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a b s t r a c t

To save energy of VLSI systems flip-flops (FFs) are grouped in Multi-Bit Flip-Flop (MBFF), sharing a
common clock driver. The energy savings strongly depends the grouping. For 2-bit MBFFs the optimal
grouping turns into a minimum cost perfect graph matching problem. For k-bit MBFFs the optimal
grouping turns into a minimum cost exact k-covering problem. We show that due to their special setting
that is based on the FFs’ data toggling probabilities, those problems are well-solvable in O (n log n) time
complexity.

© 2014 Elsevier B.V. All rights reserved.
1. VLSI energy savings by multi-bit flip-flop grouping

One of the major energy consumers in computing, communi-
cation and consumer electronics and other devices is the system’s
clock signal, typically responsible for 30%–70% of the total switch-
ing energy [13]. Flip-flops (FFs) are the heart of digital systems,
used to synchronize their operation and store the system’s state. To
drive the FFs, a clock signal is distributed across the chip through
a clocking network. FFs consume most of the clock energy. Within
a FF, most of the energy is consumed by its internal clock driver.
For simplicity, non-essential VLSI design details are ignored, and
the interested reader can find those in any VLSI design textbook
(e.g. [15]).

k-bit data is usually stored in k individual FFs, where each of
those has its own internal clock drivers. In an attempt to reduce
the clock energy, a technique called Multi-Bit Flip-Flop (MBFF) has
lately been adopted by the VLSI industry [10,4]. A k-bit MBFF com-
bines several FFs integrated in a single entity, such that a common
clock driver is used for all the k internal FFs rather than k drivers.
The energy savings achieved by using MBFFs is considerable, and
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may reach up to 20% of the entire system’s energy. The savings de-
pend on the average (expected) data toggling probability p of the
individual FFs, called data toggling probability, switching probabil-
ity, or shortly probability. We use those terms interchangeably. By
definition, there is 0 ≤ p ≤ 1, where p = 0 when the data is never
toggling and p = 1 when the data is toggling at every clock cycle.
Fig. 1 shows the energy ratio of two and four individual FFs to that
of 2-bit and 4-bit MBFFs, respectively. To find the energy savings,
we divide the energy difference between k individual FFs and k-bit
MBFFs, by the energy of the k individual FFs. For small p it shows
savings of (1.6 − 1) /1.6 = 35% for k = 2 and (2.2 − 1) /2.2 =

55% for k = 4. For high p the savings is (1.18 − 1) /1.18 = 15% for
k = 2 and (1.3 − 1) /1.3 = 23% for k = 4. In typical VLSI systems
0 < p < 0.2, so high savings is expected.

Combining MBFFs with Data-Driven Clock Gating (DDCG)
considerably increases its energy savings. Ordinarily, FFs receive
the clock signal regardless of whether or not their data will toggle
in the next cycle. In DDCG the clock signal driving a FF is disabled
(gated) when the FF’s state is not subject to change (toggle, switch)
in the next clock cycle [7,17]. Due to the high hardware overhead
involved in generating those signals, it was suggested to group
several FFs and derive a joint disabling signal for those. The
group size k yielding minimum energy depends on the toggling
probabilities [17]. The problem of what FF should belong to what
group so that the energy is minimized was studied in [18]. It
was shown that under energy model based on the 0/1 toggling
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Fig. 1. Energy savings dependency on toggling probabilities of 2-bit and 4-bit
MBFFs.

correlation of the FFs, the problem is NP-hard, and a practical
heuristic solution based onMinimum Cost Perfect GraphMatching
(MCPM) was devised [16].

Applying DDCG in MBFF design methodology was proposed
in [5]. However, the grouping in [5] and in other MBFF works
[11,19,14] was not aware of the data togging probabilities and cor-
relations, thus a big amount of potential energy savings was left
untreated. The work in [16] used toggling correlation to derive the
optimal FFs grouping for DDCG. It required huge data of 0/1 tog-
gling vectors of all the FFs, obtained by simulations, which is a se-
rious design burden. Furthermore, the corresponding optimization
problem is NP-hard as mentioned before, and heuristic solution
was thus proposed.

In this paper we simplify the optimal grouping formulation by
considering FF probabilities rather than their 0/1 toggling vectors.
The simplification implies an optimization that is a kind ofminimal
cost exact k-covering problem, where for k = 2 it turns into
MCPM, formulated as follows. Given n real numbers (data toggling
probabilities of FFs) pi ∈ [0, 1], n even, 1 ≤ i ≤ n, p1 ≤

p2 ≤ · · · ≤ pn, find a perfect matching

sj, tj


, 1 ≤ j ≤ n/2,

of the integers 1, 2, . . . , n, minimizing the following energy loss
expression (discussed in Section 3)
n/2
j=1

psj

1 − ptj


+ ptj


1 − psj


.

For k > 2, letnbe an integermultiple of k. Consider the partitioning
(called also exact k-covering) of {1, 2, . . . , n} into n/k disjoint
subsets S j ⊂ {1, 2, . . . , n},

S j = k,


j S
j
= {1, 2, . . . , n}. Denote

by

Aj
m, Bj

m


the partitioning of S j 1 ≤ m ≤


k
r


such that

Aj
m

 =

k− r ,
Bj

m

 = r , S j = Aj
m ∪Bj

m and Aj
m ∩Bj

m = ∅. The minimum cost
exact k-covering problem (discussed in Section 4) is to find those
S j, 1 ≤ j ≤ n/k, minimizing the energy loss expression

n/k
j=1

k−1
r=1

r


k
r



m=1


s∈Ajm

ps

t∈Bjm

(1 − pt) .

While the minimum cost exact covering problem is NP-hard in
general [9], we prove that in our special setting it is well-solvable,
requires only sorting. Well-solvable cases of hard combinatorial
optimization problems are well-known and have been studied by
many works. Just a few to mention are special cases of Traveling
Salesman Problems (TSP) [2], Steiner tree problems [1], Quadratic
Assignment Problems (QAP) [3] and Bounded Knapsack Problem
(BKP) [6]. Well-solvable quadratic assignment problems was used
for VLSI interconnect design optimization [8].
The rest of the paper is organized as follows. Section 2 presents
the MBFF energy consumption model. Section 3 shows that the
2-bit MBFF optimal pairing is MCPM problem, well-solvable by
sorting of FFs’ toggling probabilities. Section 4 shows that the k-
bit MBFF optimal grouping is a minimum cost exact k-covering
problem, that it is also well-solvable by sorting of FFs’ toggling
probabilities.

2. Energy consumption of multi-bit flip-flops

The energy E1 consumed by an ordinary 1-bit FF grows with its
toggling probability p as follows:

E1 (p) = α1 + β1p. (1)

The parameter α1 is the energy of the FF’s internal clock driver,
and the parameter β1 is the energy of data toggling. For 2-bit MBFF
there are three possible scenarios: none of the FFs toggle, a single
FF toggles and both FFs toggle. Assuming toggling independency,
the energy consumption E2 is

E2 (p) = α2 (1 − p)2 + 2 (α2 + β2) p (1 − p) + (α2 + 2β2) p2

≡ α2 + 2β2p. (2)

The parameter α2 is the energy of the internal clock driver which
drives the two FFs, and the parameter β2 is of data toggling
energy of one bit in the 2-bit MBFF. The energy savings factor
2E1 (p) /E2 (p) is shown in Fig. 1. Obviously, the lower the data
toggling probability is, the higher the savings factor is.

For the general case of k-bit MBFF, let αk be the energy of
the MBFF’s internal clock driver driving its k FFs, and let the
parameter βk be the data toggling energy of one bit in the k-bit
MBFF. Considering all the combinations of toggling FFs, the energy
consumption Ek is

Ek (p) =

k
j=0

(αk + jβk)


k
j


pj (1 − p)k−j . (3)

Rearrangement of (3) yields

Ek (p) = αk

k
j=0


k
j


pj (1 − p)k−j

+ βk

k
j=0


k
j


jpj (1 − p)k−j

= αk + kβkp. (4)

The equality
k

j=0


k
j


jpj (1 − p)k−j

= kp in (4) follows from

j

k
j


= k


k − 1
j − 1


. The energy savings factor 4E1 (p) /E4 (p) is shown

in Fig. 1.

3. Optimal FF grouping of 2-bit MBFF

Let FFi and FFj toggle independently of each other with
probabilities pi and pj, respectively. We denote by FF(i,j) their
grouping (pairing) in the formation of a 2-bit MBFF. Similar to (2),
the energy E(i,j) consumed by FF(i,j) is E(i,j) = α2 + β2


pi + pj


.

For FFi, FFj, FFk and FFl, paired in two MBFFs FF(i,j) and FF(k,l), the
energy consumption is E(i,j) +E(k,j) = 2α2 +β2


pi + pj + pk + pl


,

which is independent of the pairing.
Pairing considerably affects the energy consumption when

DDCG is applied. Recall that with DDCG the clock pulse is disabled
when the data of a FF will not change (toggle) in the next clock
cycle. Since in MBFF the clock signal is common to all FFs, when
none of FFi and FFj is toggling, the clock pulse of FF(i,j) is disabled
and its clock driver does not waste any energy. When both FFi and
FFj are toggling, the clock pulse of FF(i,j) is enabled and the energy
of the clock driver is fully useful, hence no waste occurs. Energy
waste occurs when one FF is toggling, while its counterpart does
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not. There, the common clock pulse is enabled and is driving both
FFs, whereas only one needs it, thus causing a waste W(i,j) of half
of the clock driver energy,

W(i,j) =
α2

2


pj (1 − pi) + pi


1 − pj


=

α2

2


pi + pj − 2pipj


. (5)

We are interested in the minimization of W(i,j). Applying DDCG to
FF(i,j) and FF(k,l), the following energy waste results in

W(i,j) + W(k,l) =
α2

2


pi

1 − pj


+ pj (1 − pi)

+ pk (1 − pl) + pl (1 − pk)]

=
α2

2


pi + pj + pk + pl − 2


pipj + pkpl


. (6)

While the linear term of the right-hand side (6) is independent of
the pairing, the quadratic term does. W(i,j) + W(k,l) is minimized
when pipj + pkpl is maximized.

Lemma 1. Given pi ≤ pj ≤ pk ≤ pl, the pairing

FF (i,j), FF (k,l)


is

optimal.

Proof. It follows that

W(i,j) + W(k,l)


−

W(i,k) + W(j,l)


= −α2

(pi − pl)

pj − pk


/2 ≤ 0. Similarly,


W(i,j) + W(k,l)


−

W(i,l) +

W(j,k)


= −α2 (pi − pk)

pj − pl


/2 ≤ 0. �

Let n be even (odd n is discussed later) and P :

FF(si,ti)

n/2
i=1 be a

pairing of FF1, FF2, . . . , FFn inn/22-bit DDCGMBFFs. The following
energy wasteW (P) results in

W (P) =

n/2
i=1

W(si,ti) =
α2

2

n/2
i=1


1 − psi

 
1 − pti


. (7)

It follows from (6) that W (P) is minimized when
n/2

i=1 psipti is
maximized. The optimal pairing could be found in polynomial
time by applying a MCPM [12] to the n-vertex complete weighted
graph, the vertices of which are FFi and its edge weights are pipj,
1 ≤ i < j ≤ n. The observation made for pairing of four FFs
hints that optimal pairing should prefer FFs with close switching
probabilities to reside in the same MBFF. The generalization for
pairing of n FFs is subsequently discussed, proving that it can be
found in O (n log n) time complexity by sorting.

Theorem 1. Let n be even and let FF 1, FF 2, . . . , FF n be ordered such
that p1 < p2 < · · · < pn. The pairing P :


FF (2i−1,2i)

n/2
i=1 minimizes

W (P) given in (7).

Proof. Eq. (7) shows that W(i1,i2) is independent of the order of
the FFs within a pair. It is therefore assumed w.l.o.g that for a
pair (i1, i2) there is pi1 < pi2 . By (7) W (P) is independent of the
order of the pairs in the summation, so P is assumed w.l.o.g to be
increasingly ordered such that (i1, i2) precedes (j1, j2) iff pi1 < pj1 ,
1 ≤ i1, j1 ≤ n/2 and i1 ≠ j1. Assume in contrary that there

is an increasingly ordered pairing P′
:


FF(s2i−1,s2i)

n/2
i=1

, P′
≠ P,

minimizing W. Let us compare the n/2 pairs of P with those of
P′ by their order, namely FF(2i−1,2i) ∈ P with FF(s2i−1,s2i) ∈ P′,
1 ≤ i ≤ n/2. Let FF(2j−1,2j) ∈ P and FF(s2j−1,s2j) ∈ P′ be the first
unmatched pairs. It follows from the increasing order of the pairs
that s2j−1 = 2j − 1 and s2j > 2j.

Consider the pair FF(2j,t) ∈ P′ which follows FF(2j−1,s2j) ∈ P′.
Let us derive a pairing P′′ from P′ by exchanging FFs2j with FF2j.
Assume w.l.o.g that s2j < t . The pairing P′ and P′′ thus differ on
FF(2j−1,s2j), FF(2j,t)


⊂ P′ and


FF(2j−1,2j), FF(s2j,t)


⊂ P′′, and are

identical on the rest n/2−2 pairs. The inequalityw

P′′

−w


P′


<
0 follows from Lemma 1, thus concluding that P is optimal. �
The time complexity of finding the optimal MBFF pairing
is O (n log n) since only sorting of FFs’ toggling probabilities is
required. In case of odd nwe could artificially add a never toggling
FF, hence p = 0. Theorem 1 will apply, and the optimal pairing
yields FF(2,3), . . . , FF(n−1,n), whereas FF1 will stay unpaired.

4. Optimal FF grouping of k-bit MBFF

The hardware overhead involved in DDCG may sometimes
make its application questionable for groups comprising two FFs.
It has been shown in [17] that DDCG is very useful for groups of
three and more FFs, depending on their toggling probabilities. We
subsequently analyze the case of k-bitMBFFs. Let FF(i1,...,ik) denote a
k-bit MBFF comprising FFi1 , . . . , FFik and consider its energy waste
W(i1,...,ik). When none of its underlying FFs is toggling, its DDCG
disables the clock pulse, so energy is not wasted. Other than that
DDCG enables the clock pulse. When all the FFs are toggling, the
clock pulse is anyway required by all the FFs, so there is no energy
waste. A waste occurs when k − r , 1 ≤ r ≤ k − 1, of the FFs are
toggling, while r are not. There are


k
r


events of this kind and they

are pairwise distinct. Since the clock pulse drives r non-toggling
FFs, the energy waste is αkr/kmultiplied by the probability of that
event. For each 1 ≤ m ≤


k
r


we split FFi1 , . . . , FFik into Am and

Bm, the indices of the toggling and non-toggling FFs, respectively,
Am ∪ Bm = {i1, . . . , ik}, Am ∩ Bm = ∅, |Am| = k − r and |Bm| = r .
The corresponding energy waste is therefore

W(i1,...,ik) =
αk

k

k−1
r=1

r


k
r



m=1


s∈Am

ps

t∈Bm

(1 − pt) . (8)

Consider n = 2k FFs FFi1 , . . . , FFi2k , ordered such that pi1 ≤ pi2 ≤

· · · ≤ pi2k−1 ≤ pi2k . We subsequently generalize Lemma 1 for
k > 2. It is shown that the minimum energy waste occurs for the
grouping {(i1, . . . , ik) , (ik+1, . . . , i2k)}, namely, the k FFs with the
smaller probabilities in one group while the k FFs with the larger
probabilities in the other.

Lemma 2. Given 2k FFs FF i1 , . . . , FF i2k satisfying pi1 ≤ pi2 ≤ · · · ≤

pi2k−1 ≤ pi2k . The grouping {(i1, . . . , ik) , (ik+1, . . . , i2k)} minimizes
the energy waste.

Proof. Assume that there exists a grouping {(j1, . . . , jk), (jk+1, . . .
, j2k)} such thatW(j1,...,jk) +W(jk+1,...,j2k) is minimal, but {j1, . . . , jk}
≠ {i1, . . . , ik} (and hence {jk+1, . . . , j2k} ≠ {ik+1, . . . , i2k}). We
split the indices of the smaller and larger probabilities, L =

{i1, . . . , ik} and H = {ik+1, . . . , i2k}, respectively, such that L =

L′
∪ L′′, L′

∩ L′′
= ∅, H = H ′

∪ H ′′ and H ′
∩ H ′′

= ∅, as follows:

L′
= {i1, . . . , ik} ∩ {j1, . . . , jk}

L′′
= {i1, . . . , ik} ∩ {jk+1, . . . , j2k}

H ′
= {ik+1, . . . , i2k} ∩ {j1, . . . , jk}

H ′′
= {ik+1, . . . , i2k} ∩ {jk+1, . . . , j2k} .

(9)

For every m, 1 ≤ m ≤


k
r


, we further split L′, L′′, H ′, and H ′′

according to their corresponding k − r toggling FFs A∗
m, and r non-

toggling FFs B∗
m, as follows:

L′
= AL′

m ∪ BL′
m, AL′

m ∩ BL′
m = ∅;

L′′
= AL′′

m ∪ BL′′
m , AL′′

m ∩ BL′′
m = ∅;

H ′
= AH ′

m ∪ BH ′

m , AH ′

m ∩ BH ′

m = ∅;

H ′′
= AH ′′

m ∪ BH ′′

m , AH ′′

m ∩ BH ′′

m = ∅.

(10)
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Consider the energywastes occurring by the grouping {(j1, . . . , jk) ,
(jk+1, . . . , j2k)} and the grouping {(i1, . . . , ik) , (ik+1, . . . , i2k)}.
Substitution of (10) in (8) yields the following expressions

W(j1,...,jk) + W(jk+1,...,j2k)

=
αk

k

k−1
r=1

r


k
r



m=1


(am)  

s∈AL
′

m

ps

(bm)  
s∈AH

′

m

ps

(cm)  
t∈BL

′

m

(1 − pt)

(dm)  
t∈BH

′

m

(1 − pt)

+

(em)  
s∈AL

′′

m

ps

(fm)  
s∈AH

′′

m

ps

(gm)  
t∈BL

′′

m

(1 − pt)

(hm)  
t∈BH

′′

m

(1 − pt)

 . (11)

W(i1,...,ik) + W(ik+1,...,i2k)

=
αk

k

k−1
r=1

r


k
r



m=1


(am)  

s∈AL
′

m

ps

(em)  
s∈AL

′′

m

ps

(cm)  
t∈BL

′

m

(1 − pt)

(gm)  
t∈BL

′′

m

(1 − pt)

+

(bm)  
s∈AH

′

m

ps

(fm)  
s∈AH

′′

m

ps

(dm)  
t∈BH

′

m

(1 − pt)

(hm)  
t∈BH

′′

m

(1 − pt)

 . (12)

The partial products in (11) and (12) are identified by appropriate
symbols. Using those symbols, we obtain
W(i1,...,ik) + W(ik+1,...,i2k)


−


W(j1,...,jk) + W(jk+1,...,j2k)



=
αk

k

k−1
r=1

r


k
r



m=1

[(amemcmgm + bmfmdmhm)

− (ambmcmdm + emfmgmhm)]

=
αk

k

k−1
r=1

r


k
r



m=1

(amcm − fmhm) (emgm − bmdm) ≤ 0. (13)

The inequality in (13) follows since the terms comprising the
product amcm are all smaller than those comprising fmhm, while
the terms comprising the product emgm are all larger than those
comprising bmdm. We conclude that the grouping


(i1, . . . , ik) ,

(ik+1, . . . , i2k)

minimizes the energy waste. �

Assume that n is divisible by k (the casewhere n is not an integer
multiple of k is discussed later). The k-bit grouping of n FFs extends
the 2-bit case discussed in Section 3. We subsequently show
that the optimal k-bit MBFF grouping can be found in O (n log n)
time complexity by sorting. Let P:


sk(i−1)+1, . . . , ski

n/k
i=1 be a

grouping of FF1, FF2, . . . , FFn in n/kk-bit DDCG MBFFs, and let
W(sk(i−1)+1,...,ski) be the energywaste of FF(sk(i−1)+1,...,ski) given in (8).
The total energy wasteW (P) is

W (P) =

n/k
i=1

W(sk(i−1)+1,...,ski). (14)

The optimal grouping implies a minimal cost exact k-covering
problem that is NP-hard in general [9]. In the setting of our problem
though, where the costs of the groups are obtained by sum of
probabilities products, it is well-solvable, as subsequently shown.
Theorem 2. Let n be divisible by k and let FF 1, FF 2, . . . , FF n be
ordered such that p1 < p2 < · · · < pn. The grouping P:

{(k (i − 1) + 1, . . . , ki)}n/ki=1 minimizesW(P) given in (14).

Proof. Eq. (8) shows that W(sk(i−1)+1,...,ski) is independent of the
order of the FFs within a k-bit group. It is therefore assumed
w.l.o.g that there is sk(i−1)+1 < sk(i−1)+2 < · · · < ski. Since
W in (14) is independent of the order of the terms in the sum-
mation, P is assumed w.l.o.g to be increasingly ordered such
that


sk(i−1)+1, . . . , ski


precedes


sk(j−1)+1, . . . , skj


iff sk(i−1)+1 <

sk(j−1)+1, for 1 ≤ i, j ≤ n/k and i ≠ j.
Assume in contrary that there is an increasingly ordered group-

ingP′
:


sk(i−1)+1, . . . , ski
n/k

i=1,P
′
≠ P, minimizingW. Let us com-

pare the n/k groups of P with those of P′ by their order, namely
(k (i − 1) + 1, . . . , ki) ∈ P with


sk(i−1)+1, . . . , ski


∈ P′, 1 ≤ i ≤

n/k. Let (k (j − 1) + 1, . . . , kj) ∈ P and

sk(j−1)+1, . . . , skj


∈ P′

be the first unmatched groups. It follows from the increasing order
of P and P′ that sk(j−1)+1 = k (j − 1) + 1, while for the rest in-
dices of the first unmatched groups there is


sk(j−1)+2, . . . , skj


≠

{k (j − 1) + 2, . . . , kj}. Consider the group

skj+1, . . . , sk(j+1)


∈ P′

succeeding

sk(j−1)+1, . . . , skj


∈ P′. By the increasing order of the

indices in a group, skj+1 ∈ {k (j − 1) + 2, . . . , kj}, as otherwise
(k (j − 1) + 1, . . . , kj) ∈ P and


sk(j−1)+1, . . . , skj


∈ P′ would

have been be identical.
Let us derive a grouping P′′ from P′ by rearranging the

2k indices of

sk(j−1)+1, . . . , skj,skj+1, . . . , sk(j+1)


such that the k

smaller ones reside in a group

tk(j−1)+1, . . . , tkj


∈ P′′, while

the k larger indices reside in a group

tkj+1, . . . , tk(j+1)


∈

P′′, where the indices are renamed appropriately. Other than
sk(j−1)+1, . . . , skj


,

skj+1, . . . , sk(j+1)


⊂ P′ and {(tk(j−1)+1, . . . ,

tkj),

tkj+1, . . . , tk(j+1)


} ⊂ P′′, P′ and P′′ are identical on the rest

n/k−2 groups. It then follows by Lemma 2 thatw

P′′

−w


P′


<
0, which contradicts that the energy wasted by P′ is minimal, thus
concluding that P is optimal. �

The time complexity of finding the optimal k-bitMBFF grouping
is O (n log n) since only sorting of FFs’ toggling probabilities is
required. If n is not an integermultiple of k, we could artificially add
r = n − nmod k never toggling FFs, and their toggling probability
is therefore p = 0. The problem comprising n+r FFs thus obtained
obeys Theorem 2. The artificial FFs FF1, FF2, . . . , FFk−r will then be
grouped in a (k − r)-bitMBFF, whereas the rest n−k+r FFswill be
grouped in ⌊n/k⌋ k-bit MBFFs. It should be noted that Theorem 2
is still valid for p1 ≤ p2 ≤ · · · ≤ pn, where any equality can be
arbitrarily resolved.
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