
Discrete Optimization 14 (2014) 104–110

Contents lists available at ScienceDirect

Discrete Optimization

journal homepage: www.elsevier.com/locate/disopt

Note

Easy and difficult exact covering problems arising in VLSI
power reduction by clock gating
Shmuel Wimer ∗

Engineering Faculty, Bar-Ilan University, Ramat-Gan 52900, Israel
EE Faculty, Technion - Israel Institute of Technology, Haifa 32000, Israel

a r t i c l e i n f o

Article history:
Received 16 December 2013
Received in revised form 2 August 2014
Accepted 8 August 2014

Keywords:
Exact covering
Perfect matching
VLSI power minimization
Clock-gating

a b s t r a c t

Several graph matching and exact covering problems arising in VLSI low-power design
optimization by clock gating are presented. To maximize the power savings, clock gating
requires optimal grouping of Flip-Flops (FFs), which depends on FFs’ data toggling correla-
tions and probabilities. These naturally lead to optimal matching and exact covering prob-
lems. We present three problems arising by different clock-gating techniques. In amethod
called data-driven clock-gating, the corresponding covering problem is intractable but can
practically be solved by appropriate heuristics. In another method called multi-bit flip-
flops, the covering problem is easily solvable in a closed-form, required only sorting.We fi-
nally present the covering problem arising in a newmethod called look-ahead clock-gating,
forwhich the question ofwhether the exact covering problem is easy or difficult is left open.

© 2014 Elsevier B.V. All rights reserved.

1. VLSI clock-gating and covering problems

The clock network together with its underlying Flip-Flops (FFs), is typically responsible for 30%–70% of the total power
consumed by modern Very Large Scale Integration (VLSI) digital systems, and is thus a primary candidate for power
reduction [1,2]. Clock network power is consumed due to the toggling (switching) of the clock signal (pulse). A variety
of techniques exist to reduce the clock power, of which clock-gating is a predominant. It disables the clock signal when the
underlying driven circuits are not subject to change (toggle) their state, and hence do not need the clock.

Data-Driven Clock-Gating (DDCG) techniques have been shown to be very effective and saving up to 20% of the total chip
power [3]. DDCG disables the clock pulse driving the system’s FFs [4,5] if those will not change their state (data) in the next
clock cycle. It requires clustering the system’s n FFs in groups of k FFs each, sharing a common clock signal. The amount of
power being saved by DDCG depends on the toggling probabilities and correlation of the FFs comprising a group. Obviously,
the interest is that the joint clock signal driving a FFs group will be disabled as much as possible. In typical VLSI designs the
size of nmay vary from a few thousands to a few hundreds of thousands, while k may vary from two to a few dozens.

DDCG implies a corresponding Min-Cost Exact Covering Problem (MCECP) where an n-size set should exactly be covered
by n/k k-size subsets Gi, 1 ≤ i ≤


n
k


, with cost wi reflecting the subset’s power consumption. The cost wi in [5] was

based on FFs toggling correlation (elaborated in Section 2), whereas finding the minimum power grouping has been shown
in [6] to be NP-hard, and appropriate heuristics have been proposed for practical solution. The FFs grouping described in [7]
was based on FFs toggling probabilities, rather than correlation. The implied MCECP has been shown to be well-solvable,

∗ Correspondence to: Engineering Faculty, Bar-Ilan University, Ramat-Gan 52900, Israel. Tel.: +972 35317208; fax: +972 37384051.
E-mail addresses:wimers@biu.ac.il, wimer@ee.technion.ac.il.

http://dx.doi.org/10.1016/j.disopt.2014.08.004
1572-5286/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.disopt.2014.08.004
http://www.elsevier.com/locate/disopt
http://www.elsevier.com/locate/disopt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disopt.2014.08.004&domain=pdf
mailto:wimers@biu.ac.il
mailto:wimer@ee.technion.ac.il
http://dx.doi.org/10.1016/j.disopt.2014.08.004

S. Wimer / Discrete Optimization 14 (2014) 104–110 105

Fig. 1. Data-driven clock circuit. Overhead hardware is shaded in gray.

having a closed-form solution which requires only sorting (elaborated in Section 3). Another clock-gating method called
Look-Ahead Clock-Gating (LACG) has been proposed in [8]. There, the FFs groups are uniquely determined by the system’s
logic. MCECP arises, since in LACG the grouping of FFs group is of interest (elaborated in Section 4). The clock gatingmethods
discussed in this paper with their underlying matching and covering algorithms have lately been implemented in industrial
environments and are currently used by companies such as Intel [8], Ceva and Mellanox [5].

2. Covering problems implied by FFs toggling correlation

DDCG disables the clock signal driving a FF when the FF’s state is not subject to change in the next clock cycle. A logic
system comprising DDCG is illustrated in Fig. 1, where its hardware overhead to generate the clock disabling signal is shaded
in gray. A XOR gate checks whether a FF’s state is subject to change, thus finding out whether its clock can be disabled in the
next cycle. k XOR gates are ORed and latched to generate a joint gating signal for the k FFs. There is a tradeoff between the
number of saved (disabled) clock pulses and the hardware overhead, and the optimal kminimizing the power consumption
was derived in [4].

The problem of which FFs should be placed in a group so as to minimize the power, and how to derive those groups,
was studied in [6]. Let n FFs be clocked during m + 1 cycles, and a = (a1, . . . , am) be the activity of a FF. An entry at = 0,
1 ≤ t ≤ m, if the FF stays unchanged (no toggling) from time t −1 to time t , and at = 1 otherwise. The term ∥a∥ =

m
t=1 at

is proportional to the power consumed by the FF’s switching. All the n (n − 1) /2 pairs

ai, aj


, 1 ≤ i < j ≤ n, are bit-wise

XORed to yield the number
ai ⊕ aj

 of redundant clock pulses occurring if FFi and FFj are grouped and share a common
gater. The smaller it is, the more desirable it is to jointly clock FFi and FFj.

To model the switching power consumed when driving FFs pairs (k = 2) with a common clock gater, an n-vertex
complete weighted graph G (V , E, w) is defined. Assume w.l.o.g that n is even (we could otherwise add a never toggling
artificial FF and set to zero the weight of its entire incident edges). A vertex vi ∈ V is associated with FFi’s activity ai. An
edge eij =


vi, vj


∈ E is associated with a joint activity vector ai | aj, where the OR is a bit-wise operation. An edge eij is

assigned a weight w

eij


=
ai ⊕ aj

, counting the number of redundant clock pulses incurred by clocking FFi and FFj with
a common gater. Let E ′

⊂ E,
E ′
 = |V | /2, be a vertexmatching of G (V , E, w). The total power consumed by the gated clock

signal is proportional to the number P of pulses driving the underlying FFs, given by

P = 2

eij∈E′

ai | aj
 =


vi∈V

∥ai∥ +


eij∈E′

ai ⊕ aj
 =


vi∈V

∥ai∥  
(a)

+


eij∈E′

w

eij


  
(b)

. (1)

The term (a) of (1) is an essential component charged to the toggling of the individual FFs, independently of the pairing.
Therefore, to consume minimum switching power it is necessary to minimize term (b), which turns into the well-known
Minimal Cost Perfect graph Matching (MCPM) problem [9], for which polynomial complexity algorithms are known [10].

The extension for k > 2 is straightforward. Assumew.l.o.g that n is divisible by k. (We could otherwise add never toggling
artificial FFs.) A complete k-uniform weighted hypergraph H (V , E, w) is defined, where for a subset v ⊂ V and |v| = k,
ev = {vu}u∈v ∈ E defines a hyper edge. It follows that |E| =


n
k


. A hyper edge ev is associated with a joint activity vector

u∈v au, defined by the bit-wise ORing of the k toggling vectors. A hyper edge ev is assigned the weight (2), which is the
total number of redundant clock pulses incurred by clocking the k FFs corresponding to ev with a common gater.

w (ev) =


v∈v

av ⊕


u∈v

au

 . (2)

Let E ′
⊂ E be an exact cover of the vertices of H (V , E, w) by n/k hyper edges (a vertex belongs to one and only one hyper

edge). The total power consumed by the clock signal is proportional to the total number P of pulses driving the FFs, given in
(3). The term (a) is an essential power component charged to the toggling of the individual FFs, and is independent of the

106 S. Wimer / Discrete Optimization 14 (2014) 104–110

Fig. 2. Single-bit FF and 2-bit MBFF.

grouping.

P =


ev∈E′

k

u∈v

au

 =


vi∈V

∥ai∥ +


ev∈E′


v∈v

av ⊕


u∈v

au

 =


vi∈V

∥ai∥  
(a)

+


ev∈E′

w (ev)  
(b)

. (3)

To consumeminimum switching power it is necessary tominimize term (b), a problem shown in [6] to be NP-hard.With the
above formulation, a solution of the problem can be obtained by solving the well-known NP-hard weighted Set Partitioning
Problem (SPP) [11]. There, hyper edges are the variables covering the vertex constraints. The practical heuristic solution of
the SPP is using iterations of MCPM and considerations of the physical proximity constraints of related FFs. Cases where n
is not divisible by k and other implementation details can be found in [5,6]. Iterative application of MCPM for block-level
clock gating was proposed in [12].

3. Covering problems implied by FFs toggling probabilities

While the above grouping relied on toggling correlations measured by XORing, we subsequently describe a grouping
based on toggling probabilities. Shown in Fig. 2, an ordinary 1-bit FF is composed of two cascaded master and slave latches,
driven by a clock CLK. Most of the energy within a FF is consumed by its internal clock driver. Data is usually stored in
individual FFs, each having its own internal clock driver. In an attempt to reduce the clock power, several FFs are grouped
into a module such that a common clock driver is used for all. A technique called Multi-Bit Flip-Flop (MBFF) is lately being
adopted by the VLSI industry [13,14]. A grouping of two individual FFs into 2-bit MBFF is shown in Fig. 2. Notice that the
clock driver in the MBFF is common to both FFs.

Groups of k FFs are called k-bit MBFF. The power savings of a MBFF depend on the amount of the average (expected) data
toggling probability p of its individual FFs, called data toggling probability, switching probability, or shortly probability. We
use those terms interchangeably. By definition, there is 0 ≤ p ≤ 1, where p = 0 when the data is never toggling and p = 1
when the data is toggling at every clock cycle. In typical VLSI systems 0 < p ≤ 0.2. Simulations of 2-bit MBFF (k = 2) in [7]
showed energy reduction of 35% for p = 0.05, and 15% for p = 0.95. Simulations for 4-bit MBFF (k = 4) showed higher
savings of 55% for p = 0.05 and 23% for p = 0.95 [7].

Application of DDCG to MBFF was proposed in [14]. It took advantage of the FFs that are anyway grouped in MBFF, to
derive a joint clock enabling signalwith a relatively small hardware overhead. To simplify the FF grouping thatminimizes the
energy, it was proposed in [7] to consider FF toggling probabilities rather than toggling correlation, as in [5,6]. The implied
optimization problem is a kind of k-MCECP, where for k = 2 it turns into a MCPM problem. It has been proven in [7] that for
power cost model based on toggling probabilities rather than on toggling correlations, the implied MCECP is well-solvable,
requires only sorting.

Denote by E1 the energy consumed by an ordinary 1-bit FF. Shown by simulations, E1 grows with the FF’s toggling
probability p as follows:

E1 (p) = α1 + β1p. (4)

The parameter α1 is the energy of the FF’s internal clock driver, and the parameter β1 is the energy of data toggling. For
2-bit MBFF there are three possible scenarios: none of the FFs toggle, a single FF toggles, and both FFs toggle. Assuming data
toggling independence, the energy consumption E2 is

E2 (p) = α2 (1 − p)2 + 2 (α2 + β2) p (1 − p) + (α2 + 2β2) p2 ≡ α2 + 2β2p. (5)

The parameter α2 is the energy of the internal clock driver which drives the two FFs, and the parameter β2 is the per-bit
data toggling energy of the 2-bit MBFF.

For the general case of k-bit MBFF, let αk be the energy of the MBFF’s internal clock driver driving the k FFs, and let
βk be the per-bit data toggling energy in the k-bit MBFF. Considering all the combinations of toggling FFs, the energy

S. Wimer / Discrete Optimization 14 (2014) 104–110 107

consumption Ek is

Ek (p) =

k
j=0

(αk + jβk)


k
j


pj (1 − p)k−j . (6)

Rearrangement of (6) and showing by induction that
k

j=0


k
j


jpj (1 − p)k−j

= kp yields

Ek (p) = αk

k
j=0


k
j


pj (1 − p)k−j

+ βk

k
j=0


k
j


jpj (1 − p)k−j

= αk + kβkp. (7)

It was shown in [6] that the energy savings factor obtained from circuit simulations matches the ratio kE1 (p) /Ek (p) for
k ≥ 2. Obviously, the lower the p, the higher the saving will be.

Let FFi and FFj be two FFs toggling independently of each other with probabilities pi and pj, respectively. We denote
by FF(i,j) their grouping (pairing) in the formation of a 2-bit MBFF. Similar to (5), the energy E(i,j) consumed by FF(i,j) is
E(i,j) = α2 + β2


pi + pj


. Given four FFs FFi, FFj, FFk and FFl, paired in two 2-bit MBFFs, their energy consumption is E(i,j) +

E(k,j) = 2α2 + β2

pi + pj + pk + pl


, which is independent of the pairing.

Once clock-gating is applied to MBFFs, pairing considerably matters for energy consumption. Since in MBFF the clock
signal is common, when none of FFi and FFj changes its data, the clock pulse of FF(i,j) is disabled and its internal clock driver
does not waste any switching energy. When both FFi and FFj change their data, the clock pulse of FF(i,j) is enabled and
the switching energy of the internal clock driver is fully useful, hence is no energy waste. A waste happens when one FF
is toggling, while its counterpart does not. There, the common clock pulse is enabled, driving both FFs, whereas only one
needs it, thus causing a wasteW(i,j) of half of the internal clock driver energy, given by

W(i,j) =
α2

2


pj (1 − pi) + pi


1 − pj


=

α2

2


pi + pj − 2pipj


. (8)

We are interested in minimizingW(i,j). Let us pair four FFs in 2-bit clock-gated MBFFs. The following energy waste results in

W(i,j) + W(k,l) =
α2

2

pi + pj + pk + pl  
(a)

−2

pipj + pkpl

  
(b)

 . (9)

While the term (a) of (9) is not dependent on the pairing, the term (b) is. W(i,j) + W(k,l) is minimized when (b) is
maximized. If pi ≤ pj ≤ pk ≤ pl, the pairing


FF(i,j), FF(k,l)


is favored over


FF(i,k), FF(j,l)


optimal since


W(i,j) + W(k,l)


−

W(i,k) + W(j,l)


= −α2 (pi − pl)

pj − pk


/2 ≤ 0.

The above observation hints that optimal 2-bitMBFF grouping prefers pairs of FFswhose switching probabilities are close
to each other. The generalization for pairing of n FFs is subsequently discussed. Let n be even and P :


FF(si,ti)

n/2
i=1 be a pairing

of FF1, FF2, . . . , FFn in n/2 2-bit clock-gated MBFFs. The following energy waste W (P) results in

W (P) =

n/2
i=1

W(si,ti) =
α2

2


n

j=1

pj − 2
n/2
i=1

psipti


. (10)

W (P) is minimized when
n/2

i=1 psipti is maximized. The optimal pairing can be found in polynomial time by applying a
MCPM [10] to the n-vertex complete weighted graph, the vertices of which are FFi and its edge weights are pipj, 1 ≤ i < j ≤

n. A closed-form simpler solution of O (n log n) time complexity has been obtained in [7], as follows.

Theorem 1. Let n be even and FF1, FF2, . . . , FFn satisfy p1 ≤ p2 ≤ · · · ≤ pn. The pairing P :

FF(2i−1,2i)

n/2
i=1 is minimizing W (P)

given in (10).

In case of odd n it is possible to exclude either FF1 or FFn and obtain solutions for the corresponding problems of n − 1
FFs, from which the better one is chosen.

The hardware overhead involved in clock-gatingmay sometimesmake its application questionable for groups comprising
two FFs. It has been shown in [4] thatmaximal power savings is obtained for three andmore FFs, depending on their toggling
probabilities. Let FF(i1,...,ik) denote a k-bit MBFF comprising FFi1 , . . . , FFik . Consider the energy waste incurred by FF(i1,...,ik).
When none of the k FFs are toggling, their gater disables the clock pulse, so energy is not wasted. When all are toggling, the
clock pulse is required by all, hence no waste occurs. A waste occurs when 1 ≤ q ≤ k − 1 of the FFs are toggling, while
r = k − q are not. Since the clock pulse drives r non-toggling FFs, it results in energy waste of αkr/k, multiplied by the
probability of that event. There are


k
r


distinct events. For each 1 ≤ m ≤


k
r


we split FFi1 , . . . , FFik into the sets of the

toggling and non-toggling FFs, denoted by Am and Bm, respectively, so |Am| = q and |Bm| = r . The corresponding energy

108 S. Wimer / Discrete Optimization 14 (2014) 104–110

Fig. 3. Look ahead clock gating (LACG).

waste is

W(i1,...,ik) =

k−1
r=1

αk
r
k


k
r



m=1


s∈Am

ps

t∈Bm

(1 − pt) . (11)

Assume that n is divisible by k (non-divisible n is discussed later). It has been shown in [7] that theMBFF k-bit grouping of the

n FFs thatminimizes the energywaste can be found inO (n log n) time complexity by sorting. Let P :


FF(sk(i−1)+1,...,ski)

n/k
i=1

be
a grouping of FF1, FF2, . . . , FFn in n/k k-bit clock-gatedMBFFs, and letW(sk(i−1)+1,...,ski)be the energywaste of FF(sk(i−1)+1,...,ski),
as given in (11). The following energy waste W (P) results in

W (P) =

n/k
i=1

W(sk(i−1)+1,...,ski). (12)

The optimal grouping implies a k-MCECP that is NP-hard in general. In the setting of our problem though, where the costs
of the groups are determined by sum of probabilities products, it is well-solvable [7].

Theorem 2. Let n be divisible by k and let FF1, FF2, . . . , FFn be ordered such that p1 ≤ p2 ≤ · · · ≤ pn. The grouping
P :

FF(k(i−1)+1,...,ki)

n/k
i=1 is minimizing W (P) given in (12).

If n is not divisible by k, let r = n mod k, 0 ≤ u ≤ r , 0 ≤ v ≤ r and u + v = r . We ignore the first u FFs with the
smallest probabilities and the last v FFs with the largest probabilities. It results in r + 1 instances of grouping n − r FFs in
(n − r) /k k-bit MBFFs, plus another two MBFFs, one of u bits and another of v bits. From those r + 1 instances, the one
yielding the smallest energy is optimal. It is important to note that the above analysis assumed FFs toggling independency,
which is a worst-case assumption, while real FFs toggling may be correlated. This however is a fortunate situation, where
the real power being saved in the hardware can only be higher than anticipated by the worst-case modeling.

4. Covering problems implied by look-ahead clock-gating

Look-ahead clock-gating (LACG) has lately been proposed in [8]. It is addressing two goals: making gating applicable for
large and general designs, and avoiding the tight timing constraints of DDCG. Similar to DDCG, LACG is based on XORing
the FF’s output and input as in Fig. 1. However, while in DDCG it is used to disable the clock pulse of that FF in the next
clock cycle, LACG uses it to generate clock disabling signals one cycle ahead of time for other FFs in the system, whose data
depend on that FF. This has considerable timing advantage over DDCG. Another fundamental difference of LACG from DDCG
and MBFF is that in LACG the grouping of FFs to produce the clock enable signal is uniquely defined by the underlying logic,
independently of FFs toggling probabilities and correlations.

Fig. 3 illustrates how LACG works, where its hardware overhead is shaded in gray, and the XOR output of a FF is denoted
by X. A target FF depends on k ≥ 1 source FFs. The k FFs’ XOR outputs are ORed and generate the enabling signal. To ensure
its validity one cycle ahead, an oppositely clocked FF is introduced. [8] studied the optimal tradeoff between the energy
savings and gating overhead.

To minimize the overheads, target FFs share gating circuits. Fig. 4(a) shows two target FFs FFi and FFj, toggling
independently of each other, with their corresponding OR trees, driven by ki and kj source FFs, respectively. The outputs
of the OR trees are the clock enabling signals ei (t) and ej (t), where t denotes the clock ticks. FFi and FFj may share common

S. Wimer / Discrete Optimization 14 (2014) 104–110 109

Fig. 4. Merging OR logic for joint gating.

source FFs, shown pictorially by their trees overlap. An alternative gating implementation is shown in Fig. 4(b) were the OR
logic is merged and a single gater is used for the two FFs. The larger the overlap, and the more ei and ej are correlated, the
more desirable the merge will be.

The dynamic power consumption, denoted as cdyn, is obtained by the product of capacitance with signal switching
probability. Two factors affect the clock-gating logic merging. The first is the similarity of the OR logic used in different
target FFs. It indicates howmuch capacitance will be saved by themerging. The other is the correlation of the clock enabling
signals, produced by the OR logic of each target FFs. cdyn is obtained by their product. Let n target FFs be clocked duringm+1
cycles and a = (a1, . . . , am) be an enabling signal produced by an OR tree. An element at , 1 ≤ t ≤ m, corresponds to clock
ticks, where at = 1 if the clock is enabled and at = 0 otherwise. The term ∥a∥ =

m
t=1 at counts the cycles of an enabled

clock.
OR logic merging reduces hardware overhead, but does not come for free. The number of redundant clock pulses is

increased since the clock gater is driven by a wider tree comprising more source FFs, thus increasing the clock enabling
probability. To tradeoff the gain and loss, let S (FFi) and S


FFj

denote the source FFs of FFi and FFj, whose size is ki = |S (FFi)|

and kj =
S FFj, respectively. A reasonable power estimation of the corresponding OR trees is Pi = ∥ai∥ ki and Pj =

aj kj,
where 0 ≤ ∥ai∥ ,

aj ≤ m count the cycles of enabled clock. The power consumed by the gating is thus

Pi + Pj = ∥ai∥ ki +
aj kj. (13)

The number of inputs of themerged OR logic is k∪

ij =
S (FFi) ∪ S


FFj
. Shown in Fig. 4(b), themerging eliminates one gater.

The amount k∩

ij =
S (FFi) ∩ S


FFj
 indicates how much of the OR logic is shared by the merge, and thus being saved. The

power Pij consumed by the merged OR trees in Fig. 4(b) is proportional to

Pij =
ai | aj

 k∪

ij =

∥ai∥ +

aj−
ai ∩ aj

×

ki + kj − k∩

ij


, (14)

where the OR ai | aj and the AND ai ∩ aj are bit-wise operations. Subtracting (14) from (13), the savings csavedyn ij results in by
merging the clock-gating logic of FFi and FFj is

csavedyn ij =


∥ai∥ +
aj k∩

ij +
ai ∩ aj

 ki + kj


−

∥ai∥ kj +

aj ki + ai ∩ aj
 k∩

ij


. (15)

Maximal savings occurs when S (FFi) = S

FFj

, a case where ki = kj = k∩

ij and ai = aj, yielding by substitution in (15)
power savings of a complete OR tree. Oppositely, if S (FFi) ∩ S


FFj


= ∅, and thus k∩

ij = 0, substitution in (15) yields
csavedyn ij = −


∥ai∥ kj +

aj ki−
ai ∩ aj

 ki + kj

. In the best case when ai = aj there is csavedyn ij = 0. In the worst case

when ai ∩ aj = 0, maximal waste csavedyn ij = −

∥ai∥ kj +

aj ki occurs.
To maximize the total of csavedyn ij in (15) over all the OR trees possible pairing, an n-vertex complete weighted graph

G (V , E, w) is defined. A vertex vi ∈ V corresponds to FFi and an edge eij =

vi, vj


∈ E corresponds to a (FFi, FFj) pair.

110 S. Wimer / Discrete Optimization 14 (2014) 104–110

An edge eij is assigned a weight w

eij

as follows:

w

eij


= max

csavedyn ij, 0


. (16)

The reason for the zero in (16) is to avoid a merge yielding loss rather than gain. In this setup we look for a Perfect Graph
Matching [9,15], E ′

⊂ E,
E ′
 = |V | /2, of G (V , E, w), maximizing


eij∈E′ w


eij

. This problem can be solved by the well-

known Maximal Cost Perfect Matching algorithms [10]. If the solution contains edges eij ∈ E ′ satisfying w

eij


= 0, the OR
trees of FFi and FFj are not merged, leaving the clock of those be individually gated.

Mergingmore than twoOR trees can be carried out bymodeling the logic sharingwith a complete hypergraph as forDDCG
in Section 2, where for a subset v ⊂ V , ev = {vu}u∈v defines a hyper edge, and av =


u∈v au is the joint toggling occurring

by merging the OR trees implied by the FFs corresponding to v. The number of inputs of a merged OR tree corresponding to
a hyper edge is k∪

v =


u∈v S (FFu)
. The product avk∪

v is the weight associated with a hyper edge, reflecting the dynamic
power cdyn consumed by the merged OR tree. The question of whether the problem of optimally merging more than two
OR trees for common clock-gating is intractable is not answered yet. It can meanwhile be solved heuristically as proposed
in [6] for DDCG.

Acknowledgments

The author is grateful for the useful comments made by the anonymous referees.

References

[1] V.G. Oklobdzija, Digital System Clocking—High-Performance and Low-Power Aspects, John Wiley, 2003.
[2] L. Benini, A. Bogliolo, G. De Micheli, A survey on design techniques for system-level dynamic power management, IEEE Trans. VLSI Syst. 8 (3) (2000)

299–316.
[3] M. Donno, E. Macii, L. Mazzoni, Power-aware clock tree planning, in: Proc. ISPD, 2004, pp. 138–147.
[4] S. Wimer, I. Koren, The Optimal fan-out of clock network for power minimization by adaptive gating, IEEE Trans. VLSI Syst. 20 (10) (2012) 1772–1780.
[5] S. Wimer, I. Koren, Design flow for flip-flop grouping in data-driven clock gating, IEEE Trans. VLSI Syst. 22 (4) (2014) 771–778.
[6] S. Wimer, On optimal flip-flop grouping for VLSI power minimization, Oper. Res. Lett. 41 (2013) 486–489.
[7] S. Wimer, D. Gluzer, U. Wimer, Using well-solvable minimum cost exact covering problems for VLSI energy minimization, Oper. Res. Lett. 42 (2014)

332–336.
[8] S. Wimer, A. Albahari, A look-ahead clock gating based on auto-gated flip-flops, IEEE Trans. Circuits Syst. I 61 (5) (2014) 1465–1472.
[9] J.A. Bondy, U.S.R. Murty, Graph Theory, Srpinger, 2008.

[10] V. Kolmogorov, Blossom V: a new implementation of a minimum cost perfect matching algorithm, Math. Program. Comput. 1 (1) (2009) 43–67.
[11] E. Balas, M.W. Padberg, Set partitioning: a survey, SIAM Rev. (1976) 710–760.
[12] A. Farrahi, C. Chen, A. Srivastava, G. Tellez, M. Sarrafzadeh, Activity-driven clock design, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 20 (6)

(2001) 705–714.
[13] I.H.-R. Jiang, C.-L. Chang, Y.-M. Yang, Tsai E.Y.-W., L.S.-F. Chen, INTEGRA: fast multi-bit flip-flop clustering for clock power saving based on interval

graphs, in: ACM Proceedings of the 2011 International Symposium on Physical Design, ISPD 2011, pp. 115–122.
[14] C.-L. Chang, I.H-R. Jiang, Pulsed-latch replacement using concurrent time borrowing and clock gating, IEEE Trans. Comput.-Aided Des. Integr. Circuits

Syst. 32 (2) (2013) 242–246.
[15] J. Edmonds, Paths, trees, and flowers, Canad. J. Math. 17 (3) (1965) 449–467.

http://refhub.elsevier.com/S1572-5286(14)00039-5/sbref1
http://refhub.elsevier.com/S1572-5286(14)00039-5/sbref2
http://refhub.elsevier.com/S1572-5286(14)00039-5/sbref4
http://refhub.elsevier.com/S1572-5286(14)00039-5/sbref5
http://refhub.elsevier.com/S1572-5286(14)00039-5/sbref6
http://refhub.elsevier.com/S1572-5286(14)00039-5/sbref7
http://refhub.elsevier.com/S1572-5286(14)00039-5/sbref8
http://refhub.elsevier.com/S1572-5286(14)00039-5/sbref9
http://refhub.elsevier.com/S1572-5286(14)00039-5/sbref10
http://refhub.elsevier.com/S1572-5286(14)00039-5/sbref11
http://refhub.elsevier.com/S1572-5286(14)00039-5/sbref12
http://refhub.elsevier.com/S1572-5286(14)00039-5/sbref14
http://refhub.elsevier.com/S1572-5286(14)00039-5/sbref15

	Easy and difficult exact covering problems arising in VLSI power reduction by clock gating
	VLSI clock-gating and covering problems
	Covering problems implied by FFs toggling correlation
	Covering problems implied by FFs toggling probabilities
	Covering problems implied by look-ahead clock-gating
	Acknowledgments
	References

