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Abstract In Intel’s ‘‘Tick-Tock’’ roadmap a new processor is first manufactured in

the most advanced stable process technology, followed in a 1-year delay by intro-

ducing chips comprising same microarchitecture but manufactured in a newer

scaled process technology. Tick-Tock is enabled by the automation of chip’s layout

migration from an older into a newer process technology, known as hard-IP reuse.

This is a very challenging computational task, involving billions of polygons.

Migration algorithms have been thoroughly studied and implemented in the past but

their computational capabilities fall short compared to today’s demand. We describe

a hierarchy-driven computationally efficient algorithm for cell-based layout con-

version, used by Intel in its Tick-Tock roadmap. The algorithm transforms the full

chip conversion problem into successive problems of significantly smaller size,

having feasible solutions if and only if the full chip problem does. The proposed

algorithm preserves the design intent, its uniformity, portability and maintainability,

a key for the success of large-scale projects.

Keywords VLSI design migration � Layout compaction � Interconnects �
Cell-based design

1 Introduction

Due to their high complexity, VLSI chips are built hierarchically as shown in Fig. 1.

The entire chip corresponds to the top of the hierarchy, while at the bottom there are

the individual transistors. Transistors are connected with each other in standard-
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cells, implementing basic logic and memory functions. Those are connected

together in more complex functional blocks such as adders, multipliers, and memory

arrays, among others. Functional blocks are connected by wires in higher level

functions such as arithmetic–logic units, register-files, control units, etc. The top of

this hierarchy are DSP, networking, communication and sensor modules, where

their connection constitutes the so called system on chip, occupying the entire

silicon die. Contemporary VLSI technologies may comprise a dozen of metal layers

occupying a huge number of interconnecting wires.

The design of high-end full-custom microprocessors is a very complex engineering

task, involving hundreds of man-years efforts. Hierarchical design methodology is a

key to meet time-to-market requirements. Moore’s Law (Perry 2008) enables the

introduction of new processor’s microarchitecture in a 2-year cycle, named by Intel

‘‘Tick-Tock’’ roadmap, as illustrated in Fig. 2. The Tock phase delivers every 2 years

a new microarchitecture manufactured in the most advanced stable technology. It is

then followed in 1-year delay by a Tick phase, delivering chips of the same

microarchitecture but in a new scaled process technology, allowing higher production

volumes, better performance and lower cost. An essential part of the Tick phase is the

conversion of the underlying physical layout, comprising billions of polygons, into

the new technology where they must satisfy complex geometric rules. Such

conversion is known in VLSI jargon as hard-IP reuse (Nitzan and Wimer 2002),

based on the automation of chip’s layout conversion from older into newer

technology. This is a very challenging computational task.

An alternative to hard-IP reuse is soft-IP reuse, where the hardware definition

language of the Tock phase design is synthesized into the target technology by

electronic design automation (EDA) logic and physical synthesis tools (Saleh et al.

2006; Chiang 2001). Compared to hard-IP reuse, soft-IP reuse has the advantages of

flexibility and portability. It also eases the introduction of new features into the Tick

phase. For high-end custom designs as those discussed in his paper it has a

significant drawback though. It cannot guarantee timing and power convergence,

since all the physical design effort invested in the Tock is being lost. Today’s high-

end VLSI designs require considerable engineering effort for timing and power

convergence.

In hard-IP reuse the polygons are converted by compaction algorithms, a

comprehensive description of which can be found in (Lengauer 1990; Reinhardt

2002). The compaction describes the positional relations of the source layout’s

polygons by a directed graph, called the constraints graph. Its vertices represent

edges of polygons and arcs represent left-to-right (bottom-to-top) adjacency and

visibility relations. The arcs are assigned weights corresponding to the sizes and

spacing design rules of the new technology. The problem of sizing and positioning

the polygons in the new target layout is to find the smallest possible area that can

legally accommodate the layout.

The most general form of compaction is two-dimensional (2D). It moves the

polygons of the layout in x- and y- coordinates simultaneously, a problem shown to

be NP-complete (Sastry and Parker 1982; Lengauer 1984). Compactors therefore

decompose the 2D problem into a sequence of alternating independent one-

dimensional (1D) compaction steps, each change only one set of coordinates. 1D
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compaction can be solved efficiently with longest path algorithms (Lengauer 1990;

Reinhardt 2002). Polygons not on the critical paths are positioned such that some

cost reflecting a design goal (e.g., performance, sensitivity for manufacturing

defects, among a few others) is minimized, for which Linear Programming (Wang

and Lai 2001) and Integer Linear Programming (ILP) (Fang and Zhu 2004) are used.

A heuristic solution of the 2D problem was proposed in (Shin et al. 1986) where

it was first solved by alternating 1D compactions. The layout was then relaxed by

introducing extra jogs into the wires to enable further compression. In today’s

technologies which due to lithographic limitations require high regularity and

uniformity of the interconnecting wires, jog insertions are prohibited. The work in

(Schlag et al. 1983) showed the NP completeness of the 2D problem and proposed a

branch-and-bound algorithm, suitable for very small layouts, but impractical for the

large-scale problems. The 2D problem was studied also in the context of graph-

Fig. 1 The hierarchy of a chip

Fig. 2 Intel’s ‘‘Tick-Tock’’ roadmap

Efficient cell-based migration of VLSI layout 205

123

Author's personal copy



drawing (Klau and Mutzel 1999; Patrignani 2001), leading to similar conclusions of

its difficulty. The EDA compactor is also 1D-based, allowing the user to control the

compaction iterations by specifying an appropriate parameter to be either x-y-x or

y-x-y. The EDA tool (Reinhardt 2002) that was used for the layout migration of the

DEC’s Alpha microprocessor is also 1D.

Traditional compaction algorithms are working on flattened layouts, suited to

cope with up to few tens of thousands of polygons. With the evolution of VLSI

technology in the 90’s to integration of few million transistors on a chip, design

methodology moved towards more standardization, modularity and re-use, dictating

hierarchical chip structure. In parallel, design rules became more complex, which

altogether made layout migration a computation challenge (we subsequently use the

terms compaction, migration and conversion interchangeably).

Compaction algorithms and EDA tools supporting hierarchy were presented in

(Burns and Newton 1987; Burns and Feldman 1998; Yao et al. 1993; Wang and Lai

2001). Compaction creates unique blocks (also called modules or cells), which

cannot be shared and re-used among different layouts. Therefore, although those

compactors maintained layout hierarchy, the duplication and mutations of same

logic blocks is a major drawback that today’s designs cannot afford. A new layout

migration technology called cell-based compaction is thus in order. It uses an

ordinary standard-cell library, optimized regardless of its instances in the entire

layout. Cell-based migration has the problem of creating a huge constraints graph

incorporating all the instances of all blocks, which is then translated into a huge

optimization problem whose solution may take enormous computation time. This

paper reduces the size of the compaction problem in one to two orders of magnitude.

Hierarchical compaction was first addressed in (Burns and Newton 1987),

ensuring that the modularity of the target layout will stay similar to its source. It

efficiently handled layouts comprising a few dozen transistors, but did not take

advantage of the repetitive instantiation of the same cells to reduce computation

complexity, which our work does. This is an enabler of layout migrating at chip-

scale. The work in (Burns and Feldman 1998) handled larger blocks comprising

thousands transistors, proven on real IBM design. It was tailored to a regularly

structured control-logic, comprising two-levels of hierarchies: leaf-cells and the

entire block. This prohibits its usage for general, multi hierarchy, custom layouts.

Furthermore, same leaf-cells in different blocks were in-place compacted, resulting

in mutations of the same logic cell. It prohibits cell-level electrical characterization,

a key for efficient timing analysis. Timing analysis must therefore take place at

transistor-level, a big engineering effort overhead. This paper in contrast supports

any hierarchy depth, making it useful for custom data-path and register-file design

styles. Moreover, our migration flow is cell-based, enabling the usage of standard-

cell library with all the benefits of modular design, portability, and efficient timing

analysis.

Cell-based layout compaction was claimed in (Yao et al. 1993). It emphasized

the pitch-matching of cells and heavily relied on the slicing structure of the layout.

It is applicable to two-level place and route layout style, but inadequate for other

layout styles, full-custom in particular. As all the other hierarchical compactors, the

cells are in-place compacted, prohibiting the advantages of real cell-based design.
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Layout position constraints are naturally described by as LP or ILP. The work in

(Wang and Lai 2001) took advantage of the special LP matrix form derived by

layout constraints. It supports hierarchy, but as other works, the leaf-cells are

compacted in-place, a drawback mentioned before. It was also proven to work on

problems comprising only few thousands of variables and constraints, which is

impractical for chip-scale problems. In today’s nanometers scale process technol-

ogies design rules are restricted to discrete values and layout objects must align to

predefined grids. This requires using ILP instead. The work in (Fang and Zhu 2004)

presented ILP-based data-path macros layout migration where the wires in the

layout were enforced to predefined grids. It used geometric closeness optimization

objective to reward geometric resemblance of target layout to the source layout.

The above works evolved into an EDA large-scale hierarchical compaction tools.

It was successfully used by Intel for several process generations (Nitzan and Wimer

2002; Wimer 2014), from 130 nm, through 90 and 65, to 45 and 32 nm, shown in

Fig. 2. It still in-place compacted leaf-cells, which limited its usage for cell-based

design. Moreover, while all past works worked on the entire flattened layout, thus

addressing huge problems, our algorithm is successively solving a series of far

smaller problems, but still exploring the entire solution space.

Figure 3 shows that the 1D interconnect migration proposed by this paper is

useful for 2D problems. Due to the uniform longitudinal and latitudinal nature of

wires, there is not much optimality loss by successive 1D treatment. The target

widths of the wires are decided prior to compaction by timing considerations. The

algorithm x-shifts wires in vertically routed layers and y-shifts wires in horizontal

layers. Shifted wires are hooked to perpendicular wires residing in an adjacent layer

below and above by vias at their ends. Stretching the perpendicular wires to the new

coordinate of their ends maintains the connectivity.

The layout design rules in modern VLSI process technologies are complex and

their amount may reach a few hundreds. The majority of those however relate to the

lower layers involving transistors and their interconnections used within standard,

leaf-cells, whose layouts are manually migrated. We discuss the problem of migrating

the wires in the higher metal layers used to interconnect leaf-cells into higher level

functions. The primary design rules for wires are minimal width, minimal spacing,

and the metal coverage of vias. While the target width of wires is set by performance

considerations prior to migration, their spacing is solved by compaction. Vias are

formed at the incidence of orthogonal wires as shown in Fig. 3. It may happen that the

resulting layout still has some design rule violations. Those are manually fixed at a

later stage of the design.

Figure 4a illustrates a typical VLSI layout comprising several blocks placed

within each other, thus constituting the hierarchy. All the wires residing on even

layers are vertical, while those in odd layers are horizontal. Mixing both directions

in the same layers is forbidden (see Fig. 3). Each block has IO ports for

interconnections to other blocks (the terms wires and interconnections are used

interchangeably). The wires connecting child blocks placed within a parent to each

other, and to the IO ports of their parent, belong to the parent. The different colors of

blocks’ borders represent levels of the hierarchy represented in Fig. 4b. Notice that

a block may be placed multiple times within different parents. The unique definition
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of a block is called a master, and its specific occurrence in the design is called an

instance (the terms master and block are used interchangeably). The origin of a

master is associated to its lower-left corner. Instances are placed within their parent

at some x and y offsets. Instances place in a common parent do not overlap.

The wires in Fig. 4a reside on two adjacent metal layers. Wires are connected at

their incidence point by a VIA. The solid wires interconnect black-border children

within their green-border parent, whereas the dotted ones connect orange-border

children within their purple-border parent. Internal wires of orange-border blocks

are not shown. Solid and dotted wires of the same color belong to the same physical

layer and are therefore not allowed to touch each other as otherwise an electrical

short occurs. Wires of same layer must satisfy minimum width and spacing rules, as

otherwise a malfunction at manufacturing may occur. Extra widths and spacing may

be specified per wire to satisfy design goals as performance, noise immunity, small

IR drop and reliability.

The progression from old to new technology is featuring a 0.7 average scale of all

lateral dimensions, thus enabling to double the numbers of transistors per silicon

area. This is the well-known Moore’s Law, governing the VLSI evolution for

already five decades (Perry 2008). Until late-90’s, the 0.7 scaling equally applied to

all lateral dimensions of the polygons over all layers. VLSI layouts could therefore

be migrated by a purely linear transformation called ‘‘optical shrink’’. The linear

scaling has been broken in the last 15 years due to many technology difficulties,

turning layout conversion into a strongly non-linear problem. Performance

requirements of specific signals (called also nets) may only worsen the nonlinearity

by introducing extra geometric constraints.

The main contribution of this paper is in presenting an algorithmic design-flow for

cell-based compaction of complete VLSI chips. Although compaction algorithms

have been thoroughly studied and implemented in the past, their computational

capabilities fall short compared to today’s demand. The novelty of this work is in

exploiting the hierarchical structure of VLSI chips to achieve one to two orders of

Fig. 3 A 2D compaction by successive 1D compactions. a Original layout, b after x compaction, c after
y compaction
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magnitude improvement in computation time. We present time and space efficient

bottom-up and top-down migration algorithms. The rest of the paper is organized as

follows. Section 2 describes the cell placement migration and its relation to the entire

problem. Section 3 presents the interconnect migration problem and outlines its

solution by using a suitable graph-theoretic model. Section 4 shows experimental

results obtained for Intel’s VLSI blocks migrated to 45 nm technology. Section 5

concludes the discussion.

2 Migration overview

Due to its complexity, the generation of the physical layout of VLSI systems takes

place in two steps: placement and routing (Saleh et al. 2006). This work follows a

similar pace; the placement of the instances of all the masters is migrated first, and

then migration of all their underlying interconnections is performed.

2.1 Placement migration

The placement migration is subsequently described. The target of the placement in

Fig. 4a is shown in Fig. 4c. Placement migration is aimed at three goals:

1. Producing a similar scaled layout, preserving all the left-to-right and bottom-to-

top adjacency relations between its block instances.

2. Obtaining a small, compact layout, reflecting the 0.7 average Moore’s Law

scaling in both x and y dimensions.

3. Target placement must accommodate the target width and spacing of the

underlying wires whose migration will follow in a later step.

Placement migration takes place by reversely topologically ordering the masters

according to the hierarchy tree. Masters whose instances reside at tree’s leaves are

migrated first, while the whole layout, corresponding to the top master, is migrated

last. This is accomplished by the depth first search (DFS) shown in Fig. 5. It follows

by the DFS and the hierarchical structure of the chip that once the placement

migration of a master is addressed, all its descendants in the hierarchy tree have

already been migrated, and their width and height are known (elaborated below).

Fig. 4 A four-level hierarchical layout in old technology is shown in (a), its corresponding hierarchy tree
in (b) and the target layout in new technology in (c)
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Setting the target dimensions of the currently migrated master by the function work

called within the DFS is done by placing its child instances in the same relative

positions in the source layout, as illustrated in Fig. 4c. Note that the instances’

masters are already migrated, thus having target dimensions defined.

We further elaborate the function migrate_placement of Fig. 5, which is the heart

of placement migration. Let a master m have n son instanced placed over its area.

We wish to set m target size as small as possible, and legally place its entire son

instances in their target size, so it will accommodate all its interconnections with

their widths and spacing specifications. As noted before, sons’ masters have already

been migrated and hence their target size is already determined.

The placement takes place separately for x and y. A weighted digraph Gx (V, E),

shown in Fig. 6 is defined as follows. Its source vertex v0 and target vertex vn?1

correspond respectively to the left and right borders of m, respectively. The other

vertices correspond to the son instances. Two vertices vi and vj are connected with

an arc eij [ E pointing from vi to vj if the corresponding sons are visible to each

other, no other cell is placed in between, and vi is placed left to vj. We consider the

left and right border of the parent similarly as son instances.

The determination of an arc’s weight w(eij) is delicate. It should reflect the

minimum distance required between the origins of vi and vj (lower-left corners) in

the target layout. Figure 6 illustrates how the weights are determined. The weight

considers the target widths of m(vi) and the target space between vi and vj. The latter

must account for the existing space between vi and vj in the source layout, the wires

passing between the blocks, their specified target widths and their estimated target

spacing. Spaces overlaid by high wire density in layers of poor technology scaling

(larger than 0.7) use factor 0.8 or higher, while for good technology scaling (smaller

than 0.7) factor 0.6 is used. The resulting scaling factors of masters’ dimensions

may vary from 0.5 to 1.0, depending on their contents. This can be seen by

comparing Fig. 4a, c. While some of the masters scaled better than 0.7, a few others

got worse than 0.7. The x -position of an instance within its parent is determined by

the longest paths from v0. y -position is determined similarly by defining an

appropriate Gy (V, E) graph. Figure 7 shows the outcome of the placement

migration of a register-file block, where the illustration of the target layout (b) was

scaled up to emphasize its similarity to the source layout in (a). The cell borders of

all hierarchies are shown to illustrate the similarity of the target to the source

placement.

2.2 The interaction between placement and routing migration

As shown in Fig. 4a, wires of the same metal layer are distributed across different

levels of the hierarchy, causing ‘‘blindness’’ of physically adjacent wires belonging

to different hierarchy levels. Since the determination of masters’ target sizes takes

place bottom-up in reversed topological order, when a child master is migrated it is

not aware of other overlapping wires belonging to its ancestors. More severely,

instances of the same master may interact differently with wires of ancestors. Such

blindness is resolved in Sect. 3, provided that the dimensions of the master have

been properly set to accommodate all the overlaying wires incurred across all its
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Fig. 5 Pseudo code of placement migration

Fig. 6 Adjacency graph for placement migration

Fig. 7 Placement migration of a register-file block
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instances in the layout. The latter is the role of the placement migration described

before.

Figure 8 shows the complete migration flow and the placement–routing

interaction. It is supplemented with manual artwork by layout design experts when

automation fails to legally complete the migration. Placements migration takes

place first, followed by routing migration. There, the wire contents of the physical

metal layers are migrated layer by layer, taking into consideration delay, power and

other performance constraints. For instance, the wires involved in critical delay

paths are enforced to a certain width and spacing to reduce their resistance and

capacitance. For noise sensitive nets, extra spacing to adjacent wires are enforced to

reduce cross-coupling interference. Given a layer, the wires of each master are

migrated in masters’ reversed topological order. If it happens that a target master is

found to be too small to accommodate the constraints imposed by its internal wires,

non-feasibility is alerted. A few options exist to remedy. The size of the problematic

master and the corresponding ancestors are relaxed, the width and spacing

constraints of the problematic wires are modified, or the violations (e.g. wire shorts)

are manually fixed.

3 Routing migration

Interconnect migration is the most difficult and time consuming part of the flow.

The formal proofs of the subsequent arguments were elaborated in (Shaphir et al.

2013). Interconnect migration takes place layer by layer as shown in Fig. 8. Two

vertical wires are said to be visible if a horizontal line can be used to connect them

without being interfered by other wires. Visibility implies a planar digraph G = (V,

E), as shown in Fig. 9. Once wires’ widths and spacing are specified, their abscissa

can be computed by the longest path in G (Lengauer 1990). A longest path is used

by the compaction algorithm to detect positive cycles resulting from non-feasibility.

The input of the compaction algorithm consists of:

1. The layout hierarchy and relative block positions as defined by the source (old)

layout.

2. The visibility graph G and target wires’ widths and spacing specifications.

3. The blocks’ target sizes as determined by the placement.

The compaction aims at setting the abscissae of the wires within their blocks in

the target layout to satisfy the following constraints.

1. The layout of a master must be identical across all its instances in the target

layout, hence uniquely defined.

2. The left-to-right order of the instances is preserved across the entire layout

hierarchy.

3. The widths of the blocks in the target layout must accommodate their

descendant blocks and wires.

4. The visibility graphs are preserved.

5. Satisfy the wires’ spacing requirements in the target layout.
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Figure 10a shows the steps of the wires’ compaction algorithm.

1. Construction of the visibility graph of the entire layout. Multiple instances of

the same master within a parent block are registered.

2. Contracting the visibility graph by merging the multiple instances of a wire into

a single object. If the merged graph M is free of positive cycles then a feasible

compaction solution exists.

3. Defining a series of concise (called reduced) graphs Rif gN
1 which capture all the

essential information of the fully expanded graph. The reduced graphs are then

solved successively. A solution is a setting of nonnegative weights to the

graph’s arcs such that the above constraints are satisfied.

4. The solutions obtained in step 3 satisfy the constraints within each block, thus

representing a family of feasible solutions. Those are floated to their parents and

are used to find the family of feasible solutions for positioning the wires of the

parent master.

Fig. 8 Complete migration flow

Fig. 9 Wires positioned within a block and their visibility graph
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A feasible solution of wires’ abscissae within a master is a set of closed intervals

obtained by the flow shown in Fig. 10a. Each wire can be positioned anywhere in its

corresponding interval and the resulting layout is guaranteed to be legal. The final

abscissae of the wires are determined by solving an ILP problem. Its constraints are

the above intervals. Applying this process progressively to each master from top to

bottom (in reversed topological order) as shown in Fig. 10b, yields the entire layout.

The ILP’s objective function is defined as a weighted sum of wire spacing in an

attempt to maintain the delays of the critical nets sufficiently small. It is well known

that the coupling capacitance between adjacent wires is a predominant delay, power

and noise factor, inversely proportional to the space between wires (Moiseev et al.

2009). Nets are assigned with positive coefficients, reflecting their relative delay

criticality. Power consumption can also be minimized by weighting reflecting nets’

switching activity. The weighted sum of spaces is then proportional to the switching

power of interconnects. Nets sensitive to noise can similarly be treated.

3.1 Construction of the flat layout visibility graph

Let V be the wires and borders of a layout L. For v [ V, I(v) denotes the instance to

which v belongs, m(v) denotes the corresponding object (wire or border) of the

master, T(I) is the instance’s master, and D T Ið Þð Þ is its width in target technology.

The parent master of an instance I is P(I). A Flat Layout Visibility Graph (FLVG)

G = (V, E) is defined, satisfying the properties below.

Fig. 10 Finding of the feasibility ranges of wires’ abscissae (a) and committing for wires’ abscissae (b)
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1. The vertices V are all the wire and border objects in L. We subsequently use the

term vertex and object interchangeably.

2. A pair of wires u,v [ V visible to each other implies an arc (u,v) [ E with a

weight W(u,v) defined by the sum of three terms: half target width of u, the

required wire-to-wire spacing of the new technology, and half target width of v.

3. A pair of vertices u,v [ V, where u and v are a left border and a wire of I,

respectively, implies an arc (u,v) [ E with a weight W(u,v) defined by the sum

of half wire’s target width and half of the minimum wire-to-wire spacing of the

new technology. It ensures that minimum spacing design rule is satisfied for

adjacent wires belonging to two abutting instances.

4. Similar to 3 but u is a wire and v is a right border.

5. Right and left borders u and v, respectively, visible to each other, satisfying

P I uð Þð Þ ¼ P I vð Þð Þand I uð Þ 6¼ I vð Þ, imply an arc (u,v) [ E with a weight

W(u,v) = 0. Its role is to preserve the left-to-right instances order and avoid

their overlap.

The next property enforces the size of an instance to the size of its master.

6. Left border u and right border v, satisfying I(u) = I(v), imply two oppositely

directed arcs (u,v) [ E and (v,u) [ E with weights W u; vð Þ ¼ D T I uð Þð Þð Þ and

W v; uð Þ ¼ �D T I uð Þð Þð Þ.

The next two properties enforce an instance to entirely reside within the area of

its parent.

7. Left borders u and v satisfying T I uð Þð Þ ¼ P I uð Þð Þ imply an arc (u,v) [ E with a

weight W(u, v) = 0.

8. Right borders u and v satisfying P I uð Þð Þ ¼ T I vð Þð Þ imply an arc (u,v) [ E with a

weight W(u, v) = 0.

Figure 11a illustrates a parent master A comprising two child instances of the

same master B. A’s wires are colored in green and those of B in blue. From A’s

perspective the left-to-right order of all the wires (both blue and green) must be

preserved. Also, the green wires cannot extend beyond A’s border, whose target

size has already been determined at placement migration. Similar requirements

hold for the blue wires in B. Furthermore, relative position of the blue wires in

B must be identical in both instances, since B is unique. Figure 11b is the

corresponding FLVG. The vertical borders are represented by gray vertices,

designated by a master name indexed L or R for the left and right borders,

respectively. The oppositely directed parallel red arcs enforce the master size in

the target layout.

3.2 Merging block instances and the corresponding graph

The second step of the compaction algorithm transforms the FLVG G into a simpler

graph M obtained by merging vertices corresponding to the same wire across the

entire hierarchy. This step also adds arcs imposing similarity constraints to ensure

uniqueness of the master in the target layout. Let the layout comprise N masters.
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M is successively constructed in N steps. We say that two masters A and B satisfy a

partial hierarchical order B � A, if B is a descendant of A. The hierarchical layout

can then be represented by tree as illustrated in Fig. 12.

The construction of the graph M takes place bottom-up. The masters bi,

1 B i B N, are indexed by their partial order �. A corresponding sequence of

merged graphs Mi 1 B i B N, is implied, where M0,G. Mi is derived from Mi-1 by

merging all the vertices corresponding to the instances of the same wire or border of

bi in a single vertex, to ensures uniqueness of the target master. The weights of the

incoming and outgoing arcs of that vertex are updated according to the offset of the

instance to which the vertex belongs. The contraction significantly reduces the

number of vertices while capturing the complete spacing and size constraints.

Figure 13 is the merging pseudo code.

The procedure is working iteratively in a reversed topological order (bottom-up)

of the masters (see Fig. 10a). Let Gt = (Vt, Et) denote the flattened graph of a

master t. All the vertices v [ V induced by t’s instances across the entire layout are

replaced by a vertex vt [ Vt. Each incoming arc (u,v) (outgoing arc (v,u)) is replaced

by an arc (u,vt) (vt,u) and its weight is modified by subtracting (adding) the offset of

the instance to which v belongs. We denote by M the graph resulting by the iterative

merging transformations. G is free of positive cycles, namely, the compaction has a

feasible solution, if and only if M does. The number of vertices in M is significantly

reduced compared to G by a factor related to the average number of master’s

instances. Figure 14 illustrates the result of merging the graph in Fig. 11. The time

complexity of the merging is O Vj j þ Ej jð Þ, as each vertex and arc in G is treated

exactly once.

Fig. 11 Two-level hierarchical layout (a) and its corresponding FLVG in (b)
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3.3 Graph reduction

While number of vertices has been considerably reduced, we subsequently reduce

the number of arcs too. Reduction is accomplished successively by transforming M

in reversed topological order (bottom-up) of the masters. Iteration eliminates the

vertices corresponding to the current master. The topological ordered � defines the

sequence of reduced graphs Ri,1 B i B N, where R0,M. Ri is obtained from Ri-1.

Let v be a vertex corresponding to a wire or the vertical border of bi. An incoming

arc (u,v) and an outgoing arc (v,w) are replaced by an arc (u,w) satisfying

W(u,w) = W(u,v) ? W(v,w), thus eliminating the vertex v. If an arc (u,w) already

Fig. 12 Hierarchical layout and its corresponding tree

Fig. 13 Pseudo code for vertex merging
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exists in Ri the weight of the new arc (u,w) is set to W(u,w)/max{W(u,w),

W(u,v)?W(v,w)}. Figure 15 illustrates the reduced graph obtained from the merged

graph in Fig. 14. It follows from the planarity of the FVLG that the worst-case time

complexity of the reduction phase is O Vj jð Þ. A pseudo code of the graph reduction

is shown in Fig. 16.

3.4 Deriving an exact solution to commit wires’ positions

It was claimed that the FLVG G has no positive cycle if and only if the

corresponding merged graph M does. Assuming that M is such, it is subsequently

described how wires’ exact locations are determined by successive solutions of

small ILP for each of the masters, for which a commercial solver was used. Unlike

the merging and reduction phases which took place in reversed topological order

(bottom-up) of the masters, the commitment of exact locations takes place in direct

topological order (top-down). This is the primary advantage of the algorithm. While

past hierarchical compactors worked on the entire flattened layout, thus solving a

huge LP or ILP, this algorithm solves a series of far smaller ILPs, while exploring

exactly the same solution space as the ‘‘flattened’’ ILP does.

The ILP problems are solved for the masters bi,1 B i B N, from bN (root) down

to b1 (leaf). After the ILP problem for bN-j has been solved, the exact locations of

the wires (values of ILP variables) in each of the masters bN,bN-1, ... ,bN-j are

determined. Recall that bN-j-1 implied a corresponding reduced graph bN-j-1.

Therefore, only those variables (wires locations) related to bN-j-1 are left to be

determined, where a feasible solution is guaranteed. Appropriate pseudo code is

shown in Fig. 17. For the special case of deriving a solution for the root master bN

we define a reduced graph RNþ1, VNþ1;ENþ1ð Þ, where VN?1 is the set of vertices

that represent the borders of bN, and ENþ1 ¼ ;. Note that r(v) is determined for

VN?1 since the borders of bN are known.

An arc of Ri-1 implies a constraint of the ILP problem. Since the exact locations

of Vi’s vertices have already been determined, only the arcs of Ei-1\Ei are of

interest. An arc (u,v) implies a constraint of the ILP if the exact location of both

vertices have not yet been determined, i.e., both vertices belong to Vi-1\Vi. Each

Fig. 14 The contracted graph resulting after merging the graph in Fig. 11
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vertex is then represented by an ILP variable. If the exact location of one vertex has

already been determined, there is no corresponding ILP variable and the exact

location r is used.

Figure 18 illustrates the relation between a reduced graph and its corresponding

ILP. The green vertices represent the wires of master A, whose locations have

already been determined upon the solution of the ILP corresponding to RA. Their

committed locations are specified next to the vertices. The positions of the gray

vertices, representing vertical borders, have also been determined, since their

vertices and the parallel arcs enforcing A’s size (as determined by placement), also

exist in RA. The reduced graph RB is illustrated in (a), for which the ILP variables

are those corresponding to the wires of master B. The constraints imposed on arc

lengths are translated into the inequalities in (b).

Fig. 15 The graph obtained by reducing the graph in Fig. 13

Fig. 16 A pseudo code of graph reduction
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4 Experimental results

The following results have been obtained for Intel’s 65 nm process technology

(Tock) microprocessors, branded as Core 2 Duo (see Tock in Fig. 1), where the

interconnecting wires have been migrated into 45 nm process technology (Tick).

The examples below incorporate the results for several blocks, each comprising

thousands of nets. The quality of such migration is determined by the performance

of the underlying circuits in the target layout. The migration targeted delay

reduction of 0.7, which is X1.4 clock frequency speedup.

Wire widths and line-to-line spacing specifications have been derived from the

Elmore delay model, based on the electrical parameters of the 45 nm technology.

The positive cycles discovered by the algorithm have been resolved by reducing

wire widths and spaces of vertices and arcs involved in the positive cycles.

Although such relaxations resolves the problems and legalized the positions of

wires, delay violations due to resistance and coupling (line-to-line) capacitance

increase may occur. Those are later resolved by VLSI design techniques such as

using stronger circuit drive or re-timing (Weste and Harris 2005).

Fig. 17 An ILP solution for positioning the wires of a master

Fig. 18 A reduced graph is in (a) and the corresponding ILP in (b)
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Figure 19 depicts how the target-to-source delay ratio, measured by Elmore

delay model, is scattered around 0.7. As shown, some of the nets did not meet that

goal, having higher ratio. Fortunately, the delays of the majority of those are much

smaller than the target clock cycle, so they do not impose any problem. Only those

encircled required further treatment in the design to avoid timing violations. Here

lays the major advantage of automatic layout migration; it delivers satisfactory

performance for the majority of the interconnects, leaving a relatively small

percentage (less than 10 %) for further fix-up by engineering effort.

The experimental results for a set of nine blocks and are summarized in Table 1.

For each block the number of vertices and arcs in its corresponding FVLG are

specified. Next are shown the number of vertices and arcs in the merged graph. The

computational efficiency is demonstrated by the column specifying the largest ILP

problem incurred by the series of the graph reductions. The ILP column shows

reductions of the problem sizes by one to two orders of magnitude compared to the

flattened layout. The computational efficiency premise is also shown in the last

column. To grasp the runtime that could be obtained by using the algorithms in

(Burns and Newton 1987; Burns and Feldman 1998; Yao et al. 1993; Wang and Lai

2001; Fang and Zhu 2004), the step of contracting of all the instances of a master

into a single node was skipped. This effectively turns the algorithm to behave

similarly to those mentioned in the introduction. A runtime speedup of one to two

orders of magnitude is shown.

Figure 20 illustrates the area scaling distribution of all 601 master cells

comprising the block of experiment 9. The area scaling of the top-level block is

specified for each experiment. By Moore’s Law 0.5 area scaling could be expected,

but as mentioned earlier, scaling factors vary in a wide range.

5 Conclusions

A cell-based layout migration algorithm for hard-IP reuse of high-end VLSI

processors was presented. It took advantage of the natural separation of the physical

Fig. 19 Delay results of net in target layout versus source layout
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layout generation into placement and routing phases. Hierarchical-based algorithms

have been developed and combined in a design flow that enabled the migration of

full chips across several process technology generations. The algorithm takes full

advantage of the inherent hierarchy built into VLSI designs. By applying a series of

transformations, the underlying computational problems have been considerably

reduced by one to two orders of magnitude, making the solution of large problems

feasible.

Although compaction algorithms were developed at the early EDA days for

simple design rules and linear technology scaling, compaction approach is still

useful for today’s nanometer-scale design rules. The enforcement of discrete sizes

requires the usage of discrete optimization methods such as ILP. Another possible

Table 1 Tests statistics—size of graphs, area scaling and runtime comparisons

Test

No.

FLVG

vertices

FLVG

arcs

Merged

graph

vertices

Merged

graph

arcs

Variables in

largest ILP

problem

Reduced

to FLVG

ratio

Area

scaling

Hierarchical to

flattened

runtime ratio

1 1,511 5,755 499 2,249 302 0.2 0.44 0.102

2 2,064 8,456 1,687 7,130 598 0.29 0.49 0.125

3 4,457 16,890 1,253 6,101 434 0.098 0.46 0.125

4 12,928 55,892 2,535 19,524 386 0.03 0.50 0.096

5 23,020 106,554 4,683 40,334 1,561 0.0,678 0.55 0.075

6 29,714 109,212 4,205 16,255 1,173 0.0395 0.47 0.048

7 45,964 177,946 5,963 24,928 1,308 0.0284 0.50 0.034

8 62,944 248,915 7,850 44,963 1,277 0.0202 0.58 0.049

9 73,005 294,479 9,455 63,737 1,420 0.0194 0.54 0.033

Fig. 20 Area scaling distribution of master cells
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solution is to apply a dynamic programming, as done in (Moiseev et al. 2010) for

flat layouts. This still requires further development to support hierarchy. There may

also be wires that will have no solution, so those must be left for later manual fixes.
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