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Abstract—Ultra-low power processors designed to work at very low voltage are the enablers of the internet of things (IoT) era.

Their internal memories, which are usually implemented by a static random access memory (SRAM) technology, stop functioning

properly at low voltage. Some recent commercial products have replaced SRAM with embedded memory (eDRAM), in which stored

data are destroyed over time, thus requiring periodic refreshing that causes performance loss. This article presents a queuing-based

opportunistic refreshing algorithm that eliminates most if not all of the performance loss and is shown to be optimal. The queues used

for refreshing miss refreshing opportunities not only when they are saturated but also when they are empty, hence increasing the

probability of performance loss. We examine the optimal policy for handling a saturated and empty queue, and the ways in which

system performance depends on queue capacity and memory size. This analysis results in a closed-form performance expression

capturing read/write probabilities, memory size and queue capacity leading to CPU-internal memory architecture optimization.

Index Terms—Embedded cache memories, finite capacity queue, queuing, refreshing

Ç

1 INTRODUCTION

ULTRA-LOW power processors are a crucial feature in the
internet of things (IoT) era, since they operate at a very

low power-supply voltage. Cache memories, an essential
component of any processor, are implemented by a static
random access memory (SRAM) technology that cannot
function properly or reliably in ultra-low power processors.
Recent calls to replace them with embedded dynamic ran-
dom access memory (eDRAM) have been heeded and incor-
porated in certain commercial products [1], [2]. However,
bit cells of ordinary eDRAM store their data in special
capacitors, which significantly increases the manufacturing
cost of processors. They also suffer from charge destruction
during the read operation that requires immediate, power
expensive refreshing for data restoration. This read-refresh
is needed in addition to the mandatory periodic refreshing
caused by charge leakage over time.

A new type of bit cell known as the gain-cell (GC) has
recently been devised [3]. The GC eDRAM (GCeDRAM) has
a low manufacturing cost, and avoids the read-refresh oper-
ation, but still requires periodic refreshing due to charge
leakage. A key advantage of GC is its two separate read and
write ports, which makes it possible to architect memories
supporting simultaneous read and write. The GCeDRAM
data retention time (DRT) dictates the refreshing period,
and can vary from a few to hundreds of microseconds [4]

depending on the bit cell structure and the technology used.
As in the case of the refreshing operation of any eDRAM,
GCeDRAM is blocked for system access, thus causing per-
formance loss.

The most commonly used and straightforward refreshing
algorithms are periodic [5], [6] that refresh the entire memory
sequentially row-by-row. Here, we use the term row and line
interchangeably. Their main drawback is the blockage of the
central processing unit (CPU) read/write (R/W) access during
the refreshing period. Methods to reduce this blockage have
been discussed in [7], [8]. An overview of refreshing algo-
rithms for DRAM/eDRAM can be found in [9]. Refreshing
uses the same ports as for CPU access. Due to GCeDRAM’s
separate read andwrite ports, the read andwrite of individual
rows can take place simultaneously. Since refreshing requires
a read and write operation, a sequence of contiguous refresh-
ing can be pipelined to deliver an effective refreshing rate of
one cycle per line.

We suggest overcoming the performance degradation
problem with an opportunistic, queuing-based refreshing algo-
rithm that has the advantage of not intervening in the normal
memory access. Rather, refreshing takes place concurrently
with CPUR=W operations. To overcome the problem of prob-
able insufficient opportunistic refreshing, initiative refreshing
completion is enforced.

We examine three key issues. The first addresses the
maximization of the refreshing period. The second deals
with the optimal policy of handling a saturated queue, and
the third explores the ways in which system performance
depends on queue capacity and memory size. The analysis
yields a closed-form performance expression, providing
clear guidelines for the optimization of GCeDRAM memo-
ries in ultra-low power processor designs.

The remainder of this paper is organized as follows.
Section 2 describes the memory-CPU interface and the
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refreshing process, followed by the derivation of the longest
(and hence optimal) refreshing period. Section 3 elaborates
on the refreshing algorithm. Section 4 discusses the implica-
tions of saturated and empty refreshing queues. System per-
formance dependence on memory size, refreshing queue
capacity and CPU R=W probabilities are examined in
Section 5 via a stochastic model. The generalization of the
CPU-memory access model is presented in Section 6.
Section 7 presents the experimental results and Section 8
draws the conclusions.

2 DYNAMIC MEMORY REFRESHING

Though GCeDRAM allows simultaneous read and write by
the CPU (denoted as the RþW cycle), we first assume that
the memory is accessed either for read or for write,
(denoted as the R=W cycle), but not both. This is in any
case the situation in ultra-low power processor architec-
tures [10]. We use M to denote the memory and consider
the worst case where there are no idle cycles in which M is
not accessed by the CPU. The simpler case where there is
either a RþW cycle or M is idle was studied in [9]. There,
refreshing took place only at idle cycles. We show below
that accounting for idle and RþW cycles do not change
the conclusions when only assuming R=W access; hence
there is no loss of generality in terms of the analysis.

M refreshing takes place sequentially, line-by-line, simul-
taneously and in coordination and with the CPU access toM:
Simultaneously means that while the CPU is reading from
or writing into M, the refreshing is performing a counter
operation; namely, writing into or reading from a refreshed
line of M within the same clock cycle. Fig. 1 shows the hard-
ware implementation of the simultaneous refreshing. The
right side illustrates how refreshed data is transferred to
and from M. In an M W-cycle the CPU read is disabled and
the read port is used to read a line into a refreshing register.
In an M R-cycle the CPU write is disabled and the write
port is used to write the contents of the refreshing register
back into M. Since there may be write sequences where no
read intervenes and vice versa, it is clear that a single regis-
ter may cause a loss of refreshing opportunities, so a register
queue (FIFO) Q is needed. We subsequently use the terms
queue and buffer interchangeably.

The usage of buffers (queues) in computing hardware is
very common. The numerous other applications include the
cache memories using write-through buffers [11], and the
reorder buffer (ROB) used in high-performance processors
[12]. Due to their finite size, such buffers are often filled,

which usually degrades system performance. Research on
finite-capacity queues therefore has tended to focus on the
stochastic characterization of their filled state [13], [14]. The
queue of finite size in this paper has the unique property
that system performance is lost not only upon saturation
but also when the queue is empty.

The memory data bus connected to the CPU is bidirec-
tional, and is used for both read and write. A refreshing
round takes place simultaneously with CPU access. In a
W-cycle a line is read into Q, whereas in an R-cycle a Q line
is written back into M. This simultaneous access and
refreshing during the same cycle is a significant improve-
ment over existing refreshing methods where M is either
accessed for RþW which makes refreshing impossible, or
M has an idle cycle. Refreshing idle cycle can take place by
writing the head line of Q back into M, and reading the next
line ofM into the tail of Q on the same clock cycle.

Proper refreshing must guarantee that the duration
between two successive refreshes of any line will not exceed
the data retention time, denoted by NDRT, and measured in
clock cycles. Refreshing takes place sequentially row-by-row,
but not necessarily contiguously in time, because refreshing
stalls can occur inR-cycles ifQ is empty, or inW-cycles ifQ is
full. Since R=W access sequences can be arbitrary, there may
be insufficient simultaneous refreshing opportunities to fulfil
theNDRT data retention time period constraint. This requires a
supplementary mechanism to ensure that no matter which
R=W patterns occur, noNDRT cycles will ever elapse between
two successive refreshes of any row of M. If there are insuffi-
cient simultaneous refreshing opportunities, the system must
initiatively block the CPU access to M and enforce refreshing
completion before theNDRT cycles elapse.

Let NRR denote the refreshing round period (in clock
cycles). It must ensure that for any R=W access pattern all
the M LM rows are refreshed properly. Since the refreshing
of a row requires first reading it into Q and then writing it
back into M, a total of 2� LM clock cycles are required to
accomplish the refreshing simultaneously with R=W access.
Fig. 2a illustrates two successive refreshing rounds. The
time stamps at which rows are written back from Q into M
are distributed along NRR, and are depicted as gray marks.
Let t0ðlÞ be the time stamp when row l, 0 � l � LM � 1, has
been refreshed in the first refreshing round, and let t00ðlÞ be
the time stamp in the successive one. Proper refreshing
must satisfy t00ðlÞ � t0ðlÞ � NDRT.

The worst refreshing case occurs when M is accessed by
the CPU only for reads. Since no row can be read into Q,

Fig. 1. Refreshing queue working simultaneously with the CPU access to the memory.
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LM þ 1 cycles will be required to enforce refreshing. In this
case, the program is stalled and each cycle writes back a line
into the M row and the next row is read into Q, except the
first cycle when only a line is read into Q.

The larger the NRR, the greater the likelihood that a
higher portion of the LM refreshing will be concealed by
simultaneous opportunistic refreshing, and hence a smaller
portion (if at all) will be required to enforce completion.
Thus, the goal is to maximize NRR. The worst scenario con-
sisting of two successive NRR periods is shown in Fig. 2b.
This occurs for the first M’s row when there are 2� LM con-
tiguous opportunistic refreshing cycles at the beginning of
the previous round, whereas in the subsequent round there
are LM þ 1 enforced refreshing cycles occurring contigu-
ously at its end. Note the one cycle delay for writing back
the first row since it must first be read into Q. The worst
refreshing scenario in Fig. 2b comprises two unknowns a

and b, which need to be maximized to obtain the longest
refreshing round period NRR. The largest a and b must sat-
isfy two constraints. The first relates to the longest duration
between two successive refreshes of line zero, which for the
maximization ofNRR should beNDRT

2� LM � 1ð Þ þ bþ aþ 1 ¼ NDRT: (1)

The second constraint ensures that the two successive
refreshing rounds have the same length NRR

2� LM þ b ¼ aþ LM þ 1 ¼ NRR: (2)

Solving (1) and (2) for NRR yields

NRR ¼ NDRT þ LM þ 1

2

� �
: (3)

Note that an addition of just a single cycle toNRR in (3) will
violate proper refreshing if the worst-case scenario shown in
Fig. 2b occurs. Hence (3) is indeed themaximalNRR.

3 IMPLEMENTATION OF SIMULTANEOUS

OPPORTUNISTIC REFRESHING

The simultaneous opportunistic refreshing algorithm
requires three down-counters. The first counter is cRR,
NRR � 1 � cRR � 0 that counts the refreshing round cycle-
by-cycle. The second counter is cMR, LM � 1 � cMR � 0 that
determines which M row should be read next into Q. The
third counter is cMW, LM � 1 � cMW � 0 that determines
which M row should next be written back from Q. The three

counters are synchronized by the system clock, and set to
their initial values simultaneously. Fig. 3 shows the relation-
ship between cRR and cMW. Let LQ be the capacity of Q. For
any time NRR � 1 � t � 0 of a refreshing round (measured
in clock cycles) there is

LQ � cMW tð Þ � cMR tð Þ ¼ Q tð Þ � 0; (4)

where QðtÞ is the size of Q at time t.
Refreshing takes place simultaneously with CPU accesses

to M. The counter cRR is unconditionally decremented at
every clock cycle NRR � 1 � t � 0. Upon a W-cycle, an M
row is read into the Q tail and cMR is decremented, whereas
cMW is unchanged. Upon an R-cycle Q writes its head back
into line cMW of M and cMW is decremented, whereas cMR is
unchanged. Initially cRR > cMW þ 1, and as long as this
inequality holds, simultaneous opportunistic refreshing pro-
ceeds as shown in Fig. 3a. Once cRR ¼ 0, the M refreshing
round is completed and the counters are set to their initial
values cRR ¼ NRR � 1 and cMR ¼ cMW ¼ LM � 1.

If it occurs at some cycle t, NRR � 1 > t > 0, that
cRRðtÞ ¼ cMWðtÞ þ 1, as shown in Fig. 3b, refresh completion
must be enforced since otherwise there will not be enough
cycles to write back and complete the refreshing within NRR

cycles. Enforced refreshing stalls the CPU access for
cMWðtÞ þ 1 cycles by disabling the memory bus in Fig. 1.
Since the read and write ports of M are not being activated
by the CPU, at each cycle a line is read from M into Q and a
line is written back from Q to M, and all the three counters
are decremented. Once cRR ¼ 0, the refreshing round is
completed and the counters are set to their initial values
cRR ¼ NRR � 1 and cMR ¼ cMW ¼ LM � 1. Note that cMR is
never behind cMW, but rather reaches zero earlier and waits
QðtÞ cycles until cRR and cMW finish counting. The perfor-
mance degradation incurred by refreshing enforcement is
discussed in the next section. Note that cMWðtÞ þ 1 cycles
are required for refreshing completion if QðtÞ ¼ 0, whereas
cMWðtÞ suffice if QðtÞ > 0.

The left side of Fig. 1 depicts the hardware implementa-
tion of the refreshing algorithm. It comprises theM’s refresh-
ing counters cMR and cMW, whose role is to respectively
generate the read and write addresses of the current lines to
be refreshed. There is also the refreshing round counter cRR,

Fig. 2. Derivation of maximal refreshing round period.

Fig. 3. Refreshing modes: (a) Opportunistic, (b) enforcement of refresh-
ing completion.
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with control logic to enforce refreshing completion if the con-
dition depicted in Fig. 3b is met. In anMR-cycle, data is read
into the CPU through the lower-right de-MUX, whereas data
from the refreshing buffer is written back into M via the
upper-right MUX. The CPU read and write addresses are
obtained by the upper-left and lower-left MUXes, respec-
tively. An M W-cycle works symmetrically. Compliance
with the refreshing completion condition disables the CPU
access (some details are ignored) so at every cycle of the rest
of the refreshing round an M line is read into the tail of Q
and its head line is written back intoM.

Crucially, the replacement of the SRAM memory by
GCeDRAM by opportunistic refreshing is completely trans-
parent to the underlying running code and no special
machine instructions are required. Rather, existing memory
request/grant signals are used for the handshake of the
CPU, GCeDRAM and the refreshing controller. The various
read/write control signals on Fig. 1 were derived and deter-
mined by the memory request/grant signals.

4 SATURATED AND EMPTY REFRESHING QUEUE

Below we use CPU and the term ‘program’ interchangeably.
For long sequences comprising extensive W-cycles Q can
become saturated. This occurs when QðtÞ ¼ LQ and a
W-cycle occurs at tþ 1, causing the refreshing attempts to
read into Q. In this case it is possible to stall program execu-
tion and enforceQ flushing andwriting its LQ lines back into
M. We denote the flushing queue by Qf . Once Qf is empty,
the pending program resumes its execution. Let PCf and
cfMW denote the program counter and the refreshing write
back counter, and letQf be saturated at clock cycle t, then

PCf tþ LQ

� � ¼ PCf tð Þ; (5)

cfMW tþ LQ

� � ¼ cfMW tð Þ þ LQ: (6)

An alternative saturation treatment policy is not to do
anything and simply let the program continue and the
refreshing wait until the next CPU R-cycle occurs, enabling
Q to write back intoM. We denote the waiting queue by Qw.
Let PCw denote the program counter and cwMW the refreshing
write back counter. Let Qw be saturated at clock cycle t and
nW � 0 be the number of contiguous W-cycles occurring
immediately after Qw is saturated, then

PCw tþ nWð Þ ¼ PCw tð Þ þ nW; (7)

cwMW tþ nWð Þ ¼ cwMW tð Þ: (8)

Whereas Qf in (5) and (6) stalls the program execution but
progresses the refreshing, Qw in (7) and (8) progresses the
program execution but stalls the refreshing.

Let a program be comprised of a sequence of N memory
R=W access instructions, and let QfðiÞ and QwðiÞ, 1 � i � N
be the respective queue states after instruction i is executed;
namely, PCf ¼ PCw ¼ i. We define Qfð0Þ ¼ Qwð0Þ ¼ 0.
When the program starts, Qf and Qw behave similarly until
at some instruction j < N there is QfðjÞ ¼ QwðjÞ ¼ LQ. If
such j does not exist, Qf and Qw behave similarly during
the entire program, and hence assume that such a j does
exist. It is important to note that QwðiÞ � QfðiÞ, 1 � i � N .

Fig. 4 illustrates Qf and Qw for a possible R=W sequence.
It begins withQwðiÞ �QfðiÞ ¼ a > 0, and ends whenQf sat-
urates at instruction j. Note that the excessive filling a of
QwðiÞ is exhausted by the cycles when Qw is saturated, since
it is unable to read from M, and hence the refreshing stalls.
The exhaustion of the excessive filling a follows from the
telescopic sum of Qw saturation periods. Once Qf saturates
at PCf ¼ j, PCf stalls for LQ cycles as expressed in (5) while
Qf proceeds with refreshing by flushing, as expressed in (6).
For the example in Fig. 4 there is ða� bÞ þ ðb� gÞ þ g ¼ a.

An opposite, somewhat symmetric situation occurs in
Fig. 5 when Qw is emptied. The excessive filling QwðiÞ�
QfðiÞ ¼ a is exhausted by the cycles when Qf is empty and
Qw is not. The exhaustion of the excessive filling a follows
from the telescopic sum of Qf emptiness periods. While Qf

stops writing back into M and refreshing stalls, Qw contin-
ues with refreshing. Once Qw is emptied at PCw ¼ j, it also
stalls refreshing. As long as the program is reading from M,
both queues stay empty.

As noted above, the program and refreshing progression
may come on the expense of each other. Since at saturation
and emptiness Qf and Qw behave in opposite ways with
respect to the refreshing and program execution progres-
sion, this becomes a question of which one is preferable.
The following theorem proves that Qw is favored over Qw.
The proof is found in appendix A.

Theorem: Let a program perform either a memory read or a
memory write at each clock cycle. Let Q be a refreshing queue of
finite capacity as shown in Fig. 1, reading in a line at a memory
write and writing back a line at a memory read. Let Q do noth-
ing when it saturates, but rather wait for the next memory read
to get out of saturation. This queuing policy minimizes the per-
formance loss caused by stalling program execution to enforce
refreshing completion.

5 OPTIMAL MEMORY SIZING

The cache memories of microprocessors are too large to be
monolithic, and hence are commonly divided into banks,
each of which is a self-contained refreshable unit (Fig. 2 in
[9]). Although the total cache capacity Lcache is defined by
the system architecture, its division into refreshable units
of LM size each is a matter of design optimization. A cache
thus consists of Lcache=LM units, each of which involves a
non-negligible refreshing hardware overhead. Fig. 1
shows that M involves Q and counters. While cRR is an
absolute time counter and thus can be shared by all Ms,
each M has its own down-counters cMR and cMW with its
associated logic.

Fig. 4. Filling state of queues for R=W sequence starting withW-cycles.

1334 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 9, SEPTEMBER 2018



Maximization of LM will minimize Lcache=LM and hence
the total refreshing hardware overhead. On the other hand,
the larger the LM, the greater the likelihood that simulta-
neous opportunistic refreshing will not suffice (see (3) and
Fig. 2), and refreshing completion which stalls the system
will be enforced. This causes performance degradation that
needs to be minimized; hence, LM should be small enough.
Another interesting issue is how Q capacity LQ affects the
performance loss due to insufficient opportunistic refresh-
ing. Large LQ will apparently yield more opportunistic
refreshing, and hence higher system performance. Large
LQ, however, represents a hardware overhead.

To calculate the probability that initiative refreshing
enforcement will occur, which is the cause of system perfor-
mance loss, below we trade off the conflicting requisites of
maximizing and minimizing LM by capturing LQ into the
tradeoff. It is assumed that theR-cycle and theW-cycle occur
with respective probabilities 1 � m � 0 and � ¼ 1� m. The
performance loss of Nstall cycles, LM þ 1 � Nstall � 0, within
the refreshing round period NRR depends on the ratio
LM=NRR. The higher the ratio, the more probable the refresh-
ing completion enforcement is, and hence of a largerNstall.

Performance loss does not occur if the refreshing is able
to be purely opportunistic. This implies that a line was read
from M into Q and written back from Q into M LM times,
utilizing a total of 2� LM clock cycles. Reading the M line
into Q upon W-cycle is impossible if Q is saturated, so a
refreshing opportunity is lost. Similarly and symmetrically,
writing back a line from Q into M upon an R-cycle is impos-
sible if Q is empty.

Fig. 6 illustrates the possible states of Q filling fE; 0;
1; . . . ; LQ � 1; LQ; Sg and their transition probabilities upon
R and W cycles. This is a special case of a finite capacity
queue; each of the emptied and filled states encircled in
Fig. 6 are further split into two sub-states, where for the
grayed sub-state performance is lost and for the other it is
not. Every state 1 � i � LQ � 1 passes into state iþ 1 with
probability � and to state i� 1with probability m.

AnR-cycle at state 0 causes queue emptying cycle loss, des-
ignated by state E. Subsequent R-cycles leave Q in state E. A
W-cycle occurring at state E passes Q directly to state 1. A
symmetric situation occurs at stateLQ, where aW-cycle causes
queue filling cycle loss, designated by state S. Subsequent
W-cycles will result in queue filling cycle loss, leaving Q in
state S. Memory R-cycle occurring at state S passesQ directly
to state LQ � 1. The state transitions imply a stationary Mar-
kov chain with a corresponding ðLQ þ 3Þ � ðLQ þ 3Þ state
transition probability matrix P ¼ ðPijÞ, i; j 2 fE; 0; . . . ; LQ; Sg
illustrated in Fig. 7, where the corresponding states are shown
on the left and top sides.

Cycles of opportunistic reads into and writing back from
Q occur when Q is in any of the states 0 � i � LQ, but never
in states E and S. Therefore, the probabilities pE and pS
answer the question of whether there are sufficient opportu-
nistic refreshing cycles to refresh the LM memory lines. The
limiting probabilities pE; p0; . . . ; pLQ

; pS are obtained from
limn!1 Pn by solving the linear system [15]

pj ¼
X

i2 E;0;���;LQ;Sf g
piPij;j 2 E; 0; . . . ; LQ; S

� �
; (9)

together with

X
i2 E;0;���;LQ;Sf g

pi ¼ 1: (10)

Defining r ¼D �=m, the solution of (9) and (10) yields the
probabilities of emptied and saturated Q by the algebraic
manipulations elaborated in Appendix B as follows

pE ¼ 1� r

1þ rð Þ 1� rLQþ1
� � ; (11)

and

pS ¼ 1� rð ÞrLQþ1

1þ rð Þ 1� rLQþ1
� � : (12)

Fig. 5. Filling state of queues for R=W sequence starting with R-cycles.

Fig. 6. State transitions of refreshing queue filling.

Fig. 7. Refreshing queue filling state transition probability matrix.
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The expressions of pE in (11) and pS in (12) are not

defined for r ¼D �=m ¼ 1. However, taking their limits for
r ! 1 and applying L’Hopital’s rule, we get limr!1pE ¼
limr!1pS ¼ 1=ð2LQÞ. The probability of a successful oppor-
tunistic refreshing cycle is therefore

1� pE þ pSð Þ ¼ 2r 1� rLQ
� �

1þ rð Þ 1� rLQþ1
� � : (13)

Since there may be at most LQ reads from M into Q
before a line is written back from Q into M, there is some
0 � " � LQ such that if

1� pE � pSð ÞNRR � 2LM þ "; (14)

there will surely be enough simultaneous opportunistic
refreshing cycles, so refreshing completion enforcement
will not be required, and no performance loss occurs. If

1� pE � pSð ÞNRR < 2LM þ "; (15)

the refreshing deficit 2LM þ "� ð1� pE � pSÞNRR needs to
be recovered by enforcing refreshing completion along
Ncomp clock cycles. Recalling that at each of these Ncomp

cycles, both line insertion into and deletion from Q are per-
formed (CPU access in Fig. 1 is disabled), we get

Ncomp ¼ LM þ 1

2
"� 1

2
1� pE � pSð Þ NRR �Ncomp

� �
: (16)

Substitution of (13) in (16),Ncomp is solved to

Ncomp ¼ LM þ 1
2"

� �
1þ rð Þ 1� rLQþ1

� ��NRRr 1� rLQ
� �

1� rLQþ2
:

(17)

Thus, from (13), (14) and (17) it can be concluded that
the performance loss 0 � g ¼ Ncomp=NRR � 1 occurred by
refreshing completion enforcement is

g ¼
0 if

2r 1�rLQð Þ
1þrð Þ 1�rLQþ1ð ÞNRR � 2LM þ "

LMþ1
2"ð Þ 1þrð Þ 1�rLQþ1ð Þ�NRRr 1�rLQð Þ

NRR 1�rLQþ2ð Þ ; otherwise:

8>><
>>:

(18)

Equation (18) provides a closed-form expression that
captures the memory size LM, the memory write to read
probability ratio r and the refreshing queue capacity LQ.
Note that since LQ � LM, " can in practical terms be
neglected.

Fig. 8a plots the CPU access performance 1� g as
obtained from (18) for LQ ¼ 2 and LQ ¼ 8. The symmetry of
the surface around � ¼ m ¼ 0:5 follows from gðrÞ ¼ gð1=rÞ.
As noted above, the smaller LM, the larger 1� g. This trend
is shown clearly. When NRR ¼ LM refreshing must take
place at each cycle; hence, the CPU access to the memory is
always blocked and 1� g ¼ 0. As LM gets smaller, more
cycles are left for useful CPU access and performance
increases accordingly.

The amount of opportunistic refreshing also depends on
the memory write and read probabilities, 1 � � � 0 and
m ¼ 1� �, respectively. For a very small � Q will often be

empty, so it cannot supply rows to write back into M upon
R-cycles. Oppositely and symmetrically, a very small m will
often saturate Q, avoiding reading M lines into Q upon
W-cycles. These phenomena are illustrated by the decline in
performance of 1� g towards the surface margins at m ¼ 1
and m ¼ 0.

Note that for a sufficiently large NRR=LM and for some
symmetric interval around m ¼ � ¼ 1=2 there is no perfor-
mance loss, as shown by the flat surface enclosed by the
red curves in Fig. 8a. Recalling that we are interested in
minimizing the refreshing hardware overhead by keeping
LM as large as possible while minimizing the performance
loss, this curve defines the optimal design points in the
following sense. Given NRR, LQ and m, if zero perfor-
mance loss is achievable for some LM, the largest, and
hence optimal LM should be selected on the curve. There
is no point in choosing an internal design point of the flat
surface, which only decreases LM without increasing per-
formance. Other than the flat surface, any combination of
LM and m uniquely defines the memory access perfor-
mance loss.

To validate the analytical solution in (18), the design
in Fig. 1 was implemented in hardware and integrated
into a fully featured RISC-V based ultra-low power
processor called PULPino [10] to replace its SRAM data
memory. The HDL Veilog code was synthesized to
gate-level and then simulated with a Mentor Graphics
ModelSim simulator. We used random R=W traces for
LQ ¼ 2 and LQ ¼ 8, and various 0 � m � 1 and NRR=LM

ratios. The simulated performance surfaces illustrated
in Fig. 8b are perfectly match with the analytical ones
in Fig. 8a.

As expected, Fig. 8 shows that larger LQ yields higher
performance. To grasp the impact of LQ, the boundary
curve of zero performance loss in Fig. 8 can be derived from
(18) for any choice of LQ, yielding the parametric equation
depicted in Fig. 9 for 1 � LQ � 10. It is clearly shown that
the increase of LQ beyond a certain point hardly increases
the zero performance loss area. It can be deduced easily
from (18) that limLQ!1@g=@LQ ¼ 0.

Fig. 8. Memory access performance by analysis in (a) and simulation of
hardware (b).

1336 IEEE TRANSACTIONS ON COMPUTERS, VOL. 67, NO. 9, SEPTEMBER 2018



6 GENERALIZATION OF MEMORY ACCESS

So far it has been assumed that the CPU either reads from or
writes back into the memory at each clock cycle. Recall that
the GCeDRAM bit cell has separate read and write ports,
enabling the CPU to simultaneously read from and writes
into the memory (different lines). Moreover, programs may
have cycles where the CPU does not access thememory. Pro-
cessors can therefore have all four memory access cycle
types: R, W, RþW and idle. The respective opportunistic
refreshing operations thus are writing back from Q into M,
reading fromM intoQ, do not refresh, and finally, both read-
ingM intoQ andwriting back fromQ intoM (different lines).
The new memory access modes do not affect the states of Q,
which does not change its filling size in the case of no refresh-
ing or when reading into and writing back fromQ take place
on same cycle. Therefore, the conclusion regarding the opti-
mality ofQw holds for general memory access.

The new memory access modes affect the amount of
opportunistic refreshing and the progression of cMR and
cMW counters, and thus impact the performance loss due to
the program stalls required to complete refreshing. If mem-
ory access idleness is more frequent than RþW cycles, cMR

and cMW progress faster, thus increasing performance.
When memory access idleness is less frequent than RþW,
cMR and cMW progression is slower, thus decreasing perfor-
mance. The state transition diagram in Fig. 8 and the corre-
sponding transition probabilities matrix in Fig. 7 can be
extended to describe the general memory access model.

7 EXPERIMENTAL RESULTS

As depicted in Fig. 8 the hardware simulations matched the
analytic model perfectly under random R=W traces. In
order to show the advantage of queuing-based GCeDRAM
opportunistic refreshing, we employed a test bench com-
prising ten real applications. Their corresponding RISC-V
machine instruction code was simulated with the fully fea-
tured PULPino processor [10] and the results are shown in
Table 1. Its left side includes the lengths of the code and the
percentage of the CPU memory reads and writes. The right
side shows the speedup in run-time compared to using
ordinary periodic refreshing achievable by using our queu-
ing-based opportunistic refreshing algorithm. As men-
tioned in Section 6, the opportunistic refreshing also used
idle cycles.

The full GCeDRAM advantage stems from its very low
operation voltage (below 700 mV) and very small area (2T
gain cell). This dictates a short DRT [16], which from (3)
results in a short refreshing round period NRR and a small
size of the refreshable unit LM. The PULPino architecture
features 32 KBytes of L1 data memory, for which we used
16 refreshable units (banks) of 2 KBytes each, similar to the
one recently designed and manufactured in [17]. We consid-
ered NRR=LM in the range of 1.5 to 1.1 as dictated by the
above parameters. Run-time speedup from 1.25 to 11.30
was achieved.

It is important to note that the performance improvement
compared to ordinary periodic refreshing considerably
increases with the decrease in NRR=LM. This may be a cru-
cial factor in ultra-low power designs using very low opera-
tion voltage (500 mV). There, the DRT may be subject to
wide variability, yielding worst-case bit cells DRT of very
few microseconds [17]. To avoid refreshing failures, it is
possible to configure the counter cRR at silicon testing, so
NRR is set appropriately.

To highlight the impact of the refreshing queue capacity,
Table 2 summarizes the performance speedup obtained by
LQ ¼ 8 compared to LQ ¼ 1. While for some of the tests the
improvement was just a few percent, in some tests it reached
70 precent. This is explained by the relative amounts of reads
andwrites. Large queue ismostly effective in high percentage
of reads and writes. Otherwise, most of the refreshing occurs
inM idle cycles. There, a read intoQ andwrite back intoM (of
different lines) take place in one cycle, unchanging Q filling,
henceLQ does notmatter.

The impact LQ is greater when NRR=LM is small, a case
that stresses refreshing constraints. The table shows that for
tests comprising higher CPU write rates such as FFT, SHA-3
and bubble sort, a larger queue is more effective than a
smaller one. This can be explained by the fact that extensive

Fig. 9. Zero performance loss dependence on queue capacity.

TABLE 1
Speedup by Queuing-Based Opportunistic Refreshing

Test NRR=LM

Name
Total

Instructions

CPU

Read

[%]

CPU

Write

[%]

Queue

size
1.5 1.4 1.3 1.2 1.1

2D convolution 85978 32.52 1.82 1 1.25 1.74 1.84 2.05 2.66

8 1.25 1.77 1.88 2.11 2.79

FastDCT 68009 28.54 2.71 1 1.27 1.38 1.34 1.51 1.93

8 1.28 1.41 1.40 1.61 2.11

FIR filter 162102 24.06 1.21 1 1.86 2.78 3.20 3.38 3.38

8 1.86 2.87 3.33 3.53 3.61

FFT 274574 19.61 9.67 1 1.64 2.49 2.57 2.63 2.60

8 2.09 3.55 4.06 4.46 4.40

SHA-3

(crypto hash)

797858 20.00 13.02 1 1.82 2.96 2.92 2.84 2.45

8 2.32 4.12 4.38 4.40 3.62

Fibonacci 24136 30.96 4.91 1 1.43 1.84 1.97 1.99 2.13

8 1.43 1.87 2.03 2.17 2.19

Bubble sort 121315 37.39 16.77 1 1.42 2.56 2.22 2.18 2.03

8 1.93 3.17 3.11 3.14 2.98

Dot-product 24482 29.72 2.41 1 1.65 2.05 2.08 2.24 2.60

8 1.67 2.08 2.13 2.31 2.74

Matrix

multiplication

38165 34.11 2.87 1 1.80 2.60 2.60 2.65 3.06

8 1.81 2.61 2.60 2.68 3.11

CRC32 1461929 9.38 0.04 1 2.91 5.77 7.36 10.52 11.29

8 2.91 5.77 7.36 10.52 11.30
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CPU writes enable sufficient queue filling which is then
emptied at CPU reads.

8 CONCLUSION

This article showed how a great deal of the blockages to
memory access by the CPU incurred from memory refresh-
ing can be avoided by applying an opportunistic refreshing
algorithm. An essential component of this algorithm is a
queue, whose impact on system performance was examined
by using a stochastic model. The interrelation between
memory size, the probability of the CPU read/write mem-
ory access and the queue capacity was derived in a closed-
form expression. This expression is conclusive and can be
implemented to optimally architect memories for ultra-low
power processors such that their performance loss due to
refreshing is minimized.

APPENDIX A:
PROOF OF Qw FAVOR OVER Qf

Proof. We first show the superiority of Qw over Qf . Con-
sider a program executing NRR instructions, each of
which is either a memory read or a memory write. Let us
divide the program progression by the instructions jk,
0 < jk < NRR � 1, 1 � k � m, for which QfðjkÞ ¼ LQ. It
was mentioned above that if this never occurs, then Qf

and Qw behave similarly for the entire program, so one is
not favored over the other. tu

The instructions jk divide PC into mþ 1 intervals
ik � i � jk, where i1 ¼ 0, ikþ1 ¼ jk þ 1 and jmþ1 ¼ NRR � 1.
At the beginning of interval k, 2 � k � mþ 1, Qf is empty
after it became saturated at instruction jk�1. The behavior of
Qf and Qw at the beginning of interval k, where the interval
starts with R-cycles in (a) and W-cycles in (b), is illustrated
in Fig. 10. During ik � i � jk Qf and Qw may comprise seg-
ments types as in Figs. 4 and 5. To decide whether Qf or Qw

is better, let us consider the progression of the program
counters PCfðtÞ and PCwðtÞ with respect to the time, and
the amount of reads into and writes from Qf and Qw in the
instruction intervals 1 � k � mþ 1.

To this end we first modify Qw into Qw	
. We will later

modify Qw	
back into Qw, and prove that they perform iden-

tically regarding the progression in program execution and
the refreshing completion requirement with respect to the
complete refreshing round period NRR. At instruction jk

Qw	
will stall the program for LQ cycles to enforce refresh-

ing M by writing back the line at the head of Qw	
into M,

and reading a line from M into the tail of Qw	
. In this man-

ner Qw	
will stay saturated but the refreshing of M will

progress by LQ lines. If tðiÞ denotes the time elapsed when
instruction i has been executed, then

PCw	
t jkð Þ þ LQ

� � ¼ PCw	
t jkð Þð Þ; (19)

cw
	

MW t jkð Þ þ LQ

� � ¼ cw
	

MW t jkð Þð Þ þ LQ: (20)

Fig. 11 shows the possible behaviors of Qw	
during the

flush of Qf . The instructions executed by PCf and PCw	

progress identically, and hence are synchronized with
respect to time. Recalling that ik ¼ jk�1 þ 1 (see Fig. 10), in
(a) M is accessed for writes after Qf is flushed, whereas in
(b) it is accessed for reads.

Let Lf
k and Mf

k, 1 � k � m, be the amount of reads from

M into Qf(queue filling) and the amount of writes back from

Qf into M (queue emptying), respectively. Lw	
k and Mw	

k are

defined similarly for Qw	
. For the reads from M into Qf and

Qw	
there is

Lf
1 ¼ Lw	

1

Lf
k ¼ Lw	

k ; 2 � k � m:

Lf
mþ1 � Lw	

mþ1

(21)

During the period when both PCf and PCw	
stall in the

intervals 2 � k � m, Qw	
keeps filling whereas Qf simply

drains to empty. The reads from M into Qw	
thus lead over

Qf by LQ. This lead however nullifies gradually during the

TABLE 2
Impact of Refreshing Queue Capacity

N
R
R
=
L
M

2D co
n
v
o
lu
ti
o
n

F
as
t

D
C
T

F
IR

fi
lt
er

F
F
T

S
H
A
-3

(c
ry
p
to

h
as
h
)

F
ib
o
n
ac
ci

B
u
b
b
le

so
rt

D
o
t-
p
ro
d
u
ct

M
at
ri
x

m
u
lt
ip
li
ca
ti
o
n

C
R
C
32

1.1 1.05 1.09 1.07 1.69 1.48 1.13 1.46 1.05 1.02 1.00
1.2 1.03 1.06 1.05 1.70 1.54 1.09 1.44 1.03 1.01 1.00
1.3 1.02 1.04 1.04 1.58 1.50 1.07 1.40 1.02 1.00 1.00
1.4 1.01 1.02 1.04 1.42 1.39 1.02 1.39 1.02 1.00 1.00
1.5 1.00 1.01 1.00 1.12 1.29 1.0 1.36 1.01 1.01 1.00

Fig. 10. Behavior of the “flush” and “wait” queues.
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rest of the interval, starting when both PCf and PCw	

resume and ending when Qf is saturated again, a time
where Qw	

is saturated as well. The lead nullification is
shown in Fig. 4 by the telescopic sum of the time intervals
where Qf keeps filling and Qw	

is saturated. The last interval
mþ 1 may end before Qf becomes saturated; hence some of
the reads lead into Qw	

over Qf remains. For the writes from
Qf and Qw	

back intoM there is

Mf
1 ¼ Mw	

1

Mf
k � Mw	

k ; 2 � k � mþ 1:
(22)

The inequality in the intervals 2 � k � mþ 1 follows
from the fact Qw	

never gets empty before Qf does, whereas
they always leave emptiness together. Hence, the periods of
Qf emptiness contain the periods of Qw	

emptiness. Since
during an emptiness period the queue cannot write back
into M, Mf

k � Mw	
k follows. Summation of (21) and (22)

yields respectively

Xmþ1

k¼1

Lf
k �

Xmþ1

k¼1

Lw	
k ; (23)

and

Xmþ1

k¼1

Mf
k �

Xmþ1

k¼1

Mw	
k : (24)

While PCf and PCw	
progress identically, namely PCfðtÞ ¼

PCw	 ðtÞ, 0 � t � NRR � 1 (see Fig. 11), it follows from (23)
and (24). that the refreshing with Qw	

is never behind the
refreshing with Qf , but rather may be ahead.

Recall from Fig. 3 that the refreshing algorithm maintains
a down-counter cMW initialized to cMWð0Þ ¼ LM � 1, which
counts the M lines that still need refreshing before NRR

cycles elapse. Another down-counter cRR initialized to
cRRð0Þ ¼ NRR � 1, counts the remaining clock cycles until
NRR cycles elapse. If at some t � NRR � 1 cRRðtÞ ¼
cMWðtÞ þ 1, the program stalls for cMWðtÞ þ 1 cycles to
enforce refreshing completion of the remaining cMWðtÞ M
lines. At each clock cycle an M line is read into the Q tail
and the Q head is written back intoM.

It follows from (23) and (24) that at any t before refresh-
ing completion is enforced there is cw

	
MWðtÞ � cfMWðtÞ. If for

both counters refreshing completion is enforced, there are

two times tf and tw
	
such that cRRðtfÞ ¼ cfMWðtfÞ þ 1, and

cRRðtw	 Þ ¼ cw
	

MWðtw	 Þ þ 1. Since cRR is an absolute time

counter, independent of the executed program, there is

tw
	 � tf . Consequently, within NRR period PCw	

will per-

form tw
	 � tf � 0 more instructions than PCf . Returning to

Fig. 11, the refreshing maintained by Qw	
during LQ cycles

at instruction jk�1, 2 � k � mþ 1 does not change its state
(stays saturated), so it can be postponed to jmþ1 without
affecting proper refreshing completion. These postpone-
ments make Qw	

behave exactly like Qw, thus proving that
Qw performs better than Qf .

Any partial flushing which writes back only l entries,
0 < l < LQ to the M, is also inferior to Qw. This is shown
by stalling PCw	

for l cycles during which Qw	
reads from

and writes into M at every cycle, thus making the progres-
sion of PCf and PCw	

synchronized again. Using the same
arguments of postponing the l refreshes of Qw	

at each
instruction jk�1, 2 � k � mþ 1, to jmþ1, modifies Qw	

to Qw,
while proper refreshing completion is preserved.

APPENDIX B:
DERIVATION OF ppEE AND ppSS
The transition matrix in Fig. 7 yields LQ þ 3 equations

pE ¼ mpE þ mp0;

p0 ¼ mp1;

p1 ¼ �pE þ �p0 þ mp2;

pi ¼ �pi�1 þ mpiþ1; 2 � i � LQ � 2;

pLQ�1 ¼ �pLQ�2 þ mpLQ
þ mpS;

pLQ
¼ �pLQ�1;

pS ¼ �pLQ
þ �pS:

(25)

Defining x0 ¼D pE þ p0, xi ¼D pi; 1 � i � LQ � 1 and xLQ
¼D

pLQ
þ pS , substitution in (25) turns it into the following

LQ þ 1 equations

x0 ¼ mx0 þ mx1

xi ¼ �xi�1 þ mxiþ1; 1 � i � LQ � 1;

xLQ
¼ �xLQ�1 þ �xLQ

(26)

where

XLQ

i¼0

xi ¼ 1: (27)

Equations (26) and (27) are solved to

xi ¼ x0
�
m

� 	i

; 1 � i � LQ : (28)

Fig. 11. Behavior of “flush” and “modified wait” queues: writes after flush
(a) and reads after flush (b).
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Defining r ¼D �=m, and substitution of (28) in (27), there is
x0

PLQ
i¼0 r

i ¼ 1, yielding

x0 ¼ 1� r

1� rLQþ1
: (29)

Recalling from (25) that pE ¼ mpE þ mp0 and m ¼ 1� �,
there is p0 ¼ rpE . By definition there is x0 ¼D pE þ p0 ¼
ð1þ rÞpE , which by substitution of (29) yields

pE ¼ 1� r

1þ rð Þ 1� rLQþ1
� � :

Using similar substitutions, there is

pS ¼ 1� rð ÞrLQþ1

1þ rð Þ 1� rLQþ1
� � :
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