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Abstract Some well-known VLSI interconnect optimizations problems for timing,
power and cross-coupling noise immunity share a property that enables mapping
them into a specialized Linear Ordering Problem (LOP). Unlike the general LOP
problem which is NP-complete, this paper proves that the specialized one has a
closed-form solution. Let f (x, y) : R

2 → R be symmetric, non-negative, defined for
x ≥ 0 and y ≥ 0, and let f (x, y) be twice differentiable, satisfying ∂2f (x, y)/∂x∂y <

0. Let π be a permutation of {1, . . . , n}. The specialized LOP comprises n objects,
each associated with a real value parameter ri , 1 ≤ i ≤ n, and a cost f (ri, rj ) associ-
ated to any two objects if |π(i)−π(j)| = 1,1 ≤ i, j ≤ n, and f (ri, rj ) = 0 otherwise.
We show that the permutation π which minimizes

∑n−1
i=1 f (rπ−1(i), rπ−1(i+1)), called

“symmetric hill”, is determined upfront by the relations between the parameter val-
ues ri .

Keywords VLSI interconnects optimization · Delay minimization · Power
minimization · Linear ordering problem · Optimal permutation

1 Introduction and motivation

A VLSI interconnect model is shown in Fig. 1. There, logic gates called drivers drive
signals that propagate along interconnecting wires. These signals stimulate other
logic circuits, called receivers, connected at the opposite end of the wires. Cross-
coupling parasitic capacitance which is the dominant cause for signal propagation
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Fig. 1 Typical VLSI
interconnects bus. Drivers are
shown on the left side and
receivers on the right side. The
bus is shielded on its two sides.
A parasitic cross-coupling
capacitance is incurring between
any adjacent signals

delay, power consumption and crosstalk noise interference, occurs only between ad-
jacent wires. On both sides of the bus there are shielding wires connected to ground.

The authors of article (Macii et al. 2003) claimed by intuition that different or-
derings of the signal wires in Fig. 1 may yield different amounts of dynamic power
consumption, and then proposed some monotonic order of the signals to reduce the
power. Similarly, the authors of (Vittal et al. 1999) proposed an intuitive monotonic
order aiming at reducing the noise interference. It was shown in (Moiseev et al.
2008a) and (Moiseev et al. 2008b) that both the total delay and power consumption
are governed by an expression of the form:

F(r1, . . . , rn) = √
r1 +

i=n−1∑

i=1

√
ri + ri+1 + √

rn. (1)

When delay minimization is concerned, the parameters r1, . . . , rn are derived from
the resistances of the drivers in Fig. 1 and the parameters of manufacturing process
technology (the lower resistance is, the more current is driven and the switching is
faster). When power minimization is of interest, the parameters r1, . . . , rn represent
the average amount of switching of a signal, called activity factor.

The problem of how to order the signals in the bus such that the expression in (1)
yields minimum delay was addressed in (Moiseev et al. 2008a). It was shown that
for the square root function a “symmetric hill” order is optimal. A similar order was
obtained by (Moiseev et al. 2008b) for power minimization. This paper generalizes
the above result by proving that the optimality of symmetric hill order exists for a
broad type of functions, where square root is just a particular case. The technique of
this proof can be used to derive different orders of objects (permutations) for different
optimization goals. We’ll discuss this further in the concluding section.

The permutation derived in this paper has been experimented on 65 nanometer
process technology real VLSI design data. The experiments in (Moiseev et al. 2008a)
showed potential of 10% wire delay reduction in chip’s global interconnects, while
those in (Moiseev et al. 2008b) showed potential of 17% dynamic power reduction.
It is important to note that the optimal permutation by itself is not sufficient for delay
and power deduction, but created better space sharing of adjacent wires. The op-
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timization of the latter is a subject of so called optimal wire spacing (Cong et al.
2001).

Let f (x, y) : R
2 → R be symmetric, non-negative, defined for x ≥ 0 and y ≥ 0,

and let f (x, y) be twice differentiable, satisfying:

∂2f (x, y)/∂x∂y < 0. (2)

Let r1, . . . , rn be n real non-negative numbers associated with n objects, and as-
sume without loss of generality that r1 > r2 > · · · > rn. Let � be the set of all
permutations π : {1, . . . , n} → {1, . . . , n}. The ordered sequence 〈i1, . . . , in〉 is ob-
tained by π , namely, π(〈1, . . . , n〉) = 〈i1, . . . , in〉. We explore the problem of finding
π∗ ∈ � which minimizes the sum of costs defined for any two adjacent objects, given
by:

F(π) =
n−1∑

j=1

f (rij , rij+1)
�=

n−1∑

j=1

f (rπ−1(j), rπ−1(j+1)). (3)

The problem in (3) is a type of Linear Ordering Problem (LOP) which is well known
and used in economy and other applications. It has been studied extensively in the
literature (Reinelt 1985; Laguna et al. 1999; Mitchell and Borchers 2000; Campos et
al. 2001; Garcia et al. 2006). Given a n × n matrix of weights C = (cij ), LOP aims
at finding a permutation π which maximizes the expression

∑n−1
i=1

∑n
j=i+1 cπ(i)π(j).

LOP is NP-complete. In our setting the cost in (3) is derived from a function of two
variables satisfying (2). It is defined for any two adjacent objects of the permutation,
namely |π(i) − π(j)| = 1,1 ≤ i, j ≤ n, and is zero otherwise.

Equation (3) generalizes the objectives of the VLSI interconnects design optimiza-
tion problems addressed in (Macii et al. 2003; Vittal et al. 1999; Moiseev et al. 2008a,
2008b). The terms f (x, y) in (3) result from the cross-coupling capacitance, and they
take the form

√
x + y as mentioned before. The goal is therefore to determine the or-

der of wires within the bus such that (3) is minimized. Notice that (1) is a special case
of (3), as we could add an artificial object r0 = rn+1 = 0 and then replace the first
and last terms in the right hand side of (1) by

√
r0 + r1 and

√
rn + rn+1, respectively,

thus resulting in a cyclical sum.

2 Minimizing a general objective function

We assume without loss of generality that the original set of objects is ordered such
that r1 > r2 > · · · > rn. Let us modify (3) for the sake of proof convenience into a
cyclical sum as follows:

F(π) =
n∑

j=1

f (rij , rij mod n+1)
�=

n∑

j=1

f (rπ−1(j), rπ−1(j mod n+1)). (4)

This doesn’t change the original problem as we could add an artificial (n + 1)th
zero object to (3). The sum in (4) is cyclical since the last index of permutation is
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interacting with the first one. Assume further that n is odd, since if it was even we
could add a zero object as done in the square root example (1) for the first and last
terms. In the rest of the discussion we’ll drop modulo notation but keep in mind
that summation is cyclical. The derivation of optimal permutation is based on the
following two lemmas.

Lemma 1 Let a, b, c and d be nonnegative real numbers satisfying a > b > c >

d ≥ 0 and let f satisfy (2). Then:

f (a, b) + f (c, d) < f (a, c) + f (b, d) < f (a, d) + f (b, c). (5)

Proof Consider first the left hand inequality of (5) which holds iff f (a, b) −
f (a, c) < f (b, d) − f (c, d) = f (d, b) − f (d, c), where the equality stems from the
symmetry of f . Define g(x) = f (x, b) − f (x, c). Then, left hand of (5) holds iff
g(a) < g(d). Since b > c, we have

∂g(x)

∂x
= ∂[f (x, b) − f (x, c)]

∂x
=

∫ b

c

∂2f (x, y)

∂x∂y
dy < 0, (6)

implying that g(x) is monotonic decreasing. Since a > d , it follows that g(a) <

g(d), as desired. The right hand inequality of (5) follows analogously by noticing
that it holds iff f (a, c)−f (a, d) < f (b, c)−f (b, d), and defining g(x) = f (x, c)−
f (x, d). �

Lemma 2 Let f satisfy (2). Any permutation π∗ ∈ � which minimizes (4) must sat-
isfy |π∗(1) − π∗(2)| = |π∗(1) − π∗(3)| = 1, namely, π∗(2) and π∗(3) must be adja-
cent to π∗(1) on its two opposite sides in the sequence π(〈1, . . . , n〉) = 〈i1, . . . , in〉,
thus implying that the terms f (r1, r2) and f (r1, r3) must exist in the minimal sum:

F(π∗) = min
π∈�

{
n∑

j=1

f (rij , rij+1)

}
�= min

π∈�

{
n∑

j=1

f (rπ−1(j), rπ−1(j+1))

}

(7)

Proof Let π∗ satisfy (7), resulting in the ordered sequence 〈i∗1 , . . . , i∗n〉, and assume in
contrary that π∗(2) is not adjacent to π∗(1) in 〈i∗1 , . . . , i∗n〉, say π∗(1) = i∗p,π∗(2) =
i∗p+k, k > 1. Consider the non-empty subsequence 〈i∗p, i∗p+1, . . . , i

∗
p+k, i

∗
p+k+1〉. Let

π∗∗ be a permutation, π∗∗(〈1, . . . , n〉) = 〈i∗∗
1 , . . . , i∗∗

n 〉, obtained from π∗ by re-
verting (flipping) the order of the internal elements in that subsequence into
〈i∗p, i∗p+k, . . . , i

∗
p+1, i

∗
p+k+1〉. The element adjacencies in π∗∗ agree with π∗ except

those involving i∗p+1 and i∗p+k . Let us subtract F(π∗∗) from F(π∗). All identical
terms are then canceled out except those involving i∗p+1 and i∗p+k . It follows from the
optimality of π∗ in (7) that:

0 > F(π∗) − F(π∗∗) =
n∑

j=1

f (ri∗j , ri∗j+1
) −

n∑

j=1

f (ri∗∗
j

, ri∗∗
j+1

)

= [f (ri∗p , ri∗p+1
) + f (ri∗p+k

, ri∗p+k+1
)] − [f (ri∗p , ri∗p+k

) + f (ri∗p+1
, ri∗p+k+1

)],
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which results in the following inequality:

f (ri∗p , ri∗p+k
) + f (ri∗p+1

, ri∗p+k+1
) > f (ri∗p , ri∗p+1

) + f (ri∗p+k
, ri∗p+k+1

). (8)

The initial setting r1 > r2 > · · · > rn, π∗(1) = i∗p and π∗(2) = i∗p+k implies
ri∗p > ri∗p+1

, ri∗p > ri∗p+k+1
, ri∗p+k

> ri∗p+1
and ri∗p+k

> ri∗p+k+1
. Setting a = ri∗p , b =

ri∗p+k
, c = max{ri∗p+1

, ri∗p+k+1
} and d = min{ri∗p+1

, ri∗p+k+1
}, there exists a > b >

c > d ≥ 0 and the conditions of Lemma 1 are satisfied as follows. If it happened
that c = ri∗p+1

and d = ri∗p+k+1
then substitution in left hand of inequality (5) yields

f (ri∗p , ri∗p+k
) + f (ri∗p+1

, ri∗p+k+1
) < f (ri∗p , ri∗p+1

) + f (ri∗p+k
, ri∗p+k+1

), which contradicts
(8). If it happened however that c = ri∗p+k+1

and d = ri∗p+1
, substitution in the two ends

of inequality (5) yields again the same contradiction. In conclusion there must exist
|π∗(1) − π∗(2)| = 1.

It can be similarly shown that |π∗(1) − π∗(3)| = 1, where r3 and r2 reside on the
opposite sides of r1. Notice that the cyclical order of the objects yields two subse-
quences in π∗ between π∗(1) and π∗(2), and two between π∗(1) and π∗(3), thus
was enabling the selection of two disjoint subsequences for inversion such that they
do not interfere with each other. �

Theorem 1 Let f satisfy (2) and F be defined in (3). Let n be odd and r1, . . . , rn
be n non-negative real numbers satisfying r1 > r2 > · · · > rn. Then the permutation
π∗(〈1,2, . . . , n〉) = 〈n,n − 2, . . . ,3,1,2,4, . . . , n − 3, n − 1〉, defined by:

π∗(i) =
{

n+1+i
2 i is even,

n+2−i
2 i is odd,

(9)

satisfies:

F(π∗) = min
π∈�

n∑

j=1

f (rij , rij+1), (10)

where π(〈1, . . . , n〉) = 〈i1, . . . , in〉.

Proof The proof follows by induction. Let π∗(〈1, . . . , n〉) = 〈i∗1 , . . . , i∗n〉. We use the
convention that in the cyclical order of the permutation (9) even indices are added
one by one counterclockwise on one side of the maximal object r1, while odd indices
are added one by one clockwise on its opposite side, as shown in Fig. 2. Since the se-
quence is cyclical, we set arbitrarily the value π∗(1) = (n+ 1)/2, which is consistent
with (9). Lemma 2 proved that π∗(2) and π∗(3) must be adjacent to π∗(1) on its two
opposite sides. This also satisfies (9) since π∗(2) = (n+3)/2 and π∗(3) = (n−1)/2,
obtaining the counterclockwise successiveness of π∗(3), π∗(1) and π∗(2).

Let p < n be the smallest index of the original sequence for which π∗(p) does not
satisfy (9). Assume without loss of generality that p is even. The satisfaction of the
induction hypothesis up to p − 1 implies that π∗ results the following sequence:

π∗(〈1, . . . , n〉) = 〈. . . , i∗s ,p − 1, . . . ,3,1,2, . . . , p − 2, i∗t , . . .〉, (11)
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Fig. 2 Symmetric Hill Order.
The largest elements reside at
the hill, while the smallest ones
reside at the valley

where i∗t 
= p. Since the sequence is cyclic p is positioned somewhere in the follow-
ing counterclockwise complementary subsequence 〈p − 2, i∗t , . . . , p, i∗q , . . . , i∗s ,p −
1〉. Notice that here may be two cases, p 
= i∗s or p = i∗s , a case where 〈p, i∗q . . . , i∗s 〉
is just the single index p.

Let us transform π∗ into π∗∗ by reverting (flipping) 〈i∗t , . . . , p〉 into 〈p, . . . , i∗t 〉,
thus resulting in the subsequence 〈p −2,p, . . . , i∗t , i∗q , . . . , i∗s ,p −1〉. As in the proof
of Lemma 2 we’ll derive a contradiction by evaluating F(π∗)−F(π∗∗) on one hand,
and applying direct substitution of the explicit permutations on the other hand.

Consider first the case p 
= i∗s . The initial setting r1 > r2 > · · · > rn implies rp−2 >

ri∗t , rp−2 > ri∗q , rp > ri∗t and rp > ri∗q . Setting a = rp−2, b = rp, c = max{ri∗t , ri∗q }
and d = min{ri∗t , ri∗q } implies a > b > c > d ≥ 0, which satisfies the conditions
of Lemma 1. As in Lemma 2, either f (a, b) + f (c, d) < f (a, c) + f (b, d) or
f (a, b) + f (c, d) < f (a, d) + f (b, c) of (5) holds. Therefore, here exist:

F(π∗) − F(π∗∗) = [f (rp−2, ri∗t ) + f (rp, ri∗q )] − [f (rp−2, rp) + f (ri∗t , ri∗q )] > 0,

namely, F(π∗) > F(π∗∗), which contradicts the optimality of π∗.
Consider now the case p = i∗s . Setting a = rp−2, b = rp−1, c = rp and d = ri∗t , it

follows again that a > b > c > d ≥ 0, which satisfies the conditions of Lemma 1 and
f (a, c) + f (b, d) < f (a, d) + f (b, c) of (5) holds. Therefore, here exist:

F(π∗) − F(π∗∗) = [f (rp−2, ri∗t ) + f (rp−1, rp)] − [f (rp−2, rp) + f (rp, ri∗t )] > 0,

concluding again that F(π∗) > F(π∗∗), which is a contradiction. �

Figure 2 illustrates the symmetric hill optimal permutation proved by Theorem 1 to
minimize the sum of functions evaluated for cyclically ordered adjacent objects. The
optimal order has one peak (maximum) and one valley (minimum) located oppositely
to each other, while all elements are evenly distributed on both sides, which resembles
a symmetric hill. This can also be seen by closing the ends of the sequence 〈n,n −
2, . . . ,3,1,2,4, . . . , n − 3, n − 1〉, turning it into cycle.

Symmetric hill permutation guarantees that the two shields of Fig. 1 are positioned
in the valley since their corresponding parameters are practically zero. (Shields are
not switching, hence have zero driver strength and zero activity factor.) In the initial
setting r1 > r2 > · · · > rn their value can be set arbitrary small, being identified with
rn−1 and rn. In terms of VLSI planar layout it means that they stay at the boundary
of the bus.
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3 Conclusions

The existence of a closed-form solution for a specialized LOP has been proven, where
the cost associated with any two objects obeys a general two-variable function that
was found useful for several optimization problems arising in VLSI interconnect de-
sign. The optimal solution is obtained by a unique permutation of the objects called
symmetric hill. This order can be derived directly from the problem setting since it
depends only on the relations between the parameter associated to the objects.

The technique used in this paper may be applicable to other objective functions,
which may yield different permutations that can be defined upfront based on the
relations between the values of objects’ parameters. The authors believe that under
the same setting of LOP, a maximization will yield a monotonic jigsaw permutation.
Furthermore, the idea that the cost associated with two objects satisfies a type of
function may be useful for other permutation problems such as quadratic assignment.

Acknowledgement The authors wish to thank the anonymous reviewer for a very useful comment in
proving Lemma 1.
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