), we obtain the power consumed by a refreshable
unit M:

dyn_M

n__ dyn_Q dyn_M
= Pcpu

dy
+p refresh +p refresh

p (16)

V. REFRESHABLE UNIT SIZE OPTIMIZATION
FOR ENERGY MINIMIZATION

Fig. 4 depicts the performance surface discussed in
Section 2 and shown in Fig. 3. Let us consider the zero
performance loss flat area enclosed by the dashed curve.
Section 2 concluded that if the workload is such that refreshing
is completely opportunistic with no performance loss it is
worth setting Ly on the dashed curve. Fig. 4 illustrates it
by the blue arrow direction. Section 3 concluded by a back-
of-the-envelope energy calculation that the dashed curve also
represents the optimal energetic design choices. Whenever

Authorized licensed use limited to: Bar Illan University. Downloaded on December 31,2022 at 17:05:42 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6
(a) (b)
Y Y
T pi=i
n/2 words ! = :
| ——
i
nwords] v
e weee
T P
n/2 words } 3 M
Fig. 5. Reducing dynamic load by shortening bit-lines.

opportunistic refreshing is insufficient and there is perfor-
mance loss, minimization of the extent of enforced refreshing
completion favors smallLy;. Fig. 4 illustrates it by the climbing
black arrow.

Ly affects the energy consumption not only by the implied
number of refreshing operations, but also by the physical size
of the bit-lines in the array, as expressed by the term pgnein ®)
and pl\i\‘,‘e in (9). To illustrate this impact, consider the example
of the n-word memory depicted in Fig. 5. Assume that every
word performs an R/W operation in turn. How much dynamic
energy is consumed? This depends on the number of M units
into which the entire memory is divided. Fig. 5(a) shows
a one-unit implementation whereas Fig. 5(b) is a two-unit.
In the one-unit, every R/W operation charges a line of twice
the length as in a two-unit. Since the total number of R/W
operations is independent of whether it is one or two units,
whereas the bit-line energy is indeed dependent, two units cuts
this energy by a factor of two. Table II shows that the bit-line
energy is dominant; hence, the bit-line energy consumption
favors smallLy;. Fig. 4 illustrates it by the red arrows.

The conflicting trends of Ly shown in Fig. 4 call for an
energy analysis combining all these factors. Refreshing control
logic MUX, deMUX in Fig. 2 and counters not shown)
also consume energy. This is added by a term A which is
a percentage of the refreshing power, also including the static
energy presented in Table I. Recall that the product of power
by time duration (clock cycles) yields energy, so henceforth
we turn p®" into energy. Given that a word of M comprises
32 bit-cells, the total dynamic energy of the entire memory
comprising L/LyM units, operating during the entire program
that takes N/(1 —p) clock cycles, is as in (17), shown at
the bottom of the page. Expression (a) follows from the
workload, and only involves memory accesses as dictated
by the underlying running code. It is independent of the
performance loss 0 < y < 1 incurred due to enforcement
of refreshing completion. Expression (b) follows from the
refreshing required during the entire running timeN /(1 — y).

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

1 X 10 ' Control overhead
_A = 0.7%
—A-25% .
0.8 A= 21% ,
- m - real HW
=
>‘0.6
2
Q
&5 os

0.2

m

128 256 512 1024 2048

Fig. 6. The total energy of the entire memory compared to hardware
simulations.

The parameters in (17) are technology, workload and archi-
tecture dependent, except for the size of the bit-arrays Ly
and L, which are design choices. Since Lo <« Ly we
can consider Loy as a given which is not subject to energy
optimization. We are simply left withLyj, and denote the total
energy by E (Ly) to emphasize its sole dependence on L.

Fig. 6 plots in solid lines E (Ly) and the corresponding
average power at 0.7Volts and 85°C. We use Tprr = 25uSec,
reflecting an average of various GCeDRAM implementations
(see Table I in [5]). The operating frequency is 100MHz,
yielding Nprr = (25 x 107°) x (100 x 10°) = 2500. The
memory size in the PULPino [10] architecture is 32KB, which
with 32 bits per line (4B) yields L = 8192 word lines. For the
energy calculations, we assumed a memory stressed program
comprising only R/W instructions. The program comprised
10° random R/W instructions with a CPU read probability
of 4 = 0.67 and a write probability of A = 0.33, where R/W
ratio of 2:1 is commonly used [13]. Energy calculation used
the per-bit power parameters of Table II.

The different curves in Fig. 6 show the impact of the control
power overheads A = 0.7%, A = 2.5% and A = 21% of
the refreshing power in (17) for a single refreshable unit M.
It clearly shows that the division of the memory into too
many M units with small Ly cancels out the energy savings
obtained by the high likelihood of complete opportunistic
refreshing and shortening the bit-lines. Hence, given the above
refreshing control overhead there is an optimal Ly design
point of minimum energy Ly = 128, Ly = 256, and
Ly = 512 marked on the corresponding curves.

VI. EXPERIMENTAL RESULTS

Experimental results illustrate the validity of the analytical
energy models presented above. They show that the energy
consumed by the gate-level design behaves similarly to the
model. It also compares the energies of opportunistically

L
Ed =32 | N pM
Ly

1—vy Ly

(dyn_Q dyn_M (17)

Dréfresh + prefresh) (1 + A)

(a)

(b)

Authorized licensed use limited to: Bar Illan University. Downloaded on December 31,2022 at 17:05:42 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FRANKEL et al..: ENERGY EFFICIENCY OF OPPORTUNISTIC REFRESHING FOR GAIN-CELL EMBEDDED DRAM 7

MemoryDynamic Energy

Energy [J]

Fig. 7. Dynamic energy consumption of the data memory w/o refreshing
controllers.

refreshed GCeDRAM with a single-port SRAM implementa-
tion. For this purpose, the PULPino Verilog RTL was compiled
with the Cadence design suite to gate-level with the 28nm
TSMC library, supplemented with GCeDRAM bit-cell lib files
based on [5].

Gate-level implementation targeted 100MHz clock fre-
quency. The refreshing controller assumed DRT = 254 sec,
thus Nprr = 2500. The size of the refreshing buffer Q was
Lo = 8. The PULPino 32KB data memory was implemented
with Ly = 2048, 1024, 512, 256, 128 and 64, corresponding
to 4, 8, 16,32, 64 and 128 self-refreshable banks, respectively.

Each Ly was simulated with 11 programs of 10° pure,
random R/Winstructions. Each program had a different R/W
probability ratio, satisfying A+ u = 1. This yielded altogether
66 programs, 11 for each Ly size. The total runtime of
every program was multiplied by the power obtained from the
simulator [11], yielding the corresponding energy. Note that
depending on the R/W random patterns, the execution of a
program may take more than the nominal 10° cycles if oppor-
tunistic refreshing is insufficient and refreshing completion is
enforced.

Fig. 7 shows the dynamic energy consumed by the arrays
of the data memory, including their decoders and sense ampli-
fiers. Equations (5) and (6) in Section 3 showed analytically
that the optimal performance curve in Fig. 3a and Fig. 4 is also
the minimum dynamic energy curve (controllers excluded).
The corresponding red dashed line curve depicted in Fig. 7 is
consistent with this analysis. Though the write energy is
larger than the read energy as specified in Table II, the
surface shows some symmetry around the R/W probabilities
of A = u = 0.5. This follows from the dominance of the clock
energies consumed by both read and write but not accounted
for in Table II.

Fig. 8 shows the total energy of the memory and the
refreshing controllers, including all the underlying logic and
the refreshing buffer in Fig. 2. It is shown that the minimum
energy is achieved for Ly = 512. The steep increase in energy
at small Ly follows from the high number of controllers,
in agreement with the blue arrow in Fig. 4. Another energy

Memory Total Energy

Energy [J]

Fig. 8. Total energy consumption of the entire data memory.
TABLE III
POWER COMPARISON OF GCeDRAM OPPORTUNISTIC
REFRESHING TO SRAM
Total CPU Read | CPU Write | Memory Power | PULPino Power
Test Name . . .
Instructions [%] [%] Reduction [%] Reduction [%]
Bubblesort 55680 20.3 18.4 32.81 7.67
EDN 43111 26.7 2.5 35.44 7.90
FDCT 5926 25.3 4.4 31.15 7.40
Fibcall 4581 28.3 2.6 31.13 7.43
Fibonacci 24065 31.0 4.9 31.30 7.50
FIR 4222 29.3 2.8 29.99 7.17
Helloworld 4015 30.6 2.0 29.79 7.14
Insertsort 4721 28.8 49 31.20 7.43
Ludcmp 39884 16.4 10.7 33.31 7.81
MatrixMul8 21734 30.7 2.6 31.35 7.48
MatrixMulg_dotp 24411 29.8 2.4 32.53 7.72

increase incurred at small Ly is due to the shortening of the
refreshing period Nrr = [(NprT + LMm)/2]. Thus given a
code of lengthN, the number of refreshing N/Nrr increases
as well, where each refreshing refreshes the entireL = 8192
GCeDRAM lines.

The similarity of the dynamic energy model (17) to hard-
ware simulations is demonstrated by the red section in
Fig. 8 obtained for R/W probabilities 4 = 0.67 and 4 = 0.33.
Its projection depicted by the red dashed curve in Fig. 6 which
was calculated for same probabilities, demonstrates good
agreement of the model with real hardware behavior.

Since GCeDRAM is aimed at ultra-low power applica-
tions, it is important to show that its power consumption is
competitive compared to SRAM. To this end, we compared
the PULPino data cache implementations by opportunistically
refreshed GCeDRAM to SRAM. Table III summarizes the
power simulation results of 11 test programs, including all
dynamic and static consumptions.

None of the tests incurred a performance loss. This is due to
sufficient memory cycles allotted for opportunistic refreshing
as shown by the percentage of CPU R/W instructions. The
power reduction compared to SRAM is clear and consistent
for all programs, achieving 30% reduction or more. Since no
performance loss incurred; i.e., the run-time in both implemen-
tations was equal, the energy reduction is similar to the power

Authorized licensed use limited to: Bar Illan University. Downloaded on December 31,2022 at 17:05:42 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

reduction. The rightmost column shows the impact on the
PULPino total power, which was 7% or more on all tests. This
confirms the attractiveness of replacing SRAM by GCeDRAM
supplemented with opportunistic refreshing.

VII. CONCLUSION

Whereas performance typically requires trading off power
and energy, we showed here that a GCeDRAM supplemented
with opportunistic refreshing is not. Analysis supported by
experimental results demonstrated its correlation between
maximum performance and minimum energy. Not only is
performance not degraded compared to SRAM, but the total
energy is significantly smaller. Replacement of the SRAM
data memory in the ultra-low power processor PULPino by
opportunistically refreshed GCeDRAM yielded 30% energy
savings in the memory, which translated into 7% energy
savings in the entire processor.

ACKNOWLEDGMENT

The authors would like to thank Prof. Luca Benini of
ETH Ziirich and his group for availing the PULPino design
environment and support of this research. They also grateful
for the useful comments of the anonymous reviewers. Shmuel
Wimer conducted this research while visiting Prof. Atsushi
Takahashi Laboratory, Tokyo Institute of Technology.

REFERENCES

[1] A. Teman, D. Rossi, P. Meinerzhagen, L. Benini, and A. Burg, “Power,
area, and performance optimization of standard cell memory arrays
through controlled placement,” ACM Trans. Design Autom. Electron.
Syst., vol. 21, no. 4, p. 59, May 2016.

[2] J. Barth et al., “A 500 MHz random cycle, 1.5 ns latency, SOI embedded
DRAM macro featuring a three-transistor micro sense amplifier,” /EEE
J. Solid-State Circuits, vol. 43, no. 1, pp. 86-95, Jan. 2008.

[3] K. C. Chun, P. Jain, T.-H. Kim, and C. H. Kim, “A 667 MHz logic-
compatible embedded DRAM featuring an asymmetric 2T gain cell for
high speed on-die caches,” IEEE J. Solid-State Circuits, vol. 47, no. 2,
pp. 547-559, Feb. 2012.

[4] A. Teman, P. Meinerzhagen, A. Burg, and A. Fish, “Review and
classification of gain cell eEDRAM implementations,” in Proc. IEEE 27th
Conv. Electr. Electron. Eng. Isr., Nov. 2012, pp. 1-5.

[5] R. Giterman, A. Fish, A. Burg, and A. Teman, “A 4-transistor nMOS-
only logic-compatible gain-cell embedded dram with over 1.6-ms reten-
tion time at 700 mV in 28-nm FD-SOI,” IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 65, no. 4, pp. 1245-1256, Apr. 2018.

[6] P. A. Meinerzhagen, O. Andig, J. Treichler, and A. P. Burg, “Design

and failure analysis of logic-compatible multilevel gain-cell-based dram

for fault-tolerant VLSI systems,” in Proc. 21st, Ed., Great Lakes Symp.

Great lakes Symp. VLSI (GLSVLSI), 2011, pp. 343-346.

B. Frankel and S. Wimer, “A self-refreshable bit-cell for single-cycle

refreshing of embedded memories,” IEEE Trans. Comput., early access,

Mar. 10, 2022, doi: 10.1109/TC.2022.315848]1.

[8] A. Kazimirsky and S. Wimer, “Opportunistic refreshing algorithm for

eDRAM memories,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63,

no. 11, pp. 1921-1932, Nov. 2016.

B. Frankel, R. Herman, and S. Wimer, “Queuing-based eDRAM refresh-

ing for ultra-low power processors,” IEEE Trans. Comput., vol. 67, no. 9,

pp. 1131-1140, Sep. 2018.

A. Traber et al. (2016). PULPino: A Small Single-Core RISC-V

SoC. [Online]. Available: https://riscv.org/wp-content/uploads/2016/01/

Wed1315-PULP-riscv3_noanim.pdf

Voltus IC Power Integrity Solution. Cadence. [Online]. Available:

https://www.cadence.com/en_US/home/tools/digital-design-and-signoft/

silicon-signoff/voltus-ic-power-integrity-solution.html#:~:text=Th%20C
adence%C2%AE%20Voltus%E2%84% A2,power%20grid %200f%20a

%?20chip

[7

—

[9

—

[10]

(11]

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

[12] M. Radulovic, R. S. Verdejo, P. Carpenter, P. Radojkovi¢, B. Jacob,
and E. Ayguadé, “PROFET: Modeling system performance and energy
without simulating the CPU,” Proc. ACM Meas. Anal. Comput. Syst.,
vol. 3, no. 2, pp. 1-33, 2019.

A. Shanbhag, S. Madden, and X. Yu, “A study of the fundamental
performance characteristics of GPUs and CPUs for database analyt-
ics,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, Jun. 2020,
pp. 1617-1632.

[13]

Binyamin Frankel received the B.Sc., M.Sc., and
Ph.D. degrees in electrical engineering from Bar-
Tlan University, Israel, in 2014, 2016, and 2022,
respectively. Since 2021, he has been with Toga
Networks. His research interests include VLSI cir-
cuits and systems design optimization and computer
architecture.

Eyal Sarfati received the B.Sc. and M.Sc. degrees
in electrical engineering from the Technion—Israel
Institute of Technology, Haifa, Israel, in 2010 and
2018, respectively. Since 2010, he has been with
Marvell, where he is currently a Physical Design
Engineer. His research interests include VLSI cir-
cuits and system design optimization.

Davide Rossi (Member, IEEE) received the Ph.D.
degree from the University of Bologna, Italy,
in 2012. He is currently an Associate Professor
with the University of Bologna. He has published
more than 100 papers in international peer-reviewed
conferences and journals in his research areas. His
research interests focus on energy efficient digital
v architectures in the domain of heterogeneous and
N reconfigurable multi and many-core systems on a
‘ b chip. This includes architectures, design implemen-
- tation strategies, and runtime support to address per-
formance, energy efficiency, and reliability issues of both high end embedded
platforms and ultra-low-power computing platforms targeting the IoT domain.
He was a recipient of the Donald O. Pederson Best Paper Award 2018,
the 2020 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS Darlington
Best Paper Award, and the 2020 IEEE TRANSACTIONS ON VERY LARGE
SCALE INTEGRATION (VLSI) SYSTEMS Prize Paper Award.

.3

Shmuel Wimer (Member, IEEE) received the B.Sc.
and M.Sc. degrees in mathematics from Tel Aviv
University, Israel, in 1978 and 1981, respectively,
and the D.Sc. degree in electrical engineering
from the Technion—Israel Institute of Technology,
Israel, in 1988. He held a research and devel-
opment engineering and managerial positions in
the industry. He was at Sagantec, IBM, National
Semiconductor, and IAl-Israel Aerospace Industry.
From 1999 to 2009, he was at Intel. Since 2009,
he has been with the Engineering Faculty, Bar-Ilan
University, Israel, where he is an Emeritus Professor. His research interests
include VLSI circuits and systems design optimization and combinatorial
optimization.

Authorized licensed use limited to: Bar Illan University. Downloaded on December 31,2022 at 17:05:42 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TC.2022.3158481

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

