
1 23

Journal of Combinatorial
Optimization
 
ISSN 1382-6905
Volume 31
Number 3
 
J Comb Optim (2016) 31:1023-1033
DOI 10.1007/s10878-014-9807-0

Optimal weight allocation in rooted trees

Shmuel Wimer



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



J Comb Optim (2016) 31:1023–1033
DOI 10.1007/s10878-014-9807-0

Optimal weight allocation in rooted trees

Shmuel Wimer

Published online: 21 October 2014
© Springer Science+Business Media New York 2014

Abstract Some apparently different VLSI circuit design optimization problems can
be mapped to the problem of allocating weights (hardware circuits) to the nodes of a
tree, such that their total sum (delay) along root-to-leaf paths, or their total product
(amplification) along root-to-leaf paths, satisfy given demands (delays or amplifica-
tions, respectively) at the tree’s leaves. Node’s weight is shared by all the leaves of
its emanating sub-tree. For both the sum and product constraints cases, O(n) weights
allocation algorithms are presented, supplying the demands at the leaves, while the
total sum of nodes’ weights (hardware cost) is minimized. When the assignment of
the demands to leaves is not predetermined, it is shown that monotonic order of the
demands at leaves is optimal for both cases.

Keywords Weight allocation ·Binary tree optimization ·Clock-tree ·Amplifier-tree

1 Motivations

A tight control of the timing of the clock signal is crucial in today’s very large scale
integration (VLSI) systems.Clock skew control (Fishburn 1990), fixing delay problems
by time borrowing (Tam et al. 2000), power-supply noise reduction (Jiang and Cheng
1999) by spreading the clock arrival time to various elements of the system (Benini
et al. 1997), are a few examples. The adjustment of the clock signal timing so that the
chip can operate in higher speed, a technique called binning (Churcher and Longstaff

S. Wimer (B)
Engineering Faculty, Bar-Ilan University, Ramat Gan, Israel
e-mail: wimers@biu.ac.il

S. Wimer
EE Department, Technion-Israel Institute of Technology, Haifa, Israel

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-014-9807-0&domain=pdf


1024 J Comb Optim (2016) 31:1023–1033

Fig. 1 H-tree clock distribution network

1998), is used to maximize the profit, and securing VLSI systems against differential
power analysis (Kocher et al. 1999), are more examples.

A common clock network implementation is the well-known H-tree shown in Fig.
1 (Friedman 2001). H-tree is a balanced binary tree, symmetrically embedded in the
2D plane. The clock buffer at a leaf is driving some underlying module (circuit or
block). The delays required at its leaves are adjusted by appropriate delay elements.
A recent work in Kim et al. (2013) presented an O(n log n) algorithm to distribute the
delay elements in the internal nodes of the clock-tree such that the total cost of the
delay elements is minimized.

A different VLSI design situation where circuits are allocated to tree’s nodes occurs
inAnalog toDigitalConverter (ADC) circuits (Baker 2011,Chap. 29). There, the input,
time-varying, analog signal is compared to various reference voltages to produce a
binary code of the input voltage. In Jiren and Piper (1999) an ADC implementation
comprising a delay-balanced input amplifier network was presented. The network was
implemented as a binary tree, producing amplifications by 2(i−1)k of the input analog
signal at the tree’s leaves, 1 ≤ i ≤ n, k ∈ {1, 2}. Such implementation ensured the
required amplifications, while maintaining delay equality at all leaves. The cost of an
amplifier at a node is proportional to its amplification factor, where unit amplification
is the minimum possible.

The above VLSI design problems can be mapped to the problem of allocating
weights (hardware circuits) to tree’s nodes. Total weight sum (delay) along root-to-leaf
paths, or total weight product (amplification) along root-to-leaf paths, have to satisfy
given demands (delays or amplifications, respectively) at the tree’s leaves. Node’s
weight is shared by all the leaves of its emanating sub-tree. For both the sum and
product constraints cases, O(n) weights allocation algorithms are presented (Sects. 2,
4, respectively), supplying the demands at the leaves, while the total sum of nodes’
weights (hardware cost) is minimized. When the assignment of the demands to leaves

123

Author's personal copy



J Comb Optim (2016) 31:1023–1033 1025

is not predetermined, it is shown that monotonic order of the demands at leaves is
optimal for both cases (Sects. 3, 5, respectively).

2 Optimal weight allocation to nodes subject to sum constraints

Balanced binary tree is discussed first. As shown later, all the results hold for any
rooted tree. Let T be a balanced binary tree with n = 2N leaves μi , associated with
demands δi ≥ 0, 1 ≤ i ≤ n. Denote by P+(ν, ρ) the path from the root ρ ∈ T to a
node ν ∈ T , where the + superscript stands for a weight addition operation defined on
the path. To satisfy the demands, weights w(ν) ≥ 0, ν ∈ T , are allocated such that

∑
ν∈P+(μi ,ρ)

w(ν) = δi , 1 ≤ i ≤ n. (1)

Let W+ be the set of weight allocations satisfying (1). The allocation w0, defined by
w0(μi ) = δi , 1 ≤ i ≤ n and w0(ν) = 0, ν ∈ T \ {μi }ni=1 trivially satisfies (1), hence
w0 ∈ W+. Consider the total sum of weights �(w) allocated to T ’s nodes,

�(w) =
∑

ν∈T w(ν). (2)

Denote by �∗ the minimum total weights across all w ∈ W+,

�∗ = min
w∈W+ {�(w)} . (3)

An allocation algorithm w+ ∈ W+, satisfying �(w+) = �∗ is subsequently pre-
sented. It determines the weights of T ’s nodes in a bottom-up traversal. Let μ′ and
μ′′ be two sibling leaves of T , sharing a common parent ν. Let their demands be δ′ and
δ′′, respectively, and δ′′ ≥ δ′. The algorithm fixesw+(μ′) = 0 andw+(μ′′) = δ′′ −δ′,
and temporarily allocates the weight δ′ to ν. This way the two sons share the weight
allocated to their parent, while the excess is permanently allocated to themore demand-
ing leaf. w+ thus yields δ′ weight saving.

w+proceeds bottom-up level-by-level up to T ’s root ρ, which is necessarily allo-
cated with the smallest demand among all the leaves. For two sibling nodes ν′ and ν′′
with a common parent, w+ fixes at least one of the weights w+(ν′) and w+(ν′′) to 0.
It turns out that among the 2n−1 T ’s nodes, the weight of at least n−1 nodes is fixed
by w+ to 0.

Figure 2 illustratesw+ for a tree with demands of 1 to 8 units, specified below their
corresponding leaves. Temporary weights are shown in blue and fixed weights in red.
The total sum of fixed weights along a root-to-leaf path satisfies the demand at the
leaf.

While the total sum of demands specified at leaves is 36, the total sum of weights
distributed at nodes has been reduced to 22 units, thus yielding savings of 14 units.
The following Lemma shows that �(w+) = �∗.
Lemma 1 Let T be a balanced binary tree with n = 2N leaves μi , associated with
non-negative demands δi ≥ 0, 1 ≤ i ≤ n. There is �(w+) = �∗.

123

Author's personal copy



1026 J Comb Optim (2016) 31:1023–1033

Fig. 2 Weight allocation by w+

Proof Assume in contrary that �(w+) = ∑
ν∈T w+(ν) > �∗, so there is another

w∗∗ ∈ W such that
∑

ν∈T w∗∗(ν) = �∗. We first claim that w∗∗ must also have the
property that for any sibling sons μ′ and μ′′ sharing a common parent, at least one
of w∗∗(μ′) = 0 and w∗∗(μ′′) = 0 must hold. Otherwise,

∑
ν∈T w∗∗(ν) could further

be reduced by adding ε = min
{
w∗∗(μ′), w∗∗(μ′′)

}
to their parent and subtracting ε

from both, yielding
∑

ν∈T w∗∗(ν) < �∗ which contradicts (3).
If

∑
ν∈T w+(ν) >

∑
ν∈T w∗∗(ν) = �∗ was true, there would exist at least one

node μ′ ∈ T such that w+(μ′) > w∗∗(μ′) ≥ 0. Let μ′′ be the sibling of μ′, sharing
a common parent μ. By the above claim there is w∗∗(μ′′) = w+(μ′′) = 0. If μ′ was
a leaf, let δ′ and δ′′ be the demands associated with μ′ and μ′′, respectively. By (1)
there is

∑
ν∈P+(μ′′,ρ)

w+(ν) =
∑

ν∈P+(μ′′,ρ)
w∗∗(ν) = δ′′.

It follows from w∗∗(μ′′) = w+(μ′′) = 0 that

∑
ν∈P+(μ,ρ)

w+(ν) =
∑

ν∈P+(μ,ρ)
w∗∗(ν) = δ′′.

But then

δ′ =
∑

ν∈P+(μ,ρ)
w+(ν) + w+(μ′) >

∑
ν∈P+(μ,ρ)

w∗∗(ν) + w∗∗(μ′) = δ′,

which is impossible. Hence w+(μ′) > w∗∗(μ′)could not occur at a leaf.
If μ′ is an internal node, let l, N > l > 0, be T ’s lowest level where w+(μ′)

> w∗∗(μ′) occurs (T ’s leaves are at level N = log2 n and T ’s root is at level 0).
In that case we could ignore all the levels from l + 1 down to N , were w+ and
w∗∗ are identical, and be left with a reduced balanced binary tree having 2l leaves.
Since the inequality in the reduced tree occurs at a leaf, same contradiction follows as
before. ��

It is straightforward to generalize w+ for any rooted tree. If T is not balanced, it
can be modified to make all its leaves residing at the same level as follows. A higher

123

Author's personal copy



J Comb Optim (2016) 31:1023–1033 1027

Fig. 3 Better assignment of demands to leaves, yielding smaller w+

level leaf is augmented with a chain having appropriate number of edges, and then
put the demand at the new leaf located at the opposite end of the augmenting path.
Once T is balanced, let a node μ of a tree have d sons μ1, . . . , μd , whose temporary
weights are δ1, . . . , δd , respectively. w+ then floats δ = min

1≤i≤d
{δi } to μ and fixes μi ’s

weight to δi − δ. The weight thus being saved at μ1, . . . , μd is δ(d − 1). Lemma 1
which states the optimality of w+ for binary trees works similarly for any balanced
tree.

3 Optimizing the assignment of demands subject to weight sum constraints

Lemma1 showed that theweight allocationw+ yields�∗ defined in (3). If themapping
of demands to leaves is not predetermined, �∗ could further be reduced by applying
w+for each of the n! possible mappings. An example is shown in Fig. 3, where the
demands have been differently mapped to leaves than in Fig. 2. w+ allocated weights
to nodes, yielding 13 total sum of weights, compared to 22 in Fig. 2.

Let 0 ≤ δ1 ≤ δ2 ≤ · · · ≤ δn be n demands, and μi , 1 ≤ i ≤ n, be the leaves of a
balanced binary tree T . We assume w.l.o.g that δ1 < δ2 < · · · < δn since equalities
can arbitrarily be resolved. Let � be the set of n! permutations. An assignment of
demands to T ’s leaves is a permutation π ∈ �. The notation �(w, π) is used to
denote the dependence of the total sum of weights on both the assignment of the
demands to leaves, and the weight allocation w ∈ W to supply those. We therefore
look for π∗ ∈ � satisfying

�(w+, π∗) = min
π∈�

{
�(w+, π)

}
. (4)

Notice that the total sum of weights obtained by w+ is invariant of a swap of the left
and the right sub-trees rooted at a node. Since T has n − 1 internal nodes, it turns
out that such swaps induce 2n−1 isomorphic assignments, reducing the solution space
to size n!/2n−1. It is subsequently shown that the identity permutation π id(i) = i
satisfies (4).

123

Author's personal copy



1028 J Comb Optim (2016) 31:1023–1033

Fig. 4 First induction step

Lemma 2 Let n = 2N , and 0 ≤ δ1 < δ2 < · · · < δn be demands assigned to the
leaves of a balanced binary tree T . The identity permutation π id(i) = i, 1 ≤ i ≤ n,
satisfies

�(w+, π id) = min
π∈�

{
�(w+, π)

}
. (5)

Proof Let μi , 1 ≤ i ≤ n, be the left-to-right ordered leaves of T and δπ−1(i) be
their corresponding weights assigned by π ∈ �. To prove (5), it will be shown that
�(w+, π id) maximizes the weight savings given by

∑n
i=1 δi − �(w+, π id). Recall

that by w+ definition, the floatation of the smallest weight among two sibling sons to
their parent results in weight saving by that amount.

We subsequently show by induction on the levels of T , that the maximization of
the total weight saving must separate the demands assigned to left and right sub-trees
rooted at a node, the smaller weights to one sub-tree and the larger ones to the other.

By w+ definition, the total saving is the sum of the temporary weights floating to
nodes across all tree’s levels, from level N − 1 (parents of leaves), up to the root at
level 0. For the first step of the induction the saving obtained at level 1 is considered,
as shown in Fig. 4, where temporary weights are colored in blue and fixed weights
are colored in red. It is shown that to maximize the weight saving incurred at level 1,
the separation of the demands must be such that {δi }n/2

i=1and {δi }ni=n/2+1 are assigned
to the leaves of different sub-trees.

By w+ definition, the smallest demand δ1 must float all the way up from a leaf to
the root. It must therefore be temporarily allocated to one of the two sons at level 1.
Let it be w.l.o.g the left son, as shown in Fig. 4a.

It is subsequently shown that δn/2+1 is the largest demand that can float from the
leaves and temporarily be allocated to the right son as shown in Fig. 4b. Assume in
contrary that w+ floated other demand δp > δn/2+1 to the root of the right sub-tree. If
the demand δn/2+1 was also assigned to a leaf of the right sub-tree, thatwould contradict
the property of w+, floating the smallest value up to the root. If however δn/2+1 was
assigned to a leaf of the left sub-tree, theremust be someother demand δm < δn/2+1that
was assigned to a leaf of the right sub-tree. But then δm < δn/2+1 < δp, and δp could
not float to the right son of the root. We conclude that to maximize the weight saving
byw+ at level 1, {δi }n/2

i=1 must be assigned (in any order) to the leaves {μi }n/2
i=1, whereas{δi }ni=n/2+1 must be assigned (in any order) to the leaves {μi }ni=n/2+1 as shown in Fig.

4b.

123

Author's personal copy



J Comb Optim (2016) 31:1023–1033 1029

Fig. 5 N − 2 induction step

Assume by induction that the total weight saving maximization from the root down
to level N − 2 by π ∈ � must satisfy the assignment defined in (6), shown in Fig. 5.

π {4 j + i}4i=1 = {4 j + i}4i=1 , 0 ≤ j ≤ 2N−2 − 1. (6)

It is required to show that the assignment of demands to leaves maximizing the total
saving from root down to level N −1 complies with the induction hypothesis stated in
(6). Recall that there isw+(μ2k+1) = 0 andw+(μ2(k+1)) = δπ−1(2(k+1)) −δπ−1(2k+1)

(up to a swap), where δπ−1(2k+1) floats to the parent of
{
μ2k+1, μ2(k+1)

}
. The total

sum of weights saving incurred at level N − 1 is therefore

∑n/2−1

k=0
δπ−1(2k+1). (7)

To maximize (7), π−1(2(k + 1)) = π−1(2k + 1) + 1 must hold. That follows by
noticing that if a < b < c < d then a + c = min(a, b) + min(c, d) > min(a, d)

+min(b, c) = a + b and a + c = min(a, b) +min(c, d) > min(a, c) +min(b, d) =
a + b. Such relation must hold for any quadruple of δ1 < δ2 < · · · < δn , yielding the
ordering

{{
δ4 j+1, δ4 j+2

}
,
{
δ4 j+3, δ4 j+4

}}n/4−1
j=0 , which complies with (7). We con-

clude that up to sub-trees swap, the identity permutation π id(i) = i, 1 ≤ i ≤ n
complies with (6), and together with the induction hypothesis yields optimal assign-
ment. ��

The optimality of π idfor general rooted tree follows by similar arguments as in the
comments following Lemma 1.

4 Allocation of weight to nodes subject to product constraints

Referring to the amplification tree mentioned at Sect. 1, let us consider a balanced
binary tree T with n = 2N leaves μi , associated with demands δi ≥ 1, 1 ≤ i ≤ n.
Denote by P•(ν, ρ) the path from the root ρ ∈ T to a node ν ∈ T , where the •

123

Author's personal copy



1030 J Comb Optim (2016) 31:1023–1033

superscript stands for a weight product operation defined on the path. To satisfy the
demands, weights w(ν) ≥ 1, ν ∈ T , are allocated such that

∏
ν∈P•(μi ,ρ)

w(ν) = δi , 1 ≤ i ≤ n. (8)

Let W• be the set of weight allocations satisfying (8). The allocation w1, defined by
w1(μi ) = δi , 1 ≤ i ≤ n and w1(ν) = 1, ν ∈ T \ {μi }ni=1 trivially satisfies (8), hence
w1 ∈ W•. Consider the total sum of weights �(w) allocated to T ’s nodes,

�(w) =
∑

ν∈T w(ν). (2)

Denote by �∗ the minimum total weights across all w ∈ W•,

�∗ = min
w∈W• {�(w)} . (9)

An allocation algorithm w• ∈ W•, satisfying �(w•) = �∗, is subsequently presented.
It determines the weights of T ’s nodes in a bottom-up traversal. Let μ′ and μ′′ be
two sibling leaves of T , sharing a common parent ν. Let their demands be δ′ and δ′′,
respectively, and δ′′ ≥ δ′. The algorithm fixes w•(μ′) = 1 and w•(μ′′) = δ′′/δ′,
and temporarily allocates the weight δ′ to ν. This way the two sons share the weight
allocated to their parent, while the ratio δ′′/δ′ ≥ 1 is permanently allocated to themore
demanding leaf. w• thus yields (δ′ + δ′′ + 1) − (1 + δ′′/δ′ + δ′) = δ′′ − δ′′/δ′ ≥ 0
weight saving.

w• proceeds bottom-up level-by-level up to T ’s root ρ, which is necessarily allo-
cated with the smallest demand among all the leaves. For two sibling nodes ν′ and ν′′
with a common parent, w• fixes at least one of the weights w•(ν′) and w•(ν′′) to 1. It
turns out that among the 2n − 1 T ’s nodes, the weight of at least n − 1 nodes is fixed
by w• to 1.

Figure 6 illustrates w• for an example of a tree with demands of 1 to 8 units,
specified below their corresponding leaves. Temporary weights are shown in blue and
fixed weights are shown in red. The total product of fixed weights along a root-to-leaf
path satisfies the demand at the leaf.

While the total sum of demands specified at leaves is 36, the total sum of weights
distributed at nodes has been reduced to 30.25 units, thus yielding savings of 5.75
units. The following Lemma shows that �(w•) = �∗.

Lemma 3 Let T be a balanced binary tree with n = 2N leaves μi , associated with
demands δi ≥ 1, 1 ≤ i ≤ n. There is �(w•) = �∗.

Sketch of roof A straight forward modification of the proof of Lemma 1. The replace-
ment of 0s by 1s, and sum of weights along root-to-node paths by their product, leads
to same conclusions as in Lemma 1. ��

By the same replacements as in Lemma 3, the optimality ofw• ∈ W• for any rooted
tree holds as in w+ ∈ W+.

123

Author's personal copy



J Comb Optim (2016) 31:1023–1033 1031

Fig. 6 Weight allocation by w•

Fig. 7 Better assignment of demands to leaves, yielding smaller w•

5 Optimizing the assignment of demands subject to weight product constraints

Lemma 3 showed that the weight allocation w• yields �∗ defined in (9). Similarly to
w+ ∈ W+ discussed in Section 3, if the mapping of demands to leaves can arbitrarily
be predetermined, �∗ could further be reduced by considering w• for each of the n!
possible mappings. An example is shown in Fig. 7, where the demands have been
permuted and w• yields 22.08 total sum of weights, compared to 30.25 in Fig. 6.

Let 1 ≤ δ1 ≤ δ2 ≤ · · · ≤ δn be n demands, and μi , 1 ≤ i ≤ n, be the leaves of a
balanced binary tree T . Similarly to (4), we look for π∗ ∈ � satisfying

�(w•, π∗) = min
π∈�

{
�(w•, π)

}
. (10)

Consider the weight savings obtained by w•. Let {x, y, u, v} be the weights assigned
to the leaves of the tree in Fig. 8a. Since a flip of a sub-tree at a node does not matter
for the total cost, it is assumed w.l.o.g that x < y and u < v. Applying w• results in
the tree shown in Fig. 8b, with the following total weight saving at leaves

[(x + y) + (u + v)] − (y/x + v/u). (11)

123

Author's personal copy



1032 J Comb Optim (2016) 31:1023–1033

Fig. 8 Weight floatation under product constraints

Consider the demands {a, b, c, d}, a < b < c < d. How should those be assigned
to the leaves in Fig. 8 so that the total saving of w• is maximized? Up to sub-
tree swap, there are three assignments to consider: {(a, b), (c, d)}, {(a, c), (b, d)},
and {(a, d), (b, c)}. We subsequently show that {(a, b), (c, d)}is the best. The term
[(x + y) + (u + v)] in (11) is independent of the order hence (y/x + v/u) should be
minimized. Comparing {(a, b), (c, d)}with {(a, c), (b, d)}, the weight saving differ-
ence is (

c

a
+ d

b

)
−

(
b

a
+ d

c

)
= (c − b)

(
1

a
+ d

bc

)
> 0, (12)

hence {(a, b), (c, d)} is favored. To compare {(a, b), (c, d)} with {(a, d), (b, c)}, the
weight saving difference is

(
d

a
+ c

b

)
−

(
b

a
+ d

c

)
= c2 − bd

bc
+ d − b

a
. (13)

Let f (b, c, d) = (c2 − bd)/bc. There is ∂ f /∂c = 2/b+d/c2 > 0, namely, f (b, c, d)

is monotonic increasing in c. Since b < c < d, the right hand side of (13) is minimized
for c = b, yielding (d − b)(1/a − 1/b) > 0, concluding that the weight assignment
{(a, b), (c, d)} yields higher saving than {(a, d), (b, c)}.

Lemma 2which stated thatπ id ∈ �minimizesw+ ∈ W+, has a similar counterpart
for w• ∈ W•as follows.

Lemma 4 Let n = 2N , and 1 ≤ δ1 < δ2 < · · · < δn be demands assigned to the
leaves of a balanced binary tree T . The identity permutation π id(i) = i, 1 ≤ i ≤ n,
satisfies

�(w•, π id) = min
π∈�

{
�(w•, π)

}
. (14)

Sketch of roof Analogous to the proof of Lemma 2, where one have to replace the
0s by 1s, and sum of weights along root-to-node paths by their product. The proof
follows by induction on maximizing the weight savings obtained from the root down
to a certain level of the tree. Similarly to Lemma 2, δ1 must by w• definition float
to the root. The maximal possible savings from the root down to the first level is
then δn/2+1 − δn/2+1/δ1, implying the floatation of δn/2+1 to the other root’s son.
With appropriate replacement of 0 by 1 and δn/2+1 − δ1 by δn/2+1/δ1 in Fig. 4b, the
temporary assignment of δ1 and δn/2+1 to the root’s sons, necessarily requires that

{δi }n/2
i=1 and {δi }ni=n/2+1 be assigned to the leaves of different sub-trees.

123

Author's personal copy



J Comb Optim (2016) 31:1023–1033 1033

The induction hypothesis about the assignment of the demands to different sub-trees
at level N−2 is shown in Fig. 5 with appropriate replacement of 0 by 1 and δn/2+1−δ1
by δn/2+1/δ1. The completion of the induction follows from Fig. 8 and (12) and (13),
which proves that the assignment of demands to leaves must be in monotonic order. ��

Conclusions

This paper showed that apparently two different VLSI design optimization problems
share a common tree structure, on which appropriate sum or product operations are
defined. An O(n) time complexity bottom-up weight allocation algorithm has been
shown to optimally solve those problems. It is interesting to further explore other oper-
ations and constraints defined on trees that can optimally be solved by such algorithm.

References

Fishburn JP (1990) Clock skew optimization. IEEE Trans Comput 39(7):945–951
Tam S, Rusu S, Desai UN, Kim R, Zhang J, Young I (2000) Clock generation and distribution for the first

IA-64 microprocessor. IEEE J Solid-State Circ 35(11):1545–1552
Jiang YM, Cheng KT (1999) Analysis of performance impact caused by power supply noise in deep

submicron devices. In: Proceedings of the 36th annual ACM/IEEE Design Automation Conference
Benini JL, Vuillod P, Bogliolo A, DeMicheli G (1997) Clock skew optimization for peak current reduction.

J VLSI Sig Process 16:117–130
Churcher S, Longstaff SA (1998) Programmable Delay Element, US Patent 5,841,296
Kocher P, Jaffe J, Jun B (1999) Differential power analysis, Advances in Cryptology–CRYPTO’99, Lecture

Notes in Computer Science. Springer, Berlin
Friedman EG (2001) Clock distribution networks in synchronous digital integrated circuits. In: Proceedings

of the IEEE 89(5):665–692
JuyeonKim,Deokjin Joo, TaewhanKim (2013)AnOptimalAlgorithmofAdjustableDelayBuffer Insertion

for Solving Clock Skew Variation Problem. In: Proceedings of the 50th Annual Design Automation
Conference, Article No. 90.

Baker RJ (2011) CMOS: circuit design, layout, and simulation. Wiley, New York
Jiren Y, Piper J (1999) Floating-point analog-to-digital converter. In: Proceedings of ICECS’99. The 6th

IEEE International Conference on Electronics, Circuits and Systems, vol. 3, pp. 1385–1388. IEEE

123

Author's personal copy


	Optimal weight allocation in rooted trees
	Abstract
	1 Motivations
	2 Optimal weight allocation to nodes subject to sum constraints
	3 Optimizing the assignment of demands subject to weight sum constraints
	4 Allocation of weight to nodes subject to product constraints
	5 Optimizing the assignment of demands subject to weight product constraints
	Conclusions
	References




