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Abstract The lithography used for 32 nanometers and smaller VLSI process tech-
nologies restricts the interconnect widths and spaces to a very small set of admissible
values. Until recently the sizes of interconnects were allowed to change continuously
and the implied power-delay optimal tradeoff could be formulated as a convex pro-
gramming problem, for which classical search algorithms are applicable. Once the
admissible geometries become discrete, continuous search techniques are inappro-
priate and new combinatorial optimization solutions are in order. A first step towards
such solutions is to study the complexity of the problem, which this paper is aiming
at. Though dynamic programming has been shown lately to solve the problem, we
show that it is NP-complete. Two typical VLSI design scenarios are considered. The
first trades off power and sum of delays (L), and is shown to be NP-complete by
reduction of PARTITION. The second considers power and max delays (L ), and is
shown to be NP-complete by reduction of SUBSET_SUM.
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1 Introduction

The interconnecting wires in VLSI chips are routed in several metal layers stacked
one above the other, where the wires are typically running in alternating orthogonal
directions as shown in Fig. 1 (Weste and Harris 2010). Figure 2 illustrates the con-
nection of two circuits of the chip, one is called driver and the other is called receiver.
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Fig. 1 The interconnecting metal layer regime in VLSI chips. Metal layers are stacked one above the
other and directions of interconnects are alternating between adjacent layers

Legend:

W Via D -
river
B Vetal 1

BN etal 2 ’ Receiver
[ Metal 3

Fig. 2 Interconnecting circuits in VLSI chips. A driving circuit is connected at the near end of a network.
The signal is propagating along metal wires to the receiving circuit connected at the far end of the network
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The interconnecting wires at the near and far ends reside on a lower metal layer, but
switch to upper layers along their way in order to achieve high electrical performance.

Power consumption and speed of VLSI systems and their tradeoff, aka power-
delay tradeoff, are important design considerations in state-of-the art manufactur-
ing technologies. The scale down of VLSI manufacturing technologies is lasting for
more than four decades, obeying the well-known Moore’s Law (Moore 1965), and
this trend will continue for the next decade at least (ITRS 2009). Though technol-
ogy progression enables the integration of complex systems on silicon die, it makes
the design effort for high performance chips more and more difficult. The lasting
trend towards higher speed is increasing the power consumption, while recent de-
mand for mobile products is driving reduction of power dissipation (ITRS 2009).
Unfortunately, power and speed are often in conflict with each other and their trade-
off is delicate and challenging. As a part of the VLSI design optimization techniques,
interconnects are subject to small adjustments for setting their widths and spaces
(Cong et al. 2001; Wimer et al. 2006).

Physical connectivity must be maintained under any horizontal shift of vertical
wires or vertical shift of horizontal wires. Shifting wires in one layer doesn’t affect
the spacing and width of the orthogonal wires in the layers above it and below it. The
length changes of wires in layers above and below of optimized layer is negligible
for all practical cases (Moiseev et al. 2009). Until recently the sizes of interconnects
were allowed to change continuously and the implied power-delay optimal tradeoff
could be formulated as a convex programming problem, for which classical search
algorithms are applicable (Zuber et al. 2009).

A new degree of optimization difficulty was introduced with the appearance of
32 nanometer and smaller process technologies (ITRS 2009), where the lithography
restricts the admissible sizes and spaces of interconnects to very few values. Once the
admissible geometries and their distances of each other become discrete, continuous
search techniques are inappropriate and new combinatorial optimization solutions
are in order. The complexity of delay-area optimization has been discussed in Li et
al. (1993) with regard of sizing the drive strength of logic cells. Though dynamic
programming has been shown lately to solve our interconnect problem (Moiseev et
al. 2010), studying its complexity is important and discussed in the rest of the paper.
Section 2 sets interconnect physical modeling and its related power and delay, where
Sect. 3 proves the NP-completeness of their optimization.

2 Delay and power modeling of interconnects in a bundle

Let oy, ..., 0, be n signals of a wire bundle, and let /1, ..., I, be their corresponding
wires positioned between two shielding wires Iy and 7,4 connected to ground, as
shown in Fig. 3. As shown in the figure, R; represents the power drive of a driver
where a signal starts, while C; represents the capacitive load of the receiver at the
terminating end of the signal. Let wy, ..., w, be wire widths and sy, ..., s, be the
spaces between them. It is assumed that admissible wire widths and spaces are taken
from finite, very small sets, representing gridded (discrete) design rules.

w; € W={Wp,..., W}, si€S={S1,...,5p) 2.1
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Fig. 3 A fundamental model of interconnecting bus comprising parallel wires laid on the same layer
between two shielding wires

Sometimes, a mix of discrete values with continuous ranges is allowed, but design
practice usually employs only a limited set of values, turning the problem into pure
discrete. Lithography may sometimes prohibit certain width and space combinations
by imposing interdependencies between the values in (2.1). We’ll ignore such restric-
tions as those don’t affect the complexity of the problems. The area allocated for the
wire bundle dictates a total width limit A, satisfying:

n n
Yowit) si<A 22)
i=1 i=0

The delay of signal o; can be approximated by Elmore model (Boese et al. 1993) as
follows:

Di(si—1, wi,s)) = a; + Biw; + yi/wi + (& +&i/wi)(A/si—1 +1/si), 1=<i=<n
(2.3)
The coefficients «;, B;, y;,8; and &; capture process parameters, driver’s resistance
and capacitive load, and interconnect length, which is fixed in this setting. The dy-
namic switching power P; consumed by o; is given by:

Pi(si—1, wi, si) =kjw; +ni(1/si—1+1/s;), 1<i<n 249
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The coefficients «; and n; capture process parameters, signal activity factors and in-
terconnect length. Signal activity factor is the amount of switching relative to the
clock signal. It can range from zero if the signal never switches (e.g., shields or power
delivery wires) to one if it toggles twice at every cycle (e.g., clocks). Signal activity
factors are derived from functional simulations which check the signal activity in
representative scenarios, and then averaging those over all cases (Magen et al. 2004).

Delay and power models in (2.3) and (2.4) are commonly used in Moiseev et al.
(2009), and the parameters in their expressions are not subject to optimization. The
total sum of delays, maximal delay and total interconnect power consumption are
given respectively by:

n
D™(5, ) =y Di(si—1, wi, ;) 2.5)
i=1
D" (5, w) = [nax Di(si—1, wi,s;), and (2.6)
<i<n
n
P, 0) =y Pi(si—1,wi, ) @7

i=1

The total delay in (2.5) is in fact L metric, while the max delay in (2.6) is L, metric.
Let 7; be the required time of o; and A; = T; — D; be its slack. It was shown in
Wimer et al. (2006) that maximizing ) ;_; A; is equivalent to minimizing ) ;_; D;,
and has the same solution. It was also shown that maximizing minimal A; is a similar
problem to minimizing the maximal D;, since both are convex and same algorithm
will solve both. Hence, without loss of generality we’ll consider just delays in the
discussion.

We show below that finding the minimum delays in (2.5) and (2.6) (or the power
in (2.7)) such that the power in (2.7) (or delay in (2.5) and (2.6)) doesn’t exceed
certain limit, is an NP-complete problem. In the proof we ignore the area constraint,
since an area constrained solution implies unconstrained solution, but not vice versa.
This follows from the number of distinct possible areas, which is linearly bounded
by n|W||S|. We could then invoke the algorithm of the area constrained problem for
each possible area and obtain the solution for the unconstrained one. Hence the latter
problem is generally easier than the former one.

3 NP completeness of power-delay optimization

Once all parameters of the bundle are set, namely, drivers, capacitive loads and ac-
tivity factors, the optimal sizing problem is equivalent to the following. Let “base”
power and delay be calculated for the setting in which all wire widths and spaces
are at minimum, namely, w; and s;. We then seek an assignment of extra widths
and spaces such that the total power (delay) is maximally reduced while total delay
(power) change doesn’t exceed certain limit. In the sequel we show that a simpler
decision sub-problem, called MIN_DLYPWR, is NP-complete.
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MIN_DLYPWR:

Instance: A n-wire bundle with given drivers, capacitive loads and activity factors,
whose wire widths and spaces are given in (2.1).

Question: Is there a setting of the widths and spaces of wires in the bundle such that
delay reduction from the base delay is § D at least, while power increase from the
base power is § P at most?

It follows from the delay and power equations given in (2.3) and (2.4), respec-
tively, that both are monotonic decreasing in spacing. Wider wires always increase
power, but may increase or decrease delay, depending on driver’s resistance. We prove
that the MIN_DLYPWR problem is NP-complete by showing that any instance of the
NP-complete PARTITION problem (Garey and Johnson 1979) can be transformed in
polynomial time into a special instance of MIN_DLYPWR, such that the answer to
PARTITION is YES if and only if it is so for the special MIN_DLYPWR instance.
The proof follows some ideas used in Li et al. (1993) which proves that the problem
of trading off area and delay by cell resizing is NP-complete.

Theorem 1 MIN_DLYPWR in NP-complete.

Proof MIN_DLYPWR clearly belongs to NP, as given a guess of widths and spaces,
one needs only to substitute those in the appropriate equations, which requires poly-
nomial time. (Notice that in the presence of an area constraint, the problem remains
NP as a summation of wire widths and spaces determines whether the area constraint
is met.) An instance / of a PARTITION problem attempts to answer whether for a
given set B whose elements have size s(b) € Z* for any b € B, there is a subset
B’ C B satisfying } 5 s(D) =3 e (p_pn S(B)-
MIN_DLYPWR instance f([) is built as follows:

1. For every element » € B of PARTITION we allocate a wire in the bundle.

2. Drivers of wires have zero resistance (infinite current drive) and zero internal de-
lay, hence they don’t affect signal delays (via interconnect capacitances). The co-
efficients oy, Bp, dp, &b, np are set to 0. The coefficients y;, and kp are set so that
yp = Cp (capacitive load of wire b) and «p = Fp, (activity factor of wire b), yield-
ing D(sp—1, Wy, Sp) = yp/wp and P(sp_1, Wp, Sp) = KpWp.

3. We fix the allowable spaces to minimum value only, namely, s, € § = {S1}. It
means that cross coupling capacitance does not affect this MIN_DLYPWR in-
stance.

4. Wire width has only two admissible values wy € W = {W, W»}, W < W,. All
wire widths are initially set to w, = Wj.

5. The area limit A of the bundle is sufficiently large to accommodate any width
sizing, so it doesn’t affect this MIN_DLYPWR instance.

6. Every signal corresponding to b € B is assigned with an activity factor Fp =
s(b)/(Wa — W1) and a capacitive load Cp = s(b) W1 W2 /(W2 — W1). Under these
assignments (2.5) and (2.7) turn into:

D¥™ = "(1/wp)s ()W W/ (Wy — W) G.D
beB
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P =" wps(b)/(Wa— W) (3.2)
beB

7. We finally set the power increase upper bound and delay reduction lower bound
to be equal to each other such that P =D =), _ps(b)/2.

It is obvious that f(I) can be constructed in polynomial time. Assume that the an-
swer to MIN_DLYPWR f (/) problem is YES. Notice that because drivers’ resis-
tance was set to zero, delay is monotonic decreasing in wire width. Power is always
monotonic increasing in wire widths. Hence there exists only a single value where
they are equal to each other, the only value for which a YES answer holds for the
MIN_DLYPWR problem. This value must be Y ", _p/ 8Py =Y, p 8 Dp. By defini-
tion, a YES answer to MIN_DLYPWR implies a subset B’ C B of wires which have
been upsized from Wy to W», decreasing delay and increasing power such total delay
decrease and total power increase satisfy » ,_p/ 8Dy > 8D and ) _p 8P, <8P,
respectively. It follows from (3.1) and (3.2), and the setting (7), that ) ,_p/ 8Py =
Y bep 8Dp =) pcp s(b)/2. Calculation of delay reduction (power increase is simi-
lar) yields (3 _,cps(0)) /2= e 8Dp =) pep(1/ W1 =1/ W2)s(b)W 1 W /(W2 —
W1) =) pep s(b), which implies that (B’, B — B’) is a YES answer to PARTITION.

Conversely, if B’ C B is a YES answer to PARTITION, we widen the wires cor-
responding to b € B’ form W; to W,. The delay given in (2.3) is thus reduced for
each wire of B’ by § D = Cp(1/ W1 — 1/ W,) = s(b), while the power given in (2.5)
is increased by 8 P, = Fp (W, — W) = s(b). Summing over all wires of B’ obtains a
YES answer to MIN_DLYPWR f(I) problem. O

Consider now the problem of minimizing the power in (2.7) such that the
maximal wire delay in (2.6) doesn’t exceed a certain value, a problem we call
MIN_MAX_DLYPWR. In this case we’ll tradeoff power decrease for delay increase
as follows.

MIN_MAX_DLYPWR:

Instance: same as in MIN_DLYPWR.

Question: Is there a setting of the widths and spaces of wires in the bundle such
that the power decrease from the base power is § P at least while delay increase
8D;j, 1 <i < n, from the base delay is § D at most?

Theorem 2 MIN_MAX_DLYPWR is NP-complete.

Proof MIN_MAX_DLYPWR clearly belongs to NP. We’ll reduce a well known
NP-complete problem called SUBSET_SUM (Garey and Johnson 1979) into
MIN_MAX_DLYPWR. An instance / of a SUBSET_SUM problem attempts to an-
swer whether for a given set B whose elements have size s(b) € Z* for any b € B,
and a given number M € Z*, there is a subset B’ C B satisfying Y, s(b) = M.
The base delay and power in this case are obtained by initially setting all
wire widths to W;, which results in maximum base power. Settings 1 to 5 of
MIN_MAX_DLYPWR instance f (/) are similar to those in MIN_DLYPWR proof.
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It follows from W, > W that the base delays are minimal and they increase when-
ever a wire is narrowed. Setting 6 of Theorem 1 is modified such that the capacitive
load is set to Cp, = MWW, /(W, — W) for all wires b € B. Under this assignment
(2.6) turns into:

D™ = Iglea;{M(l/wb)Wl Wa /(W — W)} (3.3)

Consequently wire narrowing from W, to W results in delay increase § Dy = M for
every narrowed wire. Finally, setting 7 of Theorem 1 is modified to P =8D = M.
The theorem follows by similar arguments as in Theorem 1. Narrowing a wire
b € B from W; to W adds s(b) to total power reduction at the expense of increasing
signal’s delay by M. It follows immediately that P = 8D =M iff ), _p 6Py =
maxpep {8 Dp} = M, and this holds iff the answer to SUBSET_SUM is YES. 7

It has been shown that the decision problems MIN_DLYPWR and MIN_MAX _
DLYPWR are NP-complete, where the area constraint has been dropped. In VLSI
practice we are interested in the function describing the power-delay dependency
(tradeoff function), where area is usually constrained. This is a convex function de-
scribing the minimum power (delay) that can be achieved for a delay (power) not
exceeding a certain value. A dynamic programming algorithm finding the power-
delay tradeoff function for real industrial problems has been reported in Moiseev et
al. (2010). This algorithm approximates the function to any desired accuracy ¢ > 0,
while its complexity is a polynomial in 1/¢, the number n of wires, the number of
admissible wire widths |W| and spaces |S|.

4 Conclusions

In this paper we have shown that several typical problems of power-delay optimiza-
tion by interconnect resizing in VLSI design turn to be NP-complete once the design
rules of process technology are discrete rather than continuous. The transition into
discrete design rules is a must in nanometer-scale manufacturing process technolo-
gies, and in the near future more and more design optimization problems may face
similar situations.

Acknowledgement The authors are grateful for the anonymous reviewers for their useful comments
which helped in improving the manuscript.

References

Boese KD, Kahng AB, McCoy BA, Robins G (1993) Fidelity and near optimality of Elmore-based routing
constructions. Digest of technical papers, ICCAD, pp 81-84

Cong J, He L, Koh CK, Pan Z (2001) Interconnect sizing and spacing with consideration of coupling
capacitance. IEEE Trans Comput Aided Des Integr Circuits Syst 20(9):1164—1169

Garey MR, Johnson DS (1979) Computers and intractability. Freeman, New York

ITRS—International Technology Roadmap for Semiconductors, 2009 edn. http://www.itrs.net/Links/
2009ITRS/Home2009.htm

@ Springer



300 J Comb Optim (2012) 23:292-300

Li W-N, Lim A, Agrawal P, Sahani S (1993) On the circuit implementation problem. IEEE Trans Comput
Aided Des Integr Circuits Syst 12(8):1147-1156

Magen N, Kolodny A, Weiser U, Shamir N (2004) Interconnect power dissipation in a microprocessor. In:
International workshop on system-level interconnect prediction, pp 7-13

Moiseev K, Wimer S, Kolodny A (2009) Power-delay optimization in vlsi microprocessors by wire spac-
ing. ACM Trans Des Automat Electron Syst 14(4):55

Moiseev K, Kolodny A, Wimer S (2010) Interconnect bundle sizing under discrete design rules. IEEE
Trans Comput Aided Des Integr Circuits Syst 29(10) (to appear)

Moore GE (1965) Cramming more components onto integrated circuits. Electronics 38(8)

Weste N, Harris D (2010) CMOS VLSI design: circuit and system perspective. Addison Wesley/Longman,
Reading/Harlow

Wimer S, Michaely S, Moiseev K, Kolodny A (2006) Optimal bus sizing in migration of processor design.
IEEE Trans Circuits Syst-I 53(5):1089-1100

Zuber P, Bahlous O, Ilnesher T, Ritter M, Stechele W (2009) Wire topology optimization for low power
CMOS. IEEE Trans VLSI Syst 17(1):1-11

@ Springer



