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a b s t r a c t

This paper presents several optimization problems occurring in VLSI interconnect,
Networks on Chip (NoC) design and 3D VLSI integration, all possessing closed-form
solutions obtained by well-solvable Quadratic Assignment Problems (QAP). The first type
of problems deals with the optimal ordering of signals in a bus bundle such that the
switching power, delay and noise interference areminimized.We extend a known solution
of ordering the signals in a bus bundle tominimize the impact of the first orderwire-to-wire
parasitic capacitance occurring between adjacent wires into a model accounting for also
secondary components ofwire-to-wire parasitic capacitances. The second type of problems
arises in the mapping of computation tasks into an array of processors sharing a common
bus, such as those found in NoC. We show a QAP closed-form solution to the optimal
mapping problem which simultaneously minimizes the switching power and the average
delay of the bus. The third problem deals with the optimization of 3D VLSI, vertically
stacking ordinary ICs. Some of the above problems involve k-salesmen Traveling Salesman
Problem (TSP), where costs are evaluated for elements located at k-distance apart along
the tour. We show a simple proof that these are well-solvable problems and obtain their
solution. This is then generalized to well-solvable QAPs obtained by superposition of such
TSPs. A simple proof shows that if k-distance TSPs are well-solvable, so is the QAP obtained
by their sum, where the solution of 1-distance TSPs dominates all the others.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In the following, we present three types of problems occurring in VLSI circuit and system design, and their relation
to Traveling Salesmen Problem (TSP) and Quadratic Assignment Problem (QAP). TSP and QAP are well known intractable
problems, but there are special instances where TSP [9,4,6] and QAP [21,3,7,17] are well-solvable. In the following, we show
that those VLSI problems are mapped into well-solvable TSPs and QAPs.

1.1. Minimizing delay and dynamic power in VLSI interconnect bus bundle

Fig. 1a illustrates a commonly used n-wire bus bundle. There, logic gates called drivers drive signals propagating along
interconnecting wires. These signals stimulate other logic circuits, called receivers, connected at the opposite end of the
wires. The bus is shielded by wires connected to ground. Cross-coupling parasitic capacitance (cross-cap for short) which is
a predominant cause of signal propagation delay, dynamic (switching) power consumption and crosstalk noise interference,
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Fig. 1a. Typical VLSI interconnect bus. Drivers are shown on the left side and receivers on the right side. The bus is shielded on its two sides. A parasitic
cross-coupling capacitance is incurring between any adjacent signals.

Fig. 1b. Cross-section of a 7-signal shielded bus. All line-to-line cross-coupling capacitances are shown (1-distance). Few other 2-distance, 3-distance and
4-distance capacitances are also shown.

occurs between any two wires of the bus [1]. The primary component of the cross-cap is occurring between adjacent wires,
where we say that the wires are at 1-distance of each other. Secondary cross-cap components exist in the bus as shown
in Fig. 1b. Most interconnect optimization algorithms account for only 1-distance cross-cap, which is claimed to reach 90%
of the total cross-cap. A secondary component of about 6% is due to wires at 2-distance and the rest are due to higher
distances. The secondary cross-cap impact on power dissipation and the accuracy of power estimation were studied in [15].
The question of how to order the wires in the bus to yield best performance (dynamic power consumption, delay and noise
immunity) has been studied for 1-distance cross-cap, and it was shown to be a well-solvable TSP [20]. It is shown in the
sequel that accounting for secondary cross-cap components results in a well-solvable QAP, which generalizes the former
result.

A well known VLSI optimization problem is the setting of wire widths and spaces in a bus bundle whose total width
(the distance between the shields in Fig. 1a) is constrained [19]. The question of how to order the wires in the bus such the
above optimization will yield best bus performance was discussed in several works [13,12,18,10,8,22], where at each paper
focused on a single objective, an all considered only 1-distance cross-cap. We show subsequently that the consideration of
secondary cross-cap does not change the optimal order of wires in the bus. Accounting for a k-distance component alone,
1 ≤ k ≤ n − 1, implies a sort of TSP with k salesmen. Considering all distances simultaneously yields a special QAP, which
is a sum of all k salesmen TSPs. We show in Section 3 that in the combined problem the 1-distance solution, corresponding
to the ordinary TSP (one salesman), dominates all the others.

Busmodeling associates with everywire a parameter r whosemeaning depends on the optimization problem of interest.
For delays r is the resistance of the signal’s driver. For dynamic power consumption and noise interference r represents
signal’s relative switching probability, called activity factor in VLSI jargon [11]. Given an arbitrary order of the wires in the
bus, let n real nonnegative parameters r1, . . . , rn be associated with the wires. It was shown in [13,12,18,10,8,22] that up to
a multiplicative factor which is independent of problem’s setting, once the widths and the spaces are set to minimize delay,
dynamic power or noise interference, the objective function satisfies the following expression:

F (r1, . . . , rn) =
√
r1 +

n−1
i=1

√
ri + ri+1 +

√
rn. (1.1)

In [18] the minimization of noise interference between signals was considered. In [13] average delay of a signal was the
minimization objective and in [12,10,8,22] dynamic power minimization was addressed.

Eq. (1.1) rouses the question of what is the order of wires among all the n! possible permutations which minimizes F . For
convenience, expression (1.1) can be modified into a cyclic sum by adding two artificial parameters r0 = rn+1 = 0, turning
it into F(r0, r1, . . . , rn, rn+1) =

n+1
i=0

√
ri + ri+1, where n+ 2 ∆

= 0. To adhere the indexing commonly used in combinatorial
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optimization literature and w.l.o.g, we will explore the order of wires which minimizes the expression

F (r1, . . . , rn) =

n
i=1

√
ri + ri+1, (1.2)

and a more general functions, where square root is just a special case. In (1.2) successive parameters ri and ri+1 correspond
to wires residing at 1-distance of each other, and n + 1 ∆

= 1.
Assume w.l.o.g that r1 < r2 < · · · < rn. Let Π denote the set of all permutations π : {1, . . . , n} → {1, . . . , n}, and

the sequence ⟨i1, . . . , in⟩, called also a tour, be obtained by π (j) = ij. The works in [13,12,18,10,8,22] showed that the
permutation yielding the sequence ⟨1, 3, . . . , n, . . . , 4, 2⟩ is minimizing the expression:

F (π) =

n
j=1


rij + rij+1

∆
=

n
j=1


rπ−1(j) + rπ−1(j+1). (1.3)

This permutation was studied thoroughly in combinatorial optimization and is called Symmetric Pyramidal Tour Permutation
(SPTP) [9]. It was shown in [13] that 10%–15% of delay reduction can be achieved by SPTP order of wires compared to the
order used for a real microprocessor designed in 65 nm process technology. Same amount of power reduction was reported
in [12] for the same microprocessor design. Similar numbers were reported in [10,8,22].

SPTP is a well known solution of a special case of TSP [4,6] whose cost matrix satisfies the so called ‘‘four-point’’
conditions [6]. The work in [20] showed that all the above mentioned VLSI problems satisfy Supnick conditions for TSP [16],
for which SPTP is indeed optimal. It also showed that SPTP is optimal for a more general form of (1.3), where F (π) =n

j=1 f

rπ−1(j), rπ−1(j+1)


, is a symmetric real function defined for x ≥ 0 and y ≥ 0, twice differentiable, and satisfying

∂2f (x, y) /∂x∂y < 0.
The above works explored the optimal wires order in the bus in the presence of only primary cross-cap. The question of

whether accounting for secondary cross-cap components may change the SPTP optimal order is interesting. The following
discussion takes the secondary cross-cap into account andmaps the optimization problem into a special QAP as amotivation
for the study in Sections 2 and 3. The main result there is that the addition of the approximated secondary cross-cap
preserves the SPTP optimal solution. One can expect for slight changes in the optimal wire widths and spacing resulting
by an optimization as applied in [8,19]. This is however a classical convex optimization which is beyond the scope of this
paper.

Given a wire located at position j in the bundle, we account for its cross-cap to wires positioned at j + k, 1 ≤ k ≤ n − 1,
wherewire indices are numbered cyclically. Letαk ≥ 0, 1 ≤ k ≤ n−1,

n−1
k=1 αk = 1, be the k-distance cross-cap coefficient,

e.g., α1 = 0.9, α2 = 0.06, etc. The minimum power and delay when higher than 1-distance cross-cap components are
considered cannot be expressed as a linear sum of expressions as those in (1.3). Still, simulations show that the subsequent
weighted sum, where the coefficients are monotonic decreasing in wire distance, yields a fair approximation [15]. We are
therefore interested in finding the permutation minimizing the expression

F (π) =

n−1
k=1

αk

n−k
j=1


rπ−1(j) + rπ−1(j+k). (1.4)

The consideration of higher distances turns the problem of finding the optimal permutation into a special QAP case, for
which SPTP closed-form solutions exist. A variety of engineering optimization problems yielding SPTP optimal QAP solution
are presented in [21]. Papers [3,7] discuss well-solvable QAP and provide good references to this topic. Given a n×n real cost
matrix C =


cij


and a n× n real distance matrix D =


dij


, QAP aims at finding a permutation π minimizing the expression

F (π) =

n
i=1

n
j=1

cπ−1(i)π−1(j)dij. (1.5)

Eq. (1.4) is mapped into (1.5) by defining the costs cij =
√
ri + rj, 1 ≤ i, j ≤ n, i ≠ j, and cii = 0, 1 ≤ i ≤ n. Distances

are defined by dij = αj−i, 1 ≤ i < j ≤ n, and dij = 0 otherwise. Section 3 shows that when a QAP is obtained by a sum of
k-distance well-solvable TSPs the optimal permutation is SPTP of 1-distance TSP, which dominates all the others.

1.2. Minimizing the dynamic power and latency in a bus shared by an array of processors

Fig. 2a illustrates architecture of an array of identical processors sharing a common segmented bus, through which each
pair of processors can communicate. Such an array is used to execute in parallel several computation tasks where tasks are
communicating with each other through the bus. The goal in allocating tasks to processors is to minimize both the power
consumed on the bus and the average data transfer latency. Such problems arise lately in the area of Networks on Chips (NoC)
and [2] provides many references to works done in the area. The results of those works have been obtained by experiments
and simulations, without analysis of problem’s combinatorial properties, something done below.
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Fig. 2. (a) An array of processors sharing a common segmented bus. Twoprocessors only can communicate through the bus simultaneously. (b) The internal
structure of a switch which segments the bus. Internal switches are controlled by signals (not shown) such that a connection between two communicating
processors is established, while the unnecessary parts of the bus are disconnected.

We assume that at any time only two processors can communicate through the bus. Since transferred data is switching
between 0 and 1, the dynamic power consumed is dictated by the active portion of bus. The bus is therefore automatically
configured to minimize the capacitive load and avoid switching of any unnecessary portion. This is achieved by switches
connecting the segment between processors Pi and Pj when they are communicating, and disconnecting the segments
extending from P1 to Pi and from Pj to Pn. A switch S is shown in Fig. 2(b), comprising three internal switches: SP connects the
bus and processor P , while SL and SR establish leftward and rightward connections, respectively. The switches are controlled
by signals to yield the desired configuration.

A computation task is associated with a probability pi, corresponding to the relative time along the entire run-time of
an application it is active on the bus. The probability pi is known in advance, e.g. from simulations. Since only a single pair
of processors can communicate at any time, it follows that

n−1
i=1

n
j=i+1 pipj = 1. We assume that the bus capacitive load

incurring between Pi and Pj is proportional to their distance, given by γ |i − j|, where γ is some factor independent of the
allocation. This holds since capacitance is proportional to area of wires, which is proportional to |i − j|, the length of wire
connecting Pi with Pj.

Let π denote the order of tasks allocated to processors. The total dynamic power consumed along the entire run time of
an application is given by:

F(π) = γ

n−1
i=1

n
j=i+1

pπ−1(i)pπ−1(j)(j − i). (1.6)

Eq. (1.6) can be represented as QAP by defining the costs cij = pipj, 1 ≤ i, j ≤ n, i ≠ j, and cii = 0, 1 ≤ i ≤ n. Defining
distances dij = j − i, 1 ≤ i < j ≤ n, and dij = 0 otherwise, expression (1.6) turns into (1.5). Task allocation problem
is reminiscent of the average access time minimization problem [17], and it is an Anti-Monge–Toeplitz well-solvable QAP
solved by SPTP [3].

Consider now theminimization of average data transfer latency along the bus. The travel time of data between Pi and Pj is
proportional to the RC delay of the bus segment connecting Pi with Pj, given by δ(j− i)2, where δ is some factor independent
of the allocation. Notice that minimizing the average latency is equivalent to minimizing its total, given by:

F(π) = δ

n−1
i=1

n
j=i+1

pπ−1(i)pπ−1(j)(j − i)2. (1.7)

Eq. (1.7) can be represented as QAP by defining the costs same as in (1.6), and distances by dij = (j − i)2, 1 ≤ i < j ≤ n,
and dij = 0 otherwise, turning (1.7) into (1.5). This problem is also an Anti-Monge–Toeplitz well-solvable QAP solved by
SPTP [3].

Notice that a ring busmay share the same results as obtained for the linear bus in Fig. 2, provided that the ring connectivity
topology is implemented in such a way that the distances between pair of connected processors is more or less the same for
the entire ring. In that case there is no difference between the linear and ring bus with equal distances between processors.
However, if the distances between processors are arbitrary, the problem for both buses turns to be ordinary intractable QAP.

1.3. Optimizing 3D VLSI physical integration

The steady progress of VLSI CMOS technology, lasting for already five decades and known as Moore’s law, which doubles
the transistor count on silicon area every two years, will probably come to end within a decade or so due to technology
limitations. On the other hand, the ever growing demand for computational power is driving the Integrated Circuit (IC)
industry to explore anddevelopnew integration technologies. 3D IC integration is a novel technology of growing importance,
offering significant performance and functional benefits [14,5]. As shown in Fig. 3 3D ICs incorporate individual, vertically
stacked ordinary planar ICs, where the interconnections between ICs are implemented by the so-called Through-Silicon Via
(TSV). While today’s 3D VLSI technology is capable of stacking up to eight ICs, it is expected that within a few years this
number will grow into few dozens.

3D integration extends most of the performance affecting factors like wire length, the amount of data traffic, and few
more, from planar into 3D models, for which the order of vertical stacking is critical. Moreover, cumulative and bulky
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Fig. 3. (a) 3D VLSI comprising vertically stacked ordinary planar ICs. (b) Cross section of 3D IC incorporating 3 planar ICs. Inter-IC connections are
implemented by Through-Silicon Via (TSV) .

factors occurring in the individual planar ICs like the number of interconnects, the amount of switching occurring during
IC operation, heat dissipation, peak current and the total capacitance of IC, have a primary impact on the 3D IC stacking
order [14]. Those factors affect not only the individual IC, but also the ICs above and below. The interrelations between ICs
and their impact on performance, reliability and cost of the entire 3D product lead to similar expressions as thosementioned
in former examples, emphasizing the importance of TSP and QAP for those technologies and design methods.

Consider for instance the Through-Silicon Vias (TSVs), being the critical resource for 3D integration due to their limited
number. Their size (pitch) is far larger compared to ordinary planar 2D vias used in the individual ICs, making their number
very limited [14]. Since the number of inter-IC signals may reach tens of thousands, we would like to stack the ICs such
that the total required number of TSVs is minimized. Considering n vertically stacked ICs, let pij be the number of signals
connecting IC iwith IC j, 1 ≤ i, j ≤ n. Since an interconnect between IC iwith IC jmust pass through all the ICs in between,
the number of TSVs required to implement those inter-IC connections is pij × |i − j|. The total required number of TSVs is
therefore

F(π) =

n−1
i=1

n
j=i+1

pπ−1(i)π−1(j)(j − i). (1.8)

Though (1.8) is an ordinary intractable QAP problem, pij may in many cases have a special form of sum or product matrix,
resulting in a well-solvable QAP.

In the above we described several VLSI problems; all represented as QAP, where their costs imply types of Monge matrix
and their distances imply types of Toeplitz matrix. All problems can therefore be represented as sums of weighted TSPs
where costs are taken between k-distances elements along the tour. It is thereforeworthwhile to further explore the relation
between QAP and sums of TSP problems. In the rest of the paper we will return to the types of QAP as in (1.4) and prove that
those can be treated as a superposition of well-solvable TSPs, a fact that enables a simple proof showing that the combined
problem is also well-solvable QAP. First, a k-distance,1 ≤ k ≤ n − 1, TSP special case is discussed and a closed-form
optimal permutation is shown, obtained by an arbitrary evenly interleave of k SPTPs of independent problems with n/k
elements each. We then derive a closed-form optimal permutation for the special QAP obtained by summing k-distance
TSPs, 1 ≤ k ≤ n − 1. Though every k-distance TSP yields different optimal permutation, their sum is always optimally
solved by SPTP of 1-distance problem (ordinary TSP). We will conclude with few directions for further research.

2. The minimization of k-distance special TSP

The following lemmawas proved in [20] and is used in the subsequent discussion to derive solutions for the TSP and QAP
special cases.

Lemma 1. Let f (x, y) be a symmetric real function defined for x ≥ 0 and y ≥ 0, twice differentiable, satisfying ∂2f (x, y)/∂x∂y <
0. If a, b, c and d are real nonnegative numbers satisfying 0 ≤ a < b < c < d then

f (a, b) + f (c, d) < f (a, c) + f (b, d) < f (a, d) + f (b, c). (2.1)

In the following we will use the term k-distance SPTP to denote the optimal permutation when the cost is measured at k-distance
along the tour. In this terminology the ordinary SPTP corresponds to 1-distance SPTP. In order to derive the permutation which
minimizes the TSP cost taken at k-distance, we first consider the case of 2-distance.

Lemma 2. Let f satisfy the conditions of Lemma 1, 0 ≤ r1 < r2 < · · · < rn−1 < rn be real numbers and let n be even. An
optimal permutation π∗

∈ Π minimizing

F(π) =

n
j=1

f

rπ−1(j), rπ−1(j+2)


(2.2)
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Fig. 4a. The set of elements is ordered in increasing order r1 < r2 < · · · < rn−1 < rn and its division into two subsets, each ordered in SPTP.

Fig. 4b. An optimal permutation is obtained by any even interleave of the two SPTPs obtained in Fig. 4a.

Fig. 5a. The blue and red elements belong to B1 and B2 , respectively. A1 and A2 are SPTP ordered. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

satisfies the following:
1. It divides {r1, r2, . . . , rn} into two equal size subsets B1 =


r1, r2, . . . , rn/2


and B2 =


rn/2+1, rn/2+2, . . . , rn


as shown in

Fig. 4a.
2. The elements in each of B1 and B2 are ordered by 1-distance SPTP, as shown in Fig. 4a. We denote those permutations by π∗

1
and π∗

2 , respectively.

Proof. Wewill prove first that the elementsmust be partitioned into two independent, equal sizes subsetswhere eachmust
be SPTP ordered, as any other than (B1, B2) partition necessarily results in higher TSP cost. Since n is even and the cost is
calculated for elements at 2-distance of each other, it follows that any tour must divide the elements into two sets A1 and
A2 satisfying |A1| = |A2| = n/2. Moreover, if A1 is ordered by a permutation π1 and A2 by π2, any combined permutation π
must be a result of even interleave ofπ1 andπ2 (Fig. 4b). Let A1 =


rj1 , rj2 , . . . , rjn/2


and A2 =


rjn/2+1 , rjn/2+2 , . . . , rjn


be the

sets of n/2 elements each. Since the elements of A1 are not interactingwith those of A2 it follows that F(π) = F (π1)+F (π2).
Each of π1 and π2 must therefore be 1-distance SPTP as otherwise F(π) was not minimal; hence 2 follows.

Proving that A1 = B1 (and hence A2 = B2) is done by showing that the interaction of elements from B1 with those of B2
in other than (B1, B2) partition results in higher TSP cost. So assume in contrary that A1 ≠ B1 and therefore A1 ∩ B2 ≠ ∅. By
2 A1 and A2 are ordered in SPTP. Since the elements of B2 are larger than those of B1, the elements of B2 are evenly centered
and the elements of B1 are evenly tailed in A1 and A2, as shown in Fig. 5a. Since the cost is calculated cyclically, A1 and A2 can
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Fig. 5b. The new permutations (up to cyclic shift which does not change cost) as obtained after swapping the elements of A1 ∩ B2 with A2 ∩ B1 .

be viewed as being consist of two contiguous sequences, one comprising element of B1 (blue colored) and one comprising
element of B2 (red colored). Moreover, there exists |A1 ∩ B2| = |A2 ∩ B1|. We can therefore modify A1 and A2 into B1 and
B2, respectively, by exchanging A1 ∩ B2 with A2 ∩ B1, while preserving the n/2 size of each set. We denote by π ′

1 and π ′

2,
respectively, the new permutations thus obtained.

In the following we will show that the resulting permutations π ′

1 and π ′

2 yield lower cost than π1 and π2 do. We
denote the border elements of B1 and B2 in π1 by a, b, c and d, and in π2u, v, w and x, as shown in Fig. 5a. There exists
max{a, u} < min{b, v} and min{c, w} > max{d, x}. The order obtained after the swap (up to cyclic shift which does not
change cost) is shown in Fig. 5b. Recall that the cost between 1-distance elements is taken cyclically, hence the extreme
elements are also at 1-distance of each other. Comparison of the costs of π and π ′ yields:

F(π) − F(π ′) = [F(π1) + F(π2)] − [F(π ′

1) + F(π ′

2)]

= [f (a, b) + f (c, d) + f (u, v) + f (w, x)] − [f (v, b) + f (c, w) + f (a, u) + f (x, d)]
= [f (a, b) + f (v, u)] − [f (a, u) + f (v, b)]  

(1)

+ [f (c, d) + f (w, x)] − [f (c, w) + f (x, d)]  
(2)

> 0. (2.3)

Inequality (2.3) follows from expression (1)which is positive due tomax{a, u} < min{b, v} so the left hand side of inequality
(2.1) applies. Expression (2) is also positive since min{c, w} > max{d, x} and Lemma 1 applies again. Inequality (2.3) means
that π is not optimal. This is the outcome of the assumption that A1 ≠ B1, hence equality must exist and the lemma
follows. �

Few comments are in order. It follows from Lemma 2 that 2n equivalent permutations minimizing F(π) defined in (2.2)
can be constructed. Those are obtained by the n/2 relative shifts of the evenly interleaved elements of B1 with respect to
those of B2, and mirroring (reverting) π∗

1 and π∗

2 . The partition into B1 and B2, and their implied permutations are called
by some papers sub-tours. In case of odd n there is no separation into sub-tours and the optimal permutation is uniquely
defined to yield SPTP 2-distance cyclic traversal, thus yielding ⟨1, n− 1, 3, n− 3, . . . , n− 2, 2, n⟩. As can evidently be seen,
a 2-distance TSP cyclic traversal yields SPTP indeed.

We next generalize Lemma 2 for any k-distance cost TSP.

Theorem 1. Let f satisfy the conditions of Lemma 1, 0 ≤ r1 < r2 < · · · < rn−1 < rn be real numbers and n,m and k positive
integers satisfying n = mk. An optimal permutation π∗

∈ Π minimizing

F(π) =

n
j=1

f (rπ−1(j), rπ−1(j+k)) (2.4)

satisfies the following:

1. It divides {r1, r2, . . . , rn} into k subsets Bi = {r(i−1)m+1, r(i−1)m+2, . . . , rim}, 1 ≤ i ≤ k.
2. The elements of each of Bi are ordered by 1-distance SPTP. We denote their corresponding permutations by π∗

i .

Proof. Since n = mk and the cost is calculated for elements at k-distance of each other, every k contiguous elements in the
tour must belong to distinct sets and k sub-tours result in. It follows therefore that any tour must divide the elements into
k sub-tours comprising sets Ai, 1 ≤ i ≤ k, satisfying |Ai| = m. Let Ai = {rj(i−1)m+1 , rj(i−1)m+2 , . . . , rjim} be a sets of m elements
in a sub-tour ordered by πi. Since the elements of Ais are not interacting with each other it follows that F(π) =

k
i=1 F(πi).

Each πi must therefore be 1-distance SPTP as otherwise F(π) was not minimal; hence 2 follows.
To prove that Ai = Bi, 1 ≤ i ≤ k, assume in contrary that there is Al ≠ Bl for some 1 ≤ l < k and let l be the smallest

index where such inequality holds. By its very definition Al ∩
l−1

j=1 Bj = ∅, and Al ∩
k

j=l+1 Bj ≠ ∅. It follows from 2 that Al

is ordered such that πl is a 1-distance SPTP. The elements of Al ∩
k

j=l+1 Bj are therefore evenly centered in πl, while those
of Al ∩ Bl are evenly tailed in πl. This is illustrated in Fig. 6a, where the red elements belong to

k
j=l+1 Bj and the blue ones

to Bl.
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Fig. 6a. Al is the first set not equal to Bl . The red elements belong to
k

j=l+1 Bj and are centered in Al by πl , which is SPTP. The blue elements belong to
Al ∩ Bl and are tailed in Al by πl . The smallest element of Bl − Al is centered in the valley of Aq . (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 6b. The new sets A′

l and A′
q , and the corresponding permutations π ′

l and π ′
q obtained from Al and Aq by exchanging sequences.

Let r(l−1)m+r = a, be the largest element in Al ∩ Bl as shown in Fig. 6a. Clearly, r(l−1)m+r+1 = v ∈ Bl − Al is the smallest
among the elements of

k
j=l+1 Aj and it must be an end element in some Aq, l + 1 ≤ q ≤ k (or equivalently, the central

element of the valley in a cyclic viewing of SPTP), as shown in Fig. 6a. Let b be the succeeding element of a in Al and let u
be the preceding element of v in Aq. By SPTP definition u resides in the opposite end of Aq, as shown in Fig. 6a, (or centered
in the valley adjacently to u, if Aq is viewed cyclically). Notice that the largest element in Aq, positioned at its center, must
belong to

k
j=l+1 Bj, hence it is red colored. The rest elements however can be any of

k
j=l Bj, hence are colored by a mix of

blue and red. In this order those elements of
k

j=l+1 Bj are centered, while those of Bl are tailed. There exists a < u and b > v.
Consider an ordered pair of elements (r, t), r ∈ Al, t ∈ Aq. There exists a nonempty sequence of pairs (ri, ti), 1 ≤ i ≤ s < m,
starting at (r1, t1) = (b, v) and terminating at (rs, ts) = (c, w), such that ri > ti, while rs+1 < ts+1. Let (rs+1, ts+1) = (d, x),
namely, x > d.

We nowmodify Al and Aq into A′

l and A′
q, respectively, by exchanging the above defined s-length sequences ⟨b, . . . , c⟩ ∈ Al

and ⟨v, . . . , w⟩ ∈ Aq, while preserving the m-size of A′

l and A′
q, as shown in Fig. 6b. We denote the new permutations thus

obtained by π ′

l and π ′
q, respectively. Comparison of the costs of π and π ′ yields

F(π) − F(π ′) = [F(πl) + F(πq)] − [F(π ′

l ) + F(π ′

q)]

= [f (a, b) + f (c, d) + f (u, v) + f (w, x)] − [f (a, v) + f (w, d) + f (u, b) + f (c, x)]
= [f (a, b) + f (v, u)] − [f (a, v) + f (u, b)]  

(1)

+ [f (c, d) + f (w, x)] − [f (c, x) + f (w, d)]  
(2)

> 0. (2.5)

Inequality (2.5) follows fromexpression (1)which is positive due tomax{a, v} < min{b, u}, so the left hand side of inequality
(2.1) applies. Expression (2) is also positive since c > w, x > d and d > c , so x > d > c > w holds and the right hand
side of inequality (2.1) applies. Inequality (2.5) means that π is not optimal, which is the outcome of the assumption that
Al ≠ Bl. Hence equality must exist and the theorem follows. �

Analogous comments as in Lemma 1 follow. If Bi is ordered by a permutation π∗

i , any combined permutation π∗ must
be the outcome of an even interleave of all π∗

i , 1 ≤ i ≤ k, yielding 2kmk−1 equivalent permutations minimizing F(π)
defined in (2.4). Those are obtained by the m = n/k relative shifts of Bi with respect to the rest k − 1 subsets and
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mirroring (reverting) the order of elements in any of π∗

i , 1 ≤ i ≤ k. In case that k is not a divisor of n there are no sub-
tours and the k-distance TSP traversal results in a single cycle consuming all the n elements. The order of the elements
must be such that SPTP results in. Consider for example the case n = 16 and k = 5. The arrangement yielding SPTP is
⟨1, 6, 12, 15, 9, 3, 4, 10, 16, 11, 5, 2, 8, 14, 13, 7⟩.

3. The QAP as a sum of j-distance TSPs

In this section we consider a weighted sum of j-distance TSPs. Let αj ≥ 0, 1 ≤ j ≤ k < n, be nonnegative real numbers
and consider the cost

F(π) =

k
j=1

αj

n
i=1

f

rπ−1(i), rπ−1(i+j)


, (3.1)

which generalizes (1.4). The expression in (3.1) is obtained by QAP comprising a n × n cost matrix C = (cij) defined by f ,
and a n × n distance matrix D = (dij) defined by the weights αj. In this setting D is a Toeplitz matrix satisfying dij = αj−i if
i < j ≤ i + k, dij = αn−i+j if j < i ≤ j + k and dii = 0. We will show subsequently that (3.1) implies a well-solvable QAP.

Theorem 1 showed that when the cost matrix C is derived from a function f (x, y) satisfying the conditions of Lemma 1,
a k-distance SPTP solves the k-distance TSP. It is not intuitively obvious what permutation solves the special QAP given by
a weighted sum of j-distance TSPs, 1 ≤ j ≤ k. In the following we will show that the 1-distance TSP is dominating all the
other j-distance TSPs, and the optimal solution for their sum is always that of 1-distance SPTP. As a first step we consider
the special QAP obtained by summing j-distance TSPs for αj = 1, 1 ≤ j ≤ k, where the indices are considered cyclically

F(π) =

k
j=1

n
i=1

f

rπ−1(i), rπ−1(i+j)


. (3.2)

We will then discuss the case of αj ≥ 0, 1 ≤ j < n. Though the case αj = 1 can be derived as a special case of [3,7], its proof
of being well-solvable by 1-distance SPTP is far simpler and more intuitive.

Theorem 2. Let f satisfy the conditions of Lemma 1. The special QAP given in (3.2) defined by summing j-distance TSP costs,
1 ≤ j ≤ k, is well-solvable and its solution is 1-distance SPTP, the solution of an ordinary well-solvable TSP.

Proof. Let k be a fixed number. The proof follows by induction on n. For the basis we use n = k. Since the maximal distance
between two elements in a problem having k elements is k − 1, the cost consists of the function evaluated for all possible
pairs of elements. Since all the off-diagonal elements of D are equal to 1, all the permutations yield the same cost, and
1-distance SPTP in particular is optimal.

Assume by induction that 1-distance SPTP is minimizing the cost ofm-size QAP, k ≤ m, given as a sum of j-distance TSPs,
1 ≤ j ≤ k, and consider a problem of m + 1 elements. Assume w.l.o.g that r1 < r2 < · · · < rm+1. Let π be a permutation of
{1, . . . ,m + 1} resulting in the sequence ⟨j1, . . . , jm+1⟩. The cost of π is given by:

F(π) =

k
j=1

m+1
i=1

f

rπ−1(i), rπ−1(i+j)


. (3.3)

Let π∗ be 1-distance SPTP. We will show subsequently that π∗ is a lower bound of (3.3). Let l = π(1). The proof follows by
decomposing (3.3) into two terms F(π) = G(π) + H(π) and then showing that π∗ is a lower bound of both G and H .

The termG(π) is obtained by excluding r1(
∆
= rπ−1(l)

∆
= rjl), soπ is restricted to {2, . . . ,m+1}. The termH(π) compensates

G(π) to satisfy (3.3) equality. Since we consider distances from 1 to k,H(π) exactly involves the 2k + 1 elements
rjl−k , rjl−k+1 , . . . , rjl−1 , r1, rjl+1 , . . . , rjl+k−1 , rjl+k . We similarly decompose the cost of π∗ into F(π∗) = G(π∗) + H(π∗).
The smallest element r1 is centered in the valley of π∗; hence its exclusion leaves π∗ being SPTP. Since the m elements
{r2, . . . , rm+1} are involved in both G(π) and G(π∗), it follows from the induction hypothesis that G(π∗) ≤ G(π).

It remains to show that H(π∗) ≤ H(π). The term H(π) is defined in (3.4) below and consists of two expressions.
The first one is the result of r1 and its k left and k right adjacent elements, accounting for the costs in F(π) which have
been disappeared from G(π) due to the exclusion of r1. The second expression is the result of the new costs appearing in
G(π) which has not been existed originally in F(π). The new costs involve all the pairs of elements enclosing r1 positioned
originally by π at (k + 1)-distance, but turned to be at k-distance in G(π) due to r1 exclusion.

H(π) =

k
i=1


f (rπ−1(l−i), r1) + f (r1, rπ−1(l+i))


  

(1)

−

1
i=k

f

rπ−1(l−i), rπ−1(l−i+k+1)


  

(2)

. (3.4)

Since H(π) involves r1 and additional 2k unknown elements, we may consider H(π) as a function H(rπ−1(l−k), . . . ,
rπ−1(l−1), r1, rπ−1(l+1), . . . , rπ−1(l+k)) of 2k variables and seek for those among {r2, . . . , rm, rm+1} minimizing H . Notice that
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the selection of those 2k elements does not affect G(π) since its evaluation involves all the m elements {r2, . . . , rm+1} and
its minimization is therefore only a matter of π . We claim that the 2k elements must be selected to be the smallest ones of
{r2, . . . , rm+1}, which are {r2, . . . , r2k+1}. This follows from H being monotonic increasing in each of its variables as shown
in the following. Take any element rπ−1(l+r), −k ≤ r ≤ k, r ≠ 0, and let it get any two values r ′

π−1(l+r)
< r ′′

π−1(l+r)
.

Let −k ≤ q ≤ k, q ≠ 0, be such that rπ−1(l+q) is the element positioned by π at distance k + 1 from rπ−1(l+r), namely
|r − q| = k + 1. There exists

H

rπ−1(l−k), . . . , r

′′

π−1(l+r), . . . , rπ−1(l+k)


− H


rπ−1(l−k), . . . , r

′

π−1(l+r), . . . , rπ−1(l+k)


=


f

r ′′

π−1(l+r), r1


− f

r ′

π−1(l+r), r1


−


f

r ′′

π−1(l+r), rπ−1(l+q)


− f


r ′

π−1(l+r), rπ−1(l+q)


=


f

r ′

π−1(l+r), rπ−1(l+q)


+ f


r ′′

π−1(l+r), r1


−


f

r ′′

π−1(l+r), rπ−1(l+q)


+ f


r ′

π−1(l+r), r1


> 0. (3.5)

This inequality follows since r1 is the smallest, thus one of the following possibilities must hold: r1 < r ′

π−1(l+r)
< r ′′

π−1(l+r)
<

rπ−1(l+q), r1 < r ′

π−1(l+r) < rπ−1(l+q) < r ′′

π−1(l+r), or r1 < rπ−1(l+q) < r ′

π−1(l+r) < r ′′

π−1(l+r). For any of those Lemma 1 ensures
that expression (3.5) is positive, henceH is monotonic increasing in any of its variables. Consequently, the set of 2k elements
minimizing H must indeed be {r2, . . . , r2k+1}, the smallest among {r2, . . . , rm+1}. These indeed are the elements dictated by
applying π∗ to F and the exclusion of r1.

We show now that among all the orders of {r2, . . . , r2k+1}, the sequence ⟨r2k+1, . . . , r3, r2, r4, . . . , r2k⟩ is minimizing
H , which indeed conforms with π∗ applied to F and the exclusion of r1. Notice that in term (1) of (3.4) the element
r1 interacts with all the others, while they do not interact with each other, and therefore the term is independent of
their order. Minimizing requires therefore maximizing term (2) of (3.4). Notice that the function f in expression (2) is
evaluated for elements mapped by π so they are at (k + 1)-distance of each other. It necessitates that r2, the smallest
element among all, will be evaluated together with r2k+1, the largest element among all. If this was not the case, let r2 be
evaluated with r ′ and r2k+1 be evaluated with r ′′. Since r2k+1 > max{r ′, r ′′

} > min{r ′, r ′′
} > r2 Lemma 1 ensures that

f (r2, r2k+1) + f (r ′, r ′′) > f (r2, r ′) + f (r2k+1, r ′′), so by swapping r2k+1 with r ′, term (2) could be made larger. Similarly,
it is necessary that r3 be at (k + 1)-distance apart of r2k so they are evaluated together by f . By induction, r2+j must be
at (k + 1)-distance apart of r2k+1−j for all 0 ≤ j ≤ k − 1. Though there are k! possible mappings of {r2, . . . , r2k+1} to
⟨rπ−1(l−k), . . . , rπ−1(l−1), rπ−1(l+1), . . . , rπ−1(l+k)⟩ satisfying the above (k + 1)-distance pairing requirements, the mapping
⟨r2k+1, . . . , r3, r2, r4, . . . , r2k⟩ is the only conforming with π∗, which have already been shown to minimize G(π). To
conclude, π∗ maximizes the expression (2) in (3.3), hence minimizing H(π), which completes the proof that F(π) =

G(π) + H(π) ≥ G(π∗) + H(π∗) = F(π∗). �

Consider now the case of αj ≥ 0, 1 ≤ j ≤ k. Unlike [3] which required αj adhering a benevolent function defined
on {1, 2, . . . , n}, no such requirement is imposed in our case. On the other hand, the case of monotonic decreasing αj in
(1.4) conforms to [7] which required D being bimonotone to yield well-solvable QAP. We can therefore conclude that the
generalization of αj ≥ 0 leaves the 1-distance SPTP optimal.

4. Conclusions and further research

In this paper we showed how several VLSI applications are mapped into well-solvable QAPs possessing SPTP optimal
solution, and studied the relations betweenwell-solvable TSPs and QAPs. As 3D VLSI and Network on Chip (NoC) are gaining
momentum, the problems of 3D vertical stacking of planar ICs, and mapping computation tasks into the processors of NoC
are becoming important.

For NoC we considered an array topology of processors. A mesh topology may be more suitable for IC implementation
and it has been lately studied in [2]. The optimal mappings of tasks to processors have been obtained by experiments and
simulations, without analysis of their combinatorial structure and properties. The authors are not aware of any metric
for measuring distance between processors positioned in a mesh network, such that the resulting distance matrix yields
well-solvable QAP. Finding such metric and setting the conditions under which a planar SPTP yields minimum cost of
tasks allocation to processors seems to be a challenge. Also, the cost matrix used in this paper assumed independence of
processors’ activity probabilities. Models incorporating dependences on one hand, but still preserving well-solvability are
also of interest.

The vertical ordering of planar ICs in 3D VLSI implied by various design factors is a critical problem not being studied yet.
Consideration of electrical, reliability and manufacturability factors may yield other types of objective functions and other
distance metrics that will motivate further exploration of well-solvable QAP.
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