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1. INTRODUCTION

Power-delay optimization has received increased attention in the last decade.
The reason for this is that power dissipation has become a significant factor in
the design of new microprocessors and other digital products. The main reason
for increased power consumption is the growing logic complexity, with integra-
tion of multiple computational cores on a single die. The dissipation of power
has become a major concern because of the growing awareness to environmental
heating, the drive to deliver lighter mobile computers with longer battery life,
and the emerging demand for portable consumer electronic products. Hence,
new design methods for reducing power are sought by the industry, and every
opportunity to contribute to the power saving is considered. Power reduction
methods cannot neglect timing constraints imposed on the circuits; and there-
fore simultaneous optimization of power and delay has special importance in
the design of modern circuits.

Power reduction was addressed at various design levels [Borkar 2001;
Devadas et al. 1995], from architecture and system level through RTL syn-
thesis, signal encoding, circuit implementation, and layout implementation,
which is the focus of this article. The interconnect power dissipated because of
charging and discharging wire capacitances is a dominant component in pro-
cessors [Magen et al 2004]. A typical breakdown of dynamic power dissipation
of a high-end microprocessor designed in 65 nanometer process technology is
illustrated in Figure 1, indicating that global wires at the top metal layers gen-
erate 20% of the total dynamic power, and about half of this power is due to
cross-coupling between adjacent wires in the same metal layer. In a similar
manner, cross-capacitances between wires in interconnect structures have a
major effect on circuit timing. The wire delays at the top metal layers are typi-
cally dominated by cross-capacitances between adjacent wires, since the aspect
ratio of wire thickness to wire width tends to grow with nonuniform technology
scaling [Mui et al. 2004]. Therefore, delays can be optimized by allocation of in-
terwire spaces. We show in this article how delay and power can be significantly
reduced by optimizing interwire spacing in the completed layout.

Commercial routing tools and manual artwork of mask designers tend to
produce congested wires. Tools and humans do not always take advantage of
the entire area available for layout implementation. This is quite natural, since
routing is usually a sequential process. Therefore, the more area is saved at any
routing step, the better is the chance to complete all required interconnections
[Li et al. 2007]. However, this approach results in nonuniform area utilization,
leaving islands of “white areas” in the layout. Unfortunately, such inefficiency
can be observed only after the routing job is done, as shown in Figure 2.

Based on this observation, we propose to eliminate the white space by
spreading-out wires in the final layout, using a post-processing algorithm. This
operation balances interwire spaces in order to reduce excessive capacitances,
save power, and decrease wire delays. A similar post-processing approach has
been employed in wire spacing for improved manufacturability. It is assumed
that interconnects have been routed (manually or automatically), and their rel-
ative locations are not subject to any change (i.e., layout topology is unchanged).
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Fig. 1. Typical breakdown of dynamic power into local blocks and global interconnects. As can be
seen, the cross-capacitances between global wires at the top routing layers contribute about 10%
of the total dynamic power.

Fig. 2. An example layout of 7th metal layer taken from a high-end microprocessor. The wide
wires are VCC/VSS and are fixed. The narrow wires are signals routed automatically. The figure
demonstrates the amount of white space found in the layout and its inefficient distribution among
signal wires.

It is also assumed that wire widths have been set to satisfy signal delay and
other design goals such as reliability, and shield wires have been inserted to
eliminate crosstalk noise on sensitive nodes. Hence, the method aims only to
modify line-to-line capacitance densities across the whole layout in each of the
top-level interconnect layers.
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Design optimization by wire spacing has been discussed by many authors,
for different purposes: Signal delay optimization [Cong et al. 2001; He et al.
1998; Wimer et al. 2006; Hanchate et al. 2006], power consumption mini-
mization [Macii et al. 2003], cross-coupling noise reduction [Chaudhary et al.
1993; Saxena et al. 2000], and yield enhancement [Chiluvuri 1995] are just a
few. The authors in Macii et al. [2003], Chaudhary et al. [1993], and Saxena
et al. [2000] used local optimization. The optimization approach in this article
is reminiscent of that in Saxena et al. [2000] in the sense that both rely on
the convexity of line-to-line cross-coupling capacitance. However, unlike Macii
et al. [2003], Chaudhary et al. [1993], and Saxena et al. [2000] which treat
the problem locally, this article looks at the entire layout at once, and finds
a provable global optimal solution. An iterative solution was used in Saxena
et al. [2000] to find the optimal spacing for a single wire. Here we deal with
a global problem involving thousands of wires simultaneously. The authors of
Saxena et al. [2000] used convexity arguments to prove the existence of min-
imum cross-coupling noise in a single net, followed by a method to find the
minimum without solving explicitly any cross-coupling noise equations. They
further proposed improvement of noise immunity by local perturbations of sig-
nal wires. Cross-coupling noise, which is a “local” phenomenon, imposes a local
optimization problem. In contrast, dynamic power consumption is a cumulative
effect, thus a global solution for all the wires is required, which is the essence
of the present article. Another difference is that the solution in Saxena et al.
[2000] addresses two-dimensional routing for channel and switchbox routing
styles. This work addresses the simultaneous optimization of the entire top-
level microprocessor routing comprising many thousands of nets. Wire spac-
ing optimization in the global routing layers of a processor is a collection of
several, almost independent, one-dimensional problems. We exploit the one-
dimensionality and the independency to obtain an effective global optimization
approach.

Another important difference of this article from previous works discussing
layout optimization by wire spacing is the simultaneous consideration of power
and delay. We demonstrate that signal power and delay behave similarly with
respect to interwire spaces and define a new Weighted Power-Delay Sum
(WPDS) optimization problem. This formulation allows a global view of in-
terconnect power and interconnect delay, while taking into account the delay
criticality of individual wires.

The rest of the article is organized as follows. In the next section, circuit and
layout models are presented. A necessary and sufficient WPDS minimization
condition for each wire is proven in Section 3. In Section 4, a graph model of wire
spacing and line-to-line capacitance is introduced, and is used to prove that the
weighted capacitance density must be constant for all the wires in each layer
at the global minimum WPDS solution. An iterative algorithm that guarantees
convergence to the optimum is presented in Section 5. Practical considerations
of power-delay optimization are discusses in Section 6. Results obtained for a
recent high-end microprocessor designed in 65 nanometer process technology
are presented in Section 7 and the article is concluded in Section 8.
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Fig. 3. Typical interconnect patterns: A driver transmits a signal which propagates through in-
terconnecting wires on various layers. Consecutive layers route wires in alternating orthogonal
directions. Connections from layer to layer are made by vias. Some wires may have jogs.

2. INTERCONNECT MODELING ASSUMPTIONS

The interconnecting wires at high metal layers typically run in alternating
orthogonal directions, for example, wires residing in even layers are vertical and
wires in odd layers are horizontal, as shown in Figure 3. Sometimes wires going
in the main layer direction are connected by short jogs in the perpendicular
direction. Such jogs are rarely used in high metal layers and they are ignored
in the optimization discussion.

Spacing optimization is carried out at each layer independently of the other
layers as follows: Let the vertical wires of an even layer lbe subject to optimiza-
tion. Connectivity must be maintained under any horizontal shift of vertical
wires. As shown in Figure 3, shifting wires in one layer doesn’t affect spacing
of the orthogonal wires in the layers above it and below it. The lengths of hori-
zontal wires in layers l − 1 and l + 1 usually reach hundreds of microns, while
the typical wire shift during the optimization in layer l is less than a micron.
Thus, lengths of horizontal wires in the adjacent layers usually change by less
than 1%. The statistical average of these small changes is zero, such that these
variations are negligible for all practical cases. Odd layers behave similarly.

Without loss of generality, we limit the following discussion to even (vertical)
layers only.

The model we use to derive optimal spacing conditions is shown in Figure 4.
There, n wires corresponding to signals σ1, . . . σn run in parallel and the entire
bundle is shielded on both sides by power supply wires, which are not allowed
to move. The two side shield nets σ0 and σn+1 do not make logical transitions
and are not connected to any driver.
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Fig. 4. Fundamental cross coupling and ground capacitance. Wires run in parallel and the entire
bundle is shielded on both sides by wires connected to ground.

Assuming full voltage swing, the dynamic power consumed by toggling signal
σi is given by

Pi = αi
(
Ca

i + kCll
i

)
V 2

dd f , (1)

where Vdd is supply voltage and f is the clock frequency. Ca
i is the wire ca-

pacitance to ground planes above and below and Cll
i is the nominal line-to-line

capacitance to other wires at the same routing layer. αi denotes the amount
of signal’s switching relative to the clock signal, called the signal’s activity
factor [Genossar et al. 2003], ranging from αi = 0 if it never switches (e.g.,
shields or power delivery wires), to αi = 1, if it toggles twice at every cycle
(e.g., clocks). This model of dynamic power is broadly used in the industry and
provides good correlation to silicon. Signal activity factors are derived by using
an industrial-power simulator which checks the signal activity in different sce-
narios, and then averaging activities over all cases [Bakoglu 1990; Genossar
et al. 2003]. The power contributed by the line-to-line capacitance between σi
and σ j depends on αi, α j and the Miller Coupling Factor (MCF) between σi and
σ j (denoted by k in Eq. (1)). According to Miller’s theorem, the simultaneous
switching of two signals in identical and opposite directions yields MCF of 0 or
2, respectively, or −1 to 3 if worst-case transition slopes are assumed [Chen et
al. 2000]. Assuming that the signals are logically independent, simultaneous
transitions in identical and opposite directions are equally likely. Hence, the
energy dissipated over multiple simultaneous switching transitions can be cal-
culated using the average MCF for power, which is equal to 1 (same as the MCF
for nonsimultaneous switching, when the adjacent signal is stable). Under this
assumption the power contributed by the line-to-line capacitance between σi
and σ j is proportional to αi + α j . For the side nets σ0 and σn+1, the MCF is
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also 1, since the sidewall wires are shields which are always stable, and power
contributed by space between side nets and shields is proportional to α1 and αn,
respectively.

Signal delays are expressed by an Elmore model using simple approxima-
tions for wire capacitances and wire resistance. Using a π—model of the inter-
connect, the delay of signal σi is given by

Di = Red
i

(
Ca

i + kCll
i + Cel

i

) + Rwire
i

(
1
2

(
Ca

i + kCll
i

) + Cel
i

)
, (2)

where Red
i and Cel

i are effective driver resistance and effective load capacitance.
A signal’s effective driver resistance represents the actual driving logic gate in
series with interconnect resistance leading to the wire’s near end. Similarly, the
wire’s far end is connected to the signal’s effective load capacitance, account-
ing for the actual receiver in parallel with the capacitance of wires connected
downstream from the far end. Figure 3 illustrates this model. Although the
Elmore model is a first-order approximation and it does not account for input
waveform slope [Kahn et al. 1996], it is widely used in the industry for inter-
connect optimization due to its high-fidelity property [Boese et al. 1993]. The
absolute accuracy of the model can also be improved, by using parameter fitting
as described in Abou-Seido et al. [2002]. The simple model is used here because
of its simplicity in mathematical analysis.

In Eq. (2), k is the Miller Capacitance Factor. For delay calculation, typically
MCF = 2 is assumed when neighbor wires switch in the opposite direction caus-
ing increased delays, while MCF = 0 is assumed for same-direction switching
and reduced delay. We assume that MCF = 1 for all of the signals, yielding
nominal delay values. Therefore, in the delay equation (2), cross-capacitance
Cll will appear with k = 1.

Let’s consider an arbitrary layout shown in Figure 5. We say that two wires
of the same layer are “visible” to each other if they have some common span. For
a given wire, line-to-line capacitances to its visible wires can influence the dy-
namic power or delay associated with the wire. The progression of VLSI process
technology has made the line-to-line term dominant over others [Ho et al. 2001;
Sylvester et al. 1998], and its importance is expected to grow in future gener-
ations [ITRS 2005]. The line-to-line capacitance between two adjacent wires
is proportional to the length of their common span where they are “visible” to
each other, and inversely proportional to some positive exponent of their space
to each other [Saxena et al. 2000].

Let I0, I1, . . . , In, In+1 be n + 2 parallel wires, where I0 and In+1 are left-
most and rightmost shields, α0 = 0, α1, . . . , αn, αn+1 = 0 are their corresponding
activity factors, Red

0 = 0, Red
1 , . . . , Red

n , Red
n+1 = 0 their corresponding effective

driver resistances, and Cel
0 = 0, Cel

1 , . . . , Cel
n , Cel

n+1 = 0 their corresponding ef-
fective load capacitances. A partial order ≺ is defined on wires I0, . . . , In+1 as
follows. We say that Ii ≺ I j if Ii and I j satisfy the following conditions: (1) the
intersection of their vertical span is nonempty, (2) xi and x j , the abscissas of
Ii and I j , respectively, satisfy xi < x j , and Ii and I j are visible to each other.
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Fig. 5. Spacing visibility graph overlaying its corresponding layout. Solid arcs comprise the primal
graph corresponding to wires and their spacing. Dashed arcs comprise its dual graph corresponding
to capacitances between visible wires.

This is a left-to-right topological order of the wires, and in the rest of the article
we will assume that they are topologically ordered. Wire spacing optimizations
preserve the order of the wires.

We assume that the widths w0, w1, . . . , wn, wn+1 of the wires are set by wire
sizing optimization performed earlier to satisfy timing requirements [Cheng
et al. 1999] and thus are not subject to change in the spacing optimization.
This assumption matches VLSI design practice, where wire widths are set very
early in the design flow according to signal propagation delay goals. Optimal
spacing, however, is more opportunistic and is addressed late in the design.
There, all interconnects are already implemented with their specified width, so
the unused “white area” can be redistributed in order to allocate more space to
highly active or timing-critical wires, hence reducing their capacitance.

Let lij be the common span of Ii and I j in which they are visible to each other.
If Ii and I j are not visible to each other lij is undefined, but for the mathematical
discussion we set it to be identically zero. The space x j − xi between Ii and I j
is defined if and only if lij > 0. It needs to satisfy the following constraint,
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which accounts for the predefined wire widths and the minimum wire spacing
dictated by the process technology.

x j − xi − (wj + wi)/ 2 ≥ Smin, Ii ≺ I j (3)

Inequality (3) means that the order of two visible wires is not allowed to change
and they must be apart of each other in at least Smin, called the minimum
spacing rule.

The line-to-line capacitance cij associated with Ii and I j is given by

cij = κl η

ij /[x j − xi − (wj + wi)/2]γ . (4)

The factor κ depends only on process technology, whereas η ≥ 1 and γ ≥ 1.
Various papers used different values of η and γ . A setting of η = 1 and γ = 1
is assumed in Gao et al. [1996], Miyoshi et al. [1995], and Wang et al. [1998].
Other authors use the setting η = 1 and γ = 1.34 [Onazawa et. al. 1995; Jhang
et al. 1994]. In the following discussion we assume η = 1, however, the results
of this article are applicable for any setting of the previous parameters.
Signal delay can be decomposed into two components.

Di = Dself
(
Ca

i , Cel
i , Red

i , Rwire
i

)
+ Dcross

(
Cll

i , Red
i , Rwire

i

)
(5)

One is associated with the ground capacitance of the wire and the effective
capacitive load. We call it “self delay.” The second component of the delay is
associated with the wire’s line-to-line capacitances to other wires residing in
the same layer. We call it “cross delay.” Redistribution of spaces between wires
affects only the second component. Using a π—model for individual wire seg-
ments, the cross delay of the signal is proportional to

Dcross ∝
nleft∑
k=1

ck

(
Red + r1→k + 1

2
rk

)
+

nright∑
k=1

ck

(
Red + r1→k + 1

2
rk

)
, (6)

where nleft and nright are the numbers of left and right adjacent segments visible
by the wire, Red is the effective driver resistance, ck and rk are the capacitance of
the kth visible adjacent segment and the resistance of appropriate wire segment
and r1→k is the resistance of the part of the wire from the effective driver near
end to the kth visible segment. Figure 6 illustrates calculation of signal cross
delay according to (6).

The resistance of a wire segment of length l and width w is given by Abou-
Seido et al. [2002]. We have

r = β
l

wτ
, (7)

where β is the sheet resistance of the wire and τ is a constant.
Let’s denote by lij,k the length of the kth segment among mij segments which

are visible and shared by Ii and I j , namely

lij =
mij∑
k=1

lij,k . (8)
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Fig. 6. Calculation of delay using an Elmore approximation. The contribution of the k− spacing
segment is equal to (Red + r1→k)Ck + 1

2 rkCk .

In the following discussion we will use a similar notation for resistances and
capacitances. Substituting (7) and (4) into (6), the cross delay of the wire Ii is
expressed as follows.

Dcross
i =

n+1∑
j=0, j �=i

mij∑
k=1

lij,k[
x j − xi − (

wj + wi
)/

2
]γ

(
Red

i + β
lij,1→k

(wi)τ
+ 1

2
β

lij,k

(wi)τ

)

=
n+1∑

j=0, j �=i

lij[
x j − xi − (

wj + wi
)/

2
]γ �ij, (9)
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Fig. 7. Example of calculation of cross delay for wires i and j contributed by their shared spaces.
(a) layout view (b) corresponding RC model.
For wire i:
Dcross

ij = (Red
i + 1

2 rij,1)cij,1 + (Red
i + rij,1→2 + 1

2 rij,2)cij,2 + (Red
i + rij,1→3 + 1

2 rij,3)cij,3 + (Red
i +

rij,1→4+ 1
2 rij,4)cij,4

For wire j :
Dcross

ji = (Red
j + rji,1→1 + 1

2 rji,1)cji,1 + (Red
j + rji,1→2 + 1

2 rji,2)cji,2 + (Red
j + rji,1→3 + 1

2 rji,3)cji,3 +
(Red

j + rji,1→4 + 1
2 rji,4)cji,4

where we introduced effective signal resistance �ij.

�ij = 1
lij

mij∑
k=1

lij,k

(
Red

i + β
lij,1→k + 0.5lij,k

wτ
i

)
(10)

�ij is a normalized sum of all resistances affecting the delay related to the
segments where wires Ii and I j are visible to each other.

The summation in (9) is done over all wires. Notice that if two wires Ii and
I j are not visible to each other, then lij = 0 and the corresponding sum is zero.
An example for calculation of a term in sum (9) is shown in Figures 7(a) and
7(b). 7(a) illustrates the layout of two wires Ii and I j having 4 distinct visibility
segments. Figure 7(b) shows the corresponding RC model.

Similarly to delay, the dynamic power associated with the wire capacitance
consists of two terms.

Pi = Pself + Pcross = αiCa
i V 2

dd f + αiCll
i V 2

dd f (11)
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In (11) Pself denotes wire “self power,” contributed by wire area and fringe capac-
itance, and Pcross denotes wire “cross power,” contributed by line-to-line capac-
itances of the wire to other wires in the same routing layer. Using the notation
of (8) and substituting (4) into (11), the cross power of the wire Ii is expressed
as

Pcross
i = αik

n+1∑
j=0, j �=i

mij∑
k=1

lij,k[
x j − xi − (

wj + wi
)/

2
]γ

= αik
n+1∑

j=0, j �=i

lij[
x j − xi − (

wj + wi
)/

2
]γ , (12)

where the coefficient k incorporates supply voltage, clock frequency, and
technology-dependent constants.

Our goal is optimization of power with consideration of timing. The commonly
used objective functions incorporating both power and delay are the power-
delay product or similar multiplicative metrics. However, these functions are
not handy for mathematical analysis. Instead, an objective function based on a
weighted sum rather than a product of delay and power is used.

Consider the problem of minimizing a weighted sum of cross power and cross
delay (Weighted Power-Delay Sum—WPDS).

Ecross (x) = λ1 · Pcross (x) + μ · Dcross (x) (13)

Here λ ∈ R is scalar and μ, Pcross, Dcross, x are vectors of real numbers. 1
represents the unit vector. λ and μ are coefficients which set the relative im-
portance of the power and delay terms for each signal. Note that while power
is equally additive from all nets, delays of different nets may have different
criticality and hence we use a vector of weights for the delays. The goal is to
find a vector of wire locations x that minimizes (13). Notice that vectors Pcross

and Dcross have only n elements, since I0 and In+1 are tied to constant voltages.
Since the objective function (13) is defined as a weighted sum of power and
delay characteristics, the power and delay should be normalized to make them
comparable. Normalization factors Ptot = ∑

i Pcross
i (x) and Dtot = ∑

i Dcross
i (x)

calculated at the preoptimization design state can be used. It is convenient to
use λ = 1 and to set elements of the coefficient vector μ according to timing
criticality of individual signals.

3. NECESSARY AND SUFFICIENT CONDITION FOR MINIMAL WPDS

LEMMA 1. The minimum of (13) subject to (3) is global.

PROOF. Let us define sij = xi − x j − (wi + wj )/2 to be the spacing between
two visible wires. Substitution of sij into (13) yields the following minimization
problem.

minimize λ1 · Pcross (s) + μ · Dcross (s) , (14)

subject to sij ≥ Smin, Ii ≺ I j , (15a)
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sij − x j + xi + (
wj + wi

)/
2 = 0, Ii ≺ I j , (15b)

0 < xi < A, 1 ≤ i ≤ n (15c)

The objective function (14) is convex (see the appendix of Saxena et al. [2000])
and so are the constraints (15a) through (15c). Consequently, there is a single
minimum which is global [Luenberger 1984].

Let us ignore for the moment the requirement (15a) of minimum spacing, and
replace it by sij > 0. Although it is not feasible for a VLSI layout, it simplifies the
characterization of the optimal spacing yielding minimum WPDS. We’ll return
to (15a) and take it into account in the real implementation of wire spacing.
Formally, (15a) is replaced by

sij > 0, Ii ≺ I j . (15d)

Consider now the abscissa xi of a wire Ii whose width is wi, 1 ≤ i ≤ n. Denote
all of its left and right visible wires by I left

ij and Iright
ij , respectively, where the

superscript designates left and right sides of Ii and in the subscript j is varying.
Let’s denote by sleft

ij and sright
ij spaces between wires Ii and I j on the left and right

sides of Ii, respectively. In addition, we denote by l left
ij,k and l right

ij,k the length of the
kth spacing interval between wires Ii and I j on the left and right sides of Ii. We
use similar indexing notation for the corresponding abscissas, widths, lengths
of wires, visibility span, activity factors, and signal driver resistances.

THEOREM 1 (NECESSARY AND SUFFICIENT CONDITION FOR MINIMAL WPDS). A
necessary and sufficient condition so that the WPDS expression in (14) is
minimized subject to the constraints (15b), (15c), (15d) is that every wire
Ii, 1 ≤ i ≤ n satisfies

∑
j

l left
ij

(
μi�left

ij + μ j �left
ji + λ

(
αi + αleft

j

))
[
xi − xleft

j −
(
wi + wleft

j

)]γ+1

=
∑

j

l right
ij

(
μi�right

ij + μ j �right
ji + λ

(
αi + αright

j

))
[
xright

j − xi −
(
wi + wright

j

)]γ+1
. (16)

Summation on the left- and righthand sides of (16) is performed over all left and
right visible wires.

PROOF. By substitution of (15b) into (14), it follows that the WPDS for wire
Ii is proportional to

∑
j

l left
ij

(
μi�left

ij + μ j �left
ji + λ(αi + α j )

)
[
xi − xleft

j −
(
wi + wleft

j

)]γ

+
∑

j

l right
ij

(
μi�right

ij + μ j �right
ji + λ(αi + α j )

)
[
xright

j − xi −
(
wi + wright

j

)]γ . (17)
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The minimum of (14) is obtained at an internal point of the region defined by
(15d). Otherwise, there would be some sij = 0. This, however, will result in (14)
going to infinity, hence not a minimum.

Since the minimum is obtained at an internal point, and by Lemma 1 the
minimum is global, a necessary and sufficient condition to minimize (14) is that
its gradient with respect to x is zero. The only term of the sum (14) which con-
tains xi is expressed by (17). Therefore, differentiation of (14) by x is equivalent
to differentiation of (17) by xi. Such differentiation yields (16).

The physical interpretation of Theorem 1 is that it is necessary and sufficient
for minimum WPDS that every wire is in “equilibrium,” where the sum of its
left side weighted capacitance derivatives is equal to that of its right side.

Solving (14) for all wires together with the constraints (15b), (15c), (15d)
involves a large number of nonlinear equations and linear inequalities. Its so-
lution for a typical VLSI layout can be very tedious. The next section describes
a representation which addresses all nets simultaneously, yielding the optimal
solution.

4. GRAPH REPRESENTATION OF POWER MINIMIZATION

This section presents a planar graph model of the problem, which projects the
“local equilibrium” necessary and sufficient condition of Theorem 1 into a global
consequence related to the entire layout. This representation leads to an alge-
braic formulation of the solution, and provides an interesting insight about the
nature of the optimum, given as a corollary at the end of the section, that the
capacitance density in an optimally spaced metal layer is uniform throughout
the layout.

Let us build a wire visibility graph and show how minimal WPDS can be
captured by satisfaction of some properties of that graph. The Spacing visibility
graph G(U, E, ξ) is a directed graph whose vertices U correspond to wires and
arcs E correspond to spaces between wires visible to each other. An arc eij ∈ E
connecting ui ∈ U with u j ∈ U exists if Ii ≺ I j (Ii is residing left to I j and
they are visible to each other, namely lij > 0 and sij > 0). In this definition
G is a planar directed acyclic graph having one source u0 and one sink un+1,
corresponding to I0 and In+1, respectively. The solid arcs in Figure 5 illustrate
the graph overlaying the original layout.

An arc eij is assigned with the real positive number ξij = sij + (wi + wj )/2
which is the distance between the centerlines of Ii and I j . In this setting, the
length of all paths from source to sink is equal to the distance from the leftmost
to the rightmost wire, which is the block width A. Let � = {γk} be the set of all
source-to-sink paths of G(U, E, ξ), then∑

eij∈γk

ξij =
∑

eij∈γk

sij + (
wi + wj

)/
2 = A, ∀γk ∈ �. (18)

It follows from planarity of G that there exists a dual graph H(V , F, η), illus-
trated in Figure 5 by dashed arcs. We call it the weighted capacitance derivative
graph. It is defined as follows. Define a source vertex v0 and sink vertex vn+1 of
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H, located in the infinite faces of G. The vertices of H are assigned each inside
a distinct face of G. Let F be the arcs of H. Such a graph representation occurs
in floor planning. A study of their algebraic properties can be found in Wimer
et al. [1988].

To every dual arc fij ∈ F crossing the primal arc eij ∈ E we assign the
following weight.

ηij = 1

sγ+1
ij

lij[μi�ij + μ j �ji + λ(αi + α j )] (19)

The expression in (19) is the absolute value of the derivative of cij by any of
the abscissas xi or x j , weighted by the effective activity factors and the ef-
fective signal resistances of the wires forming the space sij. We refer to ηij as
weighted cross-capacitance density, since it represents the value of weighted
cross-capacitance divided by the spacing between two wires. The direction of
an arc fij ∈ F is set such that a counterclockwise rotation of fij towards eij by
the angle ρ < π leads to overlap of arc heads, as shown in Figure 5. The graph
H(V , F, η) thus defined is also directed and acyclic, having one source and one
sink. Figure 5 illustrates the overlay of the dual graphs.

In the aforesaid representation the topology of G is invariant of the abscissas
of the wires, as long as the left-to-right relations between visible wires are
maintained. The interpretation of paths in H is of vertically stacked capacitors,
and the path length is the sum of weighted capacitance derivatives.

It follows from the invariance of the topology of G under repositioning wires
and from duality that the topology of H is also invariant. This implies that
any vertical stack of capacitors, corresponding to a source-to-sink path in H is
preserved in the layout, regardless of the abscissas of I0, . . . , In+1. This is shown
in Figure 8, where the gray areas represent the line-to-line capacitances. Note
that a face of H always encloses a vertex in G corresponding to a vertical wire.
The left (right)-side path corresponds to the vertical stack of capacitors on its
left (right) side, as illustrated in Figure 8.

All source-to-sink paths of H can be ordered “left to right” by applying a
depth-first traversal which expands all the paths from v0 to vm [Cormen et
al. 2001]. Paths are exhausted such that any two successively issued paths δ′

and δ′′ are constructed as follows. Both paths emanate from v0 and share the
same arcs up to vr , where they split into two subpaths ρ ′ ⊂ δ′ and ρ ′′ ⊂ δ′′

extending between vr and vs. At vsδ
′ and δ′′ merge again up to vm, as illustrated

in Figure 9. The physical interpretation of ρ ′ and ρ ′′ is of the left- and right-side
stacked capacitors shown in Figure 8.

LEMMA 2. All source-to-sink paths in H are critical (having same length)
if and only if for every internal face the left and right subpaths have the same
length.

PROOF. Figure 9 illustrates the proof. Let all source-to-sink paths in H be
critical. Assume on the contrary that there exists an internal face of H which
left and right subpaths have different lengths. Then, two successive source-to-
sink paths must exist in the previously defined order; one is longer than the
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Fig. 8. Cross-capacitance layout model with the corresponding spacing visibility graph, and its
weighted capacitance derivative dual. Gray areas correspond to line-to-line capacitors. Faces of the
dual graph correspond to capacitors residing on the two sides of a signal wire.

other, since except the two distinct subpaths they share common arcs, hence a
contradiction.

Conversely, let left and right subpaths of any face of H have the same length.
Assume on the contrary that not all source-to-sink paths in H are critical.
There exist then two successive source-to-sink paths δ′ and δ′′ whose lengths
are different. Paths δ′ and δ′′ coincide in all their arcs, except in those arcs
forming ρ ′ ⊂ δ′ and ρ ′′ ⊂ δ′′, which are the left and right sides of an internal
face in H. But then these must have different lengths, a contradiction.
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Fig. 9. Proof of Lemma 2. Two “left to right” ordered paths from v0 to vm in H consist of two
common parts and a face enclosing a vertex of G.

THEOREM 2 (PATH CRITICALITY CONDITION FOR MINIMUM WPDS). The WPDS
of all signals in a layout is minimized if and only if all paths in the weighted
capacitance derivative graph are critical.

PROOF. According to Lemma 2 all paths in H are critical if and only if the
left and right paths of any internal face have same length. The weights of H ’s
arcs are the derivatives of line-to-line capacitances. Consequently, the sums
of derivatives of line-to-line capacitances stacked on the two opposite sides of
every wire are equal to each other. By Theorem 1 this equality is a necessary
and sufficient condition for minimal interconnect WPDS.

Let � = {δk} be the set of all source-to-sink paths of H(V , F, η), then accord-
ing to Theorem 2 there exists at minimum a positive real number B satisfying

∑
fij∈δk

ηij =
∑
fij∈δk

lij
(
μi�ij + μ j �ji + λ(αi + α j )

)/
sγ+1
ij = B, ∀δk ∈ �. (20)
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The graph representation of the WPDS problem can provide an algebraic solu-
tion method as follows. Let K and L be the coefficient matrices of (18) and (20),
respectively. Then, combining the two in one matrix representation, they can
be rewritten as (

K 0
0 L

) (
ξ
η

)
=

(
A
B

)
, (21)

where A = A1 and B = B1 are corresponding vectors of the righthand side
constants A and B in (18) and (20).

According to Wimer et al. [1988] and Seshu et al. [1961], it can be shown that
that the rank of the combined matrix in (21) is Nspace + 1. Hence the number of
independent equations is linear in the size of the layout.

There is still the question of how to effectively derive the Nspace+1 equations.
To this end we’ll interpret (18) and (20) as network cuts and flows [Hu 1969].
It follows from the duality that there is a one-to-one correspondence between
paths in G and cuts in H and vice versa. Let us exchange the weights of dual
arcs in G(U, E, ξ) and H(V , F, η), thus creating new graphs G ′(U, E, η) and
H ′(V , F, ξ). Then, the lengths equality of all paths in G translates to equality
of all cut flows in H ′ and similarly for H and G ′.

The equality of all cut flows in a graph implies that the total length of in-
coming arcs of a vertex is equal to the total length of its out-going arcs. This
holds for both H ′ and G ′, thus yielding |U |+ |V | vertex equations. Substituting
|U | and |V | which have been used in finding the rank of (21) yields a total of
Nspace + 3 equations, which can replace (18) and (20).

An interesting consequence of Theorem 2 is that at the optimum, weighted
line-to-line capacitance density is uniformly distributed across the whole lay-
out. Consider an imaginary vertical line scanning the layout from left to
right. Define C(x) to be the cumulative line-to-line capacitance from the left
side of the block, and c(x) = dC(x)/dx is its derivative (or density), namely
C(x) = ∫ ξ=x

ξ=0 c(ξ )dξ . Using this terminology, with the interpretation of a vertical
scan-line as a source-to-sink path in H, the follows from Theorem 2.

COROLLARY 1 (UNIFORMITY OF CAPACITANCE DENSITY). The total interconnect
WPDS in a layout is minimized if and only if its underlying line-to-line weighted
capacitance density is constant.

5. ITERATIVE ALGORITHMS FOR MINIMIZATION OF WPDS

While the graph representation gives an effective algebraic solution method
and a useful insight about the uniformity of capacitance density in an optimal
layout, we can use a simple yet robust iterative algorithm which relies on the
convexity of the problem. It has been implemented and successfully used in the
design of a commercial 65 nanometer high-end microprocessor, and the results
are shown in Section 7. The iterative algorithm is based on the equilibrium con-
dition for minimum WPDS stated in Theorem 1. The algorithm uses a modified
form of the balancing technique described in Cederbaum et al. [1992], which
had been applied for wire spacing in a commercial tool for manufacturing yield
enhancement [XTREME].

ACM Transactions on Design Automation of Electronic Systems, Vol. 14, No. 4, Article 55, Pub. date: August 2009.



Power-Delay Optimization in VLSI Microprocessors by Wire Spacing • 55:19

The algorithm works on a single wire at a time while maintaining a global
view of the other wires. It repositions a wire between its left and right visible
wires, such that the equilibrium in (16) is achieved. According to Theorem 1, at
a nonminimum point there exists at least one wire which is not in equilibrium.
We then shift it to the abscissa x which satisfies (16). It has been proven in
Cederbaum et al. [1992] that such iterations converge to a configuration where
all wires are in equilibrium, such that (16) is satisfied for all wires.

The path lengths expressed in the constraints (18) are invariant under repo-
sitioning of a single wire. Since initially the layout is legal, thus satisfying (18),
it is automatically satisfied through all the iterations.

It has yet to be shown that the repositioning of a single wire indeed reduces
the total WPDS. Considering (9) and (12), the only affected terms are those
which involve the shifted wire and its left and right visible neighbors. These
terms are expressed in (17). The amount of delay and power appears only once in
(9) and (12) and their weighted sum after repositioning has been lowered, hence
the net WPDS change is negative. We can conclude in the following theorem.

THEOREM 3. The iterative algorithm which equilibrates wires one at a time
converges to the global minimum of WPDS.

PROOF. The infinite sequence of WPDS values obtained by the iterative al-
gorithm is positive and monotonically decreasing, hence converging to a limit
where all wires are in equilibrium. Theorem 1 ensures that this limit is indeed
the global minimum.

Following is a pseudocode of the algorithm.
In order to ensure fast convergence of the iterative algorithm, wires are put

into a heap [Cormen et al. 2001] in decreasing order of their distance from
equilibrium. This is implemented in lines 1 and 2 of the pseudocode. Assuming
that the number of visible wires of any wire is bounded, which is the practical
situation in VLSI layouts, equilibration calculations consume O(1) time per
wire. Building the heap consumes O(n log n) time.

Algorithm.

1. initialization: for every wire calculate “distance” from equilibrium by equation (16)
2. put all wires into a heap
3. while top of heap is greater than ε > 0 (measure of accuracy) do {
4. solve (16) for the wire at the top of the heap
5. locate the wire at abscissa found in line 4
6. re-enter top wire to heap
7. for every visible wire do {
8. update “distance” from equilibrium by (16)
9. re-enter the wire into heap

10. }
11. }
12. retain connectivity by stretching all orthogonal wires according to the shift made

to the vertical wire they are connected to.
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The equilibration of the top wire modifies the equilibrium of other wires
visible to it. In the outer loop at line 3 wires are popped from the top of the heap
one at a time, repositioned at their equilibrium abscissa in line 5, and then
re-entered to the heap in line 6 (they are located at the bottom by definition
since their distance from equilibrium is zero). This takes O(log n) time.

The inner loop in lines 7 through 10 handles all the wires visible to the pre-
vious top wire that just has been re-entered into the heap. Their distance from
equilibrium is recalculated and their location in the heap is updated accord-
ingly by re-entering. Assuming that the number of visible wires of any wire is
bounded, this operation also consumes O(log n) time. Finally, line 12 retains
layout connectivity by shortening or extending orthogonal wires in adjacent
layers that are connected to the ends of shifted wires in the layer being spaced.
This operation is O(1) per wire, hence O(n) altogether.

Once the convergence criterion in line 3 is met, it follows from the very
definition of a heap that all wires are at distance ε or less from equilibrium,
where ε is some predefined accuracy. The dependence of runtime on ε has been
analyzed in Cederbaum et al. [1992]. According to Cederbaum et al. [1992], the
runtime complexity of the algorithm is O(n log n log 1

ε
). Although the number

of vertices in G(U, E, ξ) is large, Figure 2 shows that practical VLSI layouts
are sliced by a fixed mesh of VCC/VSS power grid, hence G(U, E, ξ) at the top
metal layers is separable into many independent small graphs. The number
of movable wires between two fixed power rails doesn’t typically exceed 12.
Assuming a manufacturing grid ε = 0.001 micron for a 65 nanometer process
technology, the worst-case number of iterations is a few hundreds per VCC/VCC
trunk. Considering the entire chip area which incorporates a few hundreds or
thousands of such trunks, the iterative balancing algorithm converges within
several minutes of computation time per layer.

So far, the Smin constraint in (3) has been ignored. Practical layout must
account for it, of course. The iterative algorithm supports it as follows. Once the
equilibrium position of the wire is found by solving (16), it is checked whether
Smin is violated. If this is the case then the wire stops at Smin. The iterative
algorithm still yields the minimum, although it is achieved at the boundary of
the feasible region rather than at an internal point as assumed in the proof of
Theorem 1. The optimality can be verified from Lemma 1.

6. PRACTICAL CONSIDERATIONS IN POWER-DELAY OPTIMIZATIONS

The objective function (13) can be refined to suit a specific practical application.
Such refinement can be done using coefficients μi and λ. Typical applications
are shown in Table I, describing various design stages during process migration.
Assume that a circuit implemented in a previous generation of technology is
being redesigned for a new process technology. In the early stages of design
migration there are no firm timing specifications for individual internal nodes
of the circuit. Therefore, the initial goal is to reduce all signal delays. Thus,
both power and delay are given the same weights μ = 1, λ = 1.

At a later stage, realistic time budgeting is calculated such that each signal
is assigned a required arrival time. The slack of each signal is defined as the
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Table I. Possible Settings of Weighting Coefficients for Different Optimization Objectives

Application Setting of Parameters
Reduction of power and average signal delay μ = 1, λ = 1
Reduction of power and total sum of slacks μ = 1, λ = 1
Power reduction of signals with positive slack
and delay reduction of signals with negative
slack

λ = 1, μi = 0 for signals with positive slack
and λ = 0, μi = 1 for signals with negative
slack

Power reduction with consideration of signal
criticality

λ = 1 and μ, according to signal criticality

Measuring maximum power improvement
possible by spacing

μ = 0, λ = 1

Measuring maximum delay improvement
possible by spacing

μ = 1, λ = 0

difference between the required arrival time and its actual delay. Negative
slack indicates a violation of specifications. The total sum of slacks indicates
the potential for increasing the operating frequency of a chip (by reducing the
required times). Notice that, mathematically, optimizing the total sum of slacks
is equivalent to optimizing the total sum of delays. Therefore, μ = 1 and λ = 1
are used as before.

Separation to sum of negative slacks and sum of positive slacks is very use-
ful in design migration. While the total negative slack reflects the amount of
expected circuit design effort for timing closure, the sum of positive slacks in-
dicates opportunities for power saving. Thus, in this optimization scenario, dif-
ferent weights are assigned to nets with negative and positive slacks. We set
λ = 1, {μi = 0}i∈Ip (Ip is the index set of positive slack nets) to focus optimiza-
tion on power saving, and λ = 0, {μ j = 1} j∈In (In is the index set of negative
slack nets) to focus optimization on delay reduction. Further refinement is also
possible: If nets with a small positive slack need to be protected from turning
into negative slack, three types of settings are defined. For nets with negative
slack, λ = 0, {μ j = 1} j∈In , for nets with large positive slack, λ = 1, {μi = 0}i∈Il ,
and finally, for nets with small positive slack, λ = 1, {μk = 1}k∈Is , where Is is
the corresponding index set.

At the final stage of timing closure, critical paths are treated for eliminat-
ing negative slacks and delay reduction. In that case the objective is delay
minimization of the signal with the worst slack. To this end, corresponding co-
efficients μi are set according to the criticality of the signal: The most critical
signals will be assigned the largest values μi.

7. EXPERIMENTAL RESULTS

A pictorial example of spacing optimization is shown in Figure 10, where the
activity factor is written next to each wire. As shown in Figure 10(b), the opti-
mization algorithm has distributed the spaces according to the relative weight
of wire activity.

The iterative algorithm presented in Section 6 has been applied to the en-
tire global routing layers in a 65 nanometer high-end microprocessor. Due to
the large size of the data, the layout of the processor was divided into five
portions. The number of wires varied from ∼44000 to ∼118000 wires in the
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Fig. 10. An example of spacing optimization for reduced interconnect power, implied by activity
factors: (a) before optimization (b) after optimization. Activity factors are shown next to the wires.

portion. Optimization was performed on each portion separately while main-
taining boundary conditions to obtain proper interface and connectivity. All
top-level metal layers from 5th to 8th were optimized, whereas all connectivity
and design rules were perfectly maintained. The algorithm ran on a 2.4 GHz
Pentium IV machine with 8GB of memory, consuming about thirty minutes per
layer.

In each layout portion the optimization was performed simultaneously for all
wires, where power grid wires were not allowed to move. This is equivalent to
performing the optimization in each power grid slice separately. All the results
reported in the following were obtained using a fixed power grid. We also ran
experiments without this limitation on the power grid, thus allowing more
freedom in spacing optimization, and got power savings higher by about 40%
in comparison with the fixed power grid. However, shifting the power grid can
be too disruptive for a conservative design methodology. Hence we discuss the
fixed power grid results only.

Optimization was performed in several modes. First, power minimization by
wire spacing (ignoring delays) was performed by setting λ = 1, μ = 0. Then
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Table II. Power and Delay Reduction Obtained for Entire Global Routing by
Optimizing Power Only: λ = 1, μ = 0

Portion No. Power Improvement,% Average Delay Improvement,%
1 18.73 −8.77
2 19.28 0.88
3 16.24 0.43
4 16.03 −2.86
5 20.10 3.99
Entire Chip 18.55 −2.75

Table III. Power and Delay Reduction Obtained for Entire Global Routing
by Optimizing Delay Only: λ = 0, μ = 1

Portion No. Power Improvement,% Average Delay Improvement,%
1 4.52 10.30
2 3.26 13.18
3 1.73 10.50
4 3.96 9.71
5 6.22 12.70
Entire Chip 4.22 11.30

average delay minimization (ignoring power) was performed by setting λ = 0,
μ = 1. The results are shown in Tables II and III, respectively. As can be seen in
Tables II, ignoring timing in the optimization yielded 18.55% reduction of the
interconnect power, while average delay has increased (degraded) by 2.75%.
On the other hand in Table III, focusing on delay yielded when only 4.22%
power saving, while the average delay was reduced by 11.30%. These extreme
cases define the “power-delay optimization envelope,” and any other setting of
λ and μ will result in power and delay improvements within these ranges.

In the following series of experiments μ was set uniformly for all wires, rang-
ing in μ = 0, 1, 2, 5, 10, 100, while maintaining λ = 1. The resulting power and
delay reductions are plotted relative to the power-delay optimization envelope
in Figure 11. As seen from the chart, delay improvement increases rapidly with
increasing μ, while power improvement decreases slowly. Table IV shows de-
tailed results for λ = 1, μ = 1. The total global interconnect dynamic power was
reduced by 16.85%, and the average delay was reduced by 9.62%. According to
Figure 11, further increase of μ hardly improves delay, but yields some power
improvement. Therefore, setting λ = 1,μ = 1 is reasonable for power-delay opti-
mization. Comparison of improvements obtained by the settings {λ = 1, μ = 0},
{λ = 0, μ = 1}, and {λ = 1, μ = 1} is shown in Figure 12. The power-delay trade-
offs demonstrated in Figures 11 and 12 and in Tables II, III, and IV are common
in VLSI design optimization problems, but reallocation of spaces can often im-
prove both power and delay. According to Magen et al. [2004] and Figure 1, the
total interconnect power reduction of 16.85% translates to 1.7% reduction in
the total dynamic power of the processor we have worked on. This is consid-
ered a significant improvement in industrial terms, obtained by a simple layout
post-processing step, and its results have been used in silicon.

In the last experiment we optimized power while considering individual sig-
nal criticality. This was done by setting individual delay weights μi ’s to critical
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Fig. 11. Power and delay improvement for different uniform assignments of delay weights: μi = μ

for all 1 ≤ i ≤ n, while λ = 1. The rightmost points correspond to optimization of delay only
(λ = 0; μi = 1 ).

Table IV. Power and Delay Reduction Obtained for Entire Global Routing by
Optimizing Equaly Weighted Power and Delay: λ = 1, μ = 1

Portion No. Power Improvement,% Average Delay Improvement,%
1 16.01 8.99
2 17.99 11.27
3 15.13 8.88
4 14.57 7.34
5 18.79 10.75
Entire Chip 16.85 9.62

nodes and checking how it affects optimization results. For power we set λ = 1.
The results are shown in Table V. The first row shows the initial timing state
where Worst Negative Slack (WNS), and hence the Total Negative Slack (TNS)
as well, are zero. Since power optimization by wire spacing is performed after
timing closure, TNS at this stage is usually zero. The second row shows the
results when power minimization was done (ignoring timing). Though power
was reduced by 17%, average delay had increased by 1.82% and TNS jumped
to −257.5. The third row shows the results obtained when power and delay
were equally treated at optimization. Though power gain is slightly worsened,
delay got improved by 6.63%. TNS is still −22.3 units due to a few critical paths
whose delay was harmed by the new spacing. To repair timing, the nets which
turned critical by the former setting were assigned higher delay weight, based
on the amount of their negative slack. Delay weights were taken in the range of
1 to 100 according to the amount of negative slack. Signals with positive slack
were still assigned a weight of 1. As shown in the fourth row of the table, TNS
was reduced by half using this setting, while power and delay improvements
were almost not affected. The distributions of negative slacks created in these
optimizations are plotted in Figure 13.

In a final experiment, those nets that turned critical by the former exper-
iment were “frozen” and their wires together with their neighbors were not
allowed to move, in order to eliminate any effects on their delays. This indeed
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Fig. 12. Power and delay improvement in different kinds of optimization for different portions of
the processor layout.

Table V. Optimization Results for Single Routing Portion with Different Weight Assignment

Power Delay Total Negative Worst Negative
Optimization Improvement, % Improvement,% Slack (TNS) Slack (WNS)
Initial state — — 0 0
Power optimization
only, λ = 1, μ = 0

16.71 −1.82 −257.5 −6.09

Power−delay
optimization, λ = 1,
μ = 1

15.20 6.63 −22.3 −2.21

Criticality−driven
optimization

15.01 6.70 −11.3 −1.14

Signal freezing (final) 12.82 6.16 0 0

resulted in zero TNS (i.e., no critical paths were affected), while 12.8% power
and 6.16% delay reduction were still achieved.

8. CONCLUSIONS

The problem of optimizing wire spacing in order to reduce the interconnect
switching power and wire delays is addressed for the global routing metal layers
of VLSI systems. A mathematically proven algorithm based on necessary and
sufficient conditions and capacitance density interpretation has been proposed.
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Fig. 13. Negative slack distributions created in different optimization types. In the initial cir-
cuit there were no signals with negative slack. The negative slacks were eliminated in the final
experiment by “freezing” critical wires.

The algorithm was applied in the design of a 65 nanometer process technology
high-end microprocessor, and yielded considerable dynamic power reduction.
The technique is applicable as a post-processing step after detailed routing, and
the achievable power saving depends on the density and style of the original
layout. Signal delays are treated as constraints, but they can be optimized
by modifying the power optimization techniques and then offer a systematic
exploration in the power-delay design space.

Further dynamic power reduction is potentially possible by optimizing wire
spacing in the underlying lower-level functional blocks. Unfortunately, in 45 nm
technologies and beyond, the spacing design rules of low-level metal layers
have been drastically changed from continuous to discrete. Although continuous
methods can be used to obtain approximate solutions, discrete optimization
techniques are more appropriate, which are currently explored by the authors.
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