IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 63, NO. 11, NOVEMBER 2016

1921

Opportunistic Refreshing Algorithm
for eDRAM Memories

Amit Kazimirsky and Shmuel Wimer, Member, IEEE

Abstract—Embedded DRAM (eDRAM) is an alternative tech-
nology that can replace the area and power consumed by SRAM
cache memories. eEDRAM consumes half the area and an order
of magnitude less power than SRAM, but has the drawback of
access blockage caused by its periodic data refreshing. This paper
presents an opportunistic refreshing algorithm along with the
appropriate memory architecture and skim control logic. This
architecture takes advantage of the access idleness of the internal
partitions of the memory and enables most of the refreshing opera-
tions to run concurrently with the ordinary R/W access. This elim-
inates the refreshing burden almost completely. The algorithm was
simulated with industrial DSP access traces, and outperformed
in a wide range of eDRAM technologies and internal memory
architectures.

Index Terms—eDRAM, L1 cache, low-power cache, refreshing
algorithms, refreshing control.

I. INTRODUCTION

MBEDDED dram (eDRAM) is a well-known memory
technology designed to replace the conventional six-
transistor (6 T) SRAM by a smaller area and lower power
consuming memory bit-cell (cell for short) [1], [2]. e DRAM
cells are also less sensitive to process variations than SRAM [3].
There are two eDRAM cell types. The ordinary eDRAM cell,
known as 1TIC, comprises one capacitor and one transistor.
It is widely used in processors, but requires a special and
expensive process technology. It also has the disadvantage of
charge destruction at read operation. Hence an immediate and
power consuming operation of refreshing for data restoration
is required. This read-refresh is needed in addition to ordinary
periodic refreshing due to charge leakage over time. The second
cell type known as the gain-cell (GC), was designed to achieve
a smaller area and power advantages of eDRAM while main-
taining a low manufacturing cost and avoiding the read-refresh.
There are several types of GC comprising two [4], three [5]
and four transistors [6], which have an order of magnitude
less leakage-power and occupy less than half of the area of a
6 T-SRAM cell. Unlike 1T1C cells that have single port for both
read and write, GCs have two separate ports. This enables the
design of memories supporting simultaneous read and write [7].

Manuscript received May 7, 2016; revised June 25, 2016 and July 25, 2016;
accepted August 11, 2016. Date of publication September 19, 2016; date of
current version October 25, 2016. This work was supported by the Israeli Chief
Scientist under the HiPer consortium of the MAGNET program. This paper was
recommended by Associate Editor Y. Pu.

The authors are with the Engineering Faculty, Bar-Tlan University, Ramat-Gan
52900, Israel (e-mail: kaziamit@ gmail.com; wimers @biu.ac.il).

Digital Object Identifier 10.1109/TCSI1.2016.2600538

The main drawback of eDRAMSs compared to SRAMs is their
refreshing requirement. Unlike the SRAM cell, which retains its
state permanently, eEDRAM cell requires periodic refresh due to
leakage at its storage node. The eDRAM Data Retention Time
(DRT) can vary from a few to hundreds of microseconds [8],
depending on the memory cell structure and the technology in
use. During the refreshing operation the eDRAM is blocked for
system access, thus causing performance loss.

There are two types of refreshing algorithms. The most com-
monly used and straightforward is periodic algorithm [9], [10],
named administrative refreshing in [11]. It is also known
as global refreshing because it refreshes the entire memory
sequentially row-by-row. (We use the term row and line in-
terchangeably.) Its main drawback is the blockage to system
R/W access during the refreshing period. Methods to reduce its
power consumption and system access blockage are referred in
[12] and [13].

Global refreshing uses the same ports as ordinary memory
access. These are blocked for normal cache accesses when
used for refreshing. Due to the separate read and write ports
of GC eDRAM, the read and write of distinct rows can take
place simultaneously. Since refreshing requires a read and write
operation, a sequence of consecutive refreshing accesses can be
pipelined. Global refreshing degrades performance because of
memory blockage. The cache implementation in [3] reported
about 8% performance loss. The authors suggested but did
not elaborate on the notion that the L1 under-utilization due
to R/W access idleness can be leveraged to hide the refresh
operations and reduce performance loss. Another solution to
avoid performance degradation is to add extra R/W refreshing
dedicated ports, making it independent of the ordinary R/W
accesses. This however comes at the cost of considerable L1
area and power growth.

Another type of algorithm works in an on-the-fly manner,
in which every row is monitored individually for a refreshing
alert. There are two alert methods. In the first, each row is
supplemented with a replica cell monitored for charge leak-
age, which indicates when its associated row of cells needs
refreshing [14]. The second method monitors each row of cells
with a counter that counts the clock cycles elapsed since the
most recent write, which is when the counter is reset [3]. One
idea is to set these counters individually during silicon testing
according to the retention time of the corresponding lines. Once
a counter reaches the retention time, its line must either be re-
freshed or evicted, depending on different refreshing schemes.
To this end [3] proposed several refreshing policies combined
with cache replacement policies, including no-refreshing and
partial-refreshing. In no-refreshing, an attempt to read data

1549-8328 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee org/publications_standards/publications/rights/index.html] for more information.

1922

which have been expired (corrupted) is treated as a cache miss.
These techniques are tightly coupled to the cache replacement
policy and maintenance of data consistency across memory
hierarchies. While write-through can be handled simply, write-
back involves very complex control hardware.

On-the-fly refreshing methods suffer from several draw-
backs. With retention time in the range of microseconds and
a nanosecond clock cycle, every per-line counter requires ten
bits or more, which is considerable overhead. In addition, once
the row’s monitor alerts, a row refreshing is enforced. While
increasing somewhat the memory availability to the system’s
R/W access, on-the-fly algorithms require complex control
logic. Moreover, the system’s R/W blockages are unpredictable.
They may be introduced sporadically and randomly by line
behavior that avoids the system using the memory blockage
periods for other purposes.

The viability of eDRAM was examined in-depth for Large
Last-Level caches (L3Cs) [15]. The authors introduced the
notion of dead-line prediction to avoid unnecessary refreshing.
A line is dead throughout the period from the latest access
and while awaiting eviction. For 32 MB L3C this time may
reach 60% of the lifetime in the cache. Dead-line prediction
was first used to reduce the leakage power in SRAM L1 and 1.2
by reducing the supply voltage [16]. In the eDRAM cache, line
refreshing is skipped if it is predicted to be dead, thereby saving
energy.

The work in [17] described a concurrent eDRAM refreshing
regime that was claimed to lead to low degradation in memory
availability. This was achieved by dividing the cache into
16 banks. For a random access, the authors showed 96% to 99%
availability in memories of banks comprising 512 to 128 lines,
respectively. In this method each bank is supplemented with an
independent line counter that generates the address of the cur-
rently refreshed line. While a certain bank is addressed for ordi-
nary system access, one or two other banks, defined in a circular
manner, are refreshed and increase their corresponding counter.
This refresh uses internal R/W ports, with the underlying as-
sumption that banks are individually accessed. By contrast, here
we assumes that all banks are accessed simultaneously, thus
simplifying the cache. The authors of [17] did not describe what
happens when a certain bank is addressed repeatedly for an
arbitrarily long period, thus prohibiting refresh for that period.
There is probably some other control enforcing the refreshing
of this bank when the retention time expires. Since the authors
used the entire retention time for the refreshing period, their
refreshing as described would not be sufficient to ensure proper
data retention, as proven in Section I1I.

A more recent refreshing algorithm, called versatile refresh,
was described in [18], and claimed to yield near-optimal
throughput. In this case, the algorithm traverses the memory
banks in a round-robin order. The refreshing within banks
takes place row-by-row, skipping banks accessed for R/W. To
resolve the problem of deficit refreshing in blocked banks,
the algorithm maintains a global refresh history bitmap of a
time-sliding window, which uses a history shift register. This
versatile algorithm has an inherent problematic tradeoff. To
guarantee high memory availability; i.e., low R/W access block-
ages, the size of the bitmap must be on the order of the retention

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 63, NO. 11, NOVEMBER 2016

period, which requires thousands of bits. A long alternating
access-idle memory pattern can impose the toggling of all the
bits in the bitmap. This represents huge power consumption,
far larger than the power consumed by the entire memory array
itself. To reduce this power overhead, a small bitmap of a few
entries is used. This, however, defeats the more general aim of a
retention period, and results in considerable memory blockages
by unnecessary refreshing. Our work avoids this refreshing
history bitmap.

Using eDRAM in a GPGPU across its entire memory hier-
archy has lately been proposed in [10] and [19] by using the
bubble (idle) memory cycles for refreshing. A 4-bit counter
per cache entry was suggested, implying considerable over-
refreshing and power overhead. For better efficiency the usage
of only two counters per bank was considered, for which the
determination of the optimal refreshing period is delicate, but
this is not addressed. Any opportunistic refreshing must also
guarantee that if bubbles do not occur for a long period, data
will remain valid. This has a crucial impact on the overall mem-
ory availability for R/W, which was ignored. A different type of
hiding the refreshing penalty for DRAM was proposed in [20].
It employed the refreshing in parallel to the write operation. The
parallel refreshing took place at the bank granularity, too coarse
for L1 purpose.

We suggest overcoming the memory availability problem by
refreshing in an opportunistic manner, without intervening in
the memory access. Refreshing takes place concurrently with
the R/W operations, by utilizing temporal and local mem-
ory idleness. The refreshing architecture takes advantage of
computational processes where access to memory addresses
varies from cycle to cycle. On the other hand, to overcome
the probability that the memory addresses may sometimes be
locally stuck for a long period, thus preventing the refresh of
this memory portion, initiative refreshing can also be gener-
ated. We show that this algorithm demonstrates considerable
improvement in the memory availability over conventional
periodic refreshing. An analytic model of the availability is
presented, supported by simulations with real applications. The
main contributions of this work are the following:

+ Bridging the performance gap between eDRAM and L1
cache with small area and power overhead.

+ A presentation of an eDRAM accurate refreshing model,
supported by probabilistic analysis.

« A provably correct formulation of what is the universally
optimal opportunistic refreshing period.

+ A proposal of effective, robust and simple for hard-
ware implementation, opportunistic refreshing algorithm,
which exploits the above optimality conditions.

« An exploration of memory access availability, power and
hardware complexity tradeoffs, showing conclusive rela-
tions between these factors.

¢ Good matching of the analytic model with the results
obtained from industrial memory access simulations.

The rest of the paper is organized as follows. Section TI
describe the physical structure of a GC-based eDRAM and
related L1 physical architecture. Section III presents the oppor-
tunistic refreshing algorithm, which performance is analyzed

KAZIMIRSKY AND WIMER: OPPORTUNISTIC REFRESHING ALGORITHM FOR eDRAM MEMORIES

0"
| [T SN
MWL 1LLMR
I cSN
WBL —_— RWL

Fig. 1. Two-transistor gain-cell (2 T GC). Write takes place through the
Memory Write transistor (MW) and read takes place through the Memory Read
transistor (MR). The storage node (SN) is in between.

in Section IV. Section V optimizes the elementary building
block of the eDRAM, followed by implementation details in
Section VI. Power analysis of a complete memory is discussed
in Section VII. Section VIII presents experimental results and
Section IX concludes the discussion.

II. THE GAIN CELL AND L1 CACHE

We subsequently describe basic gain cell L1 architecture. It is
the building block on top of which the opportunistic algorithm
is implemented to control.

A. The Gain Cell eDRAM

The GC-eDRAM (GC for short) is a high density alternative
to the 6 T-SRAM cell, which is realizable with 2—4 transistors,
and is manufactured by standard process technology [7]. Sev-
eral studies have shown that GC consumes less standby power
than a SRAM cell and can be operated at low supply voltages
[21]. The GC uses its internal node capacitance to store data.
Its unique structure decouples the read and the write ports,
thus enabling simultaneous read and write operation of two
distinct GCs. Though this work emphasizes the structural and
architectural aspects of the memory array independently of the
GC type, we recall briefly the basic properties of a 2 T GC
below. An example of a GC is shown in Fig. 1 [4].

The write operation takes place through the Memory Write
transistor (MW). The Write Bit-Line (WBL) is set to the value
to be stored. To open the MW the Write Word-Line (WWL)
switches to Vg, until the write operation is completed; i.e.,
when the Storage Node (SN) consisting of the gate and the
diffusion parasitic capacitance C'sy is fully charged. The WWL
then turns off, sufficiently before WBL gets a new value, since
otherwise the data stored in C'siy may be corrupted.

The read operation takes place through a Memory Read
transistor (MR). First, the Read Bit-Line (RBL) is pre-charged
to V4q, and then is disconnected from the supply voltage. To
start the read operation the Read Word-Line (RWL) switches
t0 Vgna. If SN is high, MR turns on and RBL is discharged,
thus “0” is read. Otherwise, RBL stays high and “1” is read.
Notice that the read value is the opposite value of SN. Since
the 2 T GC is not connected to a supply voltage, due to current
leakage the SN value is destroyed. To sustain its data, it requires
refreshing. GC DRT is the time that elapses between writing
data into the SN until it cannot be retrieved. This depends not
only on the GC structure, but also on system specifications
such as its operation frequency and supply voltage [22]. Such
considerations are beyond the scope of this work.

1923

ER

{ Instance A
l Instance

u
Lgru N
\ .
.

Instance

-
1
]
=
G

L1 Cache

13p0od3g

% Linst

Instance R === nanansas

1 ‘ % N
5, P 1
% | | Refresh Reg. 2

T

T

I
T o
H o
e 1
I
H-< H

jueg
jueg
.
.
sueg
o
3 B e

Fig. 2. L1 physical hierarchy.

Refreshing of the memory array usually takes place row-by-
row, and hence requires two independent operations. The first
involves reading the data from the SN to an external register,
and then writing it back to the SN. The separation of the R/'W
ports in GC enables simultaneous reading and writing of the
data in different rows. Therefore, although the refresh latency
of a row is two clock cycles, the refresh throughput is one row
per cycle.

B. GC-Based L1 Cache Physical Architecture

This work is focused on the internal physical structure of L1.
L1’s parameters, such as total size, block size, associativity,
and all the other related logical parameters are usually de-
fined by technology, application, architectural and performance
considerations. These are beyond the scope of this paper and
are orthogonal to the physical aspects discussed below. The
eDRAM L1 physical structure is hierarchical, as illustrated
in Fig. 2. Our physical architecture below decomposes banks
into smaller units, called Elementary Refreshable Units (ERUs).
Their impact on the entire cache performance will be discussed
and analyzed in later sections. ERUs are composed of elemen-
tary cache building blocks called instances. A typical instance
comprises a few hundred rows, whose number L, is defined
by the capacitive load limit the bit-line can drive, and the cache
operation frequency. An instance comprises its own peripheral
decoders and sense amplifiers.

The ERU comprises [j,s; instances. An ERU is thus made up
of Lrru = Linst X Linst Tows and Clani columns, for a total
of Iinst X Linst X Chank bit-cells. An ERU is a self-contained
refreshable entity, possessing all the required control hardware.
It contains a refreshing register. A refreshing operation first
writes the contents of a row into the refreshing register, and
then stores it back in that row in the subsequent cycle. The
EDA tool dubbed the memory compiler [23] assembles and
connects ERU macros to logical blocks (banks) and obtains the
entire L1.

The primary eDRAM factor defining the refresh time period,
denoted by Tprr, is its GC DRT, which is the time from writing
a datum into a GC until that datum is corrupted (by leakage).
An ERU has a single refresh controller, shared by all its [j,st
instances. Given a memory target clock cycle Tcrk, the reten-
tion period Nprr = Tprr/TcLk dictates the largest possible
Lgry. The largest number of [iy is therefore bounded by

NDRTJ

inst

Iinst < \‘ (1)

1924

The analysis below is two-staged. It first assumes that the
ERU size Lggy is given, for which we present the opportunistic
refreshing controller. The impact of the Lgry on memory avail-
ability for R/W access is then addressed. The tradeoff between
two design goals is then presented and involves minimizing the
refreshing control HW overhead, thus maximizing Lgry, and
maximizing the memory availability, thus minimizing Lggry.
These conflicting goals require seeking the optimal Lgry, and
since Lery = Iinst X Linst, this also defines ;¢

III. ERU REFRESHING CONTROL ALGORITHM

This section first presents the opportunistic and initiative
aspects of the refreshing. It then derives analytically the maxi-
mal (hence optimal) refreshing period (interval) between two
successive refreshing of a line, such that the validity of the
stored data is always guaranteed. Knowing that period, an
algorithm and its hardware implementation which exploits the
optimality conditions is described.

A. The Behavior of Opportunistic Refreshing

One straightforward refresh algorithm commonly used by
dynamic memories [9] is called ordinary periodic refreshing. It
applies a refresh round in which the Lgry rows are sequentially
and contiguously refreshed one-by-one. During the refreshing
period the memory is blocked for any R/W access. A successful
refresh must ensure that the time elapsed between successive
GC refreshing does not exceed the retention period Npgr.
An appropriate refreshing controller requires some hardware to
monitor the continuous fulfillment of the Npgrt requirement.
The ordinary periodic refreshing is skim and robust, but sys-
tem performance may significantly be degraded due to Lgry
contiguous cycles when the memory is refreshed; namely the
period when the memory is blocked for R/W accesses.

The introduction mentioned two on-the-fly refreshing meth-
ods satisfying the Npgrr requirement: a per-row replica-based
and a per-row counter-based. Though they may reduce the
amount of row refreshing compared to ordinary periodic re-
freshing, both methods are expensive. They require consider-
able hardware, and may also degrade system performance by
blocking memory accessibility while a row is being refreshed.
Since ordinary periodic refreshing is the most common, it is
used as a reference here for comparison with our algorithm.

We suggest a hybrid refreshing approach leveraging of the
benefits of both; namely, high memory availability at a small
hardware cost. The refreshing takes place opportunistically,
row-by-row in a cyclic, but not necessarily contiguous manner.
Unlike on-the-fly methods that unconditionally stop the mem-
ory access for row refreshing upon a data retention alert, the
opportunistic method utilizes the clock cycles when an ERU is
not accessed, which we dub idle cycles. Since this is an oppor-
tunistic refreshing policy that relies on random occurrences of
memory idleness, adequate refresh must be guaranteed when
idleness is insufficient. This requires a supplementary mech-
anism to ensure that no matter what idleness has occurred in
an ERU, an Npgrr duration will never elapse between two
successive refreshes of each ERU row.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 63, NO. 11, NOVEMBER 2016

l l
<_. t"DH-t'WD) < NpRT _>

@ M-I -1, ..
Ny Ny

l l

NpRT
o [[
time

< Lgru a a Lgry =
Nw Nw

Fig. 3. Derivation of the largest refreshing window.

B. Derivation of the Maximal (Optimal) Refreshing Period

Let us denote by N,, the time window (in clock cycles) of
an opportunistic refreshing round. Though refreshing utilizes
cycles where there is no R/W access to the ERU, NV,, must
ensure that regardless of the amount of idleness, all the rows
have been refreshed properly. Obviously, there must be N, >
LgRru, since all the Lgry rows must be refreshed during N,,.
The strict inequality follows since N,, = Lgry would mean
that the ERU is busy only by refreshing rows, thus it is always
blocked for any system’s R/W access. We therefore define a
parameter o > 0 such that

N, = Lgryu + @ 2

and inquire how large « should be without violating the require-
ment that at most Nprr clock cycles must elapse between two
consecutive refreshes of a row. By the definition of N,,, all the
Leru ERU rows must be refreshed, either due to idleness, or
initiatively by blocking the ERU for R/W access, thus degrading
memory availability. Obviously the larger the size of «, the
better the availability.

To find the maximal value of o, let us examine two successive
refreshing rounds as depicted in Fig. 3(a). The time stamps at
which the rows are refreshed, either opportunistically due to
idleness or initiatively by ERU access stall (blockage), are scat-
tered along NV, and appear in red. We use the terms ERU stall
and blockage interchangeably. Let ¢’ (1) be the time stamp when
row 0 <! < Lgry— 1 has been refreshed in the previous NV, win-
dow and let t” (1) be the time stamp in the successive window.
A proper refresh requires that ¢ (1) —t'(l) < Nprr. The worst
refreshing scenario of two successive windows is shown in
Fig. 3(b). This occurs when there are Lgry contiguous refresh-
ing cycles at the beginning of the previous window, whereas in
the subsequent window there are Lgry contiguous refreshing
cycles occurring at its end. Thus, the largest o should satisfy

NDRT:l+a+a+(LERU—Z):LERU+2a (3)
(a) (b)

where term a) stems from the previous window and b) stems
from the subsequent one. Using (2) and (3), IV,, is obtained by

Nprr + LERUJ @)

Ny = |Lgru + ¢ = { 5

KAZIMIRSKY AND WIMER: OPPORTUNISTIC REFRESHING ALGORITHM FOR eDRAM MEMORIES

initialization opportunistic violation initiative
Ny —1 Ny-1 Ny -1 Ny —1

o o o

2 2 g

=} & 3

Y A 1l

3 3 2

(a) ol E o Z o | Z

Lgry -1 Lgry -1 Lgry —1 Lgry —-1

0 0 U 0 H 0 ﬂ
°DRT CERU °DRT CERU °DRT CERU ‘DRT CERU

Fig. 4. Refreshing counters. (a) Initialization, (b) potential opportunis-
tic refreshing completion, (¢) refreshing violation, (d) initiative refreshing
completion.

Note that an addition of just a single cycle to N, in (4) will
violate the proper refreshing if the worst case refreshing shown
in Fig. 3(b) takes place. Hence the IV, defined in (4) is maximal
indeed.

C. Hardware Implementation of Opportunistic Refreshing

The hardware implementation of the proposed refreshing
algorithm requires two counters as shown in Fig. 4(a). A
counter cpgr, called DRT counter, down counts cycle-by-cycle
in the range N,, — 1 > cpgr > 0. Its role is to monitor the
time stamp within N,, cycles. Another counter cgry, called
ERU row counter, down counts cycle-by-cycle in the range
Legry — 1 > cgru 2 0. Its role is to determine which row
should be refreshed next. The two counters are synchronized,
and set to their initial values simultaneously.

A refreshing operation writes the content stored in the ERU
refreshing register to the row at address cgry. cgryu 1S then
decreased by one, and the contents of the row in the new cgru
address are written into the ERU refreshing register, awaiting
the next refreshing to occur. An opportunistic row refreshing
requires an idle ERU access state. ERU access by the system’s
R/W occurs occasionally, in which case refreshing halts. Once
an idle state resumes, the refreshing continues at the next row,
addressed by cgry. Thus a memory idleness signal conditions
cgru- Once cgry = 0, the ERU refreshing round is completed,
and both cprT and cgruy are set to their initial values.

To guarantee proper refreshing, note that cpgrr and cgru
compete. The “race” starts when they are initialized to cprT =
Ny — 1 and cgru = Lgru — 1, where their finishing line is
zero. Initially there is cprT = cgry. Ateach clock cycle cprr
decreases by one, whereas cgry decreases by one only if
memory idleness occurs. As shown in Fig. 4(b), as long as
CDRT > CERU, CERU = 0 can take place earlier than ¢cprr = 0,
provided that enough idleness occurs before cprr = 0 is met.

The case of cgru > cprr shown in Fig. 4(c) indicates that
the retention condition ¢t”(1) — ¢'(l) < Npgt in two successive
N,, time windows will certainly be violated in some of the
lower rows, and hence a retention violation will occur. To avoid
DRT violations, the discriminating condition cgry = ¢pDRT
shown in Fig. 4(d) is used to switch from opportunistic to
initiative refreshing, henceforth enforced at each clock cycle

1925

(a)

Countersetting l

CprT <« Nw—1
CgrU < LERU — 1
|

Opportunistic Initiative

(d)

R/W ERU idle
Block ERU R/W

Refresh CERry row

Refresh CEry row

CpRrT < CpRT — 1
CERU < CERU — 1

CpRT < CprT — 1
CgrU < CERU — 1

CpRT < CpRT — 1

CprT =0

Fig. 5. Opportunistic refreshing algorithm.

until egry = cprr = 0 is met. The enforcement of initiative
refreshing blocks the ERU from any R/W accesses until refresh-
ing is completed, which may cause performance degradation if
the system attempts to access it. This degradation is discussed
in the next section.

Fig. 5 depicts the opportunistic refreshing algorithm. Every
refreshing round takes N, iterations. It starts in (a) by setting
the values of the two counters cprr and cgry. The “yes”
branch in (b) attempts to refresh opportunistically, provided
that idle R/W cycle occurs in (c). In such a case both coun-
ters are decremented by one. Otherwise, only ¢pgr is decre-
mented. Opportunistic refreshing attempts take place as long
as the feasibility condition ¢prt > ¢gru holds. Once eprr =
CERU, Initiative refreshing takes over in (d) and it stays so
until refreshing round completes. Notice that at completion
after N, iterations cgry can be either positive, a case where
R/W idleness hid all the refreshing, or cgry can be zero
if some initiative refreshing was enforced due to insufficient
idleness.

There is a tricky point when a certain line is read into the
refreshing register, awaiting to be re-written in a later cycle.
This line may be addressed for ordinary data store between the
refreshing read and write cycles, in which case the refreshing
will override it with wrong data. Fortunately, writing a new
data is nothing but a refresh, so instead of using the refreshing
register, one should use the external data.

IV. PERFORMANCE ANALYSIS AND
SYSTEM IMPLICATIONS

As discussed above, the ERU refreshing control may halt its
access for proper refreshing, which affects memory availability.
This is studied below and compared to the ERU availability
of an ordinary periodic refresh. Let the average ERU avail-
ability n be defined as the fraction of N, for which the ERU
is accessible (available) for a system’s R/W. By definition

1926

0 <17 <1, where n = 0 indicates that it can never be accessed,
and n = 1 indicates it is always available. Recalling that the
ERU is blocked during the initiative refresh completion, 7 is
given by the following expression:

#initiative refresh cycles
Ny, ’

n=1 6)

In ordinary periodic refreshing where refreshing takes place
row-by-row, the ERU is blocked during a contiguous Lgry
time period. Let 7,4 denote its ERU availability. The longest
possible refreshing period is Npgr, which from (4) is 2N, —
Lgruyu. Hence

L L
Mora =1 — ot =1 — ot ©)
Nprr 2Ny, — Lgru

Considering the opportunistic refreshing algorithm, let 0 <
pidle < 1 be the idleness probability. Let [iqie be a random
variable counting the number of ERU idle cycles within the
N,, window, and let [i,;; be a random variable counting the
number of cycles where the ERU is blocked due to initiative
refreshing completion. Clearly, when (iqie > LgRruyu, initiative
refresh completion is not required, hence Si,;y = 0. The random
variable [yt is therefore defined by

Binit = max{Leryu — Bidie, 0}. @)

It follows that ;g1 is a binomial random variable, (jq1e ~
Bin(Ny,, pidie), Which in our notation has the following proba-
bility density function:

Ny _
Pr[Biaie = k] = (i)pﬁﬂe(l — Pidle) V. 8)

The probability density function of S;y;; is given as follows:

Ny

Pr[Binit = 0] = Z
k=Lgru

Ny _
(k)p{cdle(l _pidle)Nw F &)

Leru—t

. N
Pr{finic = i] = (Lgru— z) Didle

X (1=piare) Vo= Feru=) 0 < § < Lggy (10)

Pr[ﬂinit - ’L] == 0, (11)

i > Lgrru-.
The situation in (11) is not feasible and its probability is
therefore zero. Equation (10) addresses the situation where the
number of idle cycles fiq1e Within N, window is smaller than
the ERU size Lgry, which necessitates Lgry — Pidle initiative
refresh cycles. The situation in (9) corresponds to the situation
where there are sufficient idle cycles Sigie to accommodate
Lggry refreshing opportunistically.

Let 7op¢ denote the memory availability of the opportunistic
refreshing algorithm. Knowing the probability of [Si,;t, its ex-

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 63, NO. 11, NOVEMBER 2016

1536 1664
153
1182 1408
ns

us2

Pidle = 0.14

ERU stall [cycles]

<&

(2 51
6% 0.2 o
oﬁ o 2568
06& 0.6 128

(-
Z o it Yo Yo Yr Y0, G, % Y % W % 9

4 BB ER TR e e Y ¥R
2 #rowsin ERU LRy

Fig. 6. The dependence of ERU access stalls on Lgry and piqie-

pected value is F[Binit] = ZZ.L:Eg‘U i Pr[Binit = 7). Substitution
Of(ll) andj = LERU —1 yields

L
E[Binit) = iUi No pLERv=i(] — pyyo)Ne = (Leru—1)
P LERU —q idle
0
N Nu) 1 —a
= > (Leru-— J)(-)pijdle(l — pidie) "
j=Lgru J
Lgru
£ 3" (Leru — 5) Pr(Bdie = J)- 12)
=0

The expression in (12) can be computed numerically, and 7754
is obtained by

E[Binit]
Ny

Nopt = 1 — . 13)
Whereas 7 is the average ERU availability, 1 — 7 is its average
blockage to the system’s R/W accesses. The average blockage
of opportunistic refreshing is compared to that of ordinary
refreshing by considering the ratio (1 — 7ord)/(1 — Mopt)- Sub-
stitution of (13) and (6) yields

Ny

2N, —Lgru
(14)

1 —Tord _ Lgru/(2Ny— LerU) _ _Leru
1 —Topt E[Binit]/Nw E[Binit]

By the availability definition, 1opt, > 1orq is the situation where
opportunistic refreshing is better, whereas for 7ot < 7orq ordi-
nary refreshing is favored. It is thus worthwhile to determine
how parameters Lgru and piqie affect the ERU blockage. To
this end we used eDRAM memory implemented in 65 nm tech-
nology operated at 500 MHz (Tcrk = 2.0 ns) with Tprr =
10 ps, so Nprr =Tprr/TcLk = 5000. For each value of Lgry
we used the largest (and also the best) IV,,, as derived in (4).

Note that for an ordinary periodic refresh the ERU blockage
is LERU/NDRT = LERU/(2Nw - LERU)’ which is indepen—
dent of piq1e, as shown by surface (a) in Fig. 6. Surface (b) illus-
trates (12)’s dependence on Lgry and piqie. The opportunistic
refresh is preferred everywhere surface (b) is below surface (a).
Fig. 6 shows that for ERU size Lggy = 128, the opportunistic
refresh is better for pigie > 0.14, whereas for Lgry = 2048

KAZIMIRSKY AND WIMER: OPPORTUNISTIC REFRESHING ALGORITHM FOR eDRAM MEMORIES

it is better for pijqie > 0.08. Recalling that L1 may comprise
several ERUs, most programs have a far greater ERU idleness
probability. Even for the case of zero L1 idleness, individual
ERUs will have some positive idleness, since the system’s R/W
memory access implies access to only a single ERU at a time,
and access addresses change over time from one ERU to others.
This point is elaborated on in the next sections.

V. ERU OPTIMIZATION

Section IV discussed the average number of ERU blockages
per N,, time window. What counts from a system viewpoint is
the availability of the entire L1, which should be maximized.
Assuming that all L1 banks are accessed simultaneously, the
average L1 availability is the outcome of the number of ERUs
within a bank and their average availabilities. While L1 idleness
is determined solely by the running program, the ERU availabil-
ity is under the designer’s control. The internal banks and ERU
structure are up to the designer who usually aims at simplifying
the refreshing control and minimizing its power consumption.

As shown in Fig. 2, an ERU is a self-contained refreshed
entity, comprising a refreshing register, an ERU row counter
ceEruU, and a DRT counter cprr. Since cprt counts a global
absolute time, it is shared by all L1 units. The ERU net
hardware overhead is therefore the refreshing register and the
cgru counter. A natural way to reduce this overhead is to
increase Lgry by integrating more instances. This however
raises a problem. The ERU enlargement increases its R/W
access probability, hence reducing piqie, Which in turn reduces
ERU availability 7,p¢. The problem is therefore how to deter-
mine the ERU size to obtain high availability at a reasonable
hardware cost.

Figs. 4 and 5 illustrate that when NN, starts, opportunistic
refreshing takes place. It may later turn into the initiative
mode if the remaining time cpr reaches cgru, as shown in
Fig. 4(d). Whereas opportunistic refreshing comes for free,
initiative refreshing blocks the ERU for R/W access. The func-
tion pigie(Lery) is therefore of interest. Though the ERU is
practically quantized to instance [see (1) and Fig. 2], below
we examine the continuous piqie(Lrry) function, which can
be quantized once the memory is physically assembled.

Let Lpank denote the number of rows in a bank. Since the L1
architecture is such that all its banks are accessed simultane-
ously Ly is also the number of rows in L1. Fig. 2 shows that
an L1 bank comprises several ERUs. Let /gry be their number.
Let giq1e be the L1 idleness probability (and hence of a bank
as well), determined by the running program. An ERU can be
refreshed either if L1 (and hence its banks) is not accessed by
the program for R/W, or if L1 was accessed but the addressed
row was not located at that ERU. Assuming all ERUs have same
access probability, there is

1
Pidle = Gidle + (1 — Gidie) (1 -7) . (15)
ERU

A bank has Ly, rows and it comprises Igry ERUSs, hence

Lbank

Lgry = (16)

Igry

1927

5000 ~

zero penalty curve

#L1 stall [cycles]

Fig. 7. The dependence of L1 access stalls (blockages) on Lgru and gjqe-

Substitution of (16) in (15) yields

)Lbank — Lgru

Pidle = Gidle + (1 — Gidie a7

Lbank

Consider for example a 64 KB L1. Each row (cache block)
contains four words (16 bytes) which yield 4 K rows. A logical
column is folded physically into several banks to obtain a
nearly square L1 footprint. Similar to Fig. 6, which illustrates
the average number of ERU blockages per N,, time window,
Fig. 7 illustrates the average blockages for the entire L1. This
blockage penalty is derived by substituting the p;jq1e of (17)
into (12), expressed in terms of the running program’s giqie-
Note the optimal zero penalty curve in Fig. 7. It implies for
instance that for a given giqie = 0.35 shown in point (a), the
maximal number of ERU rows such that no stalls (blockages)
are required for valid refreshing is Lggy = 2300, as shown in
point (b). An attempt to decrease the ERU size; e.g., point (c),
may increase the number Igry of ERUs, thus requiring more
refreshing hardware overhead, which is useless since point (b)
is optimal.

VI. IMPLEMENTATION DETAILS AND TRADEOFFS

Let I;nst be the number of instances within an ERU (see
Fig. 2), and Lj,s be the number of rows of an instance.
Fig. 8 illustrates a hardware implementation of the oppor-
tunistic refreshing algorithm for [;,s = 2, with some of the
control signals and minor details ignored. The main hardware
overheads are grayed.

The ERU’s top MUX selects the data to be stored, either
due to an ordinary write cycle where the data are external, or
due to a refreshing cycle, where the data are obtained from
the ERU refreshing register. The left MUX selects the row
address to be either the ordinary R/W cycle, or the address of
the presently refreshed row, generated by cgry. Recall that in
a refreshing cycle two rows are addressed, one is written and
the successive row is read into the refreshing register awaiting
the next refreshing cycle. The two MUXs are controlled by the
same select signal (not shown), generated by refreshing control
logic. Note that the retention counter cprr is common to all
L1’s ERUs. Since an L1 access takes place for all the banks
simultaneously, cgru and the refreshing control logic can be
shared by all the banks.

1928

Datain
|

Eomsa.

Instance

|
ERU ERU l ERU

T

1Pp03aQ
—
—
—

[_sensems J[[Th pead e

T Sel.

Address
Sel.

1T

Ext.
address

Ppodag

|||||||||

Address Gen.
Crow

Refresh Ctrl.
logic

1

eeoo 1

Retention monitos
CDRT

—

Dataout Mux

Fig. 8. Refreshing hardware implementation.

Section V assumed that Lgry can vary continuously, but in
reality Lgru is quantized to a multiplication of instance size
Linst and (16) is quantized accordingly. Consider for example
an L1 idleness of giqje = 0.35, shown by point (a) in Fig. 7.
The line extending from g;qe = 0.35 intersects the zero penalty
curve at point (b) where Lrry = 2300. For Li,s¢ = 256 this
implies Iinst = | LERU/Linst| = 8. The nearest power of two
from below is 8, yielding Lgry = Iinst X Linst = 2048. For
qidle = 0.35 this is the optimal design since it yields the largest
possible ERU for zero L1 R/W access blockages. An attempt
to decrease Ij,gt, €.g. to 4, cannot improve the number of stalls
which anyway is zero, but rather will double the number Igry
of ERUs within a bank and the refreshing hardware overhead
accordingly. On the other hand, increasing [j,st to 16 will cause
nonzero blockage cycles.

The above analysis found the largest ERU for which
opportunistic refreshing does not invoke initiative refreshing,
and hence not pay L1 blockages. It is important to note that this
result holds under the assumption that the accesses to L1 result
in uniformly distributed random addressing of ERUs. Even if
L1 is continuously accessed for a long period, such as when
gidle = 0, equation (17) tells us that under random uniform
addressing, the idleness of an ERU is positive. Substitution of
gidle = 0 in (17) yields pigie = (Lbank — LERU)/Lbank. For
gidle = 0 an L1 comprising two ERUs there is piqie = 0.5,
and for four ERUs we get pigie = 0.75. The two red spots
positioned on surface (b) in Fig. 6 show that for such cases,
any Lgru < 1088 for piqie = 0.5 and any Lgry < 1600 for
pidle = 0.75 ensures that the opportunistic refreshing does not
invoke any initiative refreshing cycles, and thus zero blockages
are guaranteed.

Zero blockages were obtained under the assumption of ac-
cess to random ERUs. Real applications may encounter worst-
scenario cases. A possible worst case may occur in the L1
Instruction-cache (I-cache) where an instruction is fetched at
each clock cycle. In case of a program loop, the I-cache reads
may be stuck at a certain ERU for a long period. A loop con-

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 63, NO. 11, NOVEMBER 2016

suming N, instructions or more will avoid any opportunistic
ERU refreshing cycles. Such situations are less frequent in
the L1 Data-cache (D-cache). These extreme cases prohibit
opportunistic refreshing and only initiative ones will take place,
thus causing some degradation compared to ordinary periodic
refreshing.

To assess this degradation, recall that ordinary refreshing
always blocks L1 access for contiguous Lgry cycles during
the Npgrt period, whereas opportunistic refreshing blocks L1
access in the worst case for Lgry cycles during the N, =
(1/2)(Nprr + Lrru) period. The worst case access degrada-
tion is the ratio between the corresponding refreshing periods
NDRT/Nw = 2NDRT/(NDRT + LERU)- For the example in
Fig. 7 where Npgrr = 5000 and Lgry = 2048, it follows that
the worst case access degradation is 1.42.

VII. POWER ANALYSIS

This section analyzes and compares the power efficiency of
eDRAM employing the ordinary refreshing algorithm and the
eDRAM employing the opportunistic refreshing algorithm for
2 T and 3 T GCs. Let us first consider the average power
consumed by a single bit. There is the read, write and leakage
power, and also a refresh component Pefresh. Since ordinary
periodic refreshing has a period of Tprr, the per-bit average
refreshing power is

Eroad + Ewrite
Tprr

Pord

refresh — (18)
where Ereaq and Ey.ite are the read and write energies, re-
spectively, measurable by SPECTRE (SPICE) simulations. The
period of the opportunistic refreshing is V,, X Tcpk, yielding
a per-bit average refreshing power

opt _ Eread + Ewrite

= 19
refresh Nw % TCLK ()

It is important to note that by definition, when the oppor-
tunistic algorithm and the ordinary algorithm are employed on
the same memory, with the same internal division into ERUs,
opportunistic refreshing is less power efficient than ordinary
refreshing. This follows from the fact that both must refresh
all the rows, so the same refreshing energy is consumed, but the
former amortizes it over N,, period, which is shorter than the
period Nprt used by the latter [see (3) and (4)]. On the other
hand, the system availability of the opportunistic refreshing is
larger. A fair measure is therefore the power consumption per
availability unit, which is shown in the next section, where real
application memory traces are simulated.

Table I shows the respective parameters of 2 T and 3 T
memory bit-cells obtained by SPICE post-layout simulations
in 65 nm technology. 6 T SRAM cell is presented for reference,
showing that eEDRAM read, write and leakage power is one to
two order of magnitude smaller than SRAM. The results are
similar to those described in [2], [5], [24].

The following comparison accounts for the bit-cell array
alone, and excludes the peripheral circuits such as decoders
and sense-amplifiers. This is justified by the fact that SRAM’s
sense-amplifiers involve a differential amplifier [25], whereas

KAZIMIRSKY AND WIMER: OPPORTUNISTIC REFRESHING ALGORITHM FOR eDRAM MEMORIES

TABLE 1
POWER AND ENERGY CONSUMPTION OF VARIOUS MEMORY BIT-CELLS
Cell eDRAM Gain Cell
[measured per-bit] 6T SRAM 5T pe
Area / 6T SRAM 1 0.4 0.5
Supply Voltage [Volt] 0.9 0.9 0.9
Retention Time [10° Sec]) 10 30
Write Energy [10%%Joule] 1.04 0.103 0.124
Read Energy [10'%5Joule] 5.86 0.98 1.03
Leakage Power [10°° Watt] 3.38 0.0113 0.0126
Refresh Power (periodic) [10-° Watt] 0 0.108 0.0385
Refresh Power (opportunistic) [10° Watt] 0 0.189 0.0755

Refresh power consumption for 128KB cell array
2.50E+02

g

2.00E402 =

5

1.50E+02 =

o

£

1.00E+02 3

[-

8

5.00E+01

[

3

) 0.00E+00

ERU size LERy 2048 1024 512 256 128 o
W 2T-Opportunistic | 1.61E+02 [1.89E+02 | 2.06E+02 | 2.16E+02 | 2.21E+02
W 2T-Ordinary 1.14E+02 [1.14E+02 | 1.14E+02 [1.14E+02 | 1.14E+02

3T-Opportunistic [7.10E+01 (7.55E+01 | 7.80E+01 | 7.93E+01 | 8.00E+01
M 3T-Ordinary 4.03E+01 [4.03E+01 | 4.03E+01 [4.03E+01 | 4.03E+01

Fig. 9. Refreshing power of 128 KB eDRAM arrays of 2 T and 3 T bit-cells,
employing opportunistic and ordinary periodic algorithms.

those in the eDRAM are single-ended [21]. The latter are far
more power efficient. Hence accounting the peripheral will
always improve the relative power consumption in favor of
eDRAM. In any case as regards the comparison of the power
consumed by the eDRAM refreshing algorithms, they use the
same peripheral circuits.

Fig. 9 shows the refreshing power consumption of the ordi-
nary and opportunistic algorithms employed for 2 T and 3 T
eDRAM 128 KB arrays as function of the ERU size. It was
explained earlier that the opportunistic algorithm consumes
more power than ordinary refreshing. As shown in Table I, this
extra power is still negligible compared to the 6 T-SRAM.

VIII. EXPERIMENTAL RESULTS

The performance ot the opportunistic refreshing algorithm
was tested with real applications obtained from the Ceva Cor-
poration, run on its TeakLite DSP and XM4 vision processor.
Ceva’s simulator generates memory access traces for the in-
struction memory and the data memory. An entry of a trace
includes the time stamp (clock cycle), a memory address and
whether a read or write operation (for instruction- only reads)
is required. The traces were fed into a 64 KB instruction
eDRAM and 128 KB data eDRAM models, with 16 Bytes
per row (line), thus yielding Lyanix =4 K and Lyank =8 K
menory rows, respectively. A memory access addressed the
entire line (all the banks). Two GC topologies of 2 T and 3 T,
with respective Tprr = 10 ps and Tpgr = 30 ps retention

1929
(a) 2T 128KB Data Cache Availability
1.0
08 >
06 =
©
04 =
I I g
02 ®©
0.0
ERU count 1 2 4 8
mAC3 0.3706 0.7718 0.9686 0.9998
EAMR 0.1741 0.7445 0.9975 0.99995
G711 0.3200 0.8283 0.9887 1.0000
uG723 0.2882 0.8186 0.9875 0.9999
® Ordinary 0 0.1808 0.5904 0.7952
(b) 2T 64KB Instruction Cache Availability
1.0
08 5
06 2
o
04 =
>
l . 02 ®
ERU count 1 3 4 8 %0
mAC3 0.1902 0.7253 0.9781 0.9950
EAMR 0.0997 0.4655 0.9343 1
6711 0.2909 0.6327 0.9832 1
uG723 0.0994 0.5101 0.8971 0.9979
 Ordinary 0.1808 0.5904 0.7952 0.8976

Fig. 10. 2 T GC memory access availability of opportunistic retreshing com-
pared to ordinary periodic refreshing, (a) 128 KB data cache and (b) 64 KB
instruction cache.

time were tested. The clock speed in all the experiments was
500 MHz, namely Tk = 2.0 ns. The impact of the memory
division into Igpy = 1.2,4.8 ERUs (see Fig. 2) on memory
availability was studied by simulations. Npgrr was obtained
from Nprr = Tprr/ToLk, whereas Lpry was determined by
Lery = Lvank/IERU.

To simulate the cache performance, the traces were divided
into time windows of N, clock cycles, as defined in (4). After
the mapping of a memory address into an ERU index, the access
to every ERU was recorded during N,,. Given 2% ERUs, let
N;_access count the number of accesses to ERU 7, 0 <4 < 2k,
occurring during /V,, cycles. Recall the role of the two counters
cprr and cgryu shown in Fig. 4. If cprt = cgRu, an initiative
refreshing completion will take place before NV,, ends [see
Fig. 4(d)]. This condition is maintained independently and in
parallel for all ERUs, and accounts for the memory blockage.

The expression

(20)

Naccess - max Ni_access

0<i<2¥
dictates the worst case memory access occurring during N, cy-
cles. If Leru — (Ny — Naccess) < 0, noinitiative refreshing com-
pletion is required. Therefore the amount of blockage per N, is

max {LERU - (Nu« - Naccess)a 0} ‘ (2])

For each setting of the parameters (2 T and 3 T GC, 64 KB
and 128 KB memory) and each memory access trace, (21) was
averaged over all N, to obtain the average availability. The
results for 2 T GC are shown in Fig. 10 and for 3 T GC in
Fig. 11, where (a) is for the data cache and (b) is for the

1930
(a) 3T 128KB Data Cache Availability
>
x
8
£
©
>
©
ERU count 1 4 8
mAC3 0.9014 0.9987 1 1
mAMR 0.9220 0.9999 1 3
m G711 0.9674 1 1 1
= G723 0.9359 0.9998 1 1
= Ordinary 0.4539 0.7269 0.8635 0.9317
(b) 3T 64KB Instruction Cache Availability
1.0
08 .
=
0.6 a
i
04 =
>
02 ®
ERU count s 0.0
mAG3 1
= AMR 1
m G711 1
= G723 0.6015 0.9999 1 1
® Ordinary 0.7269 0.8635 0.9317 0.9659

Fig. 11. 3 T GC memory access availability of opportunistic refreshing com-
pared to ordinary periodic refreshing, (a) 128 KB data cache and (b) 64 KB
instruction cache.

instruction cache. Each experiment contained four memory
access simulations of the following TeakLite DSP algorithms:

1. Acoustic Coder 3 (AC3), which is a high quality audio
coding format developed by Dolby Labs.

2. Adaptive Multi-Rate (AMR) voice coding, used for mobile
communication.

3. G.711, which is a standard for audio companding.

4. G.723.1, which is an audio codec for voice that compresses
voice audio in 30 ms frames.

For each of the cache divisions into ERUs and all the above
traces, the opportunistic refreshing algorithm was employed.
The fifth entry of the tables was used as a reference, and
dubbed “ordinary,” to represent the ordinary periodic refreshing
employed for each ERU in parallel. It is important to note
that ordinary refreshing is independent of the memory access
patterns, and takes place deterministically, by refreshing the
entire rows of an ERU within every Npgr period.

Figs. 10(a) shows that for a 128 KB data cache comprising
a single ERU, ordinary periodic refreshing is not feasible.
This follows from the fact that for 2 T GC there is NprT =
10 us/500 MHz = 5000, whereas the cache comprises 8 K
lines; hence ordinary refreshing cannot be employed. Though
the opportunistic refreshing presents low availability for a
single ERU, it is still feasible for the given benchmark. As
expected, as the number of ERUs increased, so did the memory
availability. For opportunistic refreshing it approached 100% at
four ERUs, whereas the ordinary refreshing lagged behind.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 63, NO. 11, NOVEMBER 2016

(a) 2T 128KB Data Cache Availability
1.0
0.8
>
£
06 =
LD
B
04 5
>
©
0.2
0.0
ERU count 1 2 4 8
= Median 3X3 0.7517 0.9988 0.9995 1.0000
H Correlation 7X7 0.7485 0.9957 0.9982 0.99963
" Ordinary | 0 0.1808 0.5904 0.7952
(b) 2T 64KB Instruction Cache Availability
>
£
a
n
®
>
©

ERU count

1 2 4 8
B Median 3X3 0.5798 0.9992 0.9997 0.9999
m Correlation 7X7 0.5738 0.9924 0.9990 1
® Ordinary 0.1808 0.5904 0.7952 0.8976

Fig. 12. 2 T GC memory access availability comparison of video application,
(a) 128 KB data cache and (b) 64 KB instruction cache.

Fig. 10(b) presents the findings for the 64 KB instruction
cache. It shows a similar trend as in data memory. It is important
to note that the memory availability of ordinary refreshing de-
pends solely on the ERU size (and not on the traces). Since the
size of the instruction cache ERU is half the size of the data cache,
the fifth row of the table in Fig. 10(b) was shifted one position
left with respect to Fig. 10(a). By contrast, the memory avail-
ability of opportunistic refreshing depends on memory access
traces. Instruction traces are by nature more intense (occurring
almost every cycle) than data cache traces. Therefore, while
for data memory traces the opportunistic memory availability
is superior to the ordinary algorithm for all ERU divisions,
for instruction memory traces opportunistic refreshing is by far
superior when it occurs for divisions into four and eight ERUs.
It is clear from Fig. 10 that for the same memory availability,
ordinary refreshing requires more ERUs than opportunistic re-
freshing, implying higher hardware overhead, since each ERU
maintains its own refreshing register and control logic.

Similar behavior for the 3 T GC is shown in Fig. 11.
The memory availability approaches 100% with fewer ERUs
compared to 2 T. This stems from the much longer DRT of 3 T
GC (30 ps) compared to 2 T (10 ps). Obviously, the superiority
of opportunistic refreshing over ordinary refreshing is more
apparent in shorter DRT, which is the trend reflected in modern
technologies.

The superiority of the opportunistic refreshing over ordinary
refreshing is further demonstrated for extensive memory access.
Fig. 12 show the memory availability obtained by simulations
of two XM4 vision processor algorithms, named Median 3 x 3
and Correlation 7 x 7, which are image convolution filters.
Ordinary refreshing availability is lagging far behind.

KAZIMIRSKY AND WIMER: OPPORTUNISTIC REFRESHING ALGORITHM FOR eDRAM MEMORIES

2T 128KB Data Cache Power/Availability
1.0

0.75

0.5

Power/Availability [normalized]

0.25

ERU count 1 2 4 8 0.0
®Opportunistic 0.199 0.193 0.225 0.271
Ordinary 1.0 0.749 0.229 0.17

Fig. 13. 2 T GC memory refreshing power/availability efficiency for 128 KB
data cache.

Though (18) and (19) show that the refreshing power of the
opportunistic is higher than the ordinary, as shown in Fig. 9,
the picture changes when availability is also accounted. A
fair efficiency measure is the refreshing power consumption
per availability unit. To this we divided the refreshing power
shown in Fig. 9 by the average availability of various video
applications. Fig. 13 shows the results. For small number of
ERUs in a bank (large size of ERUs) the efficiency of the oppor-
tunistic refreshing wins by far. As ERU count increases, hence
implying more refreshing hardware overhead, the efficiency of
the ordinary refreshing is getting better. This trend does not
change for I-cache and 3 T GCs.

IX. CONCLUSION

To overcome the memory access blockage incurred by the
need for eDRAM periodic refreshing, this paper proposed an
optimal opportunistic refreshing algorithm. The algorithm takes
advantage of memory access idleness that may occur during the
run-time of programs. The algorithm achieves availability ap-
proaching SRAM, with considerably less energy consumption.
Opportunistic refreshing was shown to be by far superior to
ordinary periodic refreshing commonly used for eEDRAMs. The
above advantages were demonstrated for various eDRAM cells,
various memory sizes, and both instruction and data caches
across a variety of real applications from industrial DSPs.

ACKNOWLEDGMENT

The authors are thankful for the useful and helpful comments
made by the anonymous reviewers. They are also thankful to
Ceva Corporation for providing memory traces simulation data.

REFERENCES

[11 B. John, W. R. Reohr, P. Parries, G. Fredeman, J. Golz, S. E. Schuster,
R. E. Matick, H. Hunter, C. C. Tanner, J. Harig, H. Kim, and S. S. Tyer,
“A 500 MHz random cycle, 1.5 ns latency, SOI embedded DRAM macro
featuring a three-transistor micro sense amplifier,” IEEE J. Solid-State
Circuits, vol. 43, no. 1, pp. 86-95, 2008.

[2] K. C. Chun, P. Jain, T.-H. Kim, and C. H. Kim, “A 667 MHz logic-
compatible embedded DRAM featuring an asymmetric 2 T gain cell for
high speed on-die caches,” IEEE J. Solid-State Circuits, vol. 47, no. 2,
pp- 547-559, 2012.

1931

[3] L. Xiaoyao, R. Canal, G.-Y. Wei, and D. Brooks, “Process variation
tolerant 3T 1D-based cache architectures,” in Proc. 40th Annu. IEEE/ACM
Int. Symp. Microarchit., 2007, pp. 15-26.

S. Dinesh, Y. Ye, P. Aseron, S.-L. Lu, M. M. Khellah, J. Howard,

G.Ruhl, K. T, B. S, V. De, and A. Keshavarzi, “2 GHz 2 Mb 2 T gain cell

memory macro with 128 GBytes/sec bandwidth in a 65 nm logic process

technology,” IEEE J. Solid-State Circuits, vol. 44, no. 1, pp. 174-185,

2009.

[5]1 K. C. Chun, P. Jain, J. H. Lee, and C. H. Kim, “A 3 T gain cell embedded

DRAM utilizing preferential boosting for high density and low power on-

die caches,” IEEE J. Solid-State Circuits, vol. 46, no. 6, pp. 1495-1505,

2011.

R. Giterman, A. Teman, P. Meinerzhagen, A. Burg, and A. Fish, “4 T gain-

cell with internal-feedback for ultra-low retention power at scaled CMOS

nodes,” in Proc. IEEE ISCAS, Melbourne, Australia, 2014.

A. Teman, P. Meinerzhagen, A. Burg, and A. Fish, “Review and classifi-

cation of gain cell eDRAM implementations,” in 20712 IEEE 27th Cony.

IEEEI

P. Meinerzhagen, A. O. Andig, J. Treichler, and A. P. Burg, “Design and

failure analysis of logic-compatible multilevel gain-cell-based DRAM for

fault-tolerant VLSI systems,” in Proc. 21st Ed. Great Lakes Symp. VLSI,

2011.

J. M. Rabaey, A. P. Chandrakasan, and B. Nikolic, Digital Integrated

Circuits, Ch. 12, 2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall,

2002.

[10] N.lJing, L. Jiang, T. Zhang, C. Li, F. Fan, and X. Liang, “Energy-efficient
eDRAM-based on-chip storage architecture for GPGPUS,” IEEE Trans.
Comput., vol. 65, no. 1, pp. 122-135, 2016.

[11] R. W.Reohr, “Memories: Exploiting them and developing them,” in Proc.
IEEE Int. SOC Conf., 2006.

[12] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-aware in-

telligent DRAM refresh,” ACM SIGARCH Comput. Archit. News, vol. 40,

no. 3, pp. 1-12, 2012.

S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker: Saving

DRAM refresh-power through critical data partitioning,” ACM SIGPLAN

Notices, vol. 47, no. 4, pp. 213-224, 2012.

[14] A.Teman, P. Meinerzhagen, R. Giterman, A. Fish, and A. Burg, “Replica
technique for adaptive refresh timing of gain-cell-embedded DRAM,”
IEEE Trans. Circuits Syst. I, Express Briefs, vol. 61, no. 4, pp. 259-263,
2014.

[15] M.-T. Chang, P. Rosenfeld, S.-L. Lu, and J. Biji, “Technology comparison
for large last-level caches (L 3 Cs): Low-leakage SRAM, low write-
energy STT-RAM, and refresh-optimized eDRAM,” in Proc. IEEE 19th
Int. Symp. HPCA2013.

[16] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: Exploiting genera-
tional behavior to reduce cache leakage power,” ACM SIGARCH Comput.
Archit. News, vol. 29, no. 2, pp. 240-251, 2001.

[17] K. Toshiaki, P. Parries, D. R. Hanson, H. Kim, J. Golz, G. Fredeman,
R. Rajeevakumar, J. Griesemer, N. Robson, A. Cestero, B. A. Khan,
G. Wang, M. Wordeman, and S. S. Iyer, “An 800-MHz embedded
DRAM with a concurrent refresh mode,” IEEE J. Solid-State Circuits,
vol. 40, no. 6, pp. 1377-1387, 2005.

[18] M. Alizadeh, A. Javanmard, S.-T. Chuang, S. Iyer, and Y. Lu, “Versatile
refresh: Low complexity refresh scheduling for high-throughput multi-
banked eDRAM,” ACM SIGMETRICS Perform. Eval. Rev., vol. 40, no. 1,
pp. 247-258, 2012.

[19] N. Jing, Y. Shen, Y. Lu, S. Ganapathy, Z. Mao, M. Guo, R. Canal, and
X. Liang, “An energy-efficient and scalable eDRAM-based register file
architecture for GPGPU,” ACM SIGARCH Comput. Archit. News, vol. 41,
no. 3, 2013.

[20] K.-W. K. Chang, D. Lee, Z. Chishti, A. R. Alameldeen, C. Wilkerson,
Y. Kim, and O. Mutlu, “Improving DRAM performance by paralleliz-
ing refreshes with accesses,” in Proc. [EEE 20th Int. Symp. HPCA,
2014.

[21] R. Giterman, A. Teman, P. Meinerzhagen, L. Atias, A. Burg, and A. Fish,
“Single-supply 3 T gain-cell for low-voltage low-power applications,”
IEEE Trans. VLSI Syst., vol. 24, no. 1, pp. 358-362, 2015.

[22] P. Meinerzhagen, A. Teman, R. Giterman, A. Burg, and A. Fish, “Explo-
ration of sub-VT and near-VT 2 T gain-cell memories tor ultra-low power
applications under technology scaling,” J. Low Power Electron. Appl.,
vol. 3, no. 2, pp. 54-72, 2013.

[23] J. T. Butera, “OpenRAM: An open-source memory compiler,” 2013,

[24] M. Q. Do, M. Drazdziulis, P. Larsson-Edetfors, and L. Bengtsson,
“Parameterizable architecture-level SRAM power model using circuit-
simulation backend for leakage calibration,” in Proc. 7th ISQED’06.

[25] J. R. Baker, CMOS: Circuit Design, Layout, Simul., vol. 1. Hoboken,
NJ, USA: Wiley, 2008.

[4

=

[6

=

[7

—_

[8

=

[©

[l

[13

=

TEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I

Amit Kazimirsky received his B.Sc. degree in elec-
trical engineering from Bar-Ilan University, Israel,
in 2014, where he is currently working toward his
M.Sc. degree. He was a Backend Engineer with
Intel from 2013 to 2014, working on power opti-
mization. His research interests include embedded
DRAM design for low power and high performance,
integrated architecture of static and dynamic RAM
optimization for demand applications, and refresh
optimization for eDRAM cache memories. In 2014
he was honored with the Bar-Ilan University’s out-

: REGULAR PAPERS, VOL. 63, NO. 11, NOVEMBER 2016

Shmuel Wimer (M’99) received his B.Sc. and M.Sc.
degrees in mathematics from Tel-Aviv University,
Israel, in 1978 and 1981, respectively, and the D.Sc.
degree in Electrical Engineering from the Technion-
Israel Institute of Technology in 1988.

From 1978 to 2009, he worked in industry in
R&D, engineering, and managerial positions. From
1999 to 2009 he was with Intel, and prior to that
with IBM, National Semiconductor, and TAl-Israeli
Aerospace Industry. He is an Associate Professor
with the Engineering Faculty of Bar-Tlan University,

standing B.Sc. graduate engineering project. Israel. From 2011 to 2015, he was an Associate Visiting Professor with the
Electrical Engineering Faculty of the Technion. He is interested in VLSI circuits

and systems design optimization and combinatorial optimization.

