
Timing-constrained power minimization in VLSI circuits by
simultaneous multilayer wire spacing

Konstantin Moiseev a,n, Shmuel Wimer b,c, Avinoam Kolodny c

a Intel Israel (74) Ltd., Technology and Manufacturing Group, Haifa 31015, Israel
b Bar-Ilan University, Engineering Faculty, Ramat-Gan 52900, Israel
c Technion, Electrical Engineering Faculty, Haifa 32000, Israel

a r t i c l e i n f o

Article history:
Received 8 September 2013
Received in revised form
22 March 2014
Accepted 22 March 2014
Available online 8 April 2014

Keywords:
Interconnect sizing and spacing
Power-delay optimization
Constrained optimization

a b s t r a c t

Reduction of interconnect delay and interconnect power has become a primary design challenge in
recent CMOS technology generations. Spacing between wires can be modified so that line-to-line
capacitances will be optimized for minimal power under timing constraints. In this paper, we present a
novel algorithm for simultaneous multilayer interconnect spacing that minimizes the total dynamic
power dissipation caused by an interconnect, while maximum delay constraints are satisfied. A multi-
dimensional visibility graph is used to represent the problem, and a layout partitioning technique is
applied to solve the problem efficiently. The algorithm was evaluated on an industrial microprocessor
designed using the 32 nm technology, and it achieved a 5–12% reduction in interconnect
switching power.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Minimization of power dissipation has become a primary
design challenge due to a combination of technology scaling, the
prevalence of mobile battery-operated electronic products, and
growing awareness of environmental heating. To develop power-
efficient VLSI products, the power optimization is applied at all
design stages, starting from the architecture through the circuit
implementation and down to the layout design. Meanwhile, the
circuit performance remains an important design objective, so that
the power optimization must not ignore the timing requirements
imposed on the circuits. Any power optimization must therefore
be timing-constrained.

One of the largest contributions to power dissipation in CMOS
VLSI processors is incurred by the charging and discharging of the
interconnect capacitances [3]. The relative contribution of the line-
to-line capacitances within the same metal layer grows with the
technology progression due to the nonuniform scaling [7], as the
aspect ratio between the wire thickness and the width continu-
ously increases. Consequently, the cross-coupling capacitances
between the adjacent wires that reside on the same metal layer
have a major effect on both the circuit timing and the power. The

high-level metal layers in the interconnect stack are the most
important contributors to this capacitance.

The cross-coupling capacitances can be decreased and, there-
fore, the switching power can be reduced by increasing the inter-
wire spaces as long as the timing constraints are not violated and
the chip area is not increased, which is the goal of this paper. We
claim that the inter-wire spacing has become an important
resource in the physical design: the large spaces should be
allocated to those wires that are more likely to switch rather than
to wires that are typically inactive. Our technique is designated for
use in the late pre-tapeout design stages. We therefore assume
that the interconnects have been routed (manually or automati-
cally), and their relative locations are not subject to change (i.e.,
the layout topology is unchanged). The wire widths are assumed
to have been set to satisfy the signal delay and the other design
goals such as reliability, and the shield wires have been employed
to eliminate the crosstalk noise on the sensitive nodes. Hence, our
only purpose is to modify the wire-to-wire capacitance densities
across the whole layout so that the DFM rules and design timing
constraints are not violated. Fig. 1 illustrates a layout before and
after optimization. The inter-wire space is reallocated according to
the wire switching activity. The wires with higher switching
activity are allocated the larger spaces, while the wires with lower
activities are allocated the smaller spaces. Notwithstanding, the
space reallocation must not violate the wire delay constraints. To
preserve the layout connectivity, the orthogonal wires located on
the neighboring layers are shortened or prolonged accordingly so

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/vlsi

INTEGRATION, the VLSI journal

http://dx.doi.org/10.1016/j.vlsi.2014.03.002
0167-9260/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author. Tel.: þ972 4865 1537.
E-mail addresses: kostya.moiseev@gmail.com,

konstantin.moiseev@intel.com (K. Moiseev).

INTEGRATION, the VLSI journal 48 (2015) 116–128

www.sciencedirect.com/science/journal/01679260
www.elsevier.com/locate/vlsi
http://dx.doi.org/10.1016/j.vlsi.2014.03.002
http://dx.doi.org/10.1016/j.vlsi.2014.03.002
http://dx.doi.org/10.1016/j.vlsi.2014.03.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2014.03.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2014.03.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2014.03.002&domain=pdf
mailto:kostya.moiseev@gmail.com
mailto:konstantin.moiseev@intel.com
http://dx.doi.org/10.1016/j.vlsi.2014.03.002


that the vias can be landed safely. The creation of new jogs is
avoided by using the technique described in Section 4. Some
design rule violations may still appear in the resulting layout. The
design rule violations are fixed manually at a later stage of the
design.

Layout optimization by wire spacing has been discussed in the
literature for yield improvement [4], cross-coupling noise reduc-
tion [5,6], timing optimization [8–11,31], power optimization [12],
and a combination of timing and power [1]. The authors of [6]
employed a net-by-net heuristic for crosstalk noise reduction,
which may change the layout topology and yield non-optimal
results. In [12], the switching power of the wires bundled in a bus
was heuristically optimized. In [5], all the wires in a layer were
simultaneously spaced for delay optimization, but the power was
ignored because the power was not a primary concern at that
time. Net-by-net optimization is applicable for timing but less
suited for power because the interconnect power is accumulated
from all of the wires, while timing optimization concerns only the
most critical wire delays. In [1], a combined power-delay optimi-
zation was simultaneously performed for many wires using a
Weighted Power-Delay Sum (WPDS). This method still suffers
from a major drawback: Although the method allows a tradeoff
between the power and the delay by setting their relative weights
appropriately, the method does not guarantee the satisfaction of
the timing constraints. Displacement of a wire might violate the
max delay constraint of its neighbor. To circumvent these cases,
such wires in [1] were not allowed to move at the expense of some
power reduction potential. The wire fixing is too conservative in

many cases. Some relaxation could still reduce the power without
violating the max delay constraints. This paper takes full advan-
tage of such relaxation, where the wires are allowed to be
displaced as far as permitted by the timing constraints.

Another limitation in the previous work is that either they aim
to optimize a single net with all of its interconnecting wires
residing on the various layers, or their scope is limited to
simultaneous optimization of all of the wires residing on same
layer. Those solutions were iteratively employed net-by-net or
layer-by-layer, which yielded sub-optimal solutions. All of these
studies rely on the convexity of the delay and the power. However,
working net by net does not guarantee that the global minimum
will be reached, as stated in [26]. The illustrative example shown
in Fig. 2 demonstrates that in the presence of constraints (solid
curve), the one-wire-at-a-time downhill approach does not always
converge to the global minimum. The optimization path (the
staircase line) can leave the region dominated by the global
optimum Pn (dashed in the picture); to reach the optimum point
from the feasible region boundary, locally non-optimal moves are
required (the dashed arrow). In this paper, we show that the
multi-layer multi-net power minimization problem under the
delay constraints is convex, and we propose an optimization
algorithm that considers all the nets and layers simultaneously,
guaranteeing an optimal solution.

The rest of this paper is organized as follows. In the next
section, we present the layout model and define the power-delay
optimization problem. In Section 3, we solve the problem and
present an implementation of the algorithm. Practical considera-
tions of the power-delay optimization are discussed in Sections
4 and 5. Examples and experimental results are shown in Section
6. Section 7 concludes the paper. The relationship between our
method and the WPDS optimization of [1] is discussed in the
Appendix.

2. Interconnect modeling and problem definition

The following notation is used for describing the problem:

N total number of routed nets
L total number of metal layers
Nl total number of wires residing at layer l
Al width of total routing area at layer l

AF = 0.01
AF = 0.5
AF = 0.1
AF = 0.05

AF = 0.01
AF = 0.5

AF = 0.1
AF = 0.05

Fig. 1. Example of a layout with 4 nets routed on 3 metal layers before and after
spacing optimization. The shaded rectangles denote wires bounding routing
regions that are not allowed to move, AF stands for activity factor. The wires are
spaced according to activity factors of the corresponding nets. For example, the
wires of the net with AF¼0.5 are allocated larger spaces than those with AF¼0.05.

Fig. 2. An artificial example of the optimization process. The optimization process
of the total power is shown on the power–power plane, where P1 and P2 denote the
power of two individual wires. The constraint is represented by the solid curve. The
iterative improvement of the local objectives (polygonal line) can lead to a sub-
optimal point, so that to get to the global optimum Pn, one of the local objectives (P1
in this case) must be increased (dashed arrow).

K. Moiseev et al. / INTEGRATION, the VLSI journal 48 (2015) 116–128 117



si the ith net
Qi total number of effective loads (pins) of the ith net
Wi total number of wire segments belonging to the ith net
Ili the ith wire residing on layer l
M¼∑N

i ¼ 1Qi total number of effective loads (pins)
dlij length of the common span of wires i and j residing on

layer l where they are visible to each other
slij spacing between wires i and j residing on layer l.

The high-metal layers in modern VLSI circuits (e.g., metal 5 and
above) are used for long distance interconnect routing, typically
spanning distances from hundreds to thousands of microns across
the chip. A schematic example of this type of interconnect is
shown in Fig. 3, where all the wire segments are numbered.

Because the signal connect devices lie underneath the stack of
metal layers, a small portion of the routing takes place on the lower
metal layers (e.g., metal 1 up to metal 4) that are not considered in this
work due to their minor impact. Still, the models of the effective driver
and the effective receiver load consider the local routing, so that the
resistance of these wires is included in the driver model, and their
capacitance is included in the load model. In the following text, we
assume that all layout changes are performed on the global metal
layers, with no effect on the interconnects or the cells in the lowmetal
layers, so that their contributions to the total power and delay remain
unchanged.

Let nets s1;…;sN be given. Each net is assigned an activity
factor αi, quantifying the amount of the signal switching relative to
the clock signal. This factor can range from αi¼0 if the signal never
switches (e.g., the shields or the power delivery wires) to αi¼1 if
the switch toggles twice in every cycle (e.g., clocks). The signal
activity factors used in this paper have been obtained by an
industrial power simulator that calculates its average activity
based on different scenarios [13,14], so that the power calculations
reflect the realistic operation of the circuit.

The multilayer structure of global interconnects can be represented
as a collection of planes, each of which includes all wire segments
routed on the corresponding metal layer l, 1rlrL. Routing areas Al
within each layer are bounded by a fixed grid of the power supply
wires. These wires serve as “walls” of the routing area, as shown in
Fig. 4.

In modern VLSI technologies, the routing layers contain the
wires that are either vertical or horizontal with only a few, usually
very small, jogs. The influence of the jogs on the power and the
delay is negligible, and we therefore ignore the jogs in the analysis.

The multilayer interconnect structures shown in Figs. 3 and 4 are
represented by a multilayer visibility graph G(V,E) as follows. For each
wire Ili we associate a vertex vliAV . The vertices vl0 and vlNl þ1
correspond to the “wall” wires in the layer l. There are two types of

edges in the graph. Two vertices vli and ul
j that correspond to wires Ili

and Ilj, which are visible to each other, define a visibility edge. Two
vertices, vl1i and ul2

j , with l1al2 and that are physically connected to
each other define a connectivity edge. A similar visibility graph
structure is described in [32] in the context of a layout migration.
An example of a multilayer visibility graph is shown in Fig. 5. The
relative locations of wires are maintained using the visibility graph.
Because wires in both the vertical and horizontal directions can move
simultaneously, the visibility relationships between the wires may
change because, as the spaces between wires residing on some layer
change, the wires residing in the neighboring layers are stretched or
contracted. However, these changes are usually very small in compar-
ison to the wire lengths, so corresponding changes in the cross
coupling capacitances, the ground capacitances and the resistances
can be neglected.

Different models exist for the cross-coupling capacitance
between two adjacent wires [2,15,16]. The coupling capacitance
per unit length gðslijÞ between the adjacent wires monotonically
decreases with slij. The nominal line-to-line capacitance associated
with Ili and Ilj is

clij ¼ κdlijgðslijÞ: ð1Þ

The only assumption made about g is that it is a convex function,
which conforms with the commonly used model gðslijÞ ¼ 1=ðslijÞγ ,
where γZ1. If wires Ili and Ilj are not visible to each other, then
dlij ¼ 0 and the cross capacitance is negligible. We also set dlij ¼ 0 for
the case where Ili and Ilj belong to the same net.

The cross coupling capacitance between two neighbors also
depends on their mutual switching activity [17,18], known as the
Miller Coupling Factor (MCF). Their simultaneous switching in
opposite directions consumes four times the power consumed by a
single logical transition of one of the wires. Simultaneous switch-
ing in the same direction consumes no power. The average factor
per wire is therefore 1 (averaging 4/2, 1 and 0). Assuming equal
probability for those switching patterns, it is legitimate to assume
MCF¼1 when considering the cross coupling capacitance contri-
bution to the switching power.

Under this assumption, the power contributed by each cross
capacitance is proportional to the product of its nominal value by
the sum of the activity factors of neighbor wires. Therefore, the
contribution of each cross capacitance to the total power can be
divided between two neighboring wires, as shown below.

The dynamic power corresponding to wire Ili is expressed by

Pi ¼ αiVdd
2f ðCa

i þCll
i Þ ¼ αiC

a
i V

2
ddf þαiC

ll
i V

2
ddf ¼ Pself þPcross; ð2Þ

where αi is the activity factor of the net to which Ili belongs, Vdd is
the voltage swing, and f is the clock frequency. Ca

i is the total wire
self-capacitance contributed by the capacitors formed between Ili
and the layers above and below. Cll

i is the total effective cross-
capacitance formed by Ili and its visible wires. The corresponding
power portions are denoted Pself and Pcross.1 We assume that the
widths of the wires are not subject to change in the spacing
optimization. Adding wire widths as optimization variables could
further reduce the power at the expense of complicating the
solution. In full-custom design practice, wire widths are set very
early in the design flow according to the signal propagation delay
specifications and are not changed in the late stages where spacing
optimization is applied. We also assume that, although below and
above layers are not ground planes, their influence on the cross
capacitance changes is negligible on average because the wires on
these layers are perpendicular to those in the layer of interest.
Thus, both Pself and Pcross are used in the total power calculations,

Fig. 3. Typical structure of global interconnect.

1 Instead of breakdown to self and cross capacitance, it is possible to consider a
single total capacitance as a function of spaces to neighbors.

K. Moiseev et al. / INTEGRATION, the VLSI journal 48 (2015) 116–128118



but only Pcross in (2) is of interest for the power minimization by
the wire spacing. The same holds for delay calculations, which are
shown below.

It follows from (1) that the power contributed by the cross-
capacitances of Ili is

Pcrossl
i ¼ αik

0 ∑
Nl

j ¼ 1;ja i
dlijgðslijÞ ð3Þ

where the coefficient k0 incorporates the supply voltage, the clock
frequency and the technology-dependent constants. The total
power contributed by all of the wires routed on all of the metal
layers is then expressed by

Pcross ¼ k0 ∑
L

l ¼ 1
∑

Nl �1

i ¼ 1
∑
Nl

j ¼ iþ1
dlijðαiþαjÞgðslijÞ ð4Þ

Cross coupling capacitance affects delay as well. A net is
represented as a rooted interconnect tree, as illustrated in Fig. 6.
The interconnect tree comprises three types of wire segments: a
wire connected to the near-end driver at the root, wires connected
to the receiving gates at the far-end leaves, and wires correspond-
ing to the internal nodes of the tree. Denote by Wp the number of
wire segments of net sp. Let Qp of those, denoted by Ircvk, be
connected at the far end, and let Cel

k , 1rkrQp, be their corre-
sponding effective loads. Idrv is connected to the driver, and the
rest are internal wires Iintk, 1rkrWp�Qp�1. For the sake of the
calculations, the wire segments are divided into smaller pieces
with homogeneous adjacencies on their two sides. The visibility
between the same two wires may define several capacitors in the
case where the common span of the two wires experiences
interference from small wire segments between them. We denote
by Ci� j,k the kth capacitance between Ii and Ij. For example, on the
left side of Fig. 7, wire segment 9 is divided into four parts,
forming five cross coupling capacitances: one with segment 11
denoted C9–11, two with segment 8 denoted C9�8,1 and C9�8.2, and
two C9–10,1 and C9–10,2 with segment 10. Each wire segment or part
of a segment is modeled as a π-load. The decoupled line-to-line
capacitance is counted along with the self-capacitance of the
segment. The right side of Fig. 7 illustrates the modeling of the
driver–receiver path for a single net, comprising segments 2,
9, and 6.

We use the Elmore delay estimation to calculate net delays.
Although it is not accurate, its high fidelity property has previously
been shown to allow its use in optimization algorithms [28,29]. By
Elmore's model, the delay of an interconnect path is a convex
function of the spaces to visible wires along its traversal from
driver to receiver, given by the linear sum of the RC delays
occurring along the driver to receiver path.

The Elmore delay expression depends on the various spaces to
the visible wires. Let sdenote the vector of the involved spaces. The

2

3

1

4

6

5

7

Vss

Vdd

9

8 10

11

12

VddVss

14

13

Vss

Vdd

Fig. 4. The wire segments from Fig. 3 as a collection of three planes. On the right picture, both logic and power grid wires (walls) are shown. Power grid wires are dashed and
located at left and right (top and bottom) ends of each plane.

11

14
13

8
9

12

2

3

1

4

6

9

5

14

7

8

Metal 5

Metal 6

Metal 7

Effective
Driver /
receiver

12

11
10

13

1

3 2

4

7

5

10

6 wall
wall

wall

wall

wall

wall

Fig. 5. Clip of the layout and corresponding multidimensional visibility graph
below it. The solid arrows correspond to visibility edges, the dashed arrows
correspond to connectivity edges.

Idrv

Ircvk

Iintk

Cel
k

Interconnect tree

Delay to receiver k

Fig. 6. Interconnect tree representation for delay calculation.

K. Moiseev et al. / INTEGRATION, the VLSI journal 48 (2015) 116–128 119



delay from the driver to the receiver Cel
k is expressed by

Tk ¼ hðsÞ ð5Þ

where h is a convex function in each one of the spaces. In the
above discussion, we disregarded via resistances. Including via
resistances in the Elmore delay formula does not change the
functional form of the delay dependence on the cross-
capacitance. Therefore, via resistances are neglected for the sake
of expression simplicity.

The delay expression also holds for the more accurate models,
such as those proposed in [15]. We experimented with those
models and found that the convexity assumption does hold. Only
the convexity of h(s) is required for the proposed algorithm to
work. While MCF¼1 is used for power, MCF¼2 is used for delay
calculations, representing the worst-case coupling scenario. Mod-
ern timing analysis tools are able to calculate the individual MCF
for each net. The technique presented is general and allows the
definition of an individual MCF for each net segment. The uniform
MCF factor of 2 is used for simplicity and also because this factor
represents the worst-case coupling. Thus, the convex function in
(5) already includes this factor. Finding the spaces sij that minimize
the total power in (4) is subject to a number of constraints,
listed below.

First, DFM rules impose limits on the allowed distance between
two wires. Thus, each space sij should satisfy a minimum spacing
rule associated with every layer,

slijZslmin: ð6Þ

Second, the circuit timing requirements should not be violated.
If Dj is the required signal arrival time at the receiver j, 1r jrM,
then

TjrDj: ð7Þ

Third, the wire position cannot exceed the location of the fixed
wall boundaries. Let us denote by Ωl the set of all paths in the
visibility graph between the vertices corresponding to the wall
wires at layer l consisting of visibility edges only—without the loss
of generality, paths of the vertically routed layers extending
between the source and the target vertices corresponding to the
left and right walls, respectively. Similarly, the paths of the
horizontally routed layers extend between the source and the
target vertices corresponding to the bottom and top walls, respec-
tively). Let ω¼ ðwi1 ; si2 ;wi3 ; si4 ;…Þ be a path of alternating widths
and spaces corresponding to a path in G. Then:

∑
wiAω
sjAω

wiþsjrAl; 8ωAΩ; 81r lrL; ð8Þ

The set of constraints (8) is impractical because of the very
large size, resolved by introducing new variables. Let us denote by
xli the coordinates of the centerlines of wires Ili. The relationship
between variables xli and slij is expressed by

slij ¼ xlj�xli�ððwl
iþwl

jÞ=2Þ ð9Þ

Taking into account that the wall wire coordinates are xl0 ¼ 0
and xlNl þ1 ¼ Al and their widths are zero, the constraints (6) can be
rewritten as

xlj�xli�ððwl
iþwl

jÞ=2ÞZslmin;

81r lrL;0r i; jrNlþ14dij40 ð10Þ

Eq. (10) also contains boundary constraints. Indeed, summing
the constraints (10) on some path ωAΩl, we obtain
Al�∑wl

i Aωw
l
iZ jωjslmin, which is always true if the problem is

feasible.

2

3

1

6

9

7

8

11

10

C1-2

C9-10,1

C9-10,2

C6-7,1 C6-7,2 C6-7,3

C9-8,1

C9-8,2

C2-3
C9-11

The capacitors C6-3 and C6-1 are not shown
because of lack of space in the picture

Fig. 7. RC tree model of the layout. The RC model on the right represents the relevant cross coupling capacitances shown in the layout on the left.

K. Moiseev et al. / INTEGRATION, the VLSI journal 48 (2015) 116–128120



Using (4), (7) and (10), the optimization problem can be
formulated as follows:

Program Power Optimization under Delay Constraints (PODC)
minimize

xi
Pcross

s:t:
TjrDj; 1r jrM

xlj�xli�ððwl
iþwl

jÞ=2ÞZslmin; 81r lrL;0r i; jrNlþ14dij40

Program PODC is closely related to the Weighted Power Delay
Sum (WPDS) optimization problem [1,24]:

Program WPDS
minimize

xi
Pcrossþ∑M

i ¼ 1kiTi
� �

s:t:

xlj�xli�ððwl
iþwl

jÞ=2ÞZslmin; 81r lrL;0r i; jrNlþ14dij40

In both PODC and WPDS, the delays Ti are calculated according
to the Elmore delay model presented earlier. The coefficients kiare
non-negative numbers representing delay criticalities. ki, 1r irM
are set in advance. The WPDS optimizes the power contributed by
cross-capacitances, weighted by the net delays. While the PODC
can be used for design tuning when the exact delay constraints for
each net are known, WPDS can be useful in the early design stage
when specific delay requirements are not yet available.

The relationship between the PODC and the WPDS is discussed
in the Appendix. The following sections are dedicated to solving
the PODC problem.

3. Algorithm for solution of the optimal spacing problem

Theorem. Program PODC is convex.

Proof. Both the objective function and the delay inequality con-
straints are convex in sij by their definitions. The transformation in
(9) is linear; therefore, the transformation preserves convexity
[19]. The location constraints are linear in x and are thus convex.
Consequently, the optimization problem is convex.

The convexity of the PODC allows us to apply Newton's method
directly, provided that a step of the cost reduction does not fall out
of the feasibility region. To ensure that a step of the cost reduction
does not fall out of the feasibility region, we use the interior-point
method [19,25]. For our optimization problem, we introduce an
additional variable η40 and form the following log-barrier func-
tion:

LBðx;ηÞ ¼ �η ∑
1r lrL

0r i; jrNlþ1; ia j

log ½xlj�xli�ððwl
iþwl

jÞ=2Þ�slmin�

0
BBBBB@

1
CCCCCA

�η ∑
1r jrM

log ðDj�TjÞ
 !

ð11Þ

To apply the log-barrier approach, assume that the initial
design is at a feasible point. Such a point always exists because
usually the design process is iterative so that at the end of each
iteration, all timing constraints are satisfied.

The domain of function (11) is the set of points that satisfy the
inequality constraints of the PODC strictly. The logarithmic barrier

grows without bound if any of the inequality constraints
approaches equality. The new objective function is obtained by

Pcross 0ðx;ηÞ ¼ PcrossðxÞþLBðx;ηÞ ð12Þ

and the new optimization problem becomes the following uncon-
strained program:

Program PODC-LB

min

8>>><
>>>:
Pcross�η ∑

1r lrL

0r i; jrNlþ1; ia j

log ½xlj�xli�ððwl
iþwl

jÞ=2Þ�slmin�

0
BBB@

þ ∑
1r jrM

log Dj�Tj
� �

1
CCA
9>>=
>>;

The PODC-LB program is only an approximation of the PODC
program, and its quality improves as the parameter η decreases
[19]. Denote by xn(η) the solution of PODC-LB for a given η. One
can show that xn(η) converges to solution xn of the PODC problem
as η-0 [19]. The solution of the PODC is obtained by solving a
sequence of PODC-LB problems with decreasing values of η (in
every iteration η is multiplied by some 0oτo1). Each iteration
starts at the solution of the problem for the previous value of η.
Fig. 8 shows the pseudocode of the procedure.

PODC-LB is an unconstrained convex optimization problem, solved
by Newton's method as follows. Given the initial feasible point x, a
direction of a step is calculated by ΔxN ¼ �∇2Pcross 0

ðxÞ�1 U∇Pcross 0ðxÞ. The location is obtained by x¼xþtΔxN, where t
is a step size calculated for every iteration by line search along
direction Δx. Although Newton's method is known for its fast
convergence, the calculation and storage of the Hessian ∇2Pcross 0ðxÞ
and its inverse is not always possible for real cases involving thousands
of variables. Even if the Hessian of the original functions ∇2PcrossðxÞ is
sparse, the log-barrier operation usually causes the Hessian to be
dense, which makes the calculation of its inverse impossible. There-
fore, we use the L-BFGS quasi-Newton method [20] that has, on the
one hand, a super-linear rate of convergence and on the other hand,
does not require the calculation of the full Hessian inverse. According
to this method, the inverse of the original Hessian matrix is replaced
by the inverse of the Hessian approximation matrix, which is
recalculated in every iteration based on its value from the previous
iteration. Denoting the gradient change ∇Pcross 0ðxkþ1Þ�∇Pcross 0ðxkÞ by
Δg and the variable vector change xkþ1�xk byΔx, the inverse of the
Hessian approximation matrix in the kþ1-iteration is calculated by

Hkþ1 ¼ I�ΔxUΔgT

ΔgTΔx

� �
Hk I�ΔgUΔxT

ΔgTΔx

� �
þΔxUΔxT

ΔgTΔx
ð13Þ

Notice that the calculation of Hkþ1 involves only scalar pro-
ducts of vectors or matrices by vector multiplications. The value of
H0 is chosen to be as close as possible to the original Hessian
inverse. The choice of

H0 ¼
ΔgTΔx
ΔxTΔx

I ð14Þ

Algorithm 1 : Sequential Power Optimization under Delay Constrains

Fig. 8. Algorithm for sequential solving of PODC.

K. Moiseev et al. / INTEGRATION, the VLSI journal 48 (2015) 116–128 121



is reported to be the most successful in practice [21] and is
therefore used in our implementation.

The storage required for Hk may still be expensive for real
design cases. Instead of storing the full matrix Hk, we save only a
few pairs of {Δx; Δg} from the most recent iterations. These pairs
are used to construct the inverse Hessian approximation. The
curvature information from earlier iterations that is less relevant
to the Hessian behavior in the current iteration is discarded. The
optimization procedure based on this method is processed as
follows. At each iteration, the initial matrix H0

k is first calculated by
(14) based on the most recent values of Δx and Δg. Then, the
product of the inverse Hessian approximation by the gradient
vector Hk∇P

cross 0ðxkÞ is calculated from H0
k by a recursive procedure

using pairs of {Δx; Δg} stored for the last m iterations. Now, the
new location is calculated by xkþ1 ¼ xk�t UHk∇P

cross 0ðxkÞ. Finally,
new values of Δxkþ1 and Δgkþ1 are calculated and replace the
least recent pair fΔxk�mþ1;Δgk�mþ1g. The algorithm for solving
the PODC-LB is shown in Fig. 9.

To evaluate the memory and run-time complexity, let us denote by
Nl,max the maximum number of wire segments routed at one routing
layer. Because each layer of the visibility graph is a planar graph, the
number of location constraints (equal to number of spaces) Ns can be
bounded by 3Nl,max�6, according to the Euler–Poincaré characteristic.

Fig. 10. An example of the graph partitioning. The active vertices have a solid
boundary, while the inactive vertices (separating group) have a dashed boundary.
The graph is separated into three groups.

Algorithm 3 : Separation of Node Visibility Graph to independent groups

Fig. 11. The algorithm for separation of node visibility graph.

1 3

6

8

7

9

5
2

4

1 3

6

8

7

9

5
2

4

1

2

3

4

5

6 9

8
7

root

root

leaf

leaf

leaf

top wall

bottom wall

right wall

left wall

Fig. 12. A small example of the layout for the multi-layer power optimization:
(A) the full layout including the two metal layers, two nets and 9 wire segments. (B)
and (C) Horizontal and vertical metal layers and the wires occupying them. (D) The
multi-layer visibility graph corresponding to the layout from (A). The visibility
relationships are shown by solid edges, the connectivity relationships are shown by
dashed edges.

Algorithm 2 : L-BFGS for power Optimization under Delay 
constraints

Fig. 9. Algorithm for solving of PODC-LB.

K. Moiseev et al. / INTEGRATION, the VLSI journal 48 (2015) 116–128122



Thus, the total number of location constraints is bounded by
LNl; max ¼ Lð3Nl; max�6Þ ¼ OðLNl; maxÞ. The total number of delay con-
straints is bounded by the number of output pins, which is equal to
the number of wire segments in the worst case and, therefore, also O
(LNl,max). The L-BFGS method requires storing only m pairs of {Δx;
Δg}, as well as the visibility graph and coefficients for the objective
function and the constraints calculation, which altogether sums to O
(mLNl,max). The run-time complexity depends on the number of
internal and external iterations and on the complexity of a single L-
BGFS iteration. The latter is dominated by step 5 in Fig. 9. It is shown in
[21] that step 5 can be performed with 4mLNl; maxþ LNl; max ¼
OðmLNl; maxÞ multiplications. Assume that the number of iterations of
the L-BFGS algorithm (i.e., internal iterations) is Nint. There is no closed
form expression for Nint. However, L-BFGS has a super-linear rate of
convergence, meaning that if Nint is the number of iterations and ε is
the required accuracy, then Nint

Nint ¼ Oð1=εÞ. Thus, the L-BFGS method
requires a much smaller number of iterations than the gradient
descent method but is slower than the Newton method. The desired
accuracy of the log-barrier method is achieved after ½ log ðLNl; max=

εηinitialÞ= log ð1=τÞ�iterations [19]. Thus, the run-time complexity of the
algorithm is OðmLNl; maxNint ½ log ðLNl=εηinitialÞ= log ð1=τÞ�Þ, meaning
that the algorithm storage is linear in the total number of wire
segments, and the run-time has an O(n log n) order of growth in the
total number of wire segments. The latter, however, is greatly affected
by coefficient values, such as the required accuracy ε, the initial value
of the log-barrier termmultiplier ηinitial, its update τ and the number of
vector pairs stored by L-BFGS algorithm m.

4. Practical considerations

In real designs, there are always special nets (such as clock network
nets) that are not likely to be moved. Other wires may be required to
stay “frozen” for a variety of reasons (noise, delay, slope, etc.). Others
may be required to keep a predefined distance from their neighbors.
The formulation of the PODC as a convex optimization problem with
constraints is very convenient for such practical cases. All such cases
can be handled by defining additional constraints on the wires. For
example, if wire Ii must have a fixed location Xi, then this limitation
can be handled by defining two additional constraints: xi�Xir0 and
�xi�Xir0, both of which are convex and can be incorporated in the
log-barrier function. Another example is the avoidance of jogs, i.e.,
when two wires should be kept with a constant distance between
them (in particular, zero). Jogs complicate the layout and introduce
extra delay and extra power that should be taken into account.

Consider the layout in Fig. 12(a). The wire segments 1 and 3, as well
as segments 4 and 5, represent pairs of segments of the same physical
wires. Because each wire segment is treated independently, the
optimization can end with the segments shifted relative to each other,
which will result in adding jogs and the complication of the layout. To
avoid the jogs, such pairs of wires might be required to be treated as a
single wire by the algorithm, achieved by adding four linear con-
straints: x4�x5r0, x5�x4r0, x1�x3r0, x3�x1r0. In general, any
condition that is convex in the optimization variables (i.e., the wire
coordinates) can easily be handled by the algorithm.

5. Layout separation

The optimization method described in the previous sections
can be applied to a clip of the layout bounded at all metal layers by
fixed-position wires that are not allowed to move (“walls”), as
shown in Fig. 4. The full layout of the VLSI circuit can consist of
several such clips. The power grids or other wires fixed in their
place can serve as such wall wires. Each one of the clips can be
optimized independently, thus decreasing the number of optimi-
zation variables and constraints that must be handled simulta-
neously. In the following text, we describe how such natural
separation is found and used in the optimization process.

We call two nets visible if they have visible wires on some of
the routing layers. We build a net visibility graph by assigning a
vertex to each net and assigning an edge between each pair of nets
so that the nets are visible to each other. According to this
definition, the layout of Fig. 3 is represented by a fully connected
graph with three vertices and three edges because there are visible
wire segments between any two nets.

Denote by active vertex the vertex representing a net with at
least one movable wire. An inactive vertex is a vertex representing
a net where all of its wires are fixed. Inactive vertices may
represent power grid nets, shield nets or nets that were selected
by design engineers to remain in fixed positions. Inactive vertices
can form separation groups with respect to groups of active nets.
For example, in Fig. 10 the inactive vertices (shown by the dashed
boundary) separate the whole graph into three groups of active
vertices (shown by a solid boundary). Each one of the groups can
be optimized independently and does not affect the optimization
accuracy of the other groups. The partitioning into groups can
easily be achieved by a Union-Find algorithm [22]. Assume that
there are N active vertices in the graph. Then, Algorithm 3 (Fig. 11)
finds independent groups as follows. First, the individual group Gi

Table 1
Optimization results for the small example.

Wire coordinates
Initial state Opt. without delay constraints Opt. with delay constraints

1 8.50 12.18 10.89
2 5.50 7.46 6.69
3 8.50 12.43 11.25
4 11.50 13.47 10.95
5 11.50 9.50 10.21
6 2.50 1.56 2.42
7 2.50 3.71 3.07
8 5.50 6.53 6.23
9 14.50 13.25 13.85
Total power (improvement %) 15.37 (0) 10.00 (35) 11.00 (28.4)

Wire delay data
Rcv. number Delay Delay Diff. vs. initial Req. time Delay Slack or diff. vs. initial

2 44 53 �9 – 47 �4
4 59 67 �8 – 62 �5
6 67 77 �10 70 70 0
7 43 31 þ12 – 35 þ4

K. Moiseev et al. / INTEGRATION, the VLSI journal 48 (2015) 116–128 123



is assigned for each active vertex 1r irN. Then, vertices corre-
sponding to the visible nets are merged into single group. At the
end of the algorithm, the remaining groups Gi will hold separated
groups of vertices.

The layout separation can significantly improve the total algorithm
runtime by optimizing the separated parts in parallel. The natural
separation formed by the power grid lines and other obstacles might
not be uniform to allow reasonable runtime gain; therefore, artificial
separation might be needed, where a minimal separating set of active
nets is found and used for the separation of the rest of the active
nodes. An efficient algorithm for such a vertex separation is described
in [23]. Our experiments show that natural separation usually results
in one very large group, including approximately 90% of the segments
and several small groups containing the other 10% of the segments.
Such separation cannot significantly improve run-time, so artificial
separation was needed. Applying the algorithm from [23], we suc-
ceeded in finding better partitions that resulted in three groups of
�30%, �30% and 40% of the segments. Thus, theoretically, the
performance could be improved �3� .

6. Examples and experimental results

Algorithms 1, 2 and 3 were implemented in Cþþ and tested on a
Pentium M 1.7 GHz processor system with 768MB of memory. We
first demonstrate the operation on the small example layout depicted
in Fig. 12. The layout consists of two nets including 9 wire segments
(all segments are numbered) as shown in Fig. 12(a). The dotted net has
a driver at one end of wire 1 and receivers tied at the ends of wires 2,
4 and 6; the plaid-patterned net has a driver at the end of wire 9 and a
receiver tied at the end of wire 7. The drivers are shown schematically,
and in reality the drivers may be located far from the end points of the
global interconnects. The corresponding layouts of the individual
layers are shown in Fig. 12(b) and (c), and the multi-layer visibility
graph is shown in Fig. 12(d), where dotted edges designate connectiv-
ity relationships, and visibility relationships are shown by solid edges.
The activity factors are 0.1 for the net with segments 1, 2, 3, 4, 5, 6 and
1 for the net with segments 7, 8 and 9. We performed two tests with
this layout. These tests exemplify the difference between the optimi-
zation with and without delay constrains and show how delay
awareness affects the optimization results. First, the required arrival
times at receivers 2, 4, 6 and 7 were relaxed so that the optimization
was guided only by the layout topology (the mutual location con-
straints). In the second test, the required time of receiver 6 was
tightened. This tightening caused the corresponding delay constraint
to reach its bound and, as a result, prevented further movement of
some wires. The optimization results for both cases are presented in
Table 1, and the resulting layouts are shown in Fig. 13. Power, delay
and coordinates are shown in relative units. In both cases, the
optimization causes a significant reduction in the interconnect power.
In the second case, the optimization impact is smaller than in the first
case, and the slack at receiver 6 reaches zero.

Power reduction was applied to industrial test cases using clips of
the real layout from the state-of-the-art 32 nm processor design. The
original layout was generated by Synopsys ICC, which is the industry
standard signoff P&R tool [27]. The layout completed the entire design
flow and was in pre-tapeout readiness when our algorithm was
applied. The layout of the metal layers (4–7) was processed by the
algorithm, while wire segments on the lower metal layers were
modeled by modifying the corresponding effective drivers and recei-
vers. Two reasons for this choice of the layers for processing exist. First,
in the 32 nm process technology, the wires on the higher layers are
allowed to be spaced almost freely (with only min and max bounds),
while the spacing of wires on the lower layers is limited strictly to a
predefined set of values (e.g., X, 2X and 3X, where X is the minimum
spacing rule). Second, according to the design methodology of a given

industrial design, the lower metal layers are enclosed in functional
blocks only and are not available in the late project stages. In the
implementation, we used the capacitance models presented in [2],
which are consistent with our assumptions regarding cross-coupling
capacitance. For the delay estimation, we used the Elmore delay
formulation with the π-models for the individual net segments.
Although the Elmore delay is not very accurate, it is computationally
efficient, and its high fidelity property [28] allows its use as a delay
metric for the optimization algorithm. To cope with the inaccuracy of
the Elmore delay, the Elmore model was also used for constraint
generation. In this way, both measured and required delays were
calculated consistently with each other, and as a result, the Elmore
delay inaccuracy was not a concern.

The results for several layout clips are presented in Table 2. The
numbers representing the power were calculated using an in-house
power estimation tool and are given in relative units; the real numbers
cannot be revealed because of their sensitivity. The cross-coupling

1

6

8

7

9

5

2

4

1 3

6

8

7

9

5

2

4

Fig. 13. (A) Layout after optimization without timing constraints. (B) Layout after
optimization with timing constraints. In the second case delay constraint prevented
wires 1, 3 and 6 from moving too close to the wall as well as wires 2 and 5 from
getting too close to each other. In both pictures the drivers are shown schemati-
cally. Notice that the real driver cells are not moved. The end-point segments
(denoted earlier by Idrv and Ircv) can be fixed in place by adding additional
constraints, however, this was not applied in this experiment. Also, pairs of wires
(1,3) and (4,5) were kept together to prevent jog creation.

K. Moiseev et al. / INTEGRATION, the VLSI journal 48 (2015) 116–128124



interconnect power is reduced by 8% on average, varying among the
test cases from 5% to 12.6%. Obviously, these values and their variances
reflect the density and quality of the initial design in the different
layout clips, and they demonstrate the practical potential benefit of the
power-aware layout generation. To validate the satisfaction of the
timing constraints, an in-house timing tool was used. The graphs of
the slack distribution before and after optimization for one of blocks
are shown in Fig. 14. There are delay violations in approximately 5% of
the nets after the optimization. The delay violations can be explained
by the inaccuracy of the Elmore delay model. These violations can be

fixed in a post-design stage by applying other optimization methods
such as gate sizing [30] or by manual work.

Table 3 represents a comparison of the method presented with
the technique described in [1], i.e., layer-by-layer optimization. For
comparison, we modified the algorithm so that, each time, only
the wires of a single layer are allowed to move. After optimizing
the single layer, the delays were measured, and the delay con-
straints for the following layer were modified correspondingly. As
the comparison shows, the simultaneous optimization of all layers
resulted in 10–40% better power reduction results, which can be

Fig. 14. The distribution of the delay violation in % of net delay before (black solid) and after (dashed) optimization. A negative number signifies a delay violation, and a
positive number indicates available slack. There are no delay violations in the initial state. After optimization there are some delay violations (in approximately 5% of the
nets). More nets have less available slack than earlier.

Table 3
Comparison of new method with THE layer-by-layer optimization – power reduction in % and run-time in seconds.

Clip no.

1 2 3 4 5 6 7 8

Layer-by-layer
Power reduction (%) 4.9 4.5 5.05 6.45 8.67 4.03 11.3 7.12
Run time 5.4 327.8 565.3 28.9 241.1 311.2 105.9 189.0

New method
Power reduction (%) 5.41 6.26 5.67 8.02 11.53 5.66 12.59 8.32
Run time 8.8 523.8 1039.9 70.8 449.0 441.3 292.7 365.2

Improvement in (%)
Power reduction 10.1 39.1 12.3 24.3 33.0 40.4 11.4 16.8
Run time �67 �59.7 �84 �145 �86.2 �41.8 �176 �93

Table 2
Optimization results for real industrial layout segments.

No. of
clip

Clip area in mm2

(% of total area in brackets)
Initial power Final power Improvement

(%)
No. of wires
(variables)

No. of spaces (location
constraints)

No. of delay
constraints

Run-time
(s)

1 0.52 (4.6) 863.8504589 817.119679 5.41 4091 21,518 1427 8.8
2 1.29 (11.3) 2723.372233 2552.8175 6.26 37,177 110,962 13,860 523.8
3 0.60 (5.3) 2068.078358 1974.36814 5.67 14,403 51,166 2906 1039.9
4 1.46 (12.8) 1685.869617 1550.59565 8.02 13,397 47,450 4639 70.8
5 1.77 (15.6) 3737.549076 3306.77984 11.53 27,639 96,031 7003 449.0
6 1.33 (11.7) 3531.584387 3331.86887 5.66 25,343 89,996 7161 441.3
7 2.73 (23.9) 2058.194188 1799.12777 12.59 22,669 79,838 7169 292.7
8 1.68 (14.8) 3084.118285 2827.55122 8.32 25,537 87,810 7331 365.2
Total 11.38 (100) 19,752.6166 18,160.2287 8.18 170,256 584,771 51,496 3191.5

K. Moiseev et al. / INTEGRATION, the VLSI journal 48 (2015) 116–128 125



explained by the more successful exploitation of the available
delay slack. The layer-by-layer optimization is much faster.

7. Summary

Inter-wire spacing is a physical design resource that must be
allocated judiciously in modern technologies because spacing
determines cross-capacitances between nets, and these capaci-
tances dominate interconnect power and delay. Previous power/
delay or noise optimization techniques that rely on wire spacing
work iteratively, either layer-by-layer or net-by-net. Such methods
cannot fully exploit the whole optimization space and reach the
global minimum because they do not take into account all
imposed constraints and the interdependencies among them.

In this paper, we demonstrated an efficient method for power
reduction by the simultaneous spacing of wires residing on different
routing layers so that the net delay constraints were not violated. Our
method outperformed the existing techniques in the sense that it
could reach the global minimum power and satisfy various (delay and
layout) constraints. This result is achieved by simultaneously consider-
ing all of the nets being optimized and all of their wire segments. To
reflect all relations between the wire segments, layout constraints and
delay constraints, we use a novel data abstraction called the multi-
layer visibility graph. An interior-point method (with the L-BFGS
algorithm as an inner iteration) was used to solve the optimization
problem. To cope with the scale of the problem, we applied layout
partitioning based on a union-find algorithm. We demonstrated the
effectiveness of the algorithm on real industrial cases and achieved a
5–12% dynamic interconnect power reduction relative to the initial
layout that was generated by commercial tools by post-processing the
layout and reallocating the inter-wire spaces without increasing the
total area.

The proposedmethod treats wire spaces as continuous variables. In
the up-to-date technology processes (28 nm and below), the design
rules dictate the discrete locations and widths of wires so that the
inter-wire spaces are also discrete (mostly at the lower layers). The
application of additional methods is required to obtain discrete
solutions from the continuous, such as the Integer Linear Program-
ming (ILP) or the dynamic programming. Both approaches are beyond
the scope of this paper and a matter for further research.

Acknowledgments

The authors are thankful for the useful reviewers’ comments,
which significantly helped to improve the manuscript.

Appendix A. Dual problem and relation to Weighted Power-
Delay Sum (WPDS) optimization problem

Here, we show the relationship between the PODC problem
and the Weighted Power-Delay Sum (WPDS) optimization pro-
blem described in [24], where the delay weighting was used for
simultaneous gate and wire sizing for power.

The WPDS problemwas discussed thoroughly in [1]. As mentioned
in Section 2, WPDS optimizes the power contributed by the cross-
capacitances, weighted by the net delays. In WPDS, the question of
how to set delay criticalities ki optimally remained open in both [1,24].
The theorem below provides an answer to that question by showing
the relationship between WPDS and PODC solved in Section 3.

Theorem. WPDS is the relaxation of PODC. The optimized delay
criticality weights ki in WPDS are equal to optimal values of the
Lagrangian dual variables in the corresponding PODC.

Proof. We prove the theorem by relaxing PODC and solving the
dual of the relaxed problem, showing that this process obtains
WPDS. We then compare WPDS to the solution of the dual of the
original PODC problem.

First, relax the original problem PODC. The simplest relaxation
of the program PODC would be

Program
min Pcross

s:t:

Tirδi;1r irM

xlj�xli�ððwl
iþwl

jÞ=2ÞZslmin; 81r lrL; 0r i; jrNlþ14dij40

where δi are optimization variables (the delay constraints can as
well be written as TirDiþδi, which is equivalent). This formula-
tion is equivalent to optimization with no delay constrains at all.
To reflect delay constrains in optimization, δi can be incorporated
into the objective function as follows:

Program PODC-R
min αPcrossþ∑M

i ¼ 1βiδi
� �

s:t:
Tirδi;1r irM

xlj�xli�ððwl
iþwl

jÞ=2ÞZslmin; 81r lrL;0r i; jrNlþ14dij40

The optimization variables of the PODC-R are xi and δi. The
delay awareness is reflected by including δi in the objective
function. The meaning of PODC-R is the optimization of the power
under delay constraints, without explicitly specifying the delay
requirement for each receiver. The delay criticality is defined by
the relationship between the weights α and βi. PODC-R is always
feasible, while PODC might be infeasible, following from the
PODC-R convexity and from the satisfaction of Slater's condition
[19] with respect to the delay constraints that non-negative
numbers λi, 1r irM (Lagrange multipliers) exist so that the
solution of the program PODC-R is equivalent to the solution of
the following dual program PODC-RD:

Program PODC-RD
min αPcrossþ∑M

i ¼ 1βiδiþ∑M
i ¼ 1λiðTi�δiÞ

� �
s:t:
xlj�xli�ððwl

iþwl
jÞ=2ÞZslmin; 1r lrL;0r i; jrNlþ14dij40

Solving KKT conditions [19] for PODC-RD with respect to δi
obtains:

∂
∂δ αPcrossþ ∑

M

i ¼ 1
βiδiþ ∑

M

i ¼ 1
λiðTi�δiÞ

 !
¼ βi�λi ¼ 0 ) λi ¼ βi ð15Þ

Substituting (15) into the objective function of PODC-RD and
setting β0

i ¼ βi=α transforms PODC-RD into:

Program PODC-RD0

min Pcrossþ∑M
i ¼ 1β

0
iT i

� �
s:t:
xlj�xli�ððwl

iþwl
jÞ=2ÞZslmin; 81r lrL;0r i; jrNlþ14dij40

PODC-RD0 is clearly equivalent to the WPDS problem. Thus, we
have shown that WPDS is the relaxation of PODC. Now, solving
KKT conditions for PODC-RD0 with respect to xi yields:

∂
∂x

Pcrossþ ∑
M

i ¼ 1
β0
iT i

 !
¼∇Pcrossþ ∑

M

i ¼ 1
β0
i∇Ti ¼ 0 ð16Þ

K. Moiseev et al. / INTEGRATION, the VLSI journal 48 (2015) 116–128126



Assume that λni are values of dual variables for delay constraints
in the optimal point of the PODC. It is then equivalent to

Program D-PODC

min Pcrossþ∑M
i ¼ 1λ

n

i ðTi�DiÞ
� �

s:t:
xlj�xli�ððwl

iþwl
jÞ=2ÞZslmin; 81r lrL;0r i; jrNlþ14dij40

Solving KKT conditions for D-PODC with respect to xi results in:

∂
∂x

Pcrossþ ∑
M

i ¼ 1
λni ðTi�DiÞ

 !
¼∇Pcrossþ ∑

M

i ¼ 1
λni ∇Ti ¼ 0 ð17Þ

Comparing (16) and (17), to have the same solution, the
criticality weights βi must be equal to the optimal Lagrange
multipliers, λni .

The above theorem can be used to set the delay criticality
weights, ki. We use the PODC-LB interior point approximation of
PODC and the fact that WPDS is the relaxation of PODC.

The optimality condition for PODC-LB (the approximation of
PODC) is ∇Pcross 0ðxnÞ ¼ 0, i.e.,

∇PcrossðxnÞ�η∑
i
∑
j

ei
xn lj�xn li�ððwl

iþwl
jÞ=2Þ�slmin

�η ∑
M

i ¼ 1

∇TiðxnÞ
TiðxnÞ�Di

¼ 0 ð18Þ

Summation is performed only for dij40, and ei is a ith standard
basis vector. In this sum, each term appears twice – one time for
the right side and one time for the left side of each of the inter-
wire spaces. The effect of the delay constraints is shown in the
third term of (18). Denoting λni ðηÞ ¼ �ðη=TiðxnÞ�DiÞ40 it turns
into ∑M

i ¼ 1λ
n

i ðηÞ∇TiðxnÞ. Comparing to (17), we conclude that the
Lagrange dual variables at the optimum (serving also as the
optimal delay weights in WPDS) can be approximated by λni ðηÞ,
which is inversely proportional to the wire delay slacks. In critical
wires where TiðxnÞ �Di (small slack), λni is large indeed, while for
the less critical wires where TiðxnÞoDi (large slack), λni is smaller
indeed. In general, recalling that η¼ λni ðDi�TiðxnÞÞ, let T0

i be the
initial receiver delays in WPDS. Because WPDS is applied at the
early design stages, specific required times Di are yet unknown. Let
D be a global required time (usually a fraction of the clock period)
that all wire delays are tuned to. Then, the delay weights for WPDS
are set to:

ki ¼
η

D�T0
i

; ð19Þ

where η is proportionality coefficient. Thus, the WPDS problem is
modified to:

Program WPDS-1

minimize Pcrossþη∑M
i ¼ 1

Ti

D�T0
i

 !

s:t:
xlj�xli�ððwl

iþwl
jÞ=2ÞZslmin; 81r lrL;0r i; jrNlþ14dij40

In the early design stages, the WPDS can be used with the delay
criticalities set proportionally to the initial wire delay slacks. This
process will not guarantee the satisfaction of the timing constraints
after the optimization but will push the optimization in the right
direction. Then, in the later design states, the transition to the PODC
can be performed. Setting WPDS coefficients as in (19) (or a similar
expression providing the coefficients inversely proportional to net

delay criticalities) through the design lifetime will guarantee that such
a transition will not result in large changes in the design and will not
harm the design stability and convergence.

References

[1] K. Moiseev, A. Kolodny, S. Wimer, Power-delay optimization in VLSI micro-
processors by wire spacing, TODAES 14 (4) (2009) 55:1–55:28.

[2] F. Stellari, A.L. Lacaita, New formulas of interconnect capacitances based on
results of conformal mapping method, IEEE Trans. Electron Devices 47 (1)
(2000) 222–231.

[3] N. Magen, A. Kolodny, U. Weiser, N. Shamir, Interconnect power dissipation in
a microprocessor, in: Proceedings of 2004 International Workshop on System
Level Interconnect Prediction, 2004, pp. 7–13.

[4] V.K. R. Chiluvuri, I. Koren, Layout-synthesis techniques for yield enhancement,
IEEE Trans. Semiconduct. Manuf. 8 (2) (1995) 178–187.

[5] K. Chanundhary, A. Onozawa, E. Kuh, A spacing algorithm for performance
enhancement and cross-talk reduction, in: Proceedings of IEEE/ACM Interna-
tional Conference on CAD, 1993, pp. 697–702.

[6] P. Saxena, C.L. Liu, An algorithm for crosstalk-driven wire perturbation, IEEE
Trans. CAD Integr. Circuits Syst. 19 (6) (2000) 691–702.

[7] International technology roadmap for semiconductors, 2009.
[8] J. Cong, L. He, C.K. Koh, Z. Pan, Interconnect sizing and spacing with

consideration of coupling capacitance, IEEE Trans. CAD Integr. Circuits Syst.
20 (9) (2001) 1164–1169.

[9] J.-A. He, H. Kobayashi, Simultaneous wire sizing and wire spacing in post-layout
performance optimization, in: Proceedings of ASP-DAC, 1998, pp. 378–378.

[10] S. Wimer, S. Michaely, K. Moiseev, A. Kolodny, Optimal bus sizing in migration
of processor design, IEEE Trans. Circuits Syst. 53 (5) (2006) 1089–1100.

[11] N. Hanchate, N. Ranganathan, A linear time algorithm for wire sizing with
simultaneous optimization of interconnect delay and crosstalk noise, in: Proceed-
ings of the 19th International Conference on VLSI Design, 2006, pp. 283–290.

[12] E. Macii, M. Poncino, S. Salerno, Combining wire swapping and spacing for
low-power deep-submicron buses, in: Proceedings of the 13th ACM Great
Lakes Symposium on VLSI, 2003, pp. 198–202.

[13] H. Bakoglu, Circuits, Interconnects and Packaging for VLSI, Addison-Wesley, the
University of Michigan, US, 1990.

[14] D. Genossar, N Shamir, Intels Pentiums M processor power estimation,
budgeting, optimization and validation, Intel Technol. J. 7 (2003) 43–50.

[15] S.-C. Wong, G.-Y. Lee, D. – J. Ma, Modeling of interconnect capacitance, delay
and crosstalk in VLSI, IEEE Trans. Semicond. Manuf. 13 (1) (2000) 108–111.

[16] C.P. Yuan, T.N. Trick, A simple formula for the estimation of the capacitance of
two-dimensional interconnects in VLSI circuits, IEEE Electron. Device Lett. 3
(12) (1982) 391–393.

[17] A. Kahng, S. Muddu, E. Sarto, On switch factor based analysis of coupled RC
interconnects, in: Proceedings of IEEE Design Automation Conference, 2000,
pp. 79–84.

[18] P. Gupta, A. Kahng, S. Muddu, Quantifying error in dynamic power estimation
of CMOS circuits, Analog Integr. Circuits Signals Porcess. 42 (2005) 253–264.

[19] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, New
York, USA, 2004.

[20] L. Luksan, J. Vlcek, Efficient methods for large-scale unconstrained optimiza-
tion, Nonconvex Optim. Appl. 83 (2006) 185–210.

[21] J. Nocedal, S. Wright, Numerical Optimization, Springer, New York, NY, USA,
2006.

[22] T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, The MIT
Press, USA, 2005.

[23] J. Liu, A graph partitioning algorithm by node separators, ACM Trans. Math.
Softw. 15 (3) (1989) 198–219.

[24] J. Cong, C. Koh, Simultaneous driver and wire sizing for performance and
power optimization, IEEE Trans. VLSI 2 (4) (1994) 408–425.

[25] S. Sapatnekar, V. Rao, P. Vaidya, S.-M. Kang, An exact solution to the transistor
sizing problem for CMOS circuits using convex optimization, IEEE Trans. CAD
VLSI 12 (11) (1993) 1621–1634.

[26] R. Kay, L. Pillegi, EWA: efficient wiring-sizing algorithm for signal nets and
clock nets, IEEE Trans. CAD VLSI 17 (1) (1998) 40–49.

[27] IC Compiler – the next generation physical design system, Synopsys. Available
online: 〈http://www.synopsys.com/Tools/Implementation/PhysicalImplemen
tation/Documents/iccompiler_ds.pdf〉.

[28] K.D. Boese, A.B. Kahng, B.A. McCoy, G. Robins, Fidelity and near optimality of
Elmore-based routing constructions, in: Proceedings of IEEE International
Conference on Computer Design, 1993, pp. 81–84.

[29] A.I. Abou-Seido, B. Nowak, C. Chu, Fitted Elmore delay: a simple and accurate
interconnect delay model, IEEE Trans. VLSI 12 (7) (2004) 691–696.

[30] C.-P. Chen, C.C.N Chu, D.F. Wong, Fast and exact simultaneous gate and wire
sizing by Lagrangian relaxation, IEEE Trans. CAD 18 (7) (1999) 1014–1025.

[31] K. Moiseev, S. Wimer, A. Kolodny, On optimal ordering of signals in parallel
wire bundles, Integration – VLSI J. 41 (2) (2008) 253–268.

[32] E. Shapir, R.Y Pinter, S. Wimer, Cell-based interconnect migration by hier-
archical optimization, Integration – the VLSI J. 47 (2014) 161–174.

K. Moiseev et al. / INTEGRATION, the VLSI journal 48 (2015) 116–128 127

http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref8596
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref8596
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref9685
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref9685
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref9685
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref3
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref3
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref4
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref4
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref5
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref5
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref5
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref6
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref6
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref7
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref7
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref8
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref8
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref9
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref9
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref10
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref10
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref10
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref11
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref11
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref13
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref13
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref14
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref14
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref15
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref15
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref16
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref16
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref17
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref17
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref18
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref18
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref20
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref20
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref20
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref21
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref21
http://www.synopsys.com/Tools/Implementation/
http://www.synopsys.com/Tools/Implementation/
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref22
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref22
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref23
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref23
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref24
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref24
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref25
http://refhub.elsevier.com/S0167-9260(14)00016-9/sbref25


Konstantin Moiseev received the B.Sc., M.Sc. in Computer
Engineering and Ph.D. in Electrical Engineering from the
Technion – Israel Institute of Technology, Haifa, Israel in
2001, 2006 and 2011, respectively. Since 2006 he has been
working with Intel Israel Design Center, Haifa, Israel. His
general interests include computer-aided design systems,
combinatorial optimization, heursitic methods, VLSI sys-
tem design and interconnect design.

Shmuel Wimer received the B.Sc. and M.Sc. degrees in
mathematics from Tel-Aviv University, Tel-Aviv, Israel, and
the D.Sc. degree in electrical engineering from the Tech-
nion – Israel Institute of Technology, Haifa, Israel, in 1978,
1981 and 1988, respectively. He worked for 32 years at
industry in R&D, engineering and managerial positions, for
Intel from 1999 to 2009, and prior to that for IBM, National
Semiconductor and Israeli Aerospace Industry (IAI). He is
presently an Associate Professor with the Engineering
Faculty of Bar-Ilan University, and an Associate Visiting
Professor with the Electrical Engineering Faculty, Technion.
He is interested in VLSI circuits and systems design
optimization and combinatorial optimization.

Avinoam Kolodny received his doctorate in microelec-
tronics from Technion – Israel Institute of Technology
in 1980. He joined Intel Corporation, where he was
engaged in research and development in the areas of
device physics, VLSI circuits, electronic design automa-
tion, and organizational development. He has been a
member of the Faculty of Electrical Engineering at the
Technion since 2000. His current research is focused
primarily on interconnects in VLSI systems, at both
physical and architectural levels.

K. Moiseev et al. / INTEGRATION, the VLSI journal 48 (2015) 116–128128


	Timing-constrained power minimization in VLSI circuits by simultaneous multilayer wire spacing
	Introduction
	Interconnect modeling and problem definition
	Algorithm for solution of the optimal spacing problem
	Practical considerations
	Layout separation
	Examples and experimental results
	Summary
	Acknowledgments
	Dual problem and relation to Weighted Power-Delay Sum (WPDS) optimization problem
	References




