
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 61, NO. 5, MAY 2014 1465

A Look-Ahead Clock Gating Based on
Auto-Gated Flip-Flops
Shmuel Wimer, Member, IEEE, and Arye Albahari

Abstract—Clock gating is very useful for reducing the power
consumed by digital systems. Three gating methods are known.
The most popular is synthesis-based, deriving clock enabling
signals based on the logic of the underlying system. It unfortu-
nately leaves the majority of the clock pulses driving the flip-flops
(FFs) redundant. A data-driven method stops most of those and
yields higher power savings, but its implementation is complex
and application dependent. A third method called auto-gated FFs
(AGFF) is simple but yields relatively small power savings. This
paper presents a novel method called Look-Ahead Clock Gating
(LACG), which combines all the three. LACG computes the clock
enabling signals of each FF one cycle ahead of time, based on the
present cycle data of those FFs on which it depends. It avoids the
tight timing constraints of AGFF and data-driven by allotting a
full clock cycle for the computation of the enabling signals and
their propagation. A closed-form model characterizing the power
saving per FF is presented. It is based on data-to-clock toggling
probabilities, capacitance parameters and FFs’ fan-in. The model
implies a breakeven curve, dividing the FFs space into two regions
of positive and negative gating return on investment. While the
majority of the FFs fall in the positive region and hence should be
gated, those falling in the negative region should not. Experimen-
tation on industry-scale data showed 22.6% reduction of the clock
power, translated to 12.5% power reduction of the entire system.

Index Terms—Clock gating, clock networks, dynamic power re-
duction.

I. INTRODUCTION

O NE of the major dynamic power consumers in computing
and consumer electronics products is the system’s clock

signal, typically responsible for 30% to 70% of the total dy-
namic (switching) power consumption [1]. Several techniques
to reduce the dynamic power have been developed, of which
clock gating is predominant. Ordinarily, when a logic unit is
clocked, its underlying sequential elements receive the clock
signal regardless of whether or not their data will toggle in the
next cycle. With clock gating, the clock signals are ANDed with
explicitly predefined enabling signals. Clock gating is employed
at all levels: system architecture, block design, logic design and

Manuscript received May 02, 2013; revised August 19, 2013; accepted
September 24, 2013. Date of publication January 02, 2014; date of current
version April 24, 2014. This paper was recommended by Associate Editor M.
Alioto.
S. Wimer is with the Electrical Engineering Faculty, Technion—Israel In-

stitute of Technology, Haifa 32000, Israel and also with Bar-Ilan University,
Ramat-Gan 5900, Israel (e-mail: wimer@ee.technion.ac.il).
A. Albahari is with Intel Corporation, Israel Design Center, Haifa 31095, Is-

rael (e-mail: arye.albahari@intel.com).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCSI.2013.2289404

Fig. 1. Average data-to-clock toggling ratio and clock capacitive load of 61
blocks comprising 200 k FFs (blue curve). The red curve is the corresponding
cumulative clock capacitive load.

gates [2], [3]. Several methods to take advantage of this tech-
nique are described in [4]–[6], with all of them relying on var-
ious heuristics in an attempt to increase clock gating opportuni-
ties. We call the above methods synthesis-based.
Synthesis-based clock gating is the most widely used method

by EDA tools [7]. The utilization of the clock pulses, measured
by data-to-clock toggling ratio, left after the employment of syn-
thesis-based gating may still be very low. Fig. 1 depicts the av-
erage data-to-clock toggling ratio, obtained by extensive power
simulations of 61 blocks comprising 200 k FFs, taken from a
32 nm high-end 64-bit microprocessor. Those are mostly con-
trol blocks of the data-path, register-file and memory manage-
ment units of the processor. The technology parameters used
throughout the papers are of 22 nm low-leakage process tech-
nology.
Their clock enabling signals were derived by a mix of logic

synthesis and manual definitions. The clock capacitive load is
70% of their total load. The blocks are increasingly ordered by
their data-to-clock activity ratio. It is clearly shown that the data
toggles in a very low rate compared to the gated clocks. Point
(a) shows that in 87% of the blocks (53/61) the data toggles less
than 6% compared to the gated clock, where the average shown
by the horizontal dashed line is 3%. Fig. 1 also plots the cor-
responding cumulative clock capacitive load. Point (b) shows
that the above 87% blocks are responsible for 95% of the total
clock load. Consequently, the switching of a significant portion
of the system’s clock load is redundant, but consumes most of
its power. This calls for other than synthesis-based methods to

1549-8328 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1466 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 61, NO. 5, MAY 2014

Fig. 2. Circuit implementation of data-driven clock gating.

stop the 97% redundant clock pulses. A very low data-to-clock
toggling ratio was also reported in [8], where extensive power
simulations of a wide variety of industrial designs showed av-
erage toggling ratios of 0.02 to 0.05.
To address the above redundancy, a method called

data-driven clock gating was proposed for flip-flops (FFs).
There, the clock signal driving a FF, is disabled (gated) when
the FF’s state is not subject to change in the next clock cycle
[9]. In an attempt to reduce the overhead of the gating logic,
several FFs are driven by the same clock signal, generated by
ORing the enabling signals of the individual FFs [8]. Based
on the data-to-clock toggling probability, a model to derive
the group size maximizing the power savings was developed.
A comparison between the synthesis-based and data-driven
gating methods showed that the latter outperforms for control
and arithmetic circuits, while the former outperforms for reg-
ister-file based circuits [10].
Data-driven gating is illustrated in Fig. 2. A FF finds out that

its clock can be disabled in the next cycle by XORing its output
with the present input data that will appear at its output in the
next cycle. The outputs of XOR gates are ORed to generate
a joint gating signal for FFs, which is then latched to avoid
glitches. The combination of a latch with AND gate is used
by commercial tools and is called Integrated Clock Gate (ICG)
[11]. It is beneficial to group FFs whose switching activities are
highly correlated. The work in [10] addressed the questions of
which FFs should be placed in a group to maximize the power
reduction, and how to find those groups.
Data-driven gating suffers from a very short time-window

where the gating circuitry can properly work. This is illus-
trated in Fig. 3. The cumulative delay of the XOR, OR, latch
and the AND gater must not exceed the setup time of the FF.
Such constraints may exclude 5%-10% of the FFs from being
gated due to their presence on timing critical paths [10]. The
exclusion percentage increases with the increase of critical
paths, a situation occurring by downsizing or turning transis-
tors of non-critical path to high threshold voltage (HVT) for
further power savings.
Another difficulty of data-driven gating is its design method-

ology. To maximize the power savings, the FFs should be
grouped such that their toggling is highly correlated. This re-
quires running extensive simulations characterizing the typical
applications expected by the end-user. Those applications are in

Fig. 3. Sequencing of gating logic in data-driven clock gating.

Fig. 4. An auto-gated flip-flop.

many cases unknown and the amount of redundant clock pulses
may significantly increase for specific applications. Further-
more, IP providers who are delivering RTL code need to cast
the gating circuitry per customer, which requires maintaining
different versions of the same IP.
This paper proposes Look-Ahead Clock Gating (LACG). It

computes the clock enabling signals of each FF one cycle ahead
of time, based on the present cycle data of those FFs on which
it depends. Similarly to data-driven gating, it is capable of stop-
ping the majority of redundant clock pulses. It has however a
big advantage of avoiding the tight timing constraints of AGFF
and data-driven, by allotting a full clock cycle for the enabling
signals to be computed and propagate to their gaters. Further-
more, unlike data-driven gating whose optimization requires the
knowledge of FFs’ data toggling vectors, LACG is independent
of those. The embedding of LACG logic in the RTL functional
code is uniquely defined and easily derived from the underlying
logic, independently of the target application. This simplifica-
tion is advantageous as it significantly simplifies the gating im-
plementation.
The rest of the paper discusses the modeling, analysis, cir-

cuits, optimization and implementation of LACG. Section II
presents the LACG circuits. Section III develops its power sav-
ings model. Section IV minimizes the logic overhead required
to generate the clock enabling signals. Experimental results are
shown in Section V. We conclude in Section VI.

II. AUTO-GATED FLIP-FLOPS

The basic circuit used for LACG is Auto-Gated Flip-Flip
(AGFF) illustrated in Fig. 4 [12].



WIMER AND ALBAHARI: A LOOK-AHEAD CLOCK GATING BASED ON AUTO-GATED FLIP-FLOPS 1467

Fig. 5. Enhanced AGFF with XOR output used for LACG.

The FF’s master latch becomes transparent on the falling
edge of the clock, where its output must stabilize no later than
a setup time prior to the arrival of the clock’s rising edge, when
the master latch becomes opaque and the XOR gate indicates
whether or not the slave latch should change its state. If it does
not, its clock pulse is stopped and otherwise it is passed. In [12]
a significant power reduction was reported for register-based
small circuits, such as counters, where the input of each FF de-
pends on the output of its predecessor in the register. AGFF can
also be used for general logic, but with two major drawbacks.
Firstly, only the slave latches are gated, leaving half of the
clock load not gated. Secondly, serious timing constraints are
imposed on those FFs residing on critical paths, which avoid
their gating.
LACG takes AGFF a leap forward, addressing three goals;

stopping the clock pulse also in the master latch, making it ap-
plicable for large and general designs and avoiding the tight
timing constraints. LACG is based on using the XOR output
in Fig. 4 to generate clock enabling signals of other FFs in
the system, whose data depend on that FF. There is a problem
though. The XOR output is valid only during a narrow window
of around the clock rising edge, where and

are the FF’s setup time and clock to output contamination
delay, respectively. After a delay the XOR output is cor-
rupted and turns eventually to zero. To be valid during the en-
tire positive half cycle it must be latched as shown in Fig. 5(a).
Fig. 5(b) is the symbol of the enhanced AGFF with the XOR
output. The power consumed by the new latch can be reduced
by gating its clock input . Such gating has been proposed
in [16] and it involves another XOR and OR gates, useful for
high clock switching probability. It is subsequently shown that

probability is very low and it is therefore not further being
gated.
Fig. 6 illustrates how LACG works. We call target and
source. A target FF depends on source FFs. It is re-

quired that the logic driving a target FF does not have an input
externally of the block. Let denote the set of the XOR
outputs of the source FFs, and denote by the set of their
corresponding outputs. The source FFs can be found by a tra-
versal of the logic paths from back to , which can
be performed either in the RTL or the net-list descriptions of
the underlying system. The logic tree with root and leaves

is sometimes called the logic cone of [13].
Let and be two successive clock cycles shown in Fig. 7,

where the time tics refer to the rising edge of the clock pulses.

Fig. 6. LACG of general logic.

Fig. 7. Timing sequencing of LACG clock gating.

We use the notation and to denote the clock’s
preceding and succeeding falling edges, respectively. Clearly,

is a sufficient condition for not to
change state at , where the summation means logical OR
operation. ’s clock pulse could therefore be disabled at
to save the switching power.
To generate the enabling signal obtained from data at and

ensure its validity at , an oppositely clocked FF is intro-
duced as shown in Fig. 6. Upon the clock’s falling edge at
there exists . Since is op-
positely clocked, there exists

. The signal is stable during the time period
, obtaining . The

gater can then appropriately gate the clock’s rising edge at
which drives .

Using a FF for gating is a considerable overhead that will
consume power of its own. This can significantly be reduced
by gating as shown in Fig. 6. Notice that since is
oppositely clocked and its data is sampled at the clock’s falling
edge, its clock enabling signal must be negated. Also,
is an ordinary FF where the internal XOR gate is connected
between and .
The signal sequencing of LACG is illustrated in Fig. 7. The

delays of the ordinary logic are colored in blue, while those of
the gating logic overhead are colored in red. LACG is advanta-
geous over data-driven. While the latter must complete gating
evaluation within delay, LACG has a full clock cycle to
evaluate from . Real implementationmay require
long wires to generate the clock enabling signals, so the grace
of a full cycle is a big relief.



1468 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 61, NO. 5, MAY 2014

The timing constraints imposed on LACG are derived from
Fig. 7. A first constraint is

(1)

where , and are respectively the data to
output propagation delay of the FF’s internal latch, the delay
of the FF’s internal XOR gate and the FF’s internal AND gater
shown in Fig. 5. is the FF’s setup time. A second
constraint is

(2)

where is the delay of the OR logic required to capture the
FFs’ outputs on which the gating of a FF depends, and
is the delay of the clock driving network generating the gated
clock signal. The constraint in (2) is independent of timing crit-
ical paths and thus can easily be satisfied. This is a big relaxation
over the constraints in Fig. 3, where the clock enabling evalua-
tion and propagation is constrained to a time window.
As mentioned before is a sufficient clock

disabling condition of at . This unfortunately is not a
necessary condition, since it is possible that due to the specific
logic by which is evaluated, there is
while . The clock pulse driving at

will thus be redundant. A key question is therefore how
large is.
It should ideally be zero, but practically it is not. Assuming the
worst-case situation where the FFs toggle independently of each
other, it is subsequently shown that the probability of clock re-
dundancy to occur by LACG is small. LACG power savings is
analyzed under a worst-case toggling independence model, so
reality may yield higher power savings than the following anal-
ysis does.

III. MODELING THE POWER SAVINGS

Let be a random variable of the FF’s data-to-clock toggling
(hereby data toggling) and let be its probability.
Assuming that FFs are toggling their data independently of each
other, there exists

(3)

Notice that independency is a worst case assumption. In re-
ality toggling correlation exists, which may increase the actual
power savings obtained by the subsequent analysis [10]. It fol-
lows from independency that the probability of enabling the
clock while it could be disabled is

(4)

We subsequently formulate the power savings in terms of
capacitance and data toggling probability, since frequency and
voltage do not matter for relative savings calculation. The

product of capacitance and data toggling probability is called
in VLSI jargon as dynamic capacitance or cdyn for short. We
will use the terms power and cdyn interchangeably.
In Figs. 5 and 6 the toggling probabilities of the various nodes

in the AGFF and LACG are shown in red color. Let be
the clock input capacitance of a FF, and let include
also the clock driver and its interconnecting wire capacitance.
We charge 1/3 of to each of the three latches com-
prising the AGFF in Fig. 5. The saved cdyn stems from the low
clocking rate of the master and slave latches shown in Fig. 5,
which due to the LACG has probability, while
otherwise those would have been clocked in one probability. It
follows from (3) that the FF’s cdyn savings in the master latch
is . Unlike the master latch whose gating is
determined by the related source FFs, the auto gating of the
slave latch is determined by the toggling of the target itself,
independently of . Nevertheless, being somewhat conservative
we consider the internal AND gate as a part of the slave
latch and charge a saving of rather than

.
The above savings does not come for free. To calculate the

LACG overhead, consider the toggling probabilities shown in
Figs. 5 and 6. Let be the capacitance of the XOR gate, in-
troducing cdyn overhead. We also added in Fig. 5 a latch,

which introduces cdyn overhead.
The savings occurring within the target FF is therefore

(5)

Another cdyn overhead is introduced by in forming one
cycle delay. While is gated and hence is multiplied by
its clock enabling probability, is connected to the ungated
clock and hence its toggling probability is one. The resulting
overhead is therefore .
Another cdyn overhead occurs by the OR logic. Let be the

capacitance per input of the -way OR gate shown in Fig. 5, in-
cluding the wire connected to the output of a source FF. Due
to fan-in limits, the OR gate is usually implemented as a tree.
The toggling probability of an OR gate input is , introducing
a cdyn overhead. This is somewhat pessimistic since OR
sub-trees can be shared among different FFs, which EDA logic
synthesis tools are capable of optimizing. This is discussed in
Section IV. The toggling probability of the OR gate output is

.
Summing up all the above components, the following cdyn

overhead results in

(6)

The net cdyn savings per target FF, denoted by , is ob-
tained by subtracting (6) from (5), which after rearrangement
yields

(7)



WIMER AND ALBAHARI: A LOOK-AHEAD CLOCK GATING BASED ON AUTO-GATED FLIP-FLOPS 1469

Fig. 8. Power saving breakeven curve.

TABLE I
TYPICAL CAPACITANCES IN 22 NM PROCESS TECHNOLOGY, VALUES ARE IN

.

Fig. 9. The cumulative distribution of in a block of 6 k FFs.

It is not difficult to verify from (7) that is decreasing
with the increase of and . Clearly, large values of those may
result in power loss rather than savings. We subsequently char-
acterize the breakeven point. Substitute in (7) implies
a dependency between and , where the values of the various
capacitances are known from the characterization of the cell li-
brary in use and by estimating the interconnecting wires. The
dependency is shown by the Shmoo plot in Fig. 8 for the pa-
rameters in Table I, taken from a 22 nm process technology cell
library. The capacitances are measured in .
Those FFswhose point fall in the shaded area below the

curve represent LACG that saves power, while for FFs whose
points fall above the curve LACG will lose power, and

therefore they should not be gated. The smaller is the higher
power savings can potentially be achieved. Fig. 9 shows the
distribution of in a typical block comprising 6 k FFs, taken
from a data cash control. With the reasonable assumption of
average data toggling rate of 0.03 (see Fig. 1), Fig. 8 shows that
LACG of FFs satisfying will save power. According to
Fig. 9 this applied for about 80% of the FFs.

Fig. 10. Merging OR logic for joint gating.

The dynamic power overhead of LACG has been considered
in the above breakeven analysis. There is also static power over-
head. It should be noted that due to the full cycle allotted for the
derivation of the enabling signals, the logic involved uses high
threshold voltage and smallest devices. Moreover, as shown in
the next section, the gating logic can be shared among several
target FFs, which further reduces the overhead. We decided on
LACG for a FF if it falls some safeguard margin apart the curve
to compensate for leakage overhead. The detailed discussion of
the design methodology is beyond the scope of this work.

IV. MINIMIZING THE GATING LOGIC

The savings expression in (7) assumed a separate gating logic
for each target FF. This consumes a considerable power and
area, and the gating logic should therefore be minimized. There
are many cases where few target FFs depend on similar source
FFs. In such cases there is no point in generating separate clock
gating signals.
We subsequently develop logic sharing model to minimize

the gating cost. The idea is illustrated in Fig. 10(a), showing
two target FFs, and , with their corresponding OR trees,
driven by and source FFs, respectively. and have
common source FFs, shown pictorially by the overlap of the
trees. A different implementation is shown in Fig. 10(b) were
the OR logic is merged and a single gater is used for the two
FFs. The larger the overlap is, the more desirable is the merge.
In addition to logic reduction, the number of clock drivers and
gaters will also be reduced.
OR logic merging however does not come for free. It may

increase the amount of redundant clock pulses since the clock
gater is driven by a wider tree comprising more source FFs,
which increases the clock enabling probability. To consider the
gain and loss balance, let and denote the source
FFs sets of and , and let their size be
and , respectively. The total number of inputs of
themerged OR logic is . As shown in
Fig. 10(b) the merging eliminates one gater (comprising
and in Fig. 6). The amount
indicates how much of the OR logic can be shared (and thus be
saved) by the merge.
The efficiency of the OR logic merging depends on the

ratio. It follows that . In the best case
, while the worst case is . The higher the ratio

is, the less OR logic overhead is used to jointly gate the clocks
of and . Fig. 11 shows the distribution of for
all the FF pairs of the 6 k FFs block shown in Fig. 9. Obviously,
FF pairs whose is nearly 1 are favored for merging,



1470 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 61, NO. 5, MAY 2014

Fig. 11. All FF pairs cumulative distribution of a 6 k FFs block of
Fig. 9.

yielding 50% reduction of the gating logic. Fig. 11 shows that
for 38% of the pairs there is , potentially
reducing the gating logic of those pairs by 40% to 50%.
Having FFs, there are possible pairs, and the

question of how among those to choose the best pairs,
follows. An algorithm is subsequently presented. Consider the
cdyn savings per FF in expression (7). For sufficiently small
and it can be approximated by the following linearization

(8)

Term is independent of and thus not affected by the FF
merging, while term does. The change in savings
resulting by merging the gating logic of and is there-
fore

(9)

Term in (9) follows from the independent gating of
and , while term follows from their joint gating. No-
tice that in is multiplied by two since as shown in
Fig. 10(b), both and are clocked by . Substitu-
tion of in (9) yields

(10)

Terms and in (10) are the increase and decrease, re-
spectively, of the power savings due to the joint clock gating.
To validate the correctness of (10), consider the case

, and hence , where maximal
is expected. Indeed, term in (10) vanishes. In the

opposite case and , where min-
imal (maximal negative) is expected. Indeed, term
in (10) vanishes.
To characterize whether the merging the gating logic of

and pays, we set in (10). Since there is always
, the following merging criteria follows

(11)

Substituting for instance the values of Table I in (11) yields
the merging criteria for the 22 nm
technology and cell library used by this work. Only those pairs
satisfying (11) should be considered for merging. Those pairs
that do not will decrease the cdyn savings compared to gating

and independently. One can use the data of Fig. 11 to
find out how many of the FFs pairs satisfy (11). Substitution of

, the inequality
for the 22 nm technology is equivalent to .
Fig. 11 shows that it is satisfied by more than 40% of the pairs.
For the 6 k FFs of the block, there are

useful candidate pairs.
To maximize the total of , we define an -vertex com-

plete weighted graph , called gating logic merge
graph. A vertex corresponds to and an edge

corresponds to a pair. An edge is
assigned a weight as follows:

if (11) is satisfied

otherwise
(12)

The reason for the zero weight in (12) is to avoid a merge that
reduces cdyn savings. In this setup we wish to find a Perfect
Graph Matching[14] , , of ,
maximizing the expression that counts the extra cdyn
savings obtained by merging,

(13)

For the 6 k block example it means that we seek
pairs maximizing the cdyn savings.

Those can be found ad subsequently described among the
7.2 useful pairs shown in Fig. 11.
The above problem can be solved by the well-known Max-

imal Cost Perfect Matching (MCPM) algorithms [15]. If the so-
lution of MCPM contains edges satisfying
, the gating logic of and are not merged and they will
stay individually gated. Though the 61 block test bench com-
prises 200 k FFs, it should be noted that FFs are merged only
within their blocks, involving few thousands FFs each.
MCPM was employed in [10] to merge FFs in data-driven

clock gating, based on data toggling correlation. Merging FFs
for joint gating in LACG is different. It depends on the similarity
of the source FFs to target FF connection rather than on toggling
vectors correlation as in [10]. MCPM allows solving the general
case of merging the gating logic of more than two FFs. This has
been studied in [17] for data-driven clock gating. A heuristic



WIMER AND ALBAHARI: A LOOK-AHEAD CLOCK GATING BASED ON AUTO-GATED FLIP-FLOPS 1471

Fig. 12. cdyn reduction in 61 blocks comprising total of 200 k FFs.

solution was proposed, which can be adapted to LACG. It suc-
cessfully merged FFs in blocks comprising few thousands FFs.

V. EXPERIMENTAL RESULTS

LACG has been experimented on the 61 blocks used in Fig. 1.
Those are mostly control blocks of the data-path, register-file
and memory management units of the microprocessor. The ca-
pacitance parameters are of 22 nm process technology. For the
specific test bench used in this work the dynamic to static power
split was 80% and 20%, respectively [18]. The relatively low
static power is due to a variety of design techniques and process
features used by the design.
The gating scheme presented in Fig. 6 was first verified by a

formal verification EDA tool and it was found equivalent to the
original circuit before the gating logic was introduced. Though
not surprising, it is amust in an industrial environment where the
method was experimented. It is important to note that the intro-
duction of LACGmade most of the gate-level clock gating tech-
niques employed by this design redundant. Thosewere therefore
dropped, which somewhat compensated the LACG power and
area overhead.
The cdyn (power) savings for each block is illustrated in

Fig. 12. The blocks are decreasingly sorted according to the
cdyn reduction achieved. The top graph shows that for block
No. 1, whose total cdyn was originally 250 pF, LACG achieved
100 pF savings, which is 40% as shown in the bottom graph.
For block No. 2 whose total cdyn was originally 230 pF, LACG
achieved 70 pF savings, which is 30% as shown in the bottom
graph, etc.. The cumulated savings is presented in Fig. 13. It is
shown that the total clock cdyn is 4750 pF, of which 1065 pF
has been reduced by the LACG, concluding that the total clock
dynamic power reduction is 22.5%.
To assess the impact of the power savings achieved by

LACG on the total power dissipation, recall that there is also
the dynamic power of the logic and the static (leakage) power
that is independent of the switching activity. In the case of the
61 blocks, the clock cdyn is 70% of the total cdyn, and the

Fig. 13. Cumulative cdyn before gating and the amount of reduction achieved
by LACG.

static power is 20% of the total power. Taking those factors
into account, the 22.5% clock cdyn reduction was translated
into 12.6% reduction of the total power.

VI. CONCLUSION

Look-ahead clock gating has been shown to be very useful
in reducing the clock switching power. The computation of the
clock enabling signals one cycle ahead of time avoids the tight
timing constraints existing in other gating methods. A closed-
form model characterizing the power saving was presented and
used in the implementation of the gating logic. The gating logic
can be further optimized by matching target FFs for joint gating
which may significantly reduce the hardware overheads. While
this paper discussed the case of merging two target FFs for joint
gating, clustering target FFs in larger groups may yield higher
power savings. This is a matter of a further research.

ACKNOWLEDGMENT

The authors would like to thank O. Vaserberger, M. Abozaed,
and G. Tamir of Intel Corporation for supporting this work, and
E. Aberbach and O. Cohen of Bar-Ilan University for helpful
discussions. They are also grateful for the useful comments
made by the anonymous reviewers.

REFERENCES

[1] V. G. Oklobdzija, Digital System Clocking – High-Performance and
Low-Power Aspects. New York, NY, USA: Wiley, 2003.

[2] L. Benini, A. Bogliolo, and G. De Micheli, “A survey on design tech-
niques for system-level dynamic power management,” IEEE Trans.
VLSI Syst., vol. 8, no. 3, pp. 299–316, Jun. 2000.

[3] M. S. Hosny and W. Yuejian, “Low power clocking strategies in deep
submicron technologies,” in Proc. IEEE Int. Conf. Integr. Circuit De-
sign Technol., ICICDT 2008, pp. 143–146.

[4] C. Chunhong, K. Changjun, and S. Majid, “Activity-sensitive clock
tree construction for low power,” in Proc. ISLPED, 2002, pp. 279–282.

[5] A. Farrahi, C. Chen, A. Srivastava, G. Tellez, andM. Sarrafzadeh, “Ac-
tivity-driven clock design,” IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst., vol. 20, no. 6, pp. 705–714, Jun. 2001.

[6] W. Shen, Y. Cai, X. Hong, and J. Hu, “Activity and register placement
aware gated clock network design,” in Proc. ISPD, 2008, pp. 182–189.

[7] Synopsys Design Compiler, Version E-2010.12-SP2.
[8] S. Wimer and I. Koren, “The Optimal fan-out of clock network for

power minimization by adaptive gating,” IEEE Trans. VLSI Syst., vol.
20, no. 10, pp. 1772–1780, Oct. 2012.

[9] M. Donno, E. Macii, and L. Mazzoni, “Power-aware clock tree plan-
ning,” in Proc. ISPD, 2004, pp. 138–147.

[10] S. Wimer and I. Koren, “Design flow for flip-flop grouping in data-
driven clock gating,” IEEE Trans. VLSI Syst., to be published.



1472 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 61, NO. 5, MAY 2014

[11] M. Muller, S. Simon, H. Gryska, A. Wortmann, and S. Buch, “Low
power synthesizable register files for processor and IP cores,” INTE-
GRATION, The VLSI J., vol. 39, pp. 131–155, 2006.

[12] A. G. M. Strollo and D. De Caro, “Low power flip-flop with clock
gating on master and slave latches,” Electron. Lett., vol. 36, no. 4, pp.
294–295, Feb. 2000.

[13] C. E. Stroud, R. R. Munoz, and D. A. Pierce, “Behavioral model syn-
thesis with Cones,” IEEEDesign Test Comput., vol. 5, no. 3, pp. 22–30,
Jun. 1988.

[14] J. A. Bondy and U. S. R. Murty, Graph Theory. : Srpinger, 2008.
[15] V. Kolmogorov, “Blossom V: A new implementation of a minimum

cost perfect matching algorithm,”Math. Prog. Comp., pp. 43–67, 2009.
[16] J. Kathuria, M. Ayoub, M. Khan, and A. Noor, “A review of Clock

Gating Techniques,” MIT Int. J. Electron. and Commun. Engin., vol.
1, no. 2, pp. 106–114, Aug. 2011.

[17] S. Wimer, “On optimal flip-flop grouping for VLSI power minimiza-
tion,” Oper. Res. Lett., vol. 41, no. 5, pp. 486–489, Sep. 2013.

[18] “A Comparison of Intel’s 32 nm and 22 nm Core i5 CPUs: Power,
Voltage, Temperature, and Frequency,” Oct. 2012 [Online]. Available:
http://blog.stuffedcow.net/2012/10/intel32 nm-22 nm-core-i5-compar-
ison/

ShmuelWimer (M’10) received the B.Sc. andM.Sc.
degrees in mathematics from Tel-Aviv University,
Tel-Aviv, Israel, and the D.Sc. degree in electrical
engineering from the Technion—Israel Institute of
Technology, Haifa, Israel, in 1978, 1981, and 1988,
respectively.
He worked for 32 years at industry in R&D,

engineering and managerial positions, for Intel
Corporation from 1999 to 2009, and prior to that
for Sagantec, microCAD, IBM, National Semicon-
ductor and Israeli Aircraft Industry. He is presently

an Associate Professor with the Engineering Faculty, Bar-Ilan University,
Ramat-Gan, Israel, and an Associate Visiting Professor with the Electrical
Engineering Faculty, Technion. His current interests include VLSI circuits and
systems design optimization and combinatorial optimization.

Albahari Arye received the B.Sc. degrees in elec-
trical engineering from the Technion-Israel Institute
of Technology in 2006.
He works for Intel Corporation since 2002 in

microprocessors design, where he designed various
custom blocks such as register files, data-path and
small signals arrays. Arye participated in the foun-
dation of Intel’s circuit design team at Bangalore,
India, where he served as a technical leader of an
owner of mid-level cache design. He is currently
leading Intel’s cores low-power design and develops

the low-power design methodologies of Intel’s next generation processors.


