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a b s t r a c t

We investigate a special case of the maximum quadratic assignment problem where one
matrix is a productmatrix and the othermatrix is the distancematrix of a one-dimensional
point set. We show that this special case, which we call the Wiener maximum quadratic
assignment problem, is NP-hard in the ordinary sense and solvable in pseudo-polynomial
time.

Our approach also yields a polynomial time solution for the following problem from
chemical graph theory: find a tree that maximizes the Wiener index among all trees with
a prescribed degree sequence. This settles an open problem from the literature.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The Quadratic Assignment Problem (QAP) in Koopmans–Beckmann form [1] takes as input two n × n square matrices
A = (aij) and B = (bij) with real entries, and asks to find a permutation π that minimizes (or maximizes) the objective
function

Zπ (A, B) :=

n−
i=1

n−
j=1

aπ(i)π(j)bij. (1)

Here π ranges over the set Sn of all permutations of {1, 2, . . . , n}. The QAP is a hard and well-studied problem in
combinatorial optimization; we refer the reader to book [2] by Çela and the recent book by Burkard et al. [3] for more
information on this problem. One branch of research on the QAP concentrates on the algorithmic behavior of strongly
structured special cases; see for instance Burkard et al. [4] or Deineko andWoeginger [5] for typical results in this direction.
In this paper, we will contribute a new topic to this research branch.

1.1. The Wiener Max-QAP

This special case of the QAP restricts matrix A to be a symmetric product matrix, whichmeans that there are non-negative
integers α1 ≤ α2 ≤ · · · ≤ αn such that

aij = αiαj for 1 ≤ i, j ≤ n. (2)
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The second matrix in the Wiener Max-QAP is the distance matrix of a one-dimensional point set, which means that there
are integers β1 ≤ β2 ≤ · · · ≤ βn such that

bij = |βi − βj| for 1 ≤ i, j ≤ n. (3)

Throughout this paper, a matrix B of the form (3) will be called a 1D-distance matrix. The goal in the Wiener Max-QAP is to
maximize the objective value in (1), which can be rewritten as

Zπ (A, B) =

n−
i=1

n−
j=1

απ(i)απ(j)|βi − βj|. (4)

In this paper, we fully determine the computational complexity of the Wiener Max-QAP. Our results are as follows. As a
negative result, wewill prove in Section 2 that theWienerMax-QAP is NP-hard in the ordinary sense. On the positive side, in
Section 3wewill derive a useful decomposition property, andwewill show that there always exists an optimal permutation
that is V-shaped. These positive results are then applied in Section 4 to derive a pseudo-polynomial time algorithm for the
Wiener Max-QAP.

1.2. The Wiener index of a tree

The Wiener index W (G) of a connected undirected graph G = (V , E) is the sum of the distances between all pairs of
vertices in V . The Wiener index was introduced in 1947 by Harold Wiener [6] to characterize certain molecular structure
properties of saturated hydrocarbons. We refer the reader to the survey article [7] of Dobrynin et al. for comprehensive
information on this fundamental graph parameter. Chemists are often interested in theWiener index of certain trees, where
the vertices represent atoms andwhere the vertex degrees correspond to the valencies of the atoms. Entringer et al. [8] show
that among all r-vertex trees, the path Pr has the largest and the starK1,r has the smallestWiener index. Fischermann et al. [9]
characterize the trees that minimize theWiener index among all trees with r vertices and maximum degree at most ∆, and
they also provide several results on the corresponding maximization question.

Wang [10] describes a simple greedy algorithm for finding a tree that minimizes the Wiener index among all trees
with a prescribed degree sequence. Zhang et al. [11] derive the same result independently and by different techniques.
The corresponding maximization question remains open (note that paper [10] claims a solution to it, and that the
corrigendum [12] points out a crucial mistake that invalidates these claims). Wang [12] writes about the maximization
question: ‘‘While the extremal trees seem to be difficult to find and are not unique, an algorithm to find at least one of such trees
may exist and may be easier to find’’.

In this paper, we resolve the computational complexity of the maximization question: there exists a polynomial time
algorithm that finds a tree that maximizes the Wiener index among all trees with a prescribed degree sequence. More
precisely, we will show in Section 5 that this maximization question can be modeled as a special case of the Wiener Max-
QAP (modulo certain minor modifications). Consequently, the machinery developed in Sections 3 and 4 can be applied to it.
The pseudo-polynomial time complexity of our algorithm turns into a polynomial time complexity, since all the involved
numbers are moderately small.

2. Complexity of the Wiener Max-QAP

In this section, we establish NP-hardness of the Wiener Max-QAP. The proof is done by means of a reduction from the
following variant of the partition problem (see [13]) which is well known to be NP-hard in the ordinary sense.

Problem: Partition
Input: A sequence q1, . . . , q2k of 2k positive integers with

∑2k
i=1 qi = 2Q .

Question: Does there exist I ⊂ {1, . . . , 2k} with |I| = k and
∑

i∈I qi = Q?

We construct an instance of the Wiener Max-QAP of dimension n = 2k. The n × n product matrix A is defined by
αi = qi, ∀i = 1, 2, . . . , n, and hence satisfies aij = qiqj. The 1D-distance matrix B uses the points βi = 1 for 1 ≤ i ≤ k and
βi = 2 for k + 1 ≤ i ≤ 2k. Note that bij = |βi − βj| equals 1 if one of the indices i, j lies in the range 1, . . . , k whereas the
other index lies in k + 1, . . . , 2k; in all other cases bij = 0.

Consider a permutation π ∈ S2k, and let J denote the set of all i with π(i) ≤ k. Note that |J| = k. By setting x =
∑

i∈J qi,
the objective value in (4) can be rewritten as−

i∈J

−
j∉J

qiqj =

−
i∈J

qi
−
j∉J

qj = x(2Q − x) = 2Qx − x2.

As the concave function f (x) = 2Qx− x2 is maximized at x = Q , it is easily seen that the QAP has an objective value at least
Q 2 if and only if the Partition instance has a positive answer. This yields the following result.

Theorem 2.1. The Wiener Max-QAP is NP-hard in the ordinary sense. �
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3. Structure of the Wiener Max-QAP

We first discuss a useful decomposition property of the Wiener Max-QAP. Consider some fixed instance with product
matrix A and 1D-distance matrix B, and let I ⊂ {1, . . . , n} with |I| = k be some fixed subset of the indices. Instead of
optimizing over all possible permutations in (4), we only allow permutations π that map I into J = {1, . . . , k} and that
consequentlymap the complement of I into the complement {k+1, . . . , n} of J . Intuitively speaking, this subdivided version
QAP assigns the valuesαi with i ∈ I to the pointsβ1, . . . , βk and the valuesαi with i ∉ I to the remaining pointsβk+1, . . . , βn.

Any permutation π ∈ Sn induces a bijection σ that maps J into I , and another bijection τ that maps the complement of
J into the complement of I . Furthermore, denote X =

∑
i∈I αi and Y =

∑
i∉I αi. The objective value Zπ (A, B) in (4) can then

be written as Z1 + Z2 + Z3 + Z4 in the following way.

Z1 =

−
i∈J

−
j∈J

απ(i)απ(j)|βi − βj| =

−
i∈J

−
j∈J

ασ(i)ασ(j)|βi − βj| (5)

Z2 =

−
i∉J

−
j∉J

απ(i)απ(j)|βi − βj| =

−
i∉J

−
j∉J

ατ(i)ατ(j)|βi − βj| (6)

Z3 =

−
i∈J

−
j∉J

απ(i)απ(j)|βi − βj| =

−
i∈J

−
j∉J

ασ(i)ατ(j)(βj − βk + βk − βi)

=

−
i∈J

ασ(i)Y (βk − βi) +

−
j∉J

ατ(j)X(βj − βk) (7)

Z4 =

−
i∉J

−
j∈J

απ(i)απ(j)|βi − βj| = Z3. (8)

Note that in the resulting summations in (5)–(7), every single term does either depend on function σ or on function τ ,
but does never depend on both functions simultaneously. If we collect all the terms in Z1 + Z2 + Z3 + Z4 that solely depend
on this function σ , we get−

i∈J

−
j∈J

ασ(i)ασ(j)|βi − βj| + 2
−
i∈J

ασ(i)Y (βk − βi). (9)

We observe that the objective function in (9) essentially corresponds to a smaller (k+1)-dimensionalWienerMax-QAP: the
underlying 1D-distance matrix is built around the k points β1, . . . , βk plus a duplicated point at βk (which corresponds to
the occurrence of βk in the right-hand sum). The underlying product matrix is built around the k numbers αi with i ∈ I plus
the number Y (which corresponds to the factor Y in the right-hand sum). Furthermore, the right-hand sum in (9) imposes
the additional restriction that the new value Y has to be assigned to the duplicated point at βk.

As a consequence of all this, the problemof finding the optimal functionσ and the problemof finding the optimal function
τ are two separate optimization problems that can be solved independently of each other. We call this the decomposition
property of the Wiener Max-QAP. This decomposition property plays a central role in many of our arguments. As a first
application of the decomposition property, we next deduce a result on the combinatorial structure of optimal permutations
for the Wiener Max-QAP.

Definition 3.1. A permutation π ∈ Sn is called V-shaped, if there exists an index ℓwith 1 ≤ ℓ ≤ n such that π(i) > π(i+1)
for i = 1, . . . , ℓ − 1 and such that π(i) < π(i + 1) for i = ℓ, . . . , n − 1.

In other words, a V-shaped permutation π is first decreasing up to ℓ, and then increasing from ℓ onwards, where the
increasing or the decreasing part can also be empty.

Theorem 3.2. Every instance of the Wiener Max-QAP possesses an optimal solution π that is V-shaped.

Proof. For simplicity of presentation, wewill assumewithoutmuch loss of generality that all α-values are pairwise distinct,
and that also all β-values are pairwise distinct. The statement for the general case then follows easily from this (by locally
reordering or renaming the values).

Now consider an optimal permutation π , and note that the values π(1), . . . , π(n) and απ(1), . . . , απ(n) are ordered in
the same way. Suppose for the sake of contradiction that permutation π has a local maximum at kwith απ(k−1) < απ(k) and
απ(k+1) < απ(k). By the decomposition property of the Wiener Max-QAP, the optimal permutation π induces an optimal
solution to the five-dimensional problem of assigning the five values

L =

k−2−
i=1

απ(i), απ(k−1), απ(k), απ(k+1), R =

n−
i=k+2

απ(i)

to the five points βk−1, βk−1, βk, βk+1, and βk+1 subject to the constraint that value L is assigned to point βk−1 and that value
R is assigned to point βk+1.
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Now let us switch the positions of απ(k−1) and απ(k) in the solution that π induces for the five-dimensional problem, such
that απ(k−1) goes to βk and απ(k) goes to βk−1. Since this switch cannot increase the objective value, the difference between
the corresponding two objective values is non-positive:

απ(k) − απ(k−1)

(βk − βk−1)


απ(k+1) + R − L


≤ 0. (10)

In an analogousway,we can switch the positions ofαπ(k) andαπ(k+1) in the induced solution. This then leads to the following
inequality:

απ(k) − απ(k+1)

(βk+1 − βk)


απ(k−1) − R + L


≤ 0. (11)

The first two factors on the left-hand side of (10) and also the first two factors on the left-hand side of (11) all are positive.
This implies απ(k+1) + R− L ≤ 0 and απ(k−1) − R+ L ≤ 0. By summing these two inequalities we arrive at the contradiction
απ(k+1) + απ(k−1) ≤ 0. We conclude that π cannot have any local maximum, and this yields that π indeed is V-shaped. �

4. An algorithm for the Wiener Max-QAP

In this section, we design a pseudo-polynomial time algorithm for the Wiener Max-QAP that is based on a standard
dynamic programming approach.We recall that the twounderlying sequencesα1 ≤ α2 ≤ · · · ≤ αn andβ1 ≤ β2 ≤ · · · ≤ βn
are in non-decreasing order.

Every state in the dynamic program is specified by a quadruple (k,m, L, R) of integers that satisfy the following
conditions:

1 ≤ k ≤ n, 1 ≤ m ≤ n − k + 1, 0 ≤ L, R, L + R =

n−
i=k+1

αi. (12)

With every such state (k,m, L, R) we associate the following (k + 2)-dimensional Wiener Max-QAP: the product matrix
results from the k + 2 non-negative integers in the sequence α1, . . . , αk, L, R, and the 1D-distance matrix results from the
k points βm, βm+1, . . . , βm+k−1 plus another point in βm plus another point in βm+k−1. The goal is to find the best solution
to this QAP subject to the constraint that the value L is assigned to point βm and that the value R is assigned to βm+k−1. In
other words, we want to find a bijection σ from {m, . . . ,m + k − 1} to {1, . . . , k} that maximizes the objective value

Z =

m+k−1−
i=m

m+k−1−
j=m

ασ(i)ασ(j)|βi − βj| + 2LR|βm+k−1 − βm| + 2
m+k−1−
i=m

ασ(i)L|βi − βm| + 2
m+k−1−
i=m

ασ(i)R|βm+k−1 − βi|.

We use Z(k,m, L, R) to denote the maximum objective value of the corresponding state. Next, we will describe how to
compute and to store all the values Z(k,m, L, R) step by step and in increasing order of k. For k = 1 the corresponding
instances are trivial to solve, since they only have a single feasible solution.

Next consider some fixed state (k,m, L, R) with k ≥ 2, and denote M =
∑k−1

i=1 αi. By the decomposition property
discussed in Section 3 and by Theorem 3.2, there exists an optimal bijection σ that induces a V-shaped assignment of the k
values α1, . . . , αk to the k points βm, βm+1, . . . , βm+k−1. This implies that αk as the largest of the k values must be assigned
either to point βm or to point βm+k−1. First consider the case where αk is assigned to point βm. Then the remaining k − 1
values are assigned to βm+1, . . . , βm+k−1, and by the decomposition property the largest possible objective value in this case
is

Z1 := Z(k − 1,m + 1, L + αk, R) + 2(L + αk)(M + R)|βm+1 − βm|. (13)

In the second case the value αk is assigned to point βm+k−1. Then the remaining k−1 values are assigned to βm, . . . , βm+k−2,
and the largest possible objective value is

Z2 := Z(k − 1,m, L, R + αk) + 2(L + M)(R + αk)|βm+k−1 − βm+k−2|. (14)

This yields Z(k,m, L, R) = max{Z1, Z2}, and in this fashion one easily determines all the function values Z(k,m, L, R) with
2 ≤ k ≤ n. In the end, the optimal objective value of the underlying QAP instance can be found as Z(n, 1, 0, 0).

Theorem 4.1. The Wiener Max-QAP has a pseudo-polynomial time solution algorithm with time complexity O

n2

·
∑

αi

.

Proof. The correctness of the dynamic programming approach is clear from the above considerations. It remains to analyze
the time complexity.We observe that there are onlyO


n2

·
∑

αi

different states (k,m, L, R) in the dynamic program: there

are O(n) possible values for k and m, respectively, and there are O
∑

αi

possible values for L; note that the value of R is

already fully determined by the values of k and L.
The expressions in (13) and (14) can be evaluated in constant time O(1): they refer to values Z(k − 1, ∗, ∗, ∗) that are

known from earlier stages of the dynamic program, and they refer to the values M =
∑k−1

i=1 αi that can all be precomputed
and stored in a preprocessing phase. All in all, this yields that the time complexity is proportional to the number of states
and hence is O


n2

·
∑

αi

. �
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Note that our approach only yields the optimal objective value. By storing appropriate auxiliary information in the states
of the dynamic program, one can also compute the corresponding optimal permutation within the same time complexity.
These are standard techniques, and we do not elaborate on them.

5. Maximizing the Wiener index of a tree

We now return to theWiener index of a graph that has been introduced and discussed in Section 1.2. Wewill investigate
the following algorithmic problem MaxWiener-Tree that was left open by Wang [10,12]: an instance consists of a degree
sequence d1, . . . , dr of r positive integers with

∑r
i=1 di = 2r −2. The goal is to determine the largest possibleWiener index

over all trees with degree sequence d1, . . . , dr .
Recall that a caterpillar is a tree that turns into a path (the so-called backbone of the caterpillar) if all its leaves are removed.

Shi [14] proved that for every instance of MaxWiener-Tree, all the maximizing trees are caterpillars; other proofs of this
result can be found for instance in [10,15].

Now consider such a caterpillar T , let v1, . . . , vn denote the vertices ordered along the backbone of the caterpillar, and
let ℓi with 1 ≤ i ≤ n denote the number of leaves adjacent to vertex vi. We define set Ci to consist of vertex vi together with
its ℓi adjacent leaves. Then the vertex pairs inside Ci contribute an amount of ℓ2

i to the Wiener index W (T ), and the pairs
with one vertex in Ci and one vertex in Cj (i ≠ j) contribute

ℓiℓj(|j − i| + 2) + ℓi(|j − i| + 1) + ℓj(|j − i| + 1) + |j − i| = (ℓi + 1)(ℓj + 1)|j − i| + (2ℓiℓj + ℓi + ℓj).

Hence the Wiener index of this caterpillar T is

W (T ) =

n−
i=1

ℓ2
i +

n−
i=1

n−
j=i+1

[(ℓi + 1)(ℓj + 1)|j − i| + (2ℓiℓj + ℓi + ℓj)]

=


n−

i=1

ℓi

2

+ (n − 1)
n−

i=1

ℓi +
1
2

n−
i=1

n−
j=1

(ℓi + 1)(ℓj + 1)|j − i|. (15)

Neither the first nor the second sum in (15) do depend on theway how the numbers ℓ1, . . . , ℓn are assigned to the backbone
vertices v1, . . . , vn. The assignment in the third sum in (15) yields an instance of theWienerMax-QAPwith valuesαi = ℓi+1
and points βi = i.

Observation 5.1. The problem of finding the maximizing caterpillar for an instance of MaxWiener-Tree with an explicitly
specified backbone v1, . . . , vn and an explicitly specified sequence ℓ1, . . . , ℓn of leaf-numbers is equivalent to a Wiener Max-
QAP. �

Next, consider a degree sequence d1, . . . , dr that forms an instance of MaxWiener-Tree, and assume without loss of
generality that 2 ≤ d1 ≤ d2 ≤ · · · ≤ dn and that dn+1 = · · · = dr = 1. (Since the case n = 1 is trivial, we assume from
now on that n ≥ 2.) It is straightforward to see that the backbone of the maximizing caterpillar will consist of n vertices
v1, . . . , vn. In contrast to this, it is not straightforward to write down the sequence ℓ1, . . . , ℓn of leaf-numbers: If one of the
inner backbone vertices vi with 2 ≤ i ≤ n − 1 gets degree di then it is adjacent to ℓi = di − 2 leaves, whereas if one of the
two outermost backbone vertices vi with i = 1 or i = n gets degree di then it is adjacent to ℓi = di − 1 leaves.

Motivated by the discussion in the preceding paragraph, we introduce an (n + 2)-dimensional instance of the Wiener
Max-QAP: the product matrix is built around the n numbers αi = di − 1 for 1 ≤ i ≤ n and the two additional numbers
αn+1 = αn+2 = 1. The 1D-distance matrix is built around the n points βi = i − 1 for 2 ≤ i ≤ n + 1 and the two additional
points β1 = 1 and βn+2 = n. Furthermore, we impose the constraints that value αn+1 = 1must be assigned to point β1 = 1,
and that value αn+2 = 1must be assigned to point βn+2 = n. These additionally imposed constraints take care of the special
treatment of the two outermost backbone vertices v1 and vn.

Now let us verify that themachinery of Sections 3 and 4 still can be applied to this variant of theWienerMax-QAP. First of
all, the decomposition property works out exactly as before. Also Theorem 3.2 continues to hold, since adding π(1) = n+1
and π(n + 2) = n + 2 to a V-shaped permutation π(2), . . . , π(n + 1) of the numbers 1, . . . , n always yields a V-shaped
permutation. The dynamic program in Section 4 needs some small cosmetic changes that are caused by the additionally
imposed constraints.

• All states (k,m, L, R) with k ≤ n must satisfy 2 ≤ m ≤ n − k + 2 and L, R ≥ 1.
• All states (n + 1,m, L, R) must satisfym = 1, L = 0, and R = 1.
• All states (n + 2,m, L, R) must satisfym = 1 and L = R = 0.

These conditions ensure that the dynamic program assigns the values αn+1 and αn+2 during the last two stages to points β1
and βn+2 exactly as desired.

Furthermore, we note that in Eqs. (13) and (14) we always have |βm+1 − βm| = 1 and |βm+k−1 − βm+k−2| = 1 for k ≤ n,
and |βm+1 − βm| = 0 and |βm+k−1 − βm+k−2| = |βk − βk−1| for k > n. This implies that neither the recursive computations
nor the values Z(k,m, L, R) do depend on the second coordinate m, which consequently may be dropped. (This should also
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be clear intuitively, since this second coordinate encodes the piece of the backbone to which the first k values α1, . . . , αk
are assigned. All backbone pieces of length k are paths on k vertices and thus have the same combinatorial structure.)

What about the time complexity? Exactly as in the proof of Theorem 4.1 the time complexity is proportional to the
number of states (k, L, R). Since k can take O(r) possible values, and since L can take O

∑
αi


= O(r) possible values, the
time complexity is O(r2).

Theorem 5.2. The problem of finding a tree that maximizes the Wiener index among all trees with a prescribed degree sequence
can be solved in quadratic time O(r2), where r denotes the overall number of terms in the degree sequence. �

6. Conclusions

We have introduced the Wiener Max-QAP, a special case of the quadratic assignment problem. We have provided a
complete picture of the computational complexity of this special case: It is NP-hard in the ordinary sense, and it is solvable
in pseudo-polynomial time. Our investigations also gave us a polynomial time algorithm for finding a tree that maximizes
the Wiener index among all trees with a prescribed degree sequence, thereby settling a prominent open problem from
chemical graph theory.

One obvious open problem is to bring the quadratic time complexity O(r2) in Theorem 5.2 down to O(r log r) or perhaps
even down to linear time O(r).

Another open problem concerns the Wiener Min-QAP, where the goal is to minimize the objective value in (4). It is an
easy exercise to rewrite and to adapt the results of Sections 3 and 4 to the minimization version: The minimization version
always has an optimal solution that is pyramidal (which means that the permutation is first increasing up to some value ℓ,
and then decreasing from ℓ onwards). And the minimization problem can be solved by dynamic programming in pseudo-
polynomial time, within the same time complexity as that in Theorem 4.1. The main gap in our knowledge concerns the
complexity of the Wiener Min-QAP, and we pose the open problem of deciding whether it actually is NP-hard.
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