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Abstract Interconnect shielding is used in VLSI designs to avoid noise interference
from the cross-coupling capacitance between adjacent signals. This paper takes advan-
tage of the shields already present in the design and uses them to tune the propagation
delay of the clock signals, thus eliminating expensive dedicated delay buffers. The
problem of obtaining the desired delay at a minimum shielding cost (silicon area) is
formulated as a calculus of variations problem. An analytical solution shows that a
square root shield profile is optimal.
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1 Introduction

Interconnect shielding is used in very large scale integration (VLSI) designs to avoid
noise interference between signals. Shielding wires connected to the supply voltage,
that extend adjacently to signal wires avoid the signal switching, that induces noise
via cross-coupling capacitance to other adjacent signals. In particular, clock signals,
which are the noisiest signals and spread over the entire silicon die, are shielded to
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avoid signal integrity problems [1]. To ensure the proper synchronization of digital
systems, clocks are delayed with respect to each other, which requires the insertion
of delay buffers. The internal delay of the buffers is subject to unpredictable changes,
which has been aggravated by recent progress in VLSI technologies to the nanometer
scale [2]. Inserting delay buffers into a clock network is also a delicate task and a
design burden.

In this work, we suggest replacing the delay buffers with shields. Shields are already
present for clocks, so this replacement does not require extra hardware resources.
Delay tuning by wire shields has several advantages over delay buffers. First, wires
are considerably less sensitive to manufacturing process variations than delay buffers.
This makes the design more robust and its operation in real silicon more predictable
[3]. The second advantage is the ease of late design changes, which may cause delays
in project schedules. The final but crucial advantage is the elimination of delay buffers,
which saves considerable power consumption.

2 Interconnect and Shielding Delays

The Elmore delay model is widely used in VLSI designs [4]. Consider Fig. 1a where
a driver connected on the left side, called the near-end, sends a signal along a wire to
a receiver connected on the opposite side, called the far-end. The driver’s resistance
RD characterizes its driving strength. The receiver has an input capacitance CL, called
its load.

The interconnection in Fig. 1a has distributed resistance and capacitance, and is
usuallymodeled and approximated by theRC-ladder shown inFig. 1b,where R1 = RD
and Cn = CL. The driver-to-receiver delay δ is given by [5]

δ ≈
n∑

i=1

Ri

n∑

j=i

C j =
n∑

j=1

C j

j∑

i=1

Ri . (1)

VLSI interconnections are designed to meet some predefined delay constraints dic-
tated by the frequency with which the clocks synchronize the operation of the entire

Fig. 1 Driver-to-receiver interconnect (a) and its RC-ladder modeling (b)
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Fig. 2 Tapered interconnect

system. In another setting, the minimization of the delay in (1) is required. To this end,
the expression

∑n
i=1 Ri

∑n
j=i C j shows that a unit length of thewire close to the driver

needs to have a small resistance (a wide wire), since it multiplies a large
∑n

j=i C j

downstream capacitance. Similarly, the expression
∑n

j=1 C j
∑ j

i=1 Ri shows that a
unit length of the wire close to the receiver should have small capacitance (a narrow
wire) since it multiplies a large

∑ j
i=1 Ri upstream resistance. Consequently, to mini-

mize the propagation delay, the wire should be tapered, a topic that has been studied
extensively in the literature [6–11]. Figure 2 illustrates amore general interconnection,
where the wire width w (x) varies along its traversal 0 ≤ x ≤ L from the driver to the
receiver.

The problem of finding w (x), 0 ≤ x ≤ L , that minimizes (1) was solved in [6].
The authors applied a calculus of variation [12] formulation to the problem. Though
VLSI technologies allow only isothetic rectangular shapes, the continuous formulation
in [6] highlights very well the nature of the optimal solution. Practically, allowable
rectangular shapes can approximate the continuous w (x).

Let wmin be the minimum wire width allowable by the technology in use, and let
the resistance and capacitance per wmin × wmin square of the interconnect metal be
rs and cs, respectively. The width of the wire w (x) and its length L are expressed as
multiplications of wmin. By taking n → ∞ in (1), the driver-to-receiver delay is given
by

δ = RD

⎛

⎝
L∫

0

csw (x) dx + CL

⎞

⎠

︸ ︷︷ ︸
(a)

+
L∫

0

rs
w (x)

⎛

⎝
L∫

x

csw (y) dy + CL

⎞

⎠

︸ ︷︷ ︸
(b)

dx . (2)

Term (a) in (2) is the downstream capacitance, which is charged though the driver’s
resistance RD. Term (b) is the downstream capacitance charged through the resistance
rs/w (x). Fishburn and Schevon found in [6] using the calculus of variations thatw (x)
minimizing (2) decreases exponentially, as given by the following expression

w (x) = 2CL

cs L
W

(
L

2

√
rs
RD

cs
CL

)
e
2W

(
L
2

√
rs
RD

cs
CL

)
L−x
L , (3)

where W is the Lambert function satisfying W (x) eW (x) = x .
Interconnecting wires are a source of switching noise, that arises when they toggle

between low and high voltage levels; these are termed VGND (usually 0 Volt) and
VDD (about 0.8 Volts), respectively. Signals that are a source of significant noise are

123

Author's personal copy



J Optim Theory Appl (2016) 170:1060–1067 1063

Fig. 3 Shielded interconnect modeling

shielded, where the shielding wires are connected to VGND or VDD [1], as shown in
Fig. 3a.

The cross-coupling capacitance between the shielding wires and the interconnect
signal introduces further driver-to-receiver propagation delays. This was studied in
[13,14], which assumed shielding of fixed spacing from the signal wire, as shown
in Fig. 3a, whereas an optimal per-signal delay tuning may require variable spacing,
as shown in Fig. 3b. The work in [15] allowed variable spacing. Inspired by the
exponential signal interconnect tapering in (3), this solutionwas assumed to beoptimal.
As shown below, this assumption is erroneous. Figure 3b depicts a wire of constant
width w connecting the driver and the receiver. A two-sided shield extends along the
wire, spaced at s (x), 0 ≤ x ≤ L . To make the illustration independent of nanometers
and microns, the line-to-line spacing function s (x) is expressed as a multiplication
factor of smin, which is the minimum line-to-line spacing allowable. The unit-length
line-to-line capacitance of two wires is given by cll/s (x), where cll is a technology
parameter. It follows from (2) that for a constant width w, the signal wire delay
component is

δwire = RD (cswL + CL) + rs L

w

(csw
2

L + CL

)
(4)

When the shield is positioned in a fixed spacing σ , the driver-to-receiver delay com-
ponent incurred by the shield is

δshield = RD
cll
σ
L + rscll

2σw
L2 = cll

σ
L

(
RD + rsL

2w

)
. (5)

3 Delay Tuning by Continuous Shield Tapering

The driver-to-receiver delay in Fig. 3b δwire + δshield is the sum of two components
resulting from the wire and the shield, respectively. Whereas δwire is known upfront,
and thus is not dealt with in the optimization below, δshield is tuned according to the
circumstances caused by the underlying circuits. Let us assume that the space s (x),
0 ≤ x ≤ L can vary continuously in the range of 0 ≤ x ≤ L , as illustrated in Fig. 3b.
It is also assumed that the boundary spacing s (0) = s0 > 0 and s (L) = sL > 0 at the
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near-end and at the far-end, respectively, are not predetermined. The driver-to-receiver
delay component δshield is

δshield = RD

L∫

0

cll
s (x)

dx

︸ ︷︷ ︸
(a)

+
L∫

0

rs
w

⎛

⎝
L∫

x

cll
s (y)

dy

⎞

⎠ dx

︸ ︷︷ ︸
(b)

, (6)

whereas the driver-to-receiver delay component δwire is given by (4). Term (a) in (6)
is the delay that occurs when the driver’s resistance charges the shield’s line-to-line
capacitance. Term (b) is the delay associated with the distributed resistance of the
interconnecting wire. By rearranging (6), the delay expression caused by shielding is

δshield =
L∫

0

⎛

⎝RDcll
1

s (x)
+ rscll

w

L∫

x

1

s (y)
dy

⎞

⎠ dx . (7)

Here, we want to obtain a predefined required delay δreq; namely δshield = δreq. Inte-

grating (7) by parts, where u = ∫ L
x [1/s (y)] dy and dv = dx , turns it into

δshield =
L∫

0

RDcll + (rscll/w) x

s (x)
dx (8)

Additionally, the area A between the signal wire and the shielding wire is given by

A =
L∫

0

s (x) dx, (9)

and should be minimized. Let us define F
(
x, s, s′) = s (x), φ

(
x, s, s′) =

[RDcll + (rscll/w) x]/s (x) and a functional

J [s (x)] =
L∫

0

[
F

(
x, s, s′) + λφ

(
x, s, s′)] dx . (10)

It is well known in the calculus of variations that by choosing the constant λ

appropriately, the extremal of the functional J [s (x)] in (10) satisfies the following
Euler–Lagrange equation [12]

∂

∂s
(F + λφ) − d

dx

[
∂

∂s′ (F + λφ)

]
= 0,
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which application for (10) yields

1 − λ
RDcll + (rscll/w) x

s2 (x)
= 0. (11)

The solution of (11) is

s (x) = ±
√

λ
(
RDcll + rscll

w
x
)
, (12)

where physical considerations imply that the positive root is taken. To verify that the
stationary solution in (12) is a minimum, the second derivative of F + λφ by s is
considered, yielding

∂2 (F + λφ)

∂2s
= 2λ

(
RDcll + rscll

w
x
)

s3
= 2s2

s3
= 2

s
≥ 0. (13)

Since δshield = δreq is positive and s is continuous and differentiable, s (x) < ∞,
0 ≤ x ≤ L , strict inequality in (13) holds.

The constant λ still requires determination. By substitution of the boundary spacing

s (0)
�= s0 in (12), we get

λ = s20
RDcll

. (14)

The final expression of the optimal shield shape is therefore

sopt (x) = s0

√
1 + rs

RDw
x . (15)

To obtain s0 the required delay constraint is used. Substitution of (15) in (8) yields

δshield =
L∫

0

RDcll + (rscll/w) x

s0
√
1 + (rs/RDw) x

dx = 2R2
Dcllw

3s0rs

[(
1 + rsL

RDw

) 3
2 − 1

]
= δreq,

(16)
implying

sopt0 = 2R2
Dcllw

3δreqrs

[(
1 + rsL

RDw

) 3
2 − 1

]
. (17)

The minimum area is computed as follows:

Amin=
L∫

0

s (x) dx=
L∫

0

(
sopt0

√
1+ rs

RDw
x

)
dx= 4R3

Dcllw
2

9δreqr2s

[(
1+ rsL

RDw

) 3
2 −1

]2

.

(18)
It is important to note that Amin in the left-hand side of (18) is the objective to be
minimized, whereas the constraint δreq appears in the denominator of its right-hand
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Fig. 4 Optimal shielding compared to shield of constant spacing

side. All the rest terms are problem’s parameters. The reciprocal relation between
Aminand δreqis indeed what is expected from VLSI circuit considerations.

Given δreq, Fig. 4 illustrates in bold line the shielding shape obtained by (15), yield-
ing minimum area between the signal wire and the shielding wire. We considered a
wire of length L = 2200micronsand widthw = 0.12microns. The driver’s resistance
RD, the wire’s resistance per square rs (called sheet resistance) and the line-to-line
capacitance cll were taken from 65-nanometer VLSI technology. The near-end optimal
spacing was calculated by (17) to s0 = 0.071microns. The dotted line corresponds to
a shield with s (x) = const = 0.24microns, which was set to yield the same required
delay δreq. The optimal shielding consumes 11% less area compared to constant spac-
ing.

4 Conclusions

This paper took advantage of the shields already present in VLSI designs, and used
them to tune the propagation delay of the clock signals, thus eliminating expensive
dedicated delay buffers. The problemof obtaining a desired delay at aminimumshield-
ing cost was formulated as a calculus of variations problem. An analytical solution
showed that a square root shield profile is optimal.
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