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A B S T R A C T

The embedded memories of ultra-low power processors require periodic refreshing, which blocks
the CPU-memory access and degrades performance. In addition, refreshing queues cause a drop
in system performance not only when they are saturated but also when they are empty. We
present an optimal queuing-based opportunistic refreshing algorithm that eliminates perfor-
mance loss. We analyze system performance dependence on queue capacity and memory size to
derive a closed-form performance expression that provides clear guidelines for memory design
implementation. Comparison of a hardware implementation in a RISC-V ultra-low power pro-
cessor to ordinary periodic refreshing demonstrates the algorithm can provide a considerable
performance speedup in a wide variety of real applications.

1. Rationale

Ultra-low power processors are the enablers of the internet of things (IoT) era, since they operate at very low power supply
voltages. However, cache memories, an essential component of all processors, are usually implemented by a static random access
memory (SRAM) technology that cannot function properly or reliably at low power supply voltages. SRAM replacements by a new
type of embedded dynamic random access memory (eDRAM) based on gain-cell low-cost technology [1] (GCeDRAM) can already be
found in certain products [2]. One of the key advantages of GCeDRAM compared to other dynamic memories lies in its two separate
read and write ports, which makes it possible to design memories supporting simultaneous read and write operations.

GCeDRAM requires periodic refreshing caused by charge leakage over time. The GCeDRAM data retention time (DRT) dictates the
refreshing period, which can vary from a few to hundreds of microseconds depending on the technology used. The main drawback to
refreshing is that it blocks access to the central processing unit (CPU) read/write (R/W) during the refreshing period. We present an
opportunistic, queuing-based refreshing algorithm which runs concurrently with CPU R/W operations to overcome this performance
degradation, which to the best of our knowledge, has not been suggested elsewhere. Because finite-capacity queues are often filled,
thus causing a range of system performance losses, this work focuses on the stochastic characterization of queuing-based refreshing. A
detailed model and an analysis of system performance are described and confirm the success of the algorithm in curbing performance
losses, exhibiting a perfect match to a real hardware implementation.

The remainder of this paper is organized as follows. Section 2 overviews related work. Section 3 formulates the specific refreshing
problem, followed by the derivation of the longest (and hence optimal) refreshing period. Section 4 elaborates on the refreshing
algorithm. System performance dependence on memory size, refreshing queue capacity and CPU R/W probabilities are analyzed in
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Section 5 with their implications for memory design implementation. Section 6 presents experimental results obtained from a real
hardware implementation. Section 7 draws conclusions.

2. Related work

There are two types of refreshing algorithms. The most common straightforward variety is a periodic algorithm [3,4] termed
administrative refreshing in [5]. It is also known as global refreshing because it refreshes the entire memory sequentially row-by-row (we
use row and line interchangeably.) Its main drawback is the blockage to system R/W access during the refreshing period. Ways to
reduce power consumption and system access blockage are discussed in [6,7].

Global refreshing uses the same ports as ordinary memory access. These are blocked for normal access by the CPU when used for
refreshing. Because the GCeDRAM has separate read and write ports, the read and write of individual rows can take place si-
multaneously. Since refreshing requires a read and write operation, a sequence of contiguous refreshing can be overlapped to deliver
an effective refreshing rate of one line per clock cycle. Global refreshing degrades performance because of memory blockage. The
cache implementation in [8] reported about 8% performance loss. The authors suggested but did not elaborate on the idea that the
under-utilization of L1 from R/W access idleness can be leveraged to reduce performance loss and conceal refresh operations.
Another solution to avoid performance degradation is to add extra dedicated R/W refreshing ports, making it independent of the
ordinary CPU R/W accesses. This, however, comes at the cost of considerable L1 area and power growth.

The other type of algorithm works in an on-the-fly manner, in which every row is monitored individually for a refreshing alert.
There are two alert methods. In the first, each row is supplemented with a replica cell monitored for charge leakage, which indicates
when its associated row of cells needs refreshing [9]. The second method monitors each row of cells with a counter that counts the
clock cycles elapsed since the most recent write, which is when the counter is reset [8]. One idea is to set these counters individually
during silicon testing according to the retention time of the corresponding lines. Once a counter reaches the retention time, its line
must either be refreshed or evicted, depending on the type of refreshing scheme. To this end [8] proposed several refreshing policies
combined with cache replacement policies, including no-refreshing and partial-refreshing. In no-refreshing, an attempt to read data
which have expired (are corrupted) is treated as a cache miss. These techniques are tightly coupled to the cache replacement policy
and maintenance of data consistency across memory hierarchies. However, although write-through can be handled simply, write-
back involves very complex control hardware.

On-the-fly refreshing methods suffer from several drawbacks. With retention time in the range of microseconds and a nanosecond
clock cycle, every per-line counter requires ten bits or more, which is considerable overhead. In addition, once the row's monitor
alerts, a row refreshing is enforced. While increasing somewhat the memory availability to the system's R/W access, on-the-fly
algorithms require complex control logic. Moreover, the system's R/W blockages are unpredictable. They may be introduced spor-
adically and randomly by line behavior that avoids the system by using the memory blockage periods for other purposes.

The viability of eDRAM was examined in-depth for Large Last-Level caches (L3Cs) in [10]. These authors introduced the notion of
dead-line prediction to avoid unnecessary refreshing. A line is dead throughout the period from the latest access and while awaiting
eviction. For 32MB L3C this time can be upwards of 60% of the lifetime in the cache. Dead-line prediction was first used to reduce the
leakage power in SRAM L1 and L2 by reducing the supply voltage [11]. In the eDRAM cache, line refreshing is skipped if it is
predicted to be dead, thereby saving energy.

In [12] a concurrent eDRAM refreshing regime was reported that leads to low degradation of memory availability. This was
achieved by dividing the cache into 16 banks. For random access, the authors showed 96–99% availability in memories of banks
comprising 512–128 lines, respectively. In this method each bank is supplemented by an independent line counter that generates the
address of the currently refreshed line. While a certain bank is being addressed for ordinary system access, one or two other banks,
defined in a circular manner, are refreshed and increment their respective counter. The authors did not describe what would happen
when a certain bank is addressed repeatedly for an arbitrarily long period thus prohibiting refresh for that period, and it must be
assumed that some other control enforces the refreshing of this bank when the retention time expires. Since the authors used the
entire retention time for the refreshing period, their refreshing as described would not be sufficient to ensure proper data retention, as
proven in Section 3.

A more recent refreshing algorithm, called versatile refresh, was described in [13], and was claimed to yield near-optimal
throughput. In this case, the algorithm traverses the memory banks in round-robin order. The refreshing within banks takes place
row-by-row, skipping banks accessed for R/W. To resolve the problem of deficit refreshing in blocked banks, the algorithm maintains
a global refresh history bitmap in the form of a time-sliding window, which uses a history shift register. This versatile algorithm
nevertheless has an inherent problematic tradeoff. To guarantee high memory availability; i.e., low R/W access blockages, the size of
the bitmap must be on the order of the retention period, which requires thousands of bits. A long alternating access-idle memory
pattern can impose the toggling of all the bits in the bitmap. This represents huge power consumption, far larger than the power
consumed by the entire memory array itself. To reduce this power overhead, a small bitmap of a few entries is used. This, however,
defeats the more general aim of a retention period, and results in considerable memory blockages by unnecessary refreshing. Our
algorithm avoids this refreshing history bitmap.

Using eDRAM in a GPGPU across its entire memory hierarchy was recently proposed in [4,14] by using the bubble (idle) memory
cycles for refreshing. A 4-bit counter for each cache entry was suggested, implying considerable over-refreshing and power overhead.
For greater efficiency the authors mentioned replacing them by just two counters for an entire bank. This replacement would
nevertheless make the determination of the optimal refreshing period very tricky, an issue that was unfortunately not addressed in
either publication. All forms of opportunistic refreshing must also guarantee that if bubbles do not occur for a long period of time, the
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data will remain valid. This has a crucial impact on the overall memory availability for CPU R/W but has been ignored in the
literature. A different type of concealment of the refreshing penalty for DRAM was proposed in [15] that utilized refreshing in parallel
to the write operation which took place at bank granularity, which is too coarse for L1 purposes.

We suggest overcoming this performance degradation with an opportunistic, queuing-based refreshing algorithm that runs con-
currently with CPU R/W operations. Because finite-capacity queues are often filled, thus causing system performance degradation,
research has focused on the stochastic characterization of their filled state [16,17]. By contrast, in our algorithm, system performance
degrades not only upon saturation of the queues but also when they are empty. Below we examine the ways in which system
performance depends on the queue capacity and its empty and saturated state probabilities, as well as memory size. A closed-form
performance expression is derived that provides clear guidelines for memory design implementation.

3. Memory refreshing

Though GCeDRAM authorizes simultaneous read and write by the CPU, it is assumed that the memory is accessed either for read
or for write, denoted by the R-cycle and the W-cycle, respectively, which is the situation in ultra-low power processor architectures
[18]. We consider the worst case where there are no idle cycles in which the memory (henceforth denoted by M) is not accessed by
the CPU. The simpler and easier case where M is idle was analyzed in [19]. There, a refreshing queue was not necessary and
refreshing only took place during CPU idle cycles.

Proper refreshing must guarantee that the duration between two successive refreshes of any line does not exceed the data retention
time (DRT), denoted by NDRT, and measured in clock cycles. Opportunistic refreshing takes place sequentially row-by-row, but not
necessarily contiguously in time, because refreshing stalls can occur in R-cycles if Q is empty, or in W-cycles if Q is full. Since CPU R/
W access sequences can be arbitrary, there may be insufficient simultaneous refreshing opportunities to comply with the NDRT data
retention time period constraint. This requires a supplementary mechanism to ensure that no matter which R/W patterns occur, no
NDRT cycles will ever elapse between two successive refreshes of any row of M. If there are insufficient simultaneous refreshing
opportunities, the system must initiatively block the CPU access to M and enforce refreshing completion before the NDRT cycles
elapse.

Below, we derive the longest, and hence optimal refreshing round period, denotedNRR (measured in clock cycles). This constitutes
the time window within which all M rows must be refreshed. NRR must ensure that for any CPU R/W access pattern, all the M LM rows
are refreshed properly. Since the refreshing of a row first requires reading it into Q and then writing it back into M, a total of
2× LMclock cycles are required to accomplish refreshing simultaneously with CPU R/W access. Fig. 1(a) illustrates two successive
refreshing rounds of NRR cycles. The time stamps at which rows are written back from Q into M are distributed along NRR, and are
depicted as gray marks. Let t′(l) be the time stamp when row l, 0≤ l≤ LM− 1 was refreshed in the first refreshing round, and let t′′(l)
be the time stamp it was refreshed in the successive one. Proper refreshing must satisfy the data retention time requirement
t′′(l)− t′(l) ≤ NDRT as illustrated in Fig. 1(a).

The worst refreshing case is shown in the second NRR refreshing round on the right side of Fig. 1(b). This occurs when M is
accessed by the CPU only for reads, so no row can be read into the refreshing queue Q and LM+1 cycles are required to enforce
refreshing completion. During these LM+1 cycles the CPU access to M is blocked. On each cycle except the first one when the first M
row is read into the empty Q, Q writes back a line into the M row and the next row is read from M into Q.

The larger the NRR, the greater likelihood that a higher portion of LM refreshing will be concealed by simultaneous opportunistic
refreshing, and hence a smaller portion (if any at all) will be required to enforce refreshing completion. Thus, the goal is to maximize

Fig. 1. Derivation of the maximal refreshing round period.
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NRR. The worst scenario consisting of two successive NRR periods is shown in Fig. 1(b). This occurs for M's first row when there are
2× LM contiguous opportunistic refreshing cycles at the beginning of the previous NRR period, whereas in the subsequent NRR period
there are LM+1 enforced refreshing cycles occurring contiguously at its end. Note the one cycle delay for writing back the first row
since it must first be read into Q. Obviously, NRR will be maximized if α and β in Fig. 1(b) are maximized. To ensure proper refreshing
where t′′(l)− t′(l) ≤ NDRT, 0 ≤ l ≤ LM− 1, as illustrated in Fig. 1(a), the largest α and β must satisfy

× − + + + =L β α N(2 1) 1 .M DRT (1)

By definition of the refreshing round NRR there is

= × + = + +N L β α L2 1.RR M M (2)

It follows from (2) that α+ β+1=2NRR− 3LM. Substituting it into (1) yields2NRR=NDRT+ LM+1. Division by two and
taking the floor since NRR must be an integer yields

= ⌊ + + ⌋N N L( 1)/2 .RR DRT M (3)

Note that the addition of just a single cycle to NRR in (3) will violate proper refreshing if the worst case scenario shown in Fig. 1(b)
occurs. Hence (3) is indeed optimal, maximizingNRR.

4. Simultaneous opportunistic refreshing algorithm

M refreshing takes place sequentially, line-by-line, simultaneously and in coordination with the CPU access to M. Simultaneously
means that while the CPU is reading from or writing into M, refreshing is engaged in a counter operation; namely, writing into or
reading from a refreshed line of M within the same clock cycle. Fig. 2 depicts the hardware implementation of simultaneous re-
freshing. The right side illustrates how refreshed data are transferred to and from M. In an MW-cycle the CPU read is disabled and the
read port is used to read a line into the refreshing register. In an M R-cycle the CPU write is disabled and the write port is used to write
the contents of the refreshing register back into M. Since there may be write sequences where no read intervenes and vice versa, it is
clear that a single register may lead to a loss of refreshing opportunities, so a register queue (FIFO) Q is needed.

The memory data bus connected to the CPU is bidirectional and is used for both read and write. A refreshing round takes place
simultaneously with CPU access. In a W-cycle a line is read into Q, whereas in an R-cycle a Q line is written back into M. This
simultaneous access and refreshing during the same cycle is a significant improvement over existing methods where refreshing only
takes place during the idle cycle. Refreshing during the idle cycle writes the head line of Q back into M and reads the next line of M
into the tail of Q.

The simultaneous opportunistic refreshing algorithm requires the three down-counters shown on the left side of Fig. 2. The first
counter is cRR, NRR− 1 ≥ cRR ≥ 0, which counts the refreshing round cycle-by-cycle. The second counter is cMR, LM− 1 ≥ cMR ≥ 0,
which determines the M row to be read next into Q. The third counter is cMW, LM− 1 ≥ cMW ≥ 0, which determines the next M row
to be written back from Q. The three counters are synchronized by the system clock and set to their initial values simultaneously.

Fig. 3 shows the relationship between cRR and cMW. For any time NRR− 1≥ t≥ 0 of a refreshing round (measured in clock cycles)
there is

≥ − = ≥L c t c t Q t( ) ( ) ( ) 0Q MW MR (4)

where Q(t) is the size of Q at time t. The counter cRR is unconditionally decremented at every clock cycleNRR− 1 ≥ t ≥ 0. Upon a
CPU W-cycle, an M row is read into the Q tail and cMR is decremented, whereas cMW is unchanged. Upon a CPU R-cycle Q writes its
head back into line cMW of M and cMW is decremented, whereas cMR is unchanged. Initially cRR > cMW+1, and as long as this
inequality holds, as shown in Fig. 3(a), simultaneous opportunistic refreshing proceeds safely. Once cRR=0, the M refreshing round
is completed and the counters are initialized to cRR=NRR− 1 and cMR= cMW= LM− 1.

Fig. 2. Refreshing queue working simultaneously with the CPU access to the memory.

R. Herman et al. Computers and Electrical Engineering 71 (2018) 505–514

508



If it occurs at some cycle τ, NRR− 1 > τ > 0, that cRR(τ)= cMW(τ)+ 1, as shown in Fig. 3(b), refresh completion must be
enforced. Otherwise there will not be enough cycles to write back and complete the refreshing within the NRR period. Enforced
refreshing stalls the CPU access to M for cMW(τ)+ 1 cycles by disabling the CPU memory bus in Fig. 2. Since the read and write ports
of M are not being activated by the CPU, at each cycle a line is read from M into the tail of Q and a line is written from the head of Q
back to M, and all the three counters are decremented. Once cRR= 0, the refreshing round is completed and the counters are set to
their initial values as before. Note from (4) that cMR never lags behind cMW, but rather reaches zero earlier and waits Q(τ) cycles until
cRR and cMW finish counting. The performance degradation incurred by refreshing enforcement is discussed in the next section. Note
that cMW(τ)+ 1 cycles are required for refreshing completion if Q(τ)= 0, whereas cMW(τ) suffice if Q(τ) > 0.

5. Memory size optimization

The cache memories of microprocessors are too large to be monolithic, and hence are commonly divided into smaller units, each
of which is a self-contained refreshable unit (Fig. 2 in [19]). In our terminology, a unit is the memory M of Fig. 2. Although the total
cache capacity Lcache is defined by the system architecture, its division into refreshable units of size LM each is a matter of design
implementation choice. A cache thus consists of Lcache/LM units, each of which involves a non-negligible refreshing hardware
overhead. Fig. 2 shows that M involves Q and counters. Whereas cRR is an absolute time counter and thus can be shared by all Ms,
each M has its own down-counters cMR and cMW with its associated logic.

Maximization of LM will minimize the total hardware overhead. On the other hand, the larger the LM, the greater the likelihood
that simultaneous opportunistic refreshing will not suffice (see (3) and Fig. 1), and refreshing completion which stalls the system will
be enforced. This causes performance degradation, which should be minimized; hence, LM should be small enough. Another inter-
esting issue is how the capacity LQ affects system performance. A larger Q will apparently yield more opportunistic refreshing, and
hence higher performance. Large LQ, however, constitutes hardware overhead.

To calculate the probability that refreshing completion enforcement will occur, which is the cause of performance loss, below we
trade off the above-mentioned conflicting requisites of maximizing and minimizing LM by capturing LQ into the tradeoff. It is assumed
that the CPU R-cycle and W-cycle occur with probabilities of 1 ≥ μ ≥ 0 and λ=1− μ, respectively. The performance loss of Nstall

cycles, LM+1 ≥ Nstall ≥ 0, within a NRR refreshing round period depends on the ratio LM/NRR. The higher the ratio, the more
probable the refreshing completion enforcement is, and hence of a largerNstall.

Performance loss does not occur if refreshing is able to be purely opportunistic. This implies that a line was read from M into Q
and written back from Q into M LM times, utilizing a total of 2× LM clock cycles. Reading a line from M into Q upon W-cycle is
impossible if Q is saturated, so a refreshing opportunity is lost. Similarly and symmetrically, writing back a line from Q into M upon
an R-cycle is impossible if Q is empty.

Fig. 4 illustrates the possible states of Q filling {E, 0, 1, …, LQ− 1, LQ,S} and their transition probabilities μ and λ, upon R and W
cycles, respectively, denoted in the transition diagram by R/μ and W/λ. This is a special case of a finite capacity queue. In an ordinary
queue, a state never transitions to itself. In the queue in Fig. 4 each of the emptied and filled states surrounded by the dashes, are
further split into two sub-states. For the grayed sub-states, performance is lost since a self-transition means that a refreshing operation
will not take place due to respective emptiness or saturation. Each state 1 ≤ i ≤ LQ− 1 passes into state i+1 with probability λ and

Fig. 3. Refreshing modes: (a) opportunistic, (b) enforcement of refreshing completion.
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to state i− 1 with probability μ.
An R-cycle in state 0 causes a queue emptying cycle loss, designated by state E. Subsequent R-cycles leave Q in state E. A W-cycle

occurring in state E passes Q directly to state 1. A symmetric situation occurs in state LQ, where a W-cycle causes a queue filling cycle
loss, designated by state S. Subsequent W-cycles will result in a queue filling cycle loss, leaving Q in state S. An R-cycle occurring in
state S passes Q directly to state LQ− 1. The state transitions imply a stationary Markov chain with a corresponding
(LQ+3)× (LQ+3) state transition probability matrix P=(Pij), i, j ∈ {E, 0, …, LQ,S} as illustrated in Fig. 5, where the corresponding
states are shown on the left and top sides.

Cycles of opportunistic reads into and writing back from Q occur when Q is in any of the states 0 ≤ i ≤ LQ, but never in states E
and S. Therefore, the probabilities pE and pS answer the question of whether there are sufficient opportunistic refreshing cycles to
refresh the LM memory lines. The probabilities …p p p p, , , ,E L S0 Q are obtained from

→∞
Plim

n
n by solving the linear system [20]

∑= ∈ ⋯
∈ ⋯

p p P j E L S, { , 0, , , }j
i E L S

i ij Q
{ ,0, , , }Q (5)

together with

∑ =
∈ ⋯

p 1
i E L S

i
{ ,0, , , }Q (6)

Defining =ρ λ μ/Δ , by some algebraic manipulations the solution of (5) and (6) yields the probabilities of emptied and saturated Q as
follows

=
−

+ − +p
ρ

ρ ρ
1

(1 )(1 )E L 1Q (7)

and

=
−

+ −

+

+p
ρ ρ

ρ ρ
(1 )

(1 )(1 )S

L

L

1

1

Q

Q (8)

The expressions of PE in (7) and pS in (8) are not defined for ==ρ λ μ/ 1Δ , but by applying l’ Hôpital's rule, we get
limρ→ 1pE= limρ→ 1pS=1/(2LQ). The probability of a successful opportunistic refreshing cycle is

− + =
−

+ − +p p
ρ ρ
ρ ρ

1 ( )
2 (1 )

(1 )(1 )E S

L

L 1

Q

Q (9)

Fig. 4. State transitions of refreshing queue filling.

Fig. 5. Refreshing queue filling state transition probability matrix.
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This is the probability that Q is neither emptied nor saturated, enabling writing back from Q to M upon a CPU R-cycle, and reading
from M into Q upon CPU W-cycle.

Since there may be at most LQ reads from M into Q before a line is written back from Q into M, there is some 0≤ ε ≤ LQ such that
if

− − ≥ +p p N L(1 ) 2 ɛE S RR M (10)

there will surely be enough simultaneous opportunistic refreshing cycles, so refreshing completion enforcement will not be required,
and no performance loss occurs. Note that since LQ ≪ LM, ε can be neglected for all practical considerations. If

− − < +p p N L(1 ) 2 ɛE S RR M (11)

the refreshing deficit Ncomp= 2LM+ ε− (1− pE− pS)NRR needs to be recovered by enforcing refreshing completion along Ncomp

clock cycles. Recalling that at each of these Ncomp cycles both line insertion into and deletion from Q is performed (the CPU access in
Fig. 2 is disabled), we get

= + − − − −N L p p N Nɛ (1 )( )comp M
1
2

1
2 E S RR comp (12)

Substitution of (9) in (12), Ncomp is solved to

=
+ + − − −

−

+

+

( )
N

L ρ ρ N ρ ρ

ρ

ɛ (1 )(1 ) (1 )

1

L L

Lcomp
M

1
2

1
RR

2

Q Q

Q (13)

Thus, from (9), (10) and (13) it can be concluded that the performance loss ≤ = ≤γ N N0 / 1comp RR incurred by refreshing
completion enforcement is

=

⎧

⎨
⎪

⎩
⎪

≥ +−
+ −

⎛
⎝

+ ⎞
⎠

+ − − −

−

+

+

+

γ
N L0 if 2 ɛ

, otherwise

ρ ρ
ρ ρ

L ρ ρ N ρ ρ

N ρ

2 (1 )
(1 )(1 )

RR M

1
2 ɛ (1 )(1 ) (1 )

(1 )

LQ
LQ

LQ LQ

LQ

1

M 1 RR

RR 2 (14)

Eq. (14) provides a closed-form expression that captures the memory size LM, the memory write to read probability ratio ρ and the
refreshing queue capacity LQ.

Fig. 6 illustrates the CPU access performance 1− γ obtained from (14) for LQ=1, LQ=2 and LQ=8. The symmetry of the
surface around λ= μ=0.5 follows from =γ ρ γ ρ( ) (1/ ). As noted above, the smaller the LM, the larger the 1− γ. When NRR= LM
refreshing must take place in each cycle; hence, the CPU access to the memory is always blocked and 1− γ=0. As LM gets smaller,
more cycles are left for useful CPU access and performance increases accordingly. Performance also depends on the R/W prob-
abilities, 1 ≥ λ ≥ 0 and μ=1− λ, respectively. For a very small λ Q will often be empty, because it cannot supply rows to write
back into M upon R-cycles. Oppositely and symmetrically, a very small μ will often saturate Q, avoiding reading the M lines into Q
upon W-cycles. These phenomena are illustrated by the decline of the performance surface towards the margins at μ=1 and μ=0.

Note that for a sufficiently large NRR/LM and for some symmetric interval around = =μ λ 1/2 there is no performance loss, as
shown by the flat surface enclosed by the red curve in Fig. 6. Recalling that we are interested in minimizing the refreshing hardware
overhead by keeping LM as large as possible while minimizing the performance loss, this curve defines the optimal design points in
the following sense. Given NRR, LQ and μ, if zero performance loss is achievable for some LM, the largest, and hence optimal LM should
be selected on the curve. There is no point in choosing an internal design point of the flat surface, which only decreases LM without
increasing performance. Other than the flat surface, any combination of LM and μ uniquely defines the memory access performance
loss.

To validate the analytical solution in (14), the design in Fig. 2 was implemented in hardware and integrated into a fully featured
RISC-V based ultra-low power processor called PULPino [18] to replace its SRAM data memory by a GCeDRAM refreshable one. The
HDL Veilog code was synthesized to gate-level and then simulated with a Mentor Graphics ModelSim simulator. We used random R/

Fig. 6. Memory access performance in an analytical model.
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W traces forLQ=1, LQ=2 and LQ=8, and various 0 ≤ μ ≤ 1 and NRR/LM ratios. The simulated performance surfaces illustrated in
Fig. 7 are a perfect match to the analytical ones in Fig. 6.

As expected, Fig. 6 shows that larger LQ yield higher performance. To grasp the impact of LQ, the boundary curve of the zero
performance loss in Fig. 6 can be derived from (14) for any choice of LQ, yielding the parametric equation depicted in Fig. 8 for 1 ≤
LQ ≤ 10. It is clear that the increase of LQ beyond a certain point hardly increases the zero performance loss area. It can be deduced
easily from (14) that ∂ ∂ =→∞ γ Llim / 0L QQ .

6. Experimental results

As depicted in Figs. 6 and 7, the hardware simulations matched the analytic model under random R/W traces. To demonstrate the
advantages of queuing-based GCeDRAM opportunistic refreshing, we designed two memory refreshing controllers. We first im-
plemented the ordinary periodic controller discussed in Section 2, which is the one most commonly used by DRAM. This was
compared to the proposed queue-based opportunistic controller. We employed a test bench comprised of a range of eight applica-
tions. Their corresponding RISC-V machine instruction codes were simulated with the fully featured PULPino processor [18]. The
speedup results are shown in Table 1. The upper part indicates the percentage of the CPU memory reads and writes. The lower part
shows the speedup of the underlying applications in run-time obtained by opportunistic refreshing compared to ordinary periodic
refreshing. The opportunistic refreshing also used idle cycles, where refreshing could perform both read and write on the same cycle.
Run-time speedups from 1.25 to 11.30 were achieved. For each test and each entry (NRR/LM,LQ) ∈ {1.5, 1.3, 1.1}× {1, 8} in the
table, the speedup was calculated by dividing the total number of clock cycles required to complete the underlying test when using
periodic refreshing by that required by queuing-based refreshing.

Section 1 showed that the advantage of the full GCeDRAM stems from its very low operation voltage and very small area. This
dictates a short DRT [21], which from (3) results in a short refreshing round periodNRR and the small size of the refreshable unit LM.
The PULPino architecture features 32 KBytes of L1 data memory, of which we used refreshable units (banks) of 2 KBytes size each,
similar to the one recently designed and manufactured in [22]. We considered NRR/LM of 1.5, 1.3 and 1.1. Note that performance
improvement considerably increased with the decrease in NRR/LM. This may be a crucial factor in ultra-low power designs using very

Fig. 7. Memory access performance in a hardware implementation.

Fig. 8. Zero performance loss dependence on queue capacity.
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low operation voltage. There, the DRT may be subject to wide variability, yielding worst-case bit cells DRT of very few microseconds
[22]. To avoid refreshing failures, the counter cRR shown in Fig. 2 can be configured at silicon testing so that NRR is set appropriately.

The impact of the refreshing queue capacity can clearly be seen in the performance speedup achieved by LQ=8 compared to
LQ=1. Although for some of the tests the improvement was just a few percent, in some tests it reached 70%, where the impact of LQ
was greater when NRR/LMwas small. This can be accounted for by the relative numbers of reads and writes. A large queue is mostly
effective when there is a high percentage of reads and writes. Otherwise, most of the refreshing occurs in M idle cycles. There, a read
into Q and write back into M (of different lines) take place in one cycle, without changing the Q filling, so that LQ hardly matters.

7. Conclusion

A queuing-based opportunistic refreshing algorithm for gain-cell embedded dynamic L1 cache memories enabling the design of
low-voltage ultra-low power processors was proposed. We showed how this refreshing avoids a great deal of the blockages to the
memory access by the CPU incurred by refreshing. An essential component of this algorithm is its queue, whose impact on system
performance was examined by using a stochastic model. The interrelation between memory size, the CPU read/write probabilities
and the queue capacity was derived as a closed-form expression which matched the simulations of hardware implementation per-
fectly. This expression is conclusive and can be implemented to optimally architect memories for ultra-low power processors to
maximize their performance. The setting of the refreshing period and the refreshable unit size underscores the optimality of the
refreshing. A hardware implementation of the opportunistic refreshing controller as a part of a RISC-V ultra-low power processor was
compared to ordinary periodic refreshing, and exhibited a performance speedup factor of 1.25–11.30 for a wide range of real
applications.
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