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a b s t r a c t

Fueled by Moore's Law, VLSI market competition and economic considerations dictates the introduction
of new processor's microarchitecture in a two-year cycle called “Tick-Tock” marketing strategy. A new
processor is first manufactured in the most advanced stable process technology, followed in a one-year
delay by introducing chips comprising same microarchitecture but manufactured in a newer scaled
process technology, thus allowing higher production volumes, better performance and lower cost. Tick-
Tock is enabled by the automation of chip's layout conversion from an older into a newer manufacturing
process technology. This is a very challenging computational task, involving billions of polygons. We
describe an algorithm of a hierarchy-driven optimization method for cell-based layout conversion used
at Intel for already several product generations. It transforms the full conversion problem into successive
problems of significantly smaller size, having feasible solutions if and only if the full-chip problem does.
The proposed algorithm preserves the design intent, its uniformity and maintainability, a key for the
success of large-scale projects.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The design of high-end full-custom microprocessors such as
those of Intel, AMD and IBM, is a very complex engineering task,
involving hundreds of man-years efforts. Hierarchical design
methodology is a key in achieving product specifications and
time-to-market requirements, which otherwise could not be
met. Fueled by Moore's Law [1], market competition and economic
considerations dictate the introduction of new processor's micro-
architecture in a two-year cycle, in the so-called “Tick-Tock”
strategy [2] as illustrated in Fig. 1.

The Tick-Tock development strategy delivers every two year a
new microarchitecture manufactured in the most advanced stable
technology. This is called “Tock”. It is then followed in about one-
year delay by a “Tick” phase, delivering chips of the same
microarchitecture as the recent Tock but in a new scaled manu-
facturing process technology, thus allowing higher production
volumes, better performance and lower cost. An essential part of
the Tick phase is the conversion of the underlying physical layout,
comprising billions of polygons, into the new technology. Such
conversion is known in VLSI jargon as hard-IP reuse [3]. An enabler
for meeting this Tick-Tock interlacing is therefore the automation

of chip's layout conversion from older into newer technology. Such
automation is a very challenging computational task, involving
billions of polygons that must satisfy complex geometric rules.

The polygons conversion is carried out by layout compaction
algorithms. Those have been developed since the early days of
VLSI electronic design automation (EDA) and a comprehensive
description of various algorithms can be found in [4,5]. The
compaction describes the positional relations of the polygons of
the source layout aimed at conversion, by a directed graph, called
the constraints graph. Its vertices represent edges of polygons and
arcs represent left-to-right (bottom-to-top) adjacency and visibi-
lity relations. The arcs are assigned weights corresponding to the
minimal sizes and spacing design rules of the new technology. The
problem of sizing and positioning of the polygons in the new
target layout is to find the smallest possible area into which the
layout can legally fit.

The most general form of compaction involves moving the
polygons of the layout in the x- and y-coordinates simultaneously,
called two-dimensional (2D) compaction that was shown to be
NP-complete [13,14]. Compactors therefore decompose the 2D
problem into an alternating sequence of independent one-
dimensional (1D) compaction steps, each changes only one set of
coordinates. 1D compaction can be solved efficiently with longest
path algorithms [4,5]. Polygons not on the critical paths are
positioned such that some cost reflecting a design goal (e.g.,
performance, sensitivity for manufacturing defects, among a few
others) is minimized. A heuristic solution of the 2D problem was
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proposed in [15] where the problemwas first solved by alternating
1D compactions. The layout was then relaxed by introducing extra
jogs into the wires to enable further compression of the layout. In
today's technologies which require high regularity and uniformity
of the interconnecting wires, jog insertions are prohibited since
that result in performance degradation and manufacturing yield
loss. The work in [16] also showed the NP completeness of the 2D
problem and proposed a branch-and-bound search algorithm. It is
suitable for very small layouts, but impractical for the large-scale
problems arising in full-chip compaction. The 2D problem was
studied also in the context of graph-drawing [17,18], leading to
similar consequences on its difficulty. To the best knowledge of the
authors, the EDA industry-scale compactor in [10] is 1D. It allows
the user to control the compaction iterations by specifying an
appropriate parameter to be either x-y-x or y-x-y. Another EDA
compaction tool described in [5] that was used for the layout
migration of a full-scale microprocessor is also 1D.

Traditional compaction algorithms are flat, suited for relatively
small layouts comprising up to a few tens of thousands of
polygons. With the advancement of VLSI technology in the 90s
to integration of few million transistors on a chip, design meth-
odology moved towards more standardization, modularity and re-
use, making chip structure hierarchical. In parallel, design rules
became more complex, which altogether made layout migration a
computation challenge (henceforth we use the terms compaction
and migration interchangeably).

Algorithms and EDA vendor tools supporting hierarchy were
proposed in [6–10]. Compaction creates unique blocks (also called
modules or cells), which cannot be shared and re-used among
different layouts. Therefore, although those compactors maintain
layout hierarchy, the duplication and layout mutation same logic
blocks is a major disadvantage that today's designs cannot afford.
Thus, a new layout migration technology called cell-based compac-
tion is in order. It uses a common, manually designed, standard-
cell library, which is optimized regardless of its instances in the
entire layout. Cell-based migration has the problem of creating a
huge compaction constraints graph incorporating all the instances
of all blocks, which is then translated into a huge optimization
problem whose solution may take days or even weeks of compu-
tation time. This paper reduces the size of the compaction in one
to two orders of magnitude.

The work of [6] was probably the first to address layout
hierarchy. It ensured that the modularity of the target layout will
stay similar to that of the source layout. It could handle efficiently
small layout in the scale of tens to hundreds transistors. It did not
take advantage of the repetitive instantiation of the same cells to
reduce computation complexity, which our work does. This is a
key to efficiently migrate layouts at chip scale.

The work in [7] handled larger blocks comprising hundreds to
thousands transistors and was proven on real IBM design. Its main
drawback is being tailored to control-logic, comprising two-levels

of hierarchies: leaf-cells and the entire block. Moreover, same leaf-
cells in different blocks were in-place compacted, resulting in
various layout mutations of the same logic cell. This prohibits cell-
level electrical characterization, a key for efficient timing analysis.
Rather, timing analysis must take place at transistor-level, a big
design effort overhead. Our work in contrast supports any hier-
archy depth, making it useful for custom data-path and register-
file design styles, comprising many levels of layout hierarchies.
Moreover, our migration flow is cell-based, enabling the usage of
standard-cell library with all the advantages of modular design
and efficient timing analysis.

The authors of [8] claimed for cell-based layout compaction.
Their work emphasized the pitch-matching of cells and heavily
relied on the slicing structure of the layout. This effectively makes
the algorithm useful for two-level place and route layout style as
in [8], but inadequate for other layout styles mentioned above. As
all the other hierarchical compactors, the cells are in-place
compacted, prohibiting the advantages of real cell-based design.

The work in [9] took advantage of the special linear program-
ming matrix form occurring in solving the layout constraints. It
supports hierarchy, but as other works, the leaf-cells are com-
pacted in-place, a drawback mentioned above. It was also proven
on problems comprising only few thousands of variables and
constraints, which is impractical for chip-scale problems.

The above works evolved later into large-scale hierarchical
compaction tools availed by an EDA vendor [10], used successfully
by the industry. Intel used such tools for several process genera-
tions [3,19], from 130 nm, through 90 and 65, to 45 and 32 nm, in
the Tick-Tock cadence shown in Fig. 1. Unfortunately, the tool in
[10] still in-place compacts leaf-cells, thus prohibiting the advan-
tages of a real cell-based design. Moreover, while all past works
worked on the entire flattened layout, thus solving huge problems,
our algorithm is successively solving a series of far smaller
problems, but still exploring the entire solution space.

Interconnect migration addressed in this paper nicely fits the
1D paradigm as illustrated in Fig. 2. Due to the uniform long-
itudinal and latitudinal nature of wires, which are the main
subject of the compaction, there is not much optimality loss
compared to 2D. The transformation applied to wires, whose
target widths are determined prior to compaction. It is an x-shift
of vertical layers and a y-shift of horizontal layers. Shifted wires
are hooked by vias at their ends to perpendicular wires residing in
an adjacent layer below and above. It is therefore straightforward
to maintain connectivity after 1D iteration by stretching the
perpendicular wires to the new coordinate of their ends.

The layout design rules imposed by modern VLSI process
technologies become more and more complex and their number
may reach a few hundreds. Fortunately, the majority of the
increase occurs in the lower layers involving transistors and their
interconnections used within logic cells, whose layouts are
migrated manually.

Fig. 1. “Tick-Tock” marketing strategy.

E. Shaphir et al. / INTEGRATION, the VLSI journal 47 (2014) 161–174162



Author's personal copy

The migration problem discussed in this paper does not touch
those layers, but handles the higher metal layers used to inter-
connect logic cells. For the latter, the primary design rules are
minimal width, minimal spacing, and the metal coverage of a via.
While the target width of wires is set by performance considera-
tions prior to applying compaction, their spacing is solved by the
compaction algorithm. Vias are formed at the incidence of ortho-
gonal wires as shown in Fig. 2. The orthogonal wire stretching
which maintains signal connectivity, guarantees that vias can
safely be landed. It may happen that the resulting layout still has
some design rule violations. Those are manually fixed at a later
stage of the design.

The main contribution of this paper is in presenting an
algorithmic paradigm for cell-based compaction of complete VLSI
chips, which has been proven in real industrial projects. Although
compaction algorithms have been thoroughly studied and imple-
mented in the past, their computational capabilities fall short
compared to the demand of modern chips and design projects. The
novelty of this work is in exploiting the hierarchical structure of
VLSI chips to achieve orders of magnitude improvement in
computation time. The correctness of this approach is rigorously
proven. We present time and space efficient bottom-up and top-
down migration algorithms with emphasis on wires (also called
interconnections). This is the most difficult part of cell-based
compaction. The rest of the paper is organized as follows.
Section 2 describes the general framework of the migration
algorithm. Section 3 presents the interconnect migration problem
and outlines its solution by using a suitable graph-theoretic model.
Section 4 provides the mathematical foundations of the compac-
tion algorithm. Section 5 presents experimental results obtained
for Intel's VLSI blocks designed in 45 nm technology. We conclude
with some challenges for further research.

2. The placement-routing handshake

Due to their high complexity, VLSI chips are built hierarchically.
The entire chip corresponds to the top of the hierarchy, while at
the bottom there are the individual transistors. Transistors are
then connected with each other in standard cells, implementing
basic logic and memory functions. Those are connected together in
more complex functional blocks such as adders, multipliers, and
memory arrays, among others. Functional blocks are connected by
wires in higher level functions such as Arithmetic-Logic Units

(ALUs), control units, etc. The top of this hierarchy are DSP,
networking, communication and sensor modules, where their
connection constitutes the so called System on Chip (SoC), occupy-
ing the entire silicon die. Contemporary VLSI technologies may
comprise a dozen metal layers carrying a huge number of inter-
connecting wires. Wires residing on even layers all have the same
direction (e.g., vertical) while those residing on odd layers are
orthogonal. Mixing both directions on the same layers is
forbidden.

Fig. 3(a) illustrates a typical VLSI layout comprising several
blocks placed within each other, thus constituting the hierarchy.
Each block has IO ports through which it is connected by wires to
other blocks (we use the terms wires and interconnections
interchangeably). The wires connecting to each other child blocks
placed within a parent, and to the IO ports of their parent, belong
to the parent. The different colors of blocks' borders represent
levels of the hierarchy as illustrated in Fig. 3(b). Notice that a block
may be placed multiple times within different parents. The unique
definition of a block is called a master, and its specific occurrence
in the design is called an instance (we use the terms master and
block interchangeably). The origin of a master is associated to its
lower-left corner. Instances are placed within their parent at some
x and y offsets. Instances place in a common parent cannot overlap.

The wires illustrated in Fig. 3(a) reside on two adjacent metal
layers where wires are connected at their incidence point by a VIA.
The solid wires interconnect black-border children within their
green-border parent. The dotted wires are connecting orange-
border children within their purple-border parent. Wires connect-
ing orange-border blocks are not shown. Notice that both solid and
dotted wires of the same color belong to the same physical layer
and are therefore not allowed to touch each other as otherwise an
electrical short occurs. Wires residing in the same layer must
satisfy minimum width and spacing rules, as otherwise a mal-
function at manufacturing may occur. Extra widths and spacing
may be specified per wire to satisfy design goals as performance,
noise immunity, small IR drop and reliability.

The progression from old to new technology is featuring a
0.7 average scale of all lateral dimensions, thus enabling to double
the numbers of transistors per silicon area. This is the well-known
Moore's Law, governing the VLSI evolution for already five decades [1].
Until late-90s, the 0.7 scaling equally applied to all lateral dimensions
of the physical shapes over all layers. VLSI layouts could therefore be
converted to newer technology by a purely linear transformation
called “optical shrink”. The linear scaling has been broken in the last

Fig. 2. A 2D compaction by successive 1D compactions. (a) original layout, (b) after x compaction, (c) after y compaction. (For interpretation of the references to color in this
figure, the reader is referred to the web version of this article.)
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fifteen years due to many technology difficulties, which are not
elaborated here. Layout conversion has therefore turned into a
strongly non-linear problem. Performance requirements of specific
electrical signals (called nets) may only worsen the nonlinearity by
introducing extra geometric constraints.

3. Algorithm framework for migration

Due to its complexity, the generation of the physical layout of
VLSI systems is traditionally performed in two steps: placement
and routing [4]. Our migration algorithm follows the same pace:
the placement of the instances of all the masters are migrated first,
and then migration of all their underlying interconnections takes
place. This paper is about the interconnections migration, but for
the sake of completeness the placement migration is briefly
described.

The target of the placement in Fig. 3(a) is shown in Fig. 3(c).
Placement migration is aimed at three goals:

1. Producing a similar scaled layout, preserving all the left-to-
right and bottom-to-top adjacency relations between its block
instances.

2. Obtaining a small, compact layout, reflecting the 0.7 average
Moore's Law scaling.

3. Target placement must accommodate the target width and
spacing of the underlying wires whose migration will follow in
a later step.

Placement migration takes place by reversely topologically
ordering the masters according to the hierarchy tree. Masters
whose instances reside at tree's leaves are migrated first, while the
whole layout, corresponding to the top master, is migrated last. It
follows by definition that once a master is addressed, all its

descendants in the hierarchy tree have already been migrated,
and their width and height are known. Setting the target dimen-
sions of the currently migrated master is done by placing its child
instances in relatively the same positions to each other as
illustrated in Fig. 3(c). Note that the instances' masters are already
migrated, thus having target dimensions defined.

To determine the target size of a block such that it will
legally accommodate the migrated wires, its child blocks and its
wire density in the source layout at each layer are taken into
account. Wire densities are weighted by the scaling factor
of their layer. The scale factor of blocks having high wire density
in layers of poor scaling factor (larger than 0.7) may target
0.8 and higher. Blocks with high wire density in layers of good
scaling factor (smaller than 0.7) may target 0.6 and lower.
The locations of the child blocks within their parents are deter-
mined similarly by considering the wires residing between the
blocks in the source layout. The resulting scaling factors of
masters' dimensions may vary from 0.5 to 1.0, depending
on their contents. This is shown by comparing Fig. 3(a) and (c).
While some of the masters scaled down better than 0.7, a few
others got worse than 0.7. We shall not further discuss the
placement stage, which is beyond the scope of this paper, but
rather address the delicate issues arising by wires migration
discussed in the next sections.

As shown in Fig. 3(a), wires of the same metal layer are
distributed among different levels of the hierarchy. It therefore
happens that physically adjacent wires are “blind to each other” at
some step of the bottom-up migration algorithm. Since the setting
of masters' target sizes takes place in reversed topological order, at
the time the size of the child master is being set, it is not aware of
other overlapping wires belonging to its ancestors. More severely,
instances of the same master may interact differently with wires
of ancestors. Such blindness is resolved by the migration algorithm
discussed below, provided that the dimensions of the master are

Fig. 3. A four-level hierarchical layout in old technology is shown in (a), its corresponding hierarchy tree in (b) and the target layout in new technology in (c). (For
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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set sufficiently large to legally accommodate all the overlaying
wires incurring across all its instances in the layout.

Fig. 4 shows the entire layout migration flow and its
placement-routing handshake. It mixes optimization algorithms
as those described in the paper, with manual artwork made by
layout design experts. The placements of masters are migrated
first as described above. Then routing migration is invoked, where
the wire contents of the physical metal layers are migrated layer
by layer, taking into consideration delay, power and other perfor-
mance constraints. For instance, the wires of a delay critical net are
enforced to a certain width and spacing to reduce their resistance
and capacitance. For noise sensitive nets, spaces to adjacent wires
are enforced, to reduce interference. Given a layer, the wires of
each master are migrated in a reversed topological order. If it
happens that the dimensions of a master could not accommodate
the constraints imposed by its internal wires, non-feasibility is
alerted. To mitigate few options exist. The dimensions of the
problematic master and the corresponding ancestors are relaxed,
the width and spacing constraints of the problematic wires are
modified, or the violations (e.g. wire shorts) are manually fixed.

3.1. Modeling interconnects by a visibility graph

The optimization problem of interconnect migration is handled
layer by layer. Two vertical wires are said to be visible if a
horizontal line can be used to connect them without being
intersected by any other wire. The adjacency relations between
the wires are described by a directed graph G¼ ðV ; EÞ. Its vertices
represent wires, and an arc connects two vertices if the corre-
sponding wires are visible to each other, directed from the wire
with the smaller abscissa to the wire with the larger abscissa. Fig. 5
illustrates several wires and their visibility graph. Once the widths
of the wires and their spacing are specified, their abscissa can be
computed by the longest path in G [4]. A longest path algorithm is
used later by the compaction algorithm to detect positive cycles
resulting from non-feasibility.

3.2. Description of the algorithm

The input of the compaction algorithm consists of:

1. The layout hierarchy and relative block positions as defined by
the source (old) layout.

2. The visibility graph G defined by the wires in the source layout
and their width and minimum spacing specifications in the
target (new) layout.

3. The sizes of the blocks in the target layout as determined by the
placement.

The compaction algorithm is aimed at setting the abscissae of
the wires within their blocks in the target layout to satisfy the
following constraints.

1. The layout of a master must be identical across all its instances
in the target layout, hence uniquely defined.

2. The left-to-right order of the instances is preserved across the
entire layout hierarchy.

3. The widths of the blocks in the target layout must accommo-
date their descendant blocks and wires.

4. The visibility graphs are preserved.
5. Satisfy the spacing requirements in the target layout.

Fig. 6 shows the steps of the compaction algorithm.

1. Construction of the visibility graph of the entire layout. Multi-
ple instances of the same master within a parent block are
registered.

2. Contracting the visibility graph by merging the multiple
instances of a wire into a single object. If the merged graph M
is free of positive cycles then a feasible compaction solution exists.

3. Defining a series of concise (called reduced) graphs ðRiÞN1 which
capture all the essential information of the fully expanded
graph. The reduced graphs are then solved successively. A
solution is a setting of nonnegative weights to the graph's arcs
such that the above constraints are satisfied.

4. The solutions obtained in step 3 satisfy the constraints within
each block, thus representing a family of feasible solutions.
Those are floated to their parents and are used to find the
family of feasible solutions for positioning the wires of the
parent master.

Fig. 4. Complete layout migration flow.

Fig. 5. Wires positioned within a block and their visibility graph.

Fig. 6. Finding of the feasibility ranges of wires' abscissae.
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A feasible solution of wires' abscissae within a master is a set of
closed intervals obtained by the above flow shown in Fig. 6. Each wire
can be positioned anywhere in its corresponding interval and the
resulting layout is guaranteed to be legal. The final abscissae of the
wires are determined by solving a linear program (LP). Its constraints
are the above intervals. Applying this process progressively to each
master from top to bottom (in reversed topological order) as shown in
Fig. 7, yields the entire layout.

The LP's objective function is defined as a weighted sum of wire
spacing in an attempt to maintain the delays of the critical nets
sufficiently small. It is well known that the coupling capacitance
between adjacent wires is a predominant delay, power and noise
factor, and it is inversely proportional to the space between wires
[11]. Each net is assigned with a positive coefficient, reflecting its
relative delay criticality. The LP's objective function can also
minimize the power consumption by assigning to each wire a
coefficient reflecting its switching activity. The weighted sum of
spaces is then proportional to the power consumed by intercon-
nect switching. Nets sensitive to noise can be similarly treated.
Combinations of the above design considerations were discussed
in [11].

3.3. Construction of the flat layout visibility graph

Let V be the wires and borders of a layout L. For vAV , IðvÞ
denotes the instance to which v belongs, mðvÞ denotes the
corresponding object (wire or border) of the master, TðIÞ is the
instance's master, and DðTðIÞÞ is its width in target technology.
The parent master of an instance I is PðIÞ.

A Flat Layout Visibility Graph (FLVG) G¼ ðV ; EÞ is defined and
satisfies the properties below.

1. The vertices V are all the wire and border objects in L. We
subsequently use the term vertex and object interchangeably.

2. A pair of wires u; vAV visible to each other implies an arc
ðu; vÞAE with a weight Wðu; vÞ defined by the sum of three
terms: half target width of u, the minimum wire-to-wire
spacing of the new technology and half target width of v.
Wðu; vÞ can be increased if due to design considerations.

3. Each pair of vertices u; vAV , where u is a left border of I and v is
a wire of I, implies an arc ðu; vÞAE with a weight Wðu; vÞ
defined by the sum of half wire's target width and half of the
minimum wire-to-wire spacing of the new technology. This
ensures that minimum spacing design rule is satisfied for
adjacent wires belonging to two abutting instances.

4. Similar to 3 but u is a wire and v is a right border.
5. Right and left borders u and v, respectively, visible to each

other, satisfying PðIðuÞÞ ¼ PðIðvÞÞ and IðuÞa IðvÞ, impose an arc
ðu; vÞAE with a weight Wðu; vÞ ¼ 0. The role of which is to

preserve the left-to-right instances order avoid their overlap.
The role of the next property is to enforce the size of an
instance to the size of its master.

6. Left border u and right border v, satisfying IðuÞ ¼ IðvÞ, imply two
oppositely directed arcs ðu; vÞAE and ðv;uÞAE with weights
Wðu; vÞ ¼DðTðIðuÞÞÞ and Wðv;uÞ ¼ �DðTðIðuÞÞÞ.
The role of the next two properties is to enforce an instance to
entirely reside within the area of its parent.

7. Two left borders u and v satisfying TðIðuÞÞ ¼ PðIðvÞÞ imply an arc
ðu; vÞAE with a weight Wðu; vÞ ¼ 0.

8. Two right borders u and v satisfying PðIðuÞÞ ¼ TðIðvÞÞ imply an
arc ðu; vÞAE with a weight Wðu; vÞ ¼ 0.

Figs. 8 and 9 describe pseudo codes to construct a FLVG.
Fig. 10(a) illustrates a parent master A comprising two child

instances of the same master B. The wires belonging to master A
are colored in green while those of master B are colored in blue.
From A's perspective the left-to-right order of all the wires (both
blue and green) must be preserved. Also, the green wires cannot
extend beyond A's border, whose target size has already been
determined at placement phase. Similar requirements hold for the
blue wires in. Furthermore, relative position of the blue wires in B
must be identical in both instances, since B is a unique master.
Fig. 10(b) is the corresponding FLVG. The vertical borders are

Fig. 7. Committing for wires' abscissae.

Fig. 8. Introduction of wire-to-wire and wire-to-border arcs into FLVG.

Fig. 9. Introduction of border-to-border arcs into FLVG.

Fig. 10. Two-level hierarchical layout (a) and its corresponding FLVG in (b). (For
interpretation of the references to color in this figure, the reader is referred to the
web version of this article.)
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represented by gray vertices, designated by a master name with
index L or R for the left and right borders, respectively. The
oppositely directed parallel red arcs enforce the master size in
target layout.

3.4. Merging block instances

The second step of the compaction algorithm transforms the
FLVG G into a simpler graph M obtained by merging vertices
corresponding to the same wire in its various instances across
the entire hierarchy. This step also adds arcs taking care of the
similarity constraints to ensure uniqueness of the master in the
target layout. Assuming that the layout comprises N masters, M is
successively constructed in N steps. We say that two masters A and
B satisfy the partial order relation A!B, called hierarchical order, if
A is a descendant of B. The hierarchical layout is then partially
ordered and the order can be represented by tree. Fig. 11 illustrates
a hierarchical layout and its corresponding tree.

3.5. Graph merging

The construction ofM starts from the hierarchy tree leaves. Th e
masters bi;1r irN, are indexed by their partial order ! .
A corresponding sequence of merged graphs Mi;1r irN, is
implied, where M09G. Mi is generated from Mi�1 by merging
all the vertices corresponding to the instances of the same wire or

border of bi into a single vertex to ensures uniqueness of the target
master. The weights of the incoming and outgoing arcs of that
vertex are updated according to the offset of the instance to which
the vertex belongs. This merging significantly reduces the number
of vertices while capturing the complete spacing and size
constraints.

Fig. 12 presents the merging pseudo code. The procedure is
working iteratively in a reversed topological order (bottom-up) of
the masters (see Fig. 6). Let Gt ¼ ðVt ; EtÞ denote the flattened graph
of a master t. All the vertices vAV induced by t's instances across
the entire layout are replaced by a vertex vtAVt of the master t.
Each incoming arc ðu; vÞ (outgoing arc ðv;uÞ) is replaced by an arc
ðu; vtÞ(ðvt ;uÞ) and its weight is modified by subtracting (adding) the
offset of the instance to which v belongs. We denote by M the
graph resulting by the iterative merging transformations. It is
subsequently proven that G is free of positive cycles, namely, the
compaction has a feasible solution, if and only if M does. Note that
the number of vertices in M is significantly reduced compared to G
by a factor related to the average number of master's instances.
Fig. 13 illustrates the resulting graph after the merging is applied
to the graph in Fig. 10. The time complexity of the merge phase is
OðjV jþjjEÞ, as each vertex and arc in the graph is treated
exactly once.

3.6. Graph reduction

So far the number of vertices has been cut. In the following we
reduce the number of arcs. Similar to merging, it is done by
employing successive transformations toM in reversed topological
order (bottom-up) of the masters. Iteration eliminates the vertices
corresponding to the current master. Let the masters bi;1r irN,
be topologically ordered by ! . A corresponding sequence of
reduced graphs Ri;1r irN, is produced, where R09M. The graph
Ri is obtained from Ri�1. Let v be a vertex corresponding to a wire
or the vertical border of bi. An incoming arc ðu; vÞ and an outgoing
arc ðv;wÞ are replaced by an arc ðu;wÞ satisfying Wðu;wÞ ¼
Wðu; vÞþWðv;wÞ, thus eliminating the vertex v. If an arc ðu;wÞ′
already exists in Ri the weight of the new arc ðu;wÞ is set to
Wðu;wÞ ¼ max fWðu; vÞþWðv;wÞ;Wðu; vÞ′g. A pseudo code of the
graph reduction is shown in Fig. 14. Fig. 15 illustrates the reduced
graph obtained from the merged graph in Fig. 13. It follows from
the planarity of the FVLG that the worst-case time complexity of
the reduction phase is OðjV jÞ.

3.7. Deriving an exact solution

The compaction problem has a feasible solution if its corre-
sponding constraints graph has no positive cycle. The positive
cycle is reported to the placement program and a relaxation of
master's children placement takes place (see Fig. 4). It was also
claimed that the FLVG G has no positive cycle if and only if the
corresponding merged graph M has no positive cycle (proven in
Section 4). Assuming that M is such, we subsequently describe

Fig. 11. Hierarchical layout and its corresponding tree.

Fig. 12. Pseudo code for vertex merging.

Fig. 13. The contracted graph resulting after merging the graph in Fig. 10. (For
interpretation of the references to color in this figure, the reader is referred to the
web version of this article.)
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how the exact locations of the wires can be determined by
successively solving a small LP for each of the masters. Unlike
the merging and reduction phases which took place in reversed
topological order (bottom-up) of the masters, the commitment of
exact locations of wires takes place in direct topological order

(top-down). Here is where the major advantage of our algorithm
lays; while past hierarchical compactors worked on the entire
flattened layout, thus solving a huge LP, our algorithm is succes-
sively solving a series of far smaller LPs, exploring exactly the same
solution space as the “flattened” LP does (proven in Section 4).

The LP solutions take place in the topological order of
bi;1r irN, from bN (root) down to b1 (leaf). After the LP problem
for bN� j has been solved means the exact location of the wires
(values of LP variables) in each of the masters bN ; bN�1;…; bN� j is
determined. Recall that bN� j�1 implied a corresponding reduced
graph RN� j�1. Therefore, only those variables (wires locations)
related to bN� j�1 are left to be determined, where a feasible
solution is guaranteed. Appropriate pseudo code is shown in
Fig. 16. For the special case of deriving a solution for the root
master bN we define a reduced graph RNþ1 ¼ ðVNþ1; ENþ1Þ, where
VNþ1 is the set of vertices that represent the borders of the master
bN and ENþ1 ¼∅. Note that sðvÞ is determined for VNþ1 since the
borders of bN are known.

The locations of the wires represented by Vi in the pseudo code
in Fig. 16 have already been determined and the code determines
the locations of the wires of Vi�1 n Vi. An arc of Ri�1 implies a
constraint of the LP problem. Since the exact locations for the
vertices of Vi have already been determined, only the arcs of Ei�1 n
Ei are of interest. An arc ðu; vÞ implies a constraint of the LP in line
3 if the exact location of both vertices have not yet been
determined (i.e. both vertices are in Vi�1 n Vi). In this case each
vertex is represented by a variable of an LP problem. If the exact
location of one vertex v has already been determined, there is no
corresponding variable in the LP, but the exact location sðvÞ is used
(lines 5 and 7).

Fig. 17 illustrates the relation between a reduced graph and its
corresponding LP. The green vertices represent the wires of master
A, whose locations have already been determined upon the
solution of the LP corresponding to RA. Their committed locations
are specified next to the vertices. The positions of the gray vertices,
representing vertical borders, have also been determined, since
their vertices and the parallel arcs enforcing A's size (as deter-
mined by placement), also exist in RA. The reduced graph RB is
illustrated in (a), for which the LP variables are those correspond-
ing to the wires of master B. The constraints imposed on arc
lengths are translated into the inequalities in (b).

4. Correctness of the migration algorithm

We subsequently show that if there is a legal positioning of the
wires satisfying all the constraints mentioned above, the algorithm
described in Section 3 will find one by applying LP. This section
states few propositions leading to the equivalence between a
layout and its various graph representations. The proofs can be
found in the appendix. The reader is referred to the FLVG
definitions in 3.3.

4.1. Layouts and graphs

Let V be the wires and borders of a layout L and G¼ ðVG; EGÞ be
the corresponding FLVG. A Solution s of L is a functions : V-ℝ. We
denote by Zðu; vÞ the spacing imposed in the target layout between
u; vAV(to be distinguished from Wðu; vÞdefined in the FLVG). A
solution s implies a feasible layout if for each u; vAV the condition
sðvÞ�sðuÞZZðu; vÞ holds. The coordinate sðpÞ of the wire p is the
abscissa of its center. The offset λðIÞ of a master instance I is
the abscissa of its left border. A feasible solution s preserves the
uniqueness of masters in the layout if for each v1; v2AV satisfying
TðIðv1ÞÞ ¼ TðIðv2ÞÞ and mðv1Þ ¼mðv2Þ, the condition sðv2Þ�sðv1Þ ¼
λðIðv2ÞÞ�λðIðv1ÞÞ holds.

Fig. 14. A pseudo code of graph reduction.

Fig. 15. The graph obtained by reducing the graph in Fig. 13. (For interpretation of
the references to color in this figure, the reader is referred to the web version of this
article.)

Fig. 16. A linear program to locate the wires of a master.
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A Hierarchy Constraint Graph (HCG) H ¼ ðVH ; EHÞ of a layout L is
derived from its FLVG G¼ ðVG; EGÞ by setting VH ¼ VG. Its arcs are
obtained by augmenting EG with similarity arcs, defined by
fðu; vÞjmðuÞ ¼mðvÞg with weights Wðu; vÞ ¼ sðIðvÞÞ�sðIðuÞÞ.

A path from u to v is denoted by u-v and its total sum of arc
weights is Sðu-vÞ. The length of the longest path connecting u
with v is Cðu-vÞ. The solution s of H is feasible if for each
ðu; vÞAEH there exists sðvÞ�sðuÞZCðu-vÞ. It follows from the
correspondence between layout objects (wires, borders) and
graph's vertices, and the correspondence between spacing
requirements and arc weight, that a feasible layout and a feasible
graph are just two views of the same thing. Fig. 18 illustrates a
layout (a) and its corresponding FLVG (b) and HCG (c). Master B
contains two wires (colored blue) and is instantiated twice in
master A. Borders of A and B represented in the FLVG and HCG by
the gray vertices, while the wires by blue vertices. Similarity arcs
are brown.

Propositions 1–3 below summarizes the equality between the
properties of layouts and the associated graphs.

Proposition 1. A solution s of a layout L is feasible if and only if s
is a feasible solution of its corresponding FLVG.

Proposition 2. A solution s of a layout L is feasible and preserving
its hierarchy and uniqueness of masters if and only if s is a feasible
solution of its corresponding HCG.

Proposition 3. Given a HCG H of the layout L, H has a feasible
solution if and only if it has no positive cycles.

4.2. The algorithm's invariants

The hierarchical migration is carried out by a series of graph
transformations, simplifying the layout representation. It is there-
fore necessary to show that the solution space is invariant under
those simplifications.

An i-Hierarchy Constraint Graph Hi ¼ ðVi; EiÞ of a layout L is
derived from FLVG G¼ ðVG; EGÞ by setting Vi ¼ VG and augmenting
EG with similarity arcs defined by fðu; vÞjmðuÞ ¼mðvÞ;1rmðuÞr ig,
with weights Wðu; vÞ ¼ λðIðvÞÞ�λðIðuÞÞ. This defines a series of N
transformations corresponding to the partial order ! of the
masters, gradually converting the representation of the layout
from H0 ¼ G to HN ¼H. It is subsequently shown that the simpli-
fied merged graphs Mi;0r irN, used in the migration algorithm
(see Fig. 6), are equivalent to Hi;0r irN, in such a way that the
length of longest path between any two vertices is preserved,
while Mi significantly diluted its arcs.

Proposition 4. Let H ¼ ðVH ; EHÞ be an HCG derived from
G¼ ðVG; EGÞ by adding similarity arcs of a master t and
M¼ ðVM ; EMÞ generated from G by merging all the instances of t.
Then for every u; vAVH satisfying IðuÞ ¼ IðvÞ and TðuÞ ¼ TðvÞ ¼ t,
there exists CMðmðuÞ;mðvÞÞ ¼ CHðu; vÞ.

Proposition 5. Let H¼ ðVH ; EHÞ be an HCG generated from
G¼ ðVG; EGÞ by adding similarity arcs of a master t and
M¼ ðVM ; EMÞ generated from G by merging all the instances of t.
Then for every u; vAVH satisfying IðuÞ ¼ IðvÞ, TðuÞat and TðvÞat
there exists CMðu; vÞ ¼ CHðu; vÞ.

Proposition 6. Let H¼ ðVH ; EHÞ be an HCG generated from
G¼ ðVG; EGÞ and M¼ ðVM ; EMÞ generated from G by the merging
phase of the algorithm as shown in Fig. 12. Then for every
u; vAVH satisfying IðuÞ ¼ IðvÞ, TðuÞat and TðvÞat, there exists
CMðu; vÞ ¼ CHðu; vÞ.

Corollary 1. A layout L has a feasible solution preserving hierarchy
if and only if its merged graph M has no positive cycles.

Proof. Follows from Propositions 2, 3 and 6. ■

Proposition 7 below captures the invariance of the reduction
phase: the longest path weight between a pair of vertices in the
graph remains unchanged under reduction.

Proposition 7. Let R¼ ðVR; ERÞ be a reduced graph generated from
G by a single invocation of reduceMasterInstances procedure shown
in Fig. 14. Then for every u; vAVR there exists CRðu; vÞ ¼ CGðu; vÞ.

Proposition 8. Let R¼ ðVR; ERÞ be a reduced graph generated from
M¼ ðVM ; EMÞ. Then for every u; vAVR there exists CRðu; vÞ ¼ CMðu; vÞ.
Next comes the phase of deriving of a specific (committed)

solution as shown in Fig. 16. This phase works top-down, where
iteration treats a single master. We define an i–partial solution for a
graph G¼ ðVG; EGÞ as a functionsi : Vi-ℝ;0r irN, where ViDVG

is all the vertices which have been solved after the i-th iterations

Fig. 17. A reduced graph is in (a) and the corresponding LP in (b). (For interpretation of the references to color in this figure, the reader is referred to the web version of this
article.)

Fig. 18. A layout in (a), its corresponding FLVG in (b) and HCG in (c). (For
interpretation of the references to color in this figure, the reader is referred to
the web version of this article.)

E. Shaphir et al. / INTEGRATION, the VLSI journal 47 (2014) 161–174 169



Author's personal copy

(their position have already been decided). The set Vi is all the
vertices representing the wires of the masters b1; :::; bi in the !
order. This phase starts with s0 for V0, including all the borders of
the master instances, and it ends with the entire layout.
Proposition 9 below relates to a single iteration.

Proposition 9. For 0r irN, the i–partial solution of the merged
graph M of layout L, obtained from the exact solution derivation
phase, is feasible.
It follows immediately from Proposition 9 that the N–partial

solution completely solves the problem. Proposition 10 below
constitutes the successive derivation of feasible solutions.

Proposition 10. Let M be the merged graph of a layout L which
has no positive cycles. Let si�1 be a feasible ði�1Þ-partial solution
of M. There exists a feasible i-partial solution si of M which is
obtained at iteration i.
The following concludes the proofs of the correctness of the

series of transformations.

Lemma 1. If there exists a feasible solution preserving the hierarchy
of a layout L, the flow in Fig. 16 will return a feasible solution s for the
HCG, H of L.

Lemma 2. For any feasible solution s preserving the hierarchy for a
given layout L, there is an objective function F, such that the flow will
obtain s.

Theorem. The flow satisfies the requirements 1–5 stated in the
description of the algorithm.

5. Experimental Results

The following results have been obtained for Intel's 65 nm
process technology (Tock) microprocessors, branded as Core
2 Duo, where the interconnecting wires have been migrated into
45 nm process technology (Tick). The examples below incorporate
the results for several blocks, each comprising thousands of nets.
The quality of such migration is determined by the performance of
the underlying circuits in the target layout, measured by simula-
tions. The migration set the goal of achieving delay reduction of
0.7, and hence speeding up the clock frequency by a factor of 1.4,
which is Moore's Law premise.

Wire widths and line-to-line space specifications have been
derived from the Elmore delay model [12], based on the electrical
parameters of the 45 nm technology. The migration described in
this paper was applied. The positive cycles discovered by the
algorithm have been resolved by reducing wire widths and spaces
corresponding to those vertices and arcs occurring on the positive
cycles. Although such relaxations resolved the problem and
legalized the positions of wires, delay violations due to resistance
and coupling (line-to-line) capacitance increase may occur. Those
are resolved by VLSI design techniques such as using stronger

circuit drive or timing tuning, which are beyond the scope of
this paper.

Fig. 19 illustrates the signal delay reduction (speedup). The
linear line represents 0.7 delay reduction so all the dots under it
represent properly sped up nets. As shown, some of the nets did
not meet that goal. Fortunately, the delays of the majority of those
are far smaller than the target clock cycle of the processor, so they
do not impose any problem. Only those encircled required further
treatment in the design to avoid critical signals exceeding the
target clock cycle. Here lays the major advantage of automatic
layout migration; it delivers satisfactory performance for the
majority of the interconnects, leaving a relatively small percentage
(less than 10%) for further fix-up by engineering effort.

The experimental results obtained by the hierarchical compac-
tion algorithm are demonstrated for a set of nine blocks and are
summarized in Table 1. For each block the number of vertices and
arcs in its corresponding FVLG are specified. Next are shown the
number of vertices and arcs in the merged graph. The computa-
tional efficiency is demonstrated by the column reporting the
largest LP problem incurred by the series of the graph reductions.
Recall that the variables of an LP are the vertices of a reduced
graph. The LP column presents reductions of the problem sizes by
one to two orders of magnitude compared to the flattened layout.
The computational efficiency premise is also shown by the two
last columns of runtime. To grasp the runtime that could be
obtained by using the algorithms in [6–10], the contraction of
the all the instances of a master into a single cell were ignored.
This effectively turns the algorithm to behave similarly to those
mentioned in the introduction. A runtime speedup of one to two
orders of magnitude is shown.

The area scaling obtained for the top-level block is specified for
each experiment. It follows from the 0.7 lateral and longitudinal
average scaling factors that the area should ideally scale to 0.49,
but as mentioned in Section 3 the scaling factors may vary within
a wide range. To further demonstrate the area scaling variance,
Fig. 20 illustrates the area scaling distribution of all the 601 master
cells constructing the block of experiment 9.

6. Conclusions

This work showed how true hierarchical migration of large
layouts can be performed by efficiently exploring the entire
solution space. The proposed algorithm takes full advantage of
the inherent hierarchy built into VLSI designs. By applying a series
of transformations, the underlying computational problems have
been reduced by two orders of magnitude, making the solution of
large problems feasible.

The proposed bottom-up feasibility step is useful in 22 nm and
below to find the feasibility range of each wire, but the non-
existence of positive cycles turns from a sufficient condition for
feasible solution into a necessary one. The top-down phase which
decides the exact location of the wires within their feasible range
requires ILP rather than LP. Another possible solution is to apply a
dynamic programming, as done in [20] for flat layouts. This still
requires further development to support hierarchy. Both
approaches are beyond the scope of this paper and a matter for
further research. There may also be wires that will have no
solution, so those must be left for later manual fixes.
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Appendix

Propositions 4a and 4b are supplementary for the forthcoming
proof of proposition 4.

Proposition 4a. Let H¼ ðVH ; EHÞ be an HCG generated from
G¼ ðVG; EGÞ by adding similarity arcs of a master t, and
M¼ ðVM ; EMÞ be generated from G by merging all the instances
of t. Then for every u; vAVH satisfying IðuÞ ¼ IðvÞ and
TðuÞ ¼ TðvÞ ¼ t, there exists CMðmðuÞ;mðvÞÞrCHðu; vÞ.

Proof. Let π : mðuÞ-x1-x2-:::-xn-mðvÞ be the longest path in
M. We will construct the path π′ in H and show by induction on
number k of t's vertices in the path that Sðπ′ÞZSðπÞ. For k¼ 0 none
of the vertices belongs to t. There are two cases: x1 ¼mðvÞ and
x1amðvÞ. If x1 ¼mðvÞ then ðu; vÞAEG. The weight of the arc was
modified twice by the procedure mergeMasterInstances, once by
adding the offset of instance IðuÞ (line 10 in Fig. 12) since the arc is
outgoing of u. It was then modified by subtracting the offset of
same instance IðvÞ (line 6 in Fig. 12) since it is an incoming arc of v;
Since IðvÞ ¼ IðuÞ, WMðmðuÞ;mðvÞÞ ¼WGðu; vÞ. Since ðu; vÞ is not a
similarity arc.

Consider the case x1amðvÞ. By construction of M, there exists
sAVG, ðs; x1ÞAEG, mðsÞ ¼mðuÞ and the weight of the arc changed
exactly once by adding the offset of IðsÞ (line 10 in Fig. 12), namely,
WMðmðuÞ; x1Þ ¼WGðs; x1ÞþλðIðsÞÞ. By construction of M, there exists
rAVG, ðxn; rÞAEG, mðrÞ ¼mðvÞ, and the weight of the arc has been
modified exactly once by subtracting the offset of instance IðrÞ
(line 6 in Fig. 12), namely, WMðxn;mðvÞÞ ¼WGðxn; rÞ�λðIðrÞÞ.
If TðxjÞat;1r jrn then the path x1-⋯-xn exists in G, and all

the arcs in the path are unchanged by mergeMasterInstances. The
HCG H contains the similarity arcs of t, thus ðu; sÞAH, and ðr; vÞAH.
Therefore, WHðu; sÞ ¼ λðIðsÞÞ�λðIðuÞÞ and WHðr; vÞ ¼ λðIðvÞÞ�λðIðrÞÞ.
Let us calculate the weight of path u-s-x1-⋯-xn-r-v in H
as illustrated on Fig. 21. There exists

SHðu-s-x1-⋯-xn-r-vÞ ¼WHðu; sÞþWHðs; x1ÞþCHðx1-xnÞ
þWHðxn; rÞþWHðr; vÞZWHðu; sÞþWGðs; x1ÞþCGðx1-xnÞ
þWGðxn; rÞþWHðr; vÞ ¼ ½λðIðsÞÞ�λðIðuÞÞ�þ½WMðmðuÞ; x1Þ�λðIðsÞÞ�

þCMðx1-xnÞþ½WMðxn;mðrÞÞþλðIðrÞÞ�þ½λðIðvÞÞ�λðIðrÞÞ�

Since IðuÞ ¼ IðvÞ, there exists SHðu-⋯-vÞZW
MðmðuÞ; x1ÞþCMðx1-xnÞþWMðxn;mðvÞÞ ¼ CMðmðuÞ;mðvÞÞ, which
completes the basis of the induction.
Assume by induction that the claim holds for every path having

k�1 vertices of tat most, and let π be a longest path in M having
kvertices of t. Since kZ1, the path π : mðuÞ-x1-⋯-

mðwÞ-⋯-xn-mðvÞ includes a mid-vertex wAVG, mðwÞ ¼ t.
Clearly the sub-path π1 : mðuÞ-x1-⋯-mðwÞ is also a longest
one and similarly holds for π2 : mðwÞ-⋯-xn-mðvÞ. Thus
induction hypothesis holds for both paths π1 and π2, and
CMðmðuÞ;mðwÞÞrCHðu;wÞ, CMðmðwÞ;mðvÞÞrCHðw; vÞ. In conclusion
we showed thatCMðmðuÞ;mðvÞÞ ¼ CHðu;wÞþCHðw; vÞrCHðu; vÞ □

Proposition 4b. Let H¼ ðVH ; EHÞ be an HCG generated from
G¼ ðVG; EGÞ by adding similarity arcs of a master t and
M¼ ðVM ; EMÞ generated from G by merging all the instances of t.
Then for every u; vAVH satisfying IðuÞ ¼ IðvÞ and TðuÞ ¼ TðvÞ ¼ t,
there exists CMðmðuÞ;mðvÞÞZCHðu; vÞ.

Proof. Let π : u-x1-x2-:::-xn-v be the longest path in H. We
will construct the path π′ in M and show Sðπ′ÞZSðπÞ. The
correctness is shown by induction on number k of t's vertices in
the path. For k¼ 0 none of the vertices belongs to T. There are
two cases x1 ¼mðvÞ and x1amðvÞ. The case x1 ¼mðvÞ is identical to
Proposition 4a. Consider the case x1amðvÞ. By construction
of M, the weight of arc ðu; x1ÞAEG changed exactly once by adding
the offset of instance IðuÞ (line 10 in Fig. 12), WMðmðuÞ; x1Þ
¼WGðu; x1ÞþλðIðuÞÞ. By construction of M, the weight of the
arc ðxn; vÞAEG changed exactly once by subtracting the
offset of instance IðvÞ (line 6 in Fig. 12), and hence WMðxn;m
ðvÞÞ ¼WGðxn; vÞ�λðIðvÞÞ.

Table 1
Tests statistics – size of graphs, area scaling and runtime comparisons.

Test
no.

FLVG
vertices

FLVG
arcs

Merged graph
vertices

Merged graph
arcs

Variables in largest LP
problem

Reduced to FLVG
ratio

Area
scaling

Runtime
hierarchy [s]

Runtime
flattened [s]

1 1151 5755 499 2249 302 0.2 0.44 7 68
2 2064 8456 1687 7130 598 0.29 0.49 11 120
3 4457 16,890 1253 6101 434 0.098 0.46 313 2509
4 12,928 55,892 2535 19,524 386 0.03 0.50 244 2547
5 23,020 106,554 4683 40,334 1561 0.0687 0.55 1167 15,644
6 29,714 109,212 4205 16,255 1173 0.0395 0.47 676 14,139
7 45,964 177,946 5963 24,928 1308 0.0284 0.50 1532 45,337
8 62,944 248,915 7850 44,963 1277 0.0202 0.58 2099 42,835
9 73,005 294,479 9455 63,737 1420 0.0194 0.54 2560 78,158

Fig. 20. Area scaling distribution of master cells.

Fig. 21. Paths in Ht . In red are similarity arcs. Blue represents x1-x2-:::-xn .(For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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Since TðxjÞat;1r jrn, there is no similarity arcs in the
path u-x1-⋯-xn-v, thus it fully exists in G and belongs to
the same instance. By the construction of M there exists
WMðxj; xjþ1Þ ¼WHðxj; xjþ1Þ. Let us calculate the weight of path
mðuÞ-s-x1-⋯-xn-t-mðvÞ in M. There exists

SMðmðuÞ-x1-⋯-xn-mðvÞÞ ¼WMðmðuÞ; x1ÞþCMðx1-xnÞ
þWMðxn;mðvÞÞ ¼ ½WGðu; x1ÞþλðIðuÞÞ�
þCHðx1-xnÞþ½WGðxn; vÞ�λðIðvÞÞ�

Since IðuÞ ¼ IðvÞ, there exists SMðmðuÞ-x1-⋯-xn-mðvÞÞ ¼
WHðu; x1ÞþCHðx1-xnÞþWHðxn; vÞ ¼ SHðu-x1-⋯-xn-vÞ, which
completes the basis of the induction.
Assume by induction that the claim holds for every path

having k�1 vertices of t at most, and let π be a longest path in
H having k vertices of t. Let ðxk; xkþ1Þ be the first similarity arc in π.
Clearly, mðxkÞ ¼mðxkþ1Þ and TðIðxkÞÞ ¼ TðIðxkþ1ÞÞ ¼ t. If IðxkÞa IðuÞ
and Iðxkþ1Þa IðuÞ we will introduce a new path
π′¼ u-x1-⋯-xk-w-xkþ1-⋯-xn-v such that IðwÞ ¼ IðuÞ
in H and show that Sðπ′ÞZSðπÞThere exists

SHðxk-w-xkþ1Þ ¼WHðxk;wÞþWHðw; xkþ1Þ
¼ λðIðwÞÞ�λðIðxkÞÞþλðIðxkþ1ÞÞ�λðIðwÞÞ
¼WHðxk; xkþ1Þ:

Clearly, the sub-path π1 : mðuÞ-x1-⋯-mðwÞ is a longest path
in M, similarly it holds for π2 : mðwÞ-⋯-xn-mðvÞ. Since induc-
tion hypothesis holds for both paths π1 and π2, there exists
CMðmðuÞ;mðwÞÞZCMðu;wÞ, and
CMðmðwÞ;mðvÞÞZCMðmðwÞ;mðvÞÞZCHðw; vÞ. Hence
CMðmðuÞ;mðvÞÞZCMðmðuÞ;mðwÞÞþCMðmðwÞ;mðvÞÞZCHðu; vÞ. □

Proof of Proposition 4. Follows from Propositions 4a and 4b. ■

Propositions 5a and 5b are supplementary for the forthcoming
proof of Proposition 5.

Proposition 5a. Let H¼ ðVH ; EHÞ be an HCG generated from
G¼ ðVG; EGÞ by adding similarity arcs of a master t, and
M¼ ðVM ; EMÞ be generated from G by merging all the instances
of t. Then for every u; vAVH satisfying IðuÞ ¼ IðvÞ, TðuÞat and
TðvÞat, there exists CMðu; vÞrCHðu; vÞ.

Proof. Let π : u-x1-x2-:::-xk-v be the longest path in M.
There are two cases. If TðIðxiÞÞaT ;1r irk, then the same path
exists in G and all the arcs in the path are unchanged by
mergeMasterInstances. Consider the case TðIðxjÞÞ ¼ T for some j.
Let mðaÞ be the first vertex in π that belongs to T , mðbÞ be the last
one, so the path is π : u-x1-:::, where mðIðxiÞÞaT and
mðIðyiÞÞaT :::-xn-mðaÞ-:::-mðbÞ-y1-:::-ym-v, as illu-
strated in Fig. 22.
By the construction of M, there exists aAVG such that

ðxn; aÞAEG. The weight of the ðxn; aÞ changed exactly once by

subtracting the offset of instance IðaÞ (line 6 in Fig. 12),
WMðxn;mðaÞÞ ¼WGðxn; aÞ�λðIðaÞÞ. Similarly there exists bAVG such
that ðb; y1ÞAEG. The weight of the arc ðb; y1Þ changed exactly once
by adding the offset of instance IðbÞ (line 10 of in Fig. 12),
WMðmðbÞ; y1Þ ¼WGðb; y1ÞþλðIðbÞÞ. By Proposition 4a there exists a
path a-:::-b′ in H such that Iðb′Þ ¼ IðaÞ, mðb′Þ ¼mðbÞ and
CMðmðaÞ;mðbÞÞrCHða; b′Þ. Therefore,
CHðu; vÞ ¼ CHðu; xnÞþWHðxn; aÞþWHða; b′ÞþWHðb′; bÞ

þWHðb; y1ÞþWHðy1; vÞZCMðu; xnÞþ½WMðxn;mðaÞÞþλðIðaÞÞ�
þWMðmðaÞ;mðbÞÞþ½λðIðbÞÞ�λðIðb′ÞÞ�þ½WMðmðbÞ; y1Þ�λðIðbÞÞ�
þWMðy1; vÞ ¼ CMðu; vÞ;

which concludes the proof. □

Proposition 5b. Let H¼ ðVH ; EHÞ be an HCG generated from
G¼ ðVG; EGÞ by adding similarity arcs of a master T , and
M¼ ðVM ; EMÞ be generated from G by merging all the instances
of T . Then for every u; vAVH satisfying IðuÞ ¼ IðvÞ, mðuÞaT and
mðvÞaT , there exists CMðu; vÞZCHðu; vÞ.

Proof. Let π : u-x1-x2-:::-xk-v be the longest path in H.
There are two cases. If mðIðxiÞÞaT ;1r irk, then the same path
exists in G and all the arcs in the path are unchanged by
mergeMasterInstances. Consider the case mðIðxjÞÞ ¼ Tfor some j.
Let a be the first vertex in π that belong to T let b be the last
one. The path is π : u-x1-:::-xn-a-:::-b-y1-:::-ym-v,
where mðIðxiÞÞaT and mðIðyiÞÞaT , as illustrated in Fig. 23.
By definition of H there is b′AEH such that mðIðb′ÞÞ ¼mðIðaÞÞ

and similarity arcs ðb; b′Þ; ðb′; bÞAEH , Wðb; b′Þ ¼ �Wðb′; bÞ. Thus
there is a new path π′ in H, π′ : u-x1-:::-xn-a-:::-

b-b′-b-y1-:::-ym-v, with the same weight. By the con-
struction of M ðxn;mðaÞÞAEM . The weight of ðxn; aÞ changed exactly
once by subtracting the offset of instance IðaÞ (line 6 in Fig. 12),
WMðxn;mðaÞÞ ¼WGðxn; aÞ�λðIðaÞÞ. Similarly for the weight of
ðmðbÞ; y1ÞAEG. The weight of the arc ðb; y1Þ changed exactly once
by adding the offset of instance IðbÞ (line 7 of in Fig. 12),
WMðmðbÞ; y1Þ ¼WGðb; y1ÞþλðIðbÞÞ. By Proposition 4a there exists
path a-:::-b′ in H such that Iðb′Þ ¼ IðaÞ, mðb′Þ ¼mðbÞ and
CMðmðaÞ;mðbÞÞZCHða; b′Þ. Therefore,
CHðu; vÞ ¼ CHðu; xnÞþWHðxn; aÞþWHða; b′ÞþWHðb′; bÞ

þWHðb; y1ÞþWHðy1; vÞrCMðu; xnÞþ½WMðxn;mðaÞÞþλðIðaÞÞ�
þWMðmðaÞ;mðbÞÞþ½λðIðbÞÞ�λðIðb′ÞÞ�þ½WMðmðbÞ; y1Þ�λðIðbÞÞ�
þWMðy1; vÞ ¼ CMðu; vÞ

which concludes the proof. □

Proof of Proposition 5. Follows immediately from Propositions
5a and 5b. □

Proof of Proposition 6. Follows Immediately from Propositions
4 and 5 by induction on the number of merging iterations. ■

Proof of Proposition 7. By induction on number iterations of loop
4-1 of the reduction phase (Fig. 14). Denote by Ri the graph after i-
th iteration of the loop. At an iteration exactly one vertex (with all
it arcs) is removed and some other arcs are added to the graph.
The basis R0 of the induction equals G since nothing was

changed. Assume by induction that the claim holds for Ri�1. Let
π be the longest path in Ri�1 between pair of u;w and let v be the
vertex that is reduced at the step i. Clearly if v does not belong to
the path, the path is unchanged. Otherwise, consider the path
π : u-:::-s-v-t-:::-w. Assume w.l.o.g that π has no loop. As
in line 7 of reduceMasterInstances, for the arcs ðs; vÞ and ðv; tÞ the
new arc ðs; tÞ added to Ri. Since WRi

ðs; tÞ ¼WRi� 1 ðs; vÞþWRi� 1 ðv; tÞ,
there is a path π′ : u-:::-s-t-:::-w in Ri satisfying
WRi

ðπ′Þ ¼WRi� 1 ðπÞ, and hence CRI ðu;wÞZWRI� 1 ðu;wÞ. It is left to
show that CRI ðu;wÞrWRI� 1 ðu;wÞ, which is similar to the above
case. ■

Fig. 22. The path in Ht . In red is a similarity arc. Blue represent the paths
x1-:::-xn and y1-:::-ym .(For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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Proof of Proposition 8. Follows from Proposition 7 with an
induction on number of calls to reduceMasterInstances. ■

Proposition 9a is supplementary for the forthcoming proof of
proposition 9.

Proposition 9a. Let G¼ ðVG; EGÞ be a directed graph with weights
W : EG-ℝþ and let f : VG-ℝþ be a non-negative function
satisfying Wðu; vÞr f ðvÞ� f ðuÞ. Then for any path π : s-:::-t in G
there exists SðπÞr f ðtÞ� f ðsÞ.

Proof. Immediate by induction on length of π. □

Proof of Proposition 9. Let si be a i-partial solution for
M¼ ðVM ; EMÞ. The correctness is shown by induction on i. The
basis of the induction is i¼ 0 and V0 ¼M. Clearly s0 is a feasible
solution for M. We assume that the claim holds for all iok and
prove it for i¼ k. Using Proposition 9a it is sufficient to show that
for every two vertices u; v such that ðu; vÞAEM there exists
skðvÞ�skðuÞZWMðu; vÞ. If v;uAVk�1, the inequality holds by the
induction hypothesis. Otherwise, assume w.l.o.g that v=2Vk�1 and
consider two cases: uAVk�1 and u=2Vk�1. If uAVk�1, the con-
straint skðvÞ�sk�1ðuÞZWMðu; vÞ added to LP problem (line 7,
Fig. 16). Since skðuÞ ¼ sk�1ðuÞ and sk satisfies the constraints,
skðvÞ�skðuÞZWMðu; vÞ. The case u=2Vk�1 is similar, and the con-
straint that is added is skðvÞ�skðuÞZWMðu; vÞ (line 3, Fig. 15)
which makes sk feasible. □

Proof of Proposition 10. The existence of solution is shown by
construction. At iteration i, we define the solution siðvÞ for any
vertex vAVi as follows:siðvÞ ¼ max fCRi

ðu; vÞþsi�1ðuÞjuAVi�1g if
v=2Vi�1 and siðvÞ ¼ si�1ðvÞ otherwise. Since M does not contain
positive cycles by Proposition 8, Ri does not contain positive cycles.
Hence CRi

ðu; vÞo1 and si is well defined. It is left to show that si
is feasible. By Proposition 9a it is enough to show that for any pair
of vertices u; v there existssiðvÞ�siðuÞZWMðu; vÞ. Letu; vAVi. If
u; vAVi�1 then siðvÞ ¼ si�1ðvÞ and siðuÞ ¼ si�1ðuÞ. Since si�1 is
feasible, we have siðvÞ�siðuÞZWMðu; vÞ. If uAVi�1 and v=2Vi�1, it
follows from Proposition 8 that for any wAVi�1

CRi
ðw; vÞ ¼ CMðw; vÞ, thus siðvÞ ¼ max fCMðw; vÞþsi�1ðwÞjwAVi�1g

and therefore siðvÞ�si�1ðuÞZCMðu; vÞ. Since siðuÞ ¼ si�1ðuÞ we
obtain siðvÞ�siðuÞoWMðu; vÞ. If u; v=2Vi�1 then by Proposition 8
CRi

ðu; vÞ ¼ CMðu; vÞ, and hence siðuÞ ¼ max fCMðw;uÞþ
si�1ðwÞjwAVi�1g. Let s-:::-u be the longest path such that
sAVi�1. Since s-:::-u-v is a path in Ri there exists
siðvÞZCMðs; vÞþsi�1ðsÞZCMðs;uÞ
þWðu; vÞþsi�1ðsÞ ¼ siðuÞþWðu; vÞand thussiðvÞ�siðuÞZWMðu; vÞ.
The case u=2Vi�1and vAVi�1 is similar. □

Proof of Lemma 1. Since L has feasible solution that preserves
hierarchy, by the Corollary 1 its merged graph M does not contain
positive cycles. By Proposition 9, the solution s is feasible for M,
and by Proposition 6 it is feasible forH. Since Mdoes not contain
positive cycles by Proposition 10, swill be returned by the flow. □

Proof of Lemma 2. Let s be a feasible solution for L. Define for a
solution φ, an objective function FðφÞ ¼ ∑

vAV
Δv where

Δv ¼ jsðvÞ�φðvÞj. Clearly F is linear and Δ can be written as a pair
of LP constraints ΔvZsðvÞ�φðvÞ and ΔvZφðvÞ�sðvÞ. The function
Fis non-negative since ΔvZ0. Showing that the flow returns a
solution φ such that FðφÞ ¼ 0 will imply φ¼ s and will complete the
proof. This is shown by induction on the solution construction steps.
The basis of induction is the 0-partial solutionφ0, since proposition

2 ensures that s is a feasible solution for HCG of L, comprising all the
vertices of V0 (borders). Assume by induction that the ði�1Þ-partial
solution φi�1 is equal to s for all the vertices of Vi�1. Define φn :
Vi-ℝ to be the partial solution for the vertices that are derived at
iteration i, where for every vAVi there exists φnðvÞ ¼ sðvÞ. Clearly φn

is feasible since s is feasible and thus satisfies all the LP constraints.
Moreover, φn is optimal sinceFðφnÞ ¼ 0. Thus if solution φi returned
by the LP solver differs from φn, φi would be sub-optimal, contra-
dicting the LP solver optimality. □

Proof of Theorem. By Lemma 1 the solution s returned by the flow
is feasible for the HCG of L and thus s is a feasible solution for L,
preserving the hierarchy by Proposition 2. The solution s is feasible
and hence satisfiesWGðu; vÞrsðvÞ�sðuÞ. In particular s preserves the
visibility relation (wires order). Similarly, for the any instance I and its
borders u; v the solution satisfies DðmðIÞÞrsðvÞ�sðuÞ and
�DðmðIÞÞrsðuÞ�sðvÞ, implying DðmðIÞÞ ¼ sðvÞ�sðuÞ, since s satis-
fies the target placement. By construction of FVLG, every spacing
specification is represented by an arc ðu; vÞ. Being a feasible solution s
satisfies all specifications. □
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