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ABSTRACT
Several optimization problems ofmodifying theweight of ver-
tices in rooted trees, some of which are special cases of the
inverse 1-median problem, are solved. Such problems arise in
Very Large Scale Integration (VLSI) design of hardware secu-
rity circuits, circuit synchronization, and analog-to-digital con-
verters. These problems require assigning costly hardware
(demands) to the leaves of rooted trees. One common prop-
erty of these problems is that a resource allocated to an inter-
nal node can be shared by the entire sub-tree emanated at
the node. Two types of problems are studied here. (1) A tree
node employs an addition operation and the demands at the
leaves are obtained by summing the resources allocated to
nodes along the root-to-leaf paths. A linear-time bottom-up
algorithm is shown to minimize the total resources allocated
to tree nodes. (2) A tree’s node employs a multiplication oper-
ation and the demands at the leaves are obtained by mul-
tiplying the resources allocated to nodes along the root-to-
leaf paths. A bottom-up dynamic programming algorithm is
shown to minimize the total resources allocated to the tree’s
nodes. While the above problems are usually solved by design
engineers heuristically, this paper offers optimal solutions that
can be easily programmed in CAD tools.
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1. Motivation

Works on weight modification of the vertices in weighted tree graphs are studies
by both the OR and the VLSI design automation communities. While the former
aremostly interested in the combinatorial optimization aspects of such problems,
the latter are focus on various emerging applications, some of which described
below, but with less awareness of their combinatorial optimization properties.

Seemingly different problems occurring in VLSI circuits and system designs
share a common tree optimization problem paradigm. Good examples are elec-
tronic devices containing private secret information such as smart cards, radio
frequency identification (RFID) tags and other devices that require data pro-
tection by a secret key. This is done through cryptographic algorithms running
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Figure 1. Securing ciphering logic by the insertion of delay buffers.

on dedicated hardware called a substitution box (SBOX) [1]. Unfortunately this
hardware fails to protect the secret key from side channel attacks gleaned from
hardware information leaks [2].

Countermeasures against side channel attacks are embedded in the crypto-
graphic hardware that flatten their current waveform [3] , thus reducing the
correlation between the current drawn from the power supply (observable by
the attacker) and the secret key processed by the SBOX. This flattening is imple-
mented by distributing delay buffers in the circuit as illustrated in Figure 1. There,
a logic tree implements the ciphering of one bit of the output word. Every out-
put bit has its own tree that implements a different ciphering logic. As shown in
Figure 1(a), the signals from the inputs to the output need to be delayed by some
prescribed amount written within a delay buffer. These buffers are costly and thus
should be shared by the input-to-output paths. Figure 1(b) shows a possible dis-
tribution, such that the cumulative leaf-to-root delays satisfy the specifications
in Figure 1(a) with a delay buffer cost reduced from 24 to 14 by sharing some of
the delays among several input-to-output paths. An optimal delay distribution
should minimize the total cost.

Another example has to do with the clock signals driving synchronous digi-
tal circuits. The clock signal is fed at the root of a clock-tree, shown in Figure
2, and distributed to the circuits connected at the leaves, where it should reach
all of them simultaneously. The simultaneous switching of the clock signals at
the leaves results in a high current peak, which is a source of power supply noise
(instantaneous voltage fluctuations) that causes a failure in the circuit operation.
Figure 2(b) illustrates how the insertions of delays into the clock-tree remedy
this issue. The slightly misaligned clock signals result in a smaller current pulse,
spread over a longer period of time. The displacement of the current peaks is
obtained by inserting delay buffers in the nodes of the clock-tree [4]. While the
required delays at the leaves are predefined, the total amount of delay inserted at
the tree nodes need to be minimized. The work in [5] presented an O(n log n)
algorithm to distribute the delay elements in the internal nodes of the clock-tree
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Figure 2. Reducing power supply noise by delay insertion into a clock-tree.

such that the total cost of the delay elements is minimized. This algorithm, how-
ever, is not optimal. A linear time algorithm for the special case of balanced binary
trees was shown in [6]. This paper shows anO(n) algorithm for any rooted trees.

Delay buffers at the nodes of clock-trees also support the tight control of
the timing of the clock signal, which is crucial in VLSI systems. These include
the Clock skew control [7] that fixes delay problems by time borrowing [8] and
the adjustment of the clock signal timing so that the chip can operate at higher
speeds, a technique called binning [9], which is used tomaximize the selling price
of chips.

The third example is the analog-to-digital converter (ADC) design [10]
(Ch. 29), where amplifiers are connected at the tree’s leaves as shown in Figure
3. There, the time-varying analog signal input is compared to various reference
voltages to produce a binary code of the input voltage [11,12]. The cost of the
circuits is proportional to its amplification factors, where unit amplification is
the minimum possible. The amplifiers at the leaves can be replaced by amplifiers
allocated at the internal nodes. The root-to-leaf amplification is then obtained by
multiplying the factors along the corresponding path. These different VLSI prob-
lems are mapped to allocations of resources (delay buffers, amplifiers) to the tree
nodes. The sum or the product of the resources along the root-to-leaf paths must
satisfy the demands specified at the tree leaves, whereas their total sum needs to
be minimized.

The remainder of this paper is organized as follows. Section 2 overviews
related combinatorial optimization and VLSI work. Section 3 presents a linear-
time resource allocation algorithm for the resource sum operation that supplies
the demands at the leaves at minimal cost. Section 4 discusses the case where
the assignment of the prescribed demands to the leaves is not predetermined. It
shows that an assignment in increasing order of the demands is optimal. Section
5 presents a dynamic programming resource allocation algorithm for resource
product operations.
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Figure 3. Analog-to-digital conversion tree.

2. Related work

Consider a tree T(V ,E) whose n vertices have nonnegative weights w(v) ≥ 0,
v ∈ V and edges having nonnegative length l(e) ≥ 0, e ∈ E. Let P(u, v) be the
path connecting u and v, u, v ∈ V , and let L(P) = ∑

e∈P l(e) be the length of the
path. A well-known combinatorial optimization problem is the 1-median tree
(see e.g. [13]), aiming at finding a vertex u∗ ∈ V minimizing

∑
v∈V

w(v)L(P(u∗, v)). (1)

The interest in 1-median tree problem is dates back to solving agricultural
economics [14], and transportation [15] problems, both proved an interesting
property that the solution depends solely on the vertex weights, regardless of the
edge weights (nonnegative). The interest in the problem continues with exten-
sions and variants, such as for cactus graphs [16] among many others. Most of
the 1-median tree problem instances are solvable in linear time.

The study of the 1-median was followed by an inverse problem where the
weights of the vertices are allowed to change within some prescribed bounds,
such that a given vertex u∗∗ ∈ V , u∗∗ �= u∗, is turning into 1 − median. The
authors of [13] devised a greedy algorithm of O(n log n) time complexity which
modifies the vertices’ weights to turn u∗∗ into 1-median, or else report that no
feasible solution exists. Incorporation of some cost due to edge or vertex weight
modifications have also been studied. In [17], a certain vertex of a tree was given,
where it was desired to minimize the total sum of all other vertices distances to
it, where the weights can be changed within some prescribed bounds. Assuming
that each edge or vertex is associated with a unit-length or unit-weight change
cost, it was desired that the total sum of cost changes is minimized. The authors
solved it in O(n2) time complexity by splitting the tree into two sub-trees and
balancing their heights (maximum distance to leaves). Some of the problems, we
study in this paper are a special case which can be solved in O(n) time. Another
work in [18] presented a generalization of trees to block graphs, where the edge
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lengths within each block had equal length. By using the convexity of the cost
function the author showed solution of O(n log n) time.

Turning to VLSI design optimization, there are quite a few problems remi-
niscent of the inverse 1-median. There, the root of a tree distributes electrical
signals to circuits connected at the leaves. The signals are modified by cir-
cuitry located at the nodes, which can be modelled by weights representing
the complexity of the underlying circuits. In [3] delay elements (weights) were
introduced into the logic tree of a cryptographic SBOX (see Figure 1), as a coun-
termeasure against side channel attacks. The same authors presented in [19]
a heuristic delay assignment algorithm for the case where different logic trees
share common nodes. Though not discussed, its algorithm’s pseudocode implies
O(n3) time complexity. Considering their objectives, the underlying problem
can be easily casted to inverse 1-median by using the cost in (1) as follows.
First, by defining the unit-weight change cost at a node as the reciprocal of
the number of leaves in its emanating subtree, and secondly, by setting the
length of all the edges to zero except those connected to leaves, which are set
to one.

Another type of VLSI design optimization problems regards the distribution
of the clock signal over the chip as in the seminal work [7] and in [8]. Such
problems are solved as a part of the clock-tree synthesis (CTS), an essential
part of chip design flow. CTS is attracting lately high attention and exten-
sive study due to the very aggressive design constraints imposed on the clock
signal distribution in the era of nanometer-scale VLSI silicon technologies. A
well-known technique to meet such constraints is to skew the clock signal by
inserting delay buffers (weights) into the clock tree’s nodes. The authors of
[20,21] considered such problem for chips operated in multiple voltages. They
claimed for optimal solution (by experiments and simulations) with the objec-
tive of minimizing the number of adjustable delay buffers, with delays bounded
in some range. Their algorithm, however, is inefficient since it is based on
solving set-covering problem, which is intractable and not scalable to industrial-
size problems. It can be however be transformed similarly to inverse 1-median
problem.

Constraints imposed on the clock signal by different operational modes and
temperatures were solved in [22]. The CTS optimization incorporated iterations
of solving a linear programming problem followed by an ad-hoc heuristic to
adjust the delays (weights) inserted to the tree’s nodes. Though LP has poly-
nomial time complexity, it is still inefficient, since similar casting to inverse
1-median problem applies. The next section shows that due to its special setting,
the corresponding optimization problem of weight allocations to tree’s nodes can
be solved directly in O(n) time.
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3. Optimal resource allocation subject to sum constraints

We use δ(μ) to denote the demand (required delay) at a leaf μ. Let T be a rooted
tree having leaves μi, associated with corresponding demands δ(μi) = δi ≥ 0,
1 ≤ i ≤ n. Denote by P(μ, ρ) the path from a node μ ∈ T to the root ρ ∈ T. To
satisfy the demands, resources w(μ), μ ∈ T, are allocated such that

∑
μ∈P(μi,ρ)

w(μ) = δ(μi), w(μ) ≥ 0, 1 ≤ i ≤ n. (2)

Let W+ be the set of resource allocations satisfying (2). The allocation
w0, defined by w0(μi) = δi, 1 ≤ i ≤ n, and w0(μ) = 0, μ ∈ T\{μi}ni=1 satisfies
(2) trivially; hence w0 ∈ W+ �= ∅. Let w ∈ W+ and consider the total sum of
resources �(w) allocated to T’s nodes,

�(w) =
∑
μ∈T

w(μ). (3)

Denote by �∗ the minimum total sum of resources overW+,

�∗ = min
w∈W+

{�(w)}. (4)

A simple, linear-time resource allocation algorithm, w+ ∈ W+, satisfying
�(w+) = �∗ is described below. It determines the resources of T’s nodes in a
bottom-up traversal. Let M be a set of sibling leaves sharing a common parent
ν whose son-degree is d(ν)

Δ= |M|. Let m = minμ∈M{δ(μ)} and Mmin ⊆ M be
defined by Mmin = {μ ∈ M|δ(μ) = m}. The algorithm fixes w+(μ) = 0 ∀μ ∈
Mmin and w+(μ) = δ(μ) − m ∀μ ∈ M\Mmin. It then temporarily allocates the
resource m to ν. This way the sibling leaves share the resource m allocated to
their parent ν, while the excess is permanently allocated to the more demanding
leaves. The allocation w+ thus yields (d(ν) − 1)m resource savings. The alloca-
tion w+ proceeds bottom-up node-by-node and level-by-level up to T’s root ρ.
It turns out that the smallest demand out of all the n leaves floats and is allocated
to the root ρ ∈ T. The resource allocation algorithm w+ runs in linear time.

Figure 4 illustrates w+ for a tree with prescribed demands of 1 to 11 units
specified under their corresponding leaves. Temporary resources are shown in
blue and permanent ones in black. The total sum of permanent resources along
every leaf-to-root path satisfies the demand at the leaf. The total sum of demands
is 66, but the total sum of resources allocated to the nodes is reduced to 42, thus
yielding savings of 24. We show below thatw+ is optimal; namely,�(w+) = �∗.

Theorem 3.1: Let T be a rooted tree having n leaves μi, associated with demands
δi ≥ 0, 1 ≤ i ≤ n. There is �(w+) = �∗.
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Figure 4. Resource allocation byw+.

Proof: Let w∗ ∈ W be such that
∑

μ∈T w∗(μ) = �∗. We show by induction on
the tree levels that there must exist w∗(μ) = w+(μ), ∀μ ∈ T. We first claim that
w∗ must also possess the property that for any setMof sibling sons sharing a com-
mon parent ν, there must be a subset ∅ �= M∗

min ⊆ M, with resources w∗(μ) =
0 ∀μ ∈ M∗

min.Otherwise, ifM∗
min = ∅,w∗ can bemodified to yield total resources

less than �∗ as follows. Since M∗
min = ∅, there is ε = minμ∈M{w∗(μ)} > 0.

Derive a new resource allocationw∗∗ fromw∗ by subtracting ε from the resources
allocated to every μ ∈ M and adding ε to the parent ν of M’s nodes, thus reduc-
ing �∗ by (|M| − 1)ε. It turns out that

∑
μ∈T w∗∗(μ) < �∗, in contradiction

to (4).
Assume that there exists a node μ′ ∈ T such that w+(μ′) �= w∗(μ′), and let

it be w.l.o.g w+(μ′) > w∗(μ′) ≥ 0. We show that μ′ cannot be a leaf of T. If it
was, let M be the sibling leaves sharing a common parent ν such that μ′ ∈ M as
shown in Figure 5. By w+ definition and w+(μ′) > 0, there is ∅ �= M+

min ⊆ M,
w+(μ) = 0 ∀μ ∈ M+

min but μ
′ /∈ M+

min. It was shown above that there is a subset
∅ �= M∗

min ⊆ M, such that w∗(μ) = 0 ∀μ ∈ M∗
min. There is M

+
min ∩ M∗

min �= ∅.
To see this, let the leaf μ′′ ∈ M satisfy δ(μ′′) = minμ∈M{δ(μ)}, soμ′′ ∈ M+

min. If
μ′′ /∈ M∗

min there is w
∗(μ′′) > 0, and since M∗

min �= ∅ there would exist another
μ′′′ ∈ M∗

min, satisfyingw
∗(μ′′′) = 0. The parent ν is common to bothμ′′ andμ′′′,

and hence

δ(μ′′) =
∑

μ∈P(μ′′,ρ)

w∗(μ) = w∗(μ′′) +
∑

μ∈P(ν,ρ)

w∗(μ) >

∑
μ∈P(ν,ρ)

w∗(μ) = w∗(μ′′′) +
∑

μ∈P(ν,ρ)

w∗(μ) = δ(μ′′′),

in contradiction to δ(μ′′) = minμ∈M{δ(μ)}. Hence μ′′ ∈ M+
min ∩ M∗

min �= ∅.
This is depicted in Figure 5.
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Figure 5. Illustration of Theorem 3.1.

Since μ′′ is a leaf, there is by (2)∑
μ∈P(μ′′,ρ)

w + (μ) =
∑

μ∈P(μ′′,ρ)

w∗(μ) = δ(μ′′).

It follows from w∗(μ′′) = w + (μ′′) = 0 that∑
μ∈P(ν,ρ)

w + (μ) =
∑

μ∈P(ν,ρ)

w∗(μ) = δ(μ′′).

But since w+(μ′) > w∗(μ′) ≥ 0, there is

δ(μ′) =
∑

μ∈P(ν,ρ)

w + (μ) + w + (μ′) >
∑

μ∈P(ν,ρ)

w∗(μ) + w∗(μ′) = δ(μ′),

which is impossible. Hence w+(μ′) > w∗(μ′) ≥ 0 cannot occur at a leaf and we
conclude that w∗ and w+ are identical on T’s leaves.

Let w+(μ′) �= w∗(μ′) occur at an internal node. Assume by induction that all
the nodes belonging to the rooted sub-tree T(μ′), satisfy w+(μ) = w∗(μ) μ ∈
T(μ′)\{μ′}. Let us obtain a tree T′ by deleting T(μ′)\{μ′}. Since w+ and w∗are
identical on T(μ′)\{μ′}, the resource allocationsw+ andw∗ have same total sum
along leaf-to-root path for all ofT′’s leaves. On the other hand,μ′ is a leaf ofT′ for
which w+(μ′) �= w∗(μ′), which has already been shown to be impossible. �

4. Optimizing the assignment of demands at leaves

Theorem 3.1 showed that the resource allocation w + yields �∗ as defined in
(4). If the assignment to leaves of the prescribed demands is not predetermined,
�∗can be further reduced by considering w + for each of the n! possible assign-
ments. An example is shown in Figure 6, where the demands are assigned to
leaves differently than in Figure 4. The w∗ resource allocation yields a total of
21 compared to 42 in Figure 4. This degree of optimization is very useful when
the specific assignment of demands (delays) to leaves is immaterial as in the case
of the ciphering logic tree in Figure 1 and the current pulse spreading in Figure
2. It enables significant hardware savings.
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Figure 6. Better assignment of demands to leaves, yielding smallerw∗.

Let 0 ≤ δ1 ≤ δ2 ≤ · · · ≤ δn be n demands, and μi, 1 ≤ i ≤ n, be the leaves
of a tree T. We may assume w.l.o.g. that δ1 < δ2 < · · · < δn since equalities can
be arbitrarily resolved. Let � be the set of n! permutations. An assignment of
demands to T’s leaves is a permutation π ∈ �. The notation �(w,π) denotes
the dependence of the total sum of the resources on both the assignment of the
demands to leaves and the resource allocation w ∈ W to supply these demands.
We therefore look for π+ ∈ � satisfying

�(w + ,π+) = min
π∈�

{�(w + ,π)}. (5)

It is shown below that π+ must assign the demands to sibling leaves shar-
ing a common parent contiguously, such that the ranges of demands allocated to
sibling leaves having different parents are disjoint.

Lemma 4.1: Let M′ and M′′ be any two sets of sibling leaves having differ-
ent parents. If the permutation π + satisfies (5) then either maxμ∈M′δ(μ) <

minμ∈M′′δ(μ) ormaxμ∈M′′δ(μ) < minμ∈M′δ(μ).

Proof: If neither of the inequalities is satisfied, then one of the two situations
must occur

(a) min
μ∈M′ δ(μ) < min

μ∈M′′ δ(μ) < max
μ∈M′ δ(μ), (b) min

μ∈M′′ δ(μ)

< min
μ∈M′ δ(μ) < max

μ∈M′′ δ(μ). (6)

Consider case (a) in (6). Let α and β be the leaves on which M′ and
M′′ achieve their minimum, namely, m′ = δ(α) = minμ∈M′δ(μ) and m′′ =
δ(β) = minμ∈M′′δ(μ). Let γ be the leaf on which M′ achieves its maximum,
namely, δ(γ ) = maxμ∈M′δ(μ). Let ν′ and ν′′ be the parents of M′ and M′′,
respectively. The savings obtained by w+ at ν′ and ν′′ are m′(d(ν′) − 1) and
m′′(d(ν′′) − 1), respectively. Let us swap the demands assigned to β and γ .
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Since δ(γ ) > δ(β) = m′′, it turns out that the new minimum demand m̃′′
assigned to M′′ is larger than m′′, whereas the minimum demand assigned to
M′ is unchanged. Consequently, the savings obtained by w+ at ν′′ are increased
by (m̃′′ − m′′)(d(ν′′) − 1) > 0, whereas the savings m′(d(ν′) − 1) at ν′ are
unchanged. Case (b) in (6) is handled similarly. �

The condition in Lemma 3.1 is unfortunately not sufficient in the general case.
However, for the special case of a regular balanced tree it is, as shown in the fol-
lowing. Note that the total sum of leaf-to-root allocated resources is invariant
to permuting the sibling sub-trees rooted at a node. Given a regular balanced
tree T of son-degree d and depth N (its root is at level 0), there are dN leaves
and (dN − 1)/(d − 1) internal nodes. A certain allocation of resources to T’s

nodes implies therefore (d!)
dN−1
d−1 equivalent allocations with an identical sum

of leaf-to-root resources.

Theorem 4.1: Let 0 ≤ δ1 < δ2 < · · · < δdN be demands assigned to the leaves of
a regular balanced tree T of depth N and node degree d. Up to equivalence, the
identity permutation π id(i) = i, 1 ≤ i ≤ dN, satisfies π+ = π id.

Proof: Let μi, 1 ≤ i ≤ dN , be the left-to-right ordered leaves of T and δπ−1(i) be
their corresponding demands assigned by π ∈ �. To prove (5) we will show that
�(w + ,π id) maximizes the resource savings given by

∑dN
i=1 δi − �(w + ,π id).

The proof of (5) proceeds by induction on the levels of T. We will show that the
adherence of the separation of demands assigned to subtrees emanated at a node
of a given level, as stated in Lemma1, maximizes the total resources saved from
the root down to that level. At each level the demands assigned to all the leaves
of the subtrees emanating at a node must be separated, which complies with any
permutation equivalent to π id.

Note that the floatation of the minimum resource m among the son nodes of
a parent ν, by w+, yields resource savings ofm(d − 1), sincem is trimmed from
every son and added to the parent. Note also that due to the resource allocation
equivalence under subtree permutations we can index the root’s sons arbitrarily.
For the first step of the induction the savings obtained at the d root’s sons are
considered. The largest demand that can float to any root’s son, say νd (permut-
ing sons is equivalent), is δdN−dN−1+1. This can only happen if it is the smallest
demand among the dN−1 leaves δdN−dN−1+1, δdN−dN−1+2, . . . , δdN , sharing the
common ancestor νd. Similarly, the second largest demand that can float to any
son of the root, say νd−1, is δdN−2dN−1+1, and as previously, can only happen if
it is the smallest demand among the dN−1 leaves sharing the common ancestor
νd−1. Repeating this argument d times, we end upwith the root’s son ν1, to which
the demand δ1 is floated, where the demands δ1, δ2, . . . , δdN−1 are assigned to the
leaves of the subtree rooted at ν1. This assignment complies with any permutation
equivalent to π id.
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Assume by induction that an assignment by a permutation equivalent to π id,
satisfying

π{d2k + i}d2i=1 = {d2k + i}d2i=1, 0 ≤ k ≤ dN−2 − 1, (7)

maximizes the total resource savings from the root down to level N − 2. Specifi-
cally, a set of d2 demands having contiguous values {δd2k+i}d

2
i=1, 0 ≤ k ≤ dN−2 −

1, are assigned to d2 leaves sharing a common ancestor at level N − 2. The sav-
ings obtained by w+ for the entire T are the sum of the total resource savings
from the root down to level N − 2 plus the resource savings at level N − 1 (the
leaves’ parents).

Using the induction hypothesis, it remains to show that maximization of the
resource savings incurred at level N − 1 complies with any permutation equiva-
lent to π id. It follows from Lemma1 that the separation of the demands assigned
to leaves into groups of d leaves satisfying (6) maximizes the resource savings at
their parent. Consider the following grouping of demands

{{{
δ(dk−1)d2+jd+i

}d
i=1

}d−1

j=0

}N−2

k=0
. (8)

The grouping in (8) satisfies the separation conditions of Lemma1 and hence
maximizes the resource savings obtained by w+ at level N − 1. It also complies
with (7) and with a permutation equivalent to π id(i) = i, 1 ≤ i ≤ dN , which
completes the proof. �

5. Optimal resource allocation subject to product constraints

Based on the amplification tree example in Section 1, and similar to Section 2, we
are interested in rooted trees to which resources (amplifications) are allocated at
their nodes, such that their product along the leaf-to-root paths yields the pre-
scribed demands required at the leaves. Below we replace the sum operation +
by the product operation ×, and 0, which is the unit element of addition, by 1,
the unit element of multiplication, which is the smallest possible resource. We
use the notation δ(μ) to denote the demand (required amplification) at a leaf μ.

Let T be a rooted tree having n leaves μi, associated with correspond-
ing demands δ(μi) = δi ≥ 1, 1 ≤ i ≤ n. To satisfy the demands, resources
w(μ), μ ∈ T, are allocated such that

∏
μ∈P(μi,ρ)

w(μ) = δ(μi), w(μ) ≥ 1, 1 ≤ i ≤ n. (9)

Let W× be the set of resource allocations satisfying (9). The allocation w1,
defined by w1(μi) = δi, 1 ≤ i ≤ n, and w1(μ) = 1, μ ∈ T\{μi}ni=1 satisfies (9)
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Figure 7. Scaling of the resources allocated at leaves.

trivially, hence w1 ∈ W× �= ∅. Consider the total sum of resources �(w) allo-
cated to T’s nodes by w ∈ W×,

�(w) =
∑
μ∈T

w(μ). (10)

Denote by �∗ the minimum total sum of resources overW×,

�∗ = min
w∈W×

{�(w)}. (11)

A dynamic programming resource allocation algorithm w× which achieves
(11) is described below. It determines the resources of T’s nodes in a bottom-
up traversal. Figure 7(a) shows a set M of sibling leaves and their parent nodeν.
A leaf μ ∈ M is assigned with some demand 1 ≤ δ(μ), whereas the parent ν is
allocated with one unit resource. Letm = minμ∈M{δ(μ)}. In order to reduce the
cost (10) of the multiplication tree T, the transformation depicted in Figure 7(b)
takes place. Some resource 1 ≤ x ≤ m is temporarily allocated at ν, whereas the
sons are fixed with resources w×(μ) = δ(μ)/x ≥ 1, thus satisfying (9). The cost
saving Sν(x) obtained by such transformation is given by

Sν(x) =
(
1 − 1

x

) ∑
μ∈M

δ(μ)

︸ ︷︷ ︸
(a)

+ (1 − x)︸ ︷︷ ︸
(b)

, 1 ≤ x ≤ m,
δ(μ)

x
≥ 1, ∀μ ∈ M. (12)

Term (a) in (12) is the saving obtained by scaling down the resources allocated
to leaves, whereas term (b) is the resource addition incurred at their parent ν.

The resources are realized in practice by VLSI amplifiers, whose amplification
assumes discrete values with some resolution 0 < ε. It follows from w(μ) ≥ 1
that the largest allocation at any node μ ∈ T cannot exceed max1≤i≤nδi. The
amount R of distinct resource values is therefore bounded by

R =
⌈
max1≤i≤nδi

ε

⌉
. (13)

We assume that the demands assigned at the leaves and the resources allocated
to nodes are always an integral multiplication of ε. Written next to ν in Figure
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Figure 8. Upper level scaling of the resources.

7(b), the saving Sν(x) is recorded for further minimization of the total resources
(10) allocated to T. Recording at ν is made by a list of pairs�ν : {〈ξj, ηj〉}nν

j=1, 1 ≤
ξj ≤ m, nν = (m − 1)/ε, sorted in increasing order of ξj, where ηj is obtained by
substitution of ξj in (12).

Let us illustrate how savings are obtained by scaling a node ν at an upper level,
as illustrated in Figure 8(a). Let Mi, 1 ≤ i ≤ d, be the sets of sibling grandsons,
and let νi be their parents. The nodes νi are the sons of ν, which is the grandparent
of Mis. The node ν is initially allocated with one unit resource. Let the resources
allocated at ν’s grandsons be permanently fixed, after being scaled by some xi,
where

1 ≤ xi ≤ mi,mi = min
μ∈Mi

{w×(μ)}, 1 ≤ i ≤ d. (14)

It follows that (9) is satisfied for all Mis. Assume further that for the temporary
resource scaling at νi, the maximal resource savings function Sνi(xi) is derived
and recorded in a list �νi : {〈ξj, ηj〉}

nνi
j=1, as illustrated in Figure 7(b), where ξj is

an admissible value of xi.
Letm = min1≤i≤d{mi}, wheremis are defined in (14). As shown in Figure 8(b)

a resource 1 ≤ x ≤ m is temporarily allocated at ν, whereas the sons νi are fixed
with w(νi) = xi/x ≥ 1, thus satisfying (9). The resource scaling yields savings of

Sν(x) = max
x1,...,xd

d∑
i=1

[
Sνi(xi) +

(
1 − 1

x

)
xi

]
+ (1 − x),

xi
x

≥ 1, 1

≤ xi ≤ mi, 1 ≤ i ≤ d. (15)

Maximization is possible by evaluating (15) for every admissible combination
(x1, . . . , xd) among the

∏d
i=1 nνi different possibilities. Knowing the maximal

possible savings Sν(x), the pair 〈x, Sν(x)〉 is recorded in the list �ν : {〈ξj, ηj〉}nν

j=1
sorted in increasing order of ξj, where every pair 〈ξj, ηj〉 memorizes (x1, . . . , xd)
that obtained ηj = Sν(ξj) in (15). The list �ν thus obtained contains sufficient
information representing the sub-tree rooted at ν for further minimization of the
total resources allocated to T. Once the bottom-up traversal reaches the root ρ,
the list�ρ : {〈ξj, ηj〉}nρ

j=1 yields themaximum resource saving achievable for every
admissible resource ξj allocated to ρ. The maximum resource saving is obtained
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by max1≤j≤nρ ηj. Since a pair 〈ξj, ηj〉 memorizes the sons’ allocations (x1, . . . , xd)
that yielded ηj, a top-down traversal can commit the resource allocated at every
node which obtained the maximum resource savings achieved at the root.

To assess the computational complexity of the dynamic programming resource
allocation w×, let the degree d(μ), μ ∈ T be bounded by d(μ) ≤ D. Since T
is a rooted tree having n leaves, it has a total of O(n) nodes, where every node
computes (15). The calculation of (15) examines all (x1, . . . , xd(μ))combinations,
which from (13) is bounded by RD. Each such combination is evaluated for every
admissible value of x, yielding a total of RD+1 evaluations. We conclude that the
overall computational complexity is bounded by O(nRD+1). If T is a binary tree,
which usually occurs in VLSI design, the complexity is bounded by O(nR3).

6. Conclusions

This paper showed that some different VLSI design problems all have the prop-
erty that a resource allocated to an internal node of a rooted tree can be shared
by the entire sub-tree emanated at the node. The goal of this allocation is to min-
imize the total sum of allocated resources. Two types of problems were studied
that addressed trees whose nodes employ an addition operation, and trees whose
nodes employ amultiplication operation. The former was solved by a linear-time
bottom-up algorithm, whereas the latter was solved by a bottom-up dynamic
programming algorithm.
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