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Abstract

Optimal ordering and sizing of wires in a constrained-width interconnect bundle are studied in this paper. It is shown that among all

possible orderings of signal wires, a monotonic order of the signals according to their effective driver resistance yields the smallest

weighted average delay. Minimizing weighted average delay is a good approximation for MinMax delay optimization. Three variants of

monotonic ordering are proven to be optimal, depending on the Miller coupling factors (MCF) ratio between the signals at the sides of

the bundle and that of the internal wires. The monotonic order property holds for a very broad range of VLSI circuit settings arising in

common design practice. A simple, yet near-optimal, setting of wire widths within the bundle to yield the best average weighted delay is

proposed. The theoretical results have been validated by numerical experiments on 65 nm process technology and industrial design data.

In all cases the ordering optimization yielded improvement in the range of 10% in wire delay, translated to about 5% improvement in the

clock cycle of a high-performance microprocessor implemented in that technology.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Cross capacitances between wires in interconnect struc-
tures have a major effect on circuit timing. The importance
of this effect grows with technology scaling [1,2]. In this
paper, delays in a bundle of parallel wires with different
drivers and loads are minimized by choosing an optimal
ordering of the nets. A model for the bundle of wires is
shown in Fig. 1(a). It represents a common CMOS layout
configuration, where interconnect wires run in parallel
between two power supply or shielding rails, such that
the total width of the structure A is a fixed constraint.
An abstraction of actual layout is made by assuming
that all drivers and all receivers are located at the
ends of the structure of length L. Real layouts can be
decomposed into several such structures using effective
drivers and receivers, since long segments of parallel wires
are very common in industrial practice, mostly when
high metal layers are concerned. The wire delays in the
e front matter r 2007 Elsevier B.V. All rights reserved.
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model of Fig. 1(a) are typically dominated by cross
capacitances between adjacent wires, since the ratio
between wire thickness and wire width tends to grow with
non-uniform technology scaling [3]. Therefore, delays
can be optimized by allocation of inter-wire spaces. In
addition, wire widths can be set to optimize wire
resistances. Furthermore, reordering of the wires can
improve the timing, because critical wires can be put next
to each other and share the largest spaces, which have the
smallest cross capacitances.
Reordering of the bundle wires is a new degree of

freedom in timing optimization, which has not been
explored in the past. The main result of this paper is that
the signal ordering is highly beneficial and can typically be
solved independently of the wire sizing. Moreover, the
optimal order can be derived directly from the parameter
setting of the given problem, by positioning the wires
according to the effective resistances of their drivers.
Wire order within the bundle yielding minimal delays

must be monotonic in the strength of the driver. The
type of the monotonic order depends on Miller coupling
factors (MCF) occurring at the side signals of the bundle.
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Fig. 1. (a) Signal drivers (modeled as voltage sources with series resistances), interconnect bundle wires of length L, and receivers (modeled as load

capacitances). Timing optimization is performed by reordering the signal wires and by allocating wire widths and spaces, for a given constrained channel

width A. (b–d) present the optimal order of signals and the corresponding wire-to-wire space allocation for various ratios of MCF between extreme and

internal signals.
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Only three types of monotonic order can yield the minimal
delay, regardless of the specific driver strengths. These are
illustrated in Figs. 1(b–d). Fig. 1(b) illustrates the case of
uniform MCF (e.g. when the sidewalls of the bundle are
not power supplies but rather arbitrary logical signals); the
corresponding optimal order is called ‘‘symmetric hill’’,
where the signals with the weakest drivers are located at the
center of the bundle, and their corresponding spaces are
the largest. Fig. 1(c) illustrates the case where MCF at the
sidewalls is half of the MCF between internal wires in
the bundle (e.g. when sidewalls are connected to power
supplies such that their MCF is 1, while internal MCF of 2
is assumed). The corresponding optimal order is ascending,
where the weakest driver resides on one side of the bundle
and the strongest driver resides at the other side. Fig. 1(d)
corresponds to a case where the MCF at the sidewall is
assumed to be zero (e.g. when active shielding [4] is
employed at the sidewalls), corresponding to a ‘‘symmetric
valley’’.
Net ordering for delay optimization has not been

addressed in previous works. For a fixed order of wires,
the problem of allocating widths and spaces to maximize
performance in tuning of bus structures was proposed
in [5] and solved in [6]. The wire-sizing problem has
been addressed in [7,8] for a single net. Sizing and
spacing multiple nets with consideration of coupling
capacitance have been addressed in [9] for general
interconnect layouts by converting cross capacitance to
effective fringe capacitance. Coupling capacitance has been
addressed explicitly in the context of physical design for



ARTICLE IN PRESS
K. Moiseev et al. / INTEGRATION, the VLSI journal 41 (2008) 253–268 255
minimizing crosstalk noise [10,11] or dynamic power [12].
Some authors treated wire sizing for throughput optimiza-
tion in buses using uniform wire widths and spaces [13–15].
Several variants of net reordering have been applied for
improving layout efficiency [16], and for noise reduction
[11,17–20]. Swapping of wires for power reduction was
applied in [21]. Vittal et al. [17] suggested without proof to
reduce crosstalk noise by sorting wires in order of driver
strength, which is closely related to our result in delay
minimization.

2. Problem formulation

Consider a bundle of n signal nets s0,y,sn�1 between
two sidewalls (wires at fixed locations) as shown in Fig. 1.
Si and Si+1, respectively, denote spaces to neighbors of
wire Wi. The length of each wire is L. Each wire is driven
by a driver with output resistance Ri and loaded by receiver
with capacitance Ci. The sum of wire widths and spaces
between the sidewalls is given in the following constraint
(2.1), which represents the total width A of the available
area for laying out the bundle of wires.

g W̄ ; S̄
� �

¼
Xn�1
j¼0

W i þ
Xn

j¼0

Si ¼ A. (2.1)

Signal delays are expressed by an Elmore model using
simple approximations for wire capacitances and wire
resistance. The delay of signal si is given in [6] by

Di W̄ ; S̄
� �

¼ aþ RiðkW i þ gþ CiÞ þ
bþ eCi

W i

þ hRi þ
d

W i

� �
1

Si

þ
1

Siþ1

� �
. ð2:2Þ

The coefficients a, b, d, e, k, g, h are technology
dependent parameters. This model includes effects of wire
resistance (inversely proportional to wire width Wi) and
effects of wire capacitance terms (area capacitance is
proportional toWi, cross capacitances to neighboring wires
are inversely proportional to spaces Si and Si+1). Note that
only nearest-neighbor wires are included, because the
adjacent upper and lower metal layers are assumed to be
dense, and serve as effective shields for capacitive coupling
to other wires in the bundle. Although the Elmore model is
a first-order approximation and it does not account for
input waveform slope [22], it is widely applicable in
interconnect optimization due to its high-fidelity property
[23]. The absolute accuracy of the model can also be
improved, by using parameter fitting as described in [24].
The model is used in this work because of its simplicity in
mathematical analysis, while the delay improvements are
verified by SPICE simulations. MCF can be included in the
last term to account for crosstalk effect on delay
uncertainty [25]. Typically, MCF ¼ 2 is assumed when
neighbor wires switch in the opposite direction causing
increased delays, while MCF ¼ 0 is assumed for same-
direction switching and reduced delay. We assume first that
MCF ¼ 1 for all of the signals, yielding nominal delay
values.
Let pAP denote an ordering (permutation) of the

signals in the interconnect bundle, taken from the set of
all n! possible orders. We are seeking an ordering p*
of the bundle signals, which after wire width and space
allocation yields the minimum objective function repre-
senting some delay characteristic. In practice, the useful
delay objective function is the maximal worst slack among
all signals and the optimization attempts to minimize this
maximum

f 1 p; W̄ ; S̄
� �

¼ max
0pipn�1

Di W̄ ; S̄
� �

� Ti

� �
, (2.3)

where Ti is required arrival time of the ith signal. Note that
we exchanged the terms of the slack for the sake of
mathematical convenience. This design scenario calls for
MinMax optimization problems. Such problems are hard
to solve analytically since they are not differentiable.
Maximization of average wire slack, which is equivalent to
minimization of average delay or minimization of the total
sum of delays, is given as

f 2 p; W̄ ; S̄
� �

¼
Xn�1
i¼0

Di p; W̄ ; S̄
� �

¼
Xn�1
i¼0

aþ RiðkW i þ gþ CiÞ
�

þ
bþ eCi

W i

þ hRi þ
d

W i

� �
1

Si

þ
1

Siþ1

� ��
.

ð2:4Þ

This objective function is mathematically convenient
because it is differentiable, and it is also a useful
performance metric in industrial practice [6].
Minimization of maximal slack (2.3) can be approached

by introducing weights in (2.4). We define the following
objective:

f 3 p; W̄ ; S̄
� �
¼
Xn�1
i¼0

aiDi p; W̄ ; S̄
� �

¼
Xn�1
i¼0

ai aþ RiðkW i þ gþ CiÞ

	

þ
bþ eCi

W i

þ hRi þ
d

W i

� �
1

Si

þ
1

Siþ1

� ��
, ð2:5Þ

where ai is a normalized estimation of signal criticality. The
least critical signal (with maximal Ti) will have a ¼ 1, all
the others will have values larger than 1. In other words
(2.5) represents the total sum of wire delays weighted by

signal criticality. This objective incorporates good proper-
ties of (2.3) and (2.4): on the one hand (2.5) is a
differentiable function; on the other hand, weighting delays
by signal criticality makes it similar to (2.3), which is more
useful in practice than (2.4).
Assume for the moment that the order p of the signals in

the bundle is given. For minimizing (2.5) subject to (2.1) we
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Fig. 2. Space sharing in two interconnects channel configurations. (a)

Interleaved placement of strong and weak drivers, (b) sorted placement of

signals according to driver strength.
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differentiate f3 and g by all of their sizing variables:

qf 3

qW i
¼ ai kRi �

eCiþb

W 2
i

� d
W 2

i

1
Si
þ 1

Siþ1


 �
 �
;

0pipn� 1;
qf 3
qSi
¼ � 1

S2
i

hðai�1Ri�1 þ aiRiÞ þ d ai�1

W i�1
þ ai

W i


 �h i
;

0oipn� 1;
qf 3

qS0
¼ � a0

S2
0

hR0 þ
d

W 0

h i
;

qf 3

qSn
¼ � an�1

S2
n

hRn�1 þ
d

W n�1

h i
;

qg
qW i
¼ 1; 0pipn� 1;

qg
qSi
¼ 1; 0pipn:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

(2.6)

At the minimum there exists some real number l
(Lagrange multiplier), satisfying rf ¼ lrg. Rearranging
and substituting yields the following:

l ¼ ai kRi �
eCiþb

W 2
i

� d
W 2

i

1
Si
þ 1

Siþ1


 �
 �
;

0pipn� 1;

l ¼ � 1
S2

i

hðai�1Ri�1 þ aiRiÞ þ d ai�1

W i�1
þ ai

W i


 �h i
;

0oipn� 1;

l ¼ � a0
S2
0

hR0 þ
d

W 0

h i
;

l ¼ � an

S2
n

hRn�1 þ
d

W n�1

h i
:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

The above equations and the area constraint (2.1)
impose 2n+2 algebraic equations in 2n+2 unknown
variables l, W0,y,Wn�1, S0,y,Sn. Solving and substitut-
ing into (2.5) produces minimal weighted total sum of
signal delays for the assumed order p.

The order of wires affects the sum of delays primarily
because every driver pair of adjacent signal is associated
with a shared cross capacitance between the wires.
It makes sense to allocate large spaces to a wire driven
by a weak driver or a wire with high criticality, in
order to reduce the driver’s load. Strong drivers and
non-critical nets can cope with large cross capacitances
resulting in narrow spaces. Consequently, in order to
best utilize the total area given for the wire bundle, weak
drivers or highly critical nets should share the same
large space. Similarly, strong drivers or non-critical
nets can share a small inter-wire space. The space sharing
idea is illustrated in Fig. 2. There, the bundle is comprised
of some signals with weak drivers (W) and some
with strong drivers (S). For equal criticality, the ordering
in Fig. 2(b) is superior to Fig. 2(a), which is apparently
the worst. Wire sizing and spacing optimization aiming
at minimizing the total sum of delays will yield smaller
(better) delays for configuration 2(b), in comparison
with 2(a).

Consider now pAP as variable, and find the order for
which optimal wire sizing and spacing yields minimum
total weighted sum of delays, as discussed in the previous
section. One needs therefore to solve the following
problem:

min
p2P

f 3ðp; W̄ ; S̄Þ;

Pn�1
j¼0

W i þ
Pn
j¼0

Si ¼ A:

8>><
>>:

In this formulation, both signal ordering and wire sizing
are considered simultaneously.
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3. Optimality of symmetric hill order

3.1. Wires of uniform width

For the sake of clarity, assume first that all the wires
have the same width W while spaces can vary among wires.
Hence, wire sizing means finding the optimal W and
allocating optimal spaces between wires. Assume for the
moment that W is uniform and predetermined. For any
order pAP, minimizing the total sum of delays involves
only n+1 variables (S0,y,Sn). The following conditions
are necessary for optimum:

qf

qSi

þ l
qg

qSi

¼ 0; 0pipn, (3.1)

qf

qSi

¼ �
dðai�1 þ aiÞ

WS2
i

�
hðai�1Ri�1 þ aiRiÞ

S2
i

¼ 0; 0oion, ð3:2Þ

qf
qS0
¼ � da0

WS2
0

� ha0R0

S2
0

;

qf
qSn
¼ � dan�1

WS2
n

� han�1Rn�1

S2
n

;

qg
qSi
¼ 1; 0pipn:

8>>><
>>>:

(3.3)

Substitution of (3.3) and (3.2) into (3.1) yields

l ¼ 1
S2

i

dðai�1þaiÞ

W
þ hðai�1Ri�1 þ aiRiÞ


 �
; 0oion;

l ¼ 1
S2
0

da0
W
þ ha0R0

� �
;

l ¼ 1
S2

n

dan�1

W
þ han�1Rn�1

� �
:

8>>>><
>>>>:

(3.4)

From (3.4) we obtain the following expressions for
spaces at the optimum:

Si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l ai

d
W
þ hRi

� �
þ ai�1

d
W
þ hRi�1

� �� �q
;

0oion;

S0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l a0

d
W
þ hR0

� �q
;

Sn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
l an�1

d
W
þ hRn�1

� �q

8>>>>>>>><
>>>>>>>>:

(3.5)

These optimal spaces depend on resistances of the signal
drivers, but are independent of capacitive loads. Substitu-
tion of (3.5) into (2.1) yields the following expression for l

l ¼
1

A� nWð Þ
2

Xn�1
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ai

d

W
þ hRi

� �
þ ai�1

d

W
þ hRi�1

� �s 

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0

d

W
þ hR0

� �s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
an�1

d

W
þ hRn�1

� �s !2

. ð3:6Þ

Further substitution into (2.5) produces the following
expression for the minimal weighted total sum of delays.

f 3 ¼ f I
þ f II, (3.7)
where

f I
¼ n aþ

b

W

� �Xn�1
i¼0

ai þ ðkW þ gÞ
Xn�1
i¼0

Riai

þ
e

W

Xn�1
i¼0

Ciai þ
Xn�1
i¼0

RiCiai

and

f II
¼

1

A� nW

Xn�1
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ai

d

W
þ hRi

� �
þ ai�1

d

W
þ hRi�1

� �s"

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0

d

W
þ hR0

� �s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
an�1

d

W
þ hRn�1

� �s #2
.

The first term f I is invariant for different orders of
signals. In the second term f II, the indices of adjacent
signals interact with each other in square root terms, thus
making f II dependent on the order of signals in the bundle.
The physical reason for this is that cross capacitance
between adjacent wires is determined by the space they
share with each other. The question of what is the order
pAP that minimizes f II, is therefore important. As proven
below, symmetric hill ordering, which captures the above
reasoning, yields the minimum of average weighted wire
delay.

Definition 3.1. Effective signal resistance: Let R be the
resistance of the driving gate, W be the signal wire width
and a be the signal criticality. The term R ¼ a(d/W+hR) is
called effective signal resistance.

Definition 3.2. Successive roots sum: Let (R0,y,Rn�1) be
sequences of positive real numbers. The term

ffiffiffiffiffiffi
<0

p
þPn�1

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<i�1 þ<i

p
þ

ffiffiffiffiffiffiffiffiffiffi
<n�1

p
is called successive roots sum

(SRS).

Definition 3.3. Symmetric hill ordering: Let R0pR1p,
?,Rn�2pRn�1 be a sequence of n positive real numbers
increasingly ordered. Let us split it into even and odd
interleaved subsequences R0pR2,?,and R1pR3p,?,
reverse the order of numbers in the even subsequence,
thus turning it into monotonic decreasing sequence.
Finally, concatenate the even and the modified (reversed)
odd subsequences into one sequence. The new sequence
thus obtained is said to be ordered in symmetric hill

ordering (as it resembles climbing and descending
a symmetric hill). Fig. 3 illustrates how such order is
obtained.

Property 3.1. Pair swapping: Let (Ri, Ri+1, Ri+2,y,
Ri+k�2, Ri+k�1, Ri+k), kX3 be a sequence of real positive
numbers, such that Ri+1XRi+k�1 (called internal pair)
and RipRi+k (called external pair). Then the inversion
of subsequence (Ri+1, Ri+2,y,Ri+k�2, Ri+k�1) into
(Ri+k�1, Ri+k�2,y, Ri+2, Ri+1) decreases the SRS of
the sequence.
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Fig. 3. Construction of symmetric hill ordering: (a) sort numbers in ascending order; (b) split sequence into odd and even subsequences; (c) reverse order

of numbers in the even subsequence; (d) concatenate the odd and the modified subsequences.
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Proof. Since only neighbors of Ri, Ri+1, Ri+k�1, Ri+k are

changed, it is sufficient to prove that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<i þ<iþ1

p
þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

<iþk�1 þ<iþk

p
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<i þ<iþk�1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<iþ1 þ<iþk

p
. Squaring

the two sides one needs to show that ð<i þ<iþ1Þ�

ð<iþk�1 þ<iþkÞXð<i þ<iþk�1Þ � ð<iþ1 þ<iþkÞ. Expand-
ing both sides, it is left to show that ð<i �<iþkÞ�

ð<iþk�1 �<iþ1ÞX0, which indeed follows from the assump-
tion on the relations of the internal and external pairs. &
Property 3.2. Optimal insertion of maximal value: Let
(R0,y,Rn�1) be a sequence of positive real numbers
ordered as a symmetric hill. Let R4max{R0,y,Rn�1}.
Then the location where inserting R into the sequence
minimizes the new SRS, is at the center between the two
largest numbers. Hence the new sequence is also in
symmetric hill order.
Proof. Let us insert R arbitrarily into the sequence
between Ri and Ri+1, thus resulting in the quadruples
(Ri�1, Ri, R, Ri+1) and (Ri, R, Ri+1, Ri+2) in the new
sequence of n+1 numbers. If Ri and Ri+1 were not the two
center numbers of the old sequence (top of the hill), at least
one of these quadruples satisfies the condition of pair

swapping Property 3.1. Therefore, the SRS of the new
sequence can be reduced by appropriate swapping of R

with its left or right neighbor. If R is inserted before R1 or
after Rn, a direct calculation shows that swapping R with
R1 (or Rn) decreases the resulting SRS. The only position
where the pair swapping Property 3.1 condition does not
exist is in between the two largest numbers of the old
sequence. Such insertion creates a new sequence satisfying
symmetric hill order. &
Definition 3.4. Local maximum: Let (R0,y,Rn�1) be a
sequence of positive real numbers. The number Rj, is called
a local maximum of (R0,y,Rn�1) if both RjXRj�1 and
RjXRj+1.
Property 3.3. Local maximum elimination: Let (R0,y,
Rn�1) be a sequence of positive real numbers. Let (Ri,
Ri+1) and (Rj, Rj+1, Rj+2) be two disjoint subsequences,
where Rj+1 is a local maximum and RiXRj+1XRi+1.
Then, repositioning Rj+1 in between Ri and Ri+1 decreases
the SRS of the sequence.
Proof. We need to show thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<i þ<iþ1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<j þ<jþ1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<jþ1 þ<jþ2

p
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<i þ<jþ1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<jþ1 þ<iþ1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<j þ<jþ2

p
.

Let us denote

p ¼ <i=<jþ1X1; q ¼ <iþ1=<jþ1p1,

r ¼ <j=<jþ1p1; s ¼ <jþ2=<jþ1p1.

Therefore, we need to show that
ffiffiffiffiffiffiffiffiffiffiffi
pþ q
p

þ
ffiffiffiffiffiffiffiffiffiffiffi
rþ 1
p

þffiffiffiffiffiffiffiffiffiffiffi
1þ s
p

X
ffiffiffiffiffiffiffiffiffiffiffi
pþ 1
p

þ
ffiffiffiffiffiffiffiffiffiffiffi
1þ q
p

þ
ffiffiffiffiffiffiffiffiffiffi
rþ s
p

. Rearranging, this is
equivalent to:ffiffiffiffiffiffiffiffiffiffiffi

rþ 1
p

þ
ffiffiffiffiffiffiffiffiffiffiffi
1þ s
p

�
ffiffiffiffiffiffiffiffiffiffi
rþ s
p

X

ffiffiffiffiffiffiffiffiffiffiffi
pþ 1

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ q

p
�

ffiffiffiffiffiffiffiffiffiffiffi
pþ q
p

.

(3.8)

Since rp1, it follows that left-hand side of (3.8) is
monotonic decreasing in s, thus minimized for s ¼ 1. Since
pX1, it follows that right-hand side of (3.8) is monotonic
increasing in q, thus maximized for q ¼ 1. So if the
inequality still holds for the minimal value of left-hand side
and maximal value of right-hand side, (3.8) does always
hold. Indeed, substitution of s ¼ 1 and q ¼ 1 we obtainffiffiffiffiffiffiffiffiffiffiffi

rþ 1
p

þ
ffiffiffi
2
p
�

ffiffiffiffiffiffiffiffiffiffiffi
rþ 1
p

¼
ffiffiffi
2
p
þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ q
p

�
ffiffiffiffiffiffiffiffiffiffiffi
1þ q
p

. &

Based on the above properties, we are ready to prove the
theorem of optimal signal ordering in a bundle of parallel
wires.

Theorem 3.1. (Optimal ordering of uniform-width wires):

Let a signal bundle have arbitrary drivers, arbitrary

capacitive loads, arbitrary required arrival times and uniform

wire width. Let MCF be the same for all signal pairs,

including the sidewalls. Then the symmetric hill ordering of

the signals in the bundle according to their effective driver

resistance yields minimum total weighted sum of delays.

Proof. It was shown in (3.7) that for any order of the
signals, the minimized total sum of delays f3 consists of two
terms f I and f II. The term f I captures the delays resulting
from the capacitive loads, a component that is independent
of the signal order in the bundle. The term f II captures the
delay contributed by the cross capacitances of the signals, a
component which depends on the signal order. It is
therefore sufficient to minimize f II.
Let p* ¼ (R0,yRn�1) be the effective driver resistance

symmetric hill ordering of the bundle, and denote by
f II(p*) the corresponding term in the minimized total sum



ARTICLE IN PRESS
K. Moiseev et al. / INTEGRATION, the VLSI journal 41 (2008) 253–268 259
of delays thus obtained. We’ll show by induction that for
any other ordering p of effective driver resistances
f II(p*)pf II(p).

For a bundle comprised of one or two signals the
induction hypothesis trivially exists. For a bundle of three
signals, the optimality of symmetric hill ordering follows
from the optimal insertion Property 3.2. Put the two
smaller effective resistances, say Ra and Rb in the bundle
first. Then, the optimal insertion Property 3.2 dictates the
location of Rc at the center, thus resulting in symmetric hill
order. If Ra (Rb) and Rc are placed first, a direct
calculation shows that Rb (Ra) needs to reside such that
Rc is located at the center.

By the induction hypothesis, the symmetric hill order is
optimal for any n�1 signals bundle. Assume on the
contrary that there exists a n signal bundle whose optimal
order p0 is not symmetric hill. It follows from the non
optimality of p* that f II(p*)4f II(p0).

Let (Rl, Rx, Rr) be the center triplet of p*, namely, Rx is
the largest resistance. There are two possibilities: triplet
(Rl, Rx, Rr) exists or does not exist in p0.

If it exists, let us delete Rx from both p0 and p*,
thus inducing bundles of n�1 signals p0,n�1 and p*,n�1.
The first is not symmetrically hill ordered, while the
second is. It follows from the induction hypothesis that
f II(p*,n�1)of II(p0,n�1). However, the magnitude of the
difference in f II between the n signal bundle and its n�1
signal bundle induced by Rx deletion is the same for p0 and
p* and equals to

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<l þ<x

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<r þ<x

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<l þ<r

p
.

Therefore

f II
ðp�Þ ¼ f II p�;n�1

� �
þ Dof II p0;n�1


 �
þ D ¼ f II

ðp0Þ.

This is a contradiction to f II(p*)4f II(p0) that followed
from the non-optimality hypothesis of p*.

Consider now the case where the triplet (Rl, Rx, Rr) does
not exist in p0. Then there are two possibilities. In the first,
the triplet appears in p0 as a subsequence (Rx, max(Rl, Rr),
min(Rl, Rr)). The pair swapping Property 3.1 can be
applied on quadruple (R, Rx, max(Rl, Rr), min(Rl, Rr))
and result quadruple (R, max(Rl, Rr), Rx, min(Rl, Rr)),
hence f II can be reduced. In the second possibility, in any
order at least one of Rl and Rr is a local maximum in p0,
say Rl. Then applying the local maximum elimination
Property 3.3 to Rl and moving it to be adjacent to Rx, will
decrease f II value of the newly created order. This again
contradicts the optimality assumption of p0. &

Notice that although wire width W was uniform and
predetermined, it can still be optimally set together with the
spaces (S0,y,Sn) between the wires in order to minimize
the total sum of delays, thus adding one more equation to
(3.1)–(3.3). This is a simplification of the total sum of
delays minimization problem [6], where individual wires
may have different widths (W1,y,Wn).
3.2. Non-uniform wire widths implied by impedance

matching

In the following we’ll prove the optimality of the
symmetric hill ordering for more general cases with non-
uniform wire width. We assume that wire widths are
matched to driver strengths, a common design practice in
most practical VLSI designs. It is shown below that
minimal total weighted sum of delays is obtained by
symmetric hill ordering.
Let c(R) be a positive, non-decreasing function of the

driver resistance R, and let the corresponding wire width be
defined by

W ¼ 1=cðRÞ. (3.9)

In the former discussion of uniform wire width c(R) was
simply a constant. The relation in (3.9) represents
impedance matching, where a stronger driver (smaller R)
is assigned a wider wire with a lower impedance. According
to (3.9), the effective signal resistance becomes R ¼

a(dc(R)+hR). Then the following theorem can be stated:

Theorem 3.2. (Optimal ordering of variable-width wires):

Let a signal bundle have arbitrary drivers, arbitrary

capacitive loads and wire width inversely proportional to

the corresponding driver resistance. Then the symmetric hill

ordering of the signals in the bundle according to effective

signal resistances yields minimum total weighted sum of

delays.

Proof. All properties of symmetric hill order still hold since
f II remains an SRS. &

The function c(R) ¼ a+bR, where a and b are real
positive number is admissible, providing further minimiza-
tion compared to the case of uniform width. The minimum
total sum of delays is obtained by first ordering the signals
according to Theorem 3.2. Then a minimization of total
sum of delays for that order takes place, where the wire
spacing (S0,y,Sn) and the parameters a and b are the
optimization variables. Notice that b ¼ 0 is the case of
uniform wire width.

3.3. Symmetric hill order for arbitrary wire width

Assume now that wire width can vary arbitrarily. It is no
longer true that symmetric hill ordering yields the
minimum total sum of delays. This general case might be
caused by large capacitive loads, since the optimal setting
of wire width depends on the corresponding load. This in
turn affects the optimal order within the bundle. Note that
if wire widths are predetermined ordering by effective
driver resistance is still advantageous and the optimal order
is unaffected by the capacitive loads.
What is the most general setting of wire widths such that

symmetric hill order still yields minimal total weighted sum
of delays? It can be derived by writing the relation between
wire widths and driver resistances at minimum total sum of
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delays. At the minimum, Eqs. (2.1) and (2.5) satisfy:

qf

qW i

þ l
qg

qW i

¼ 0; 0pipn� 1. (3.10)

Differentiating (2.1) and (2.5) we obtain

qf

qW i

¼ �
ai

W 2
i

bþ
d

Si

þ
d

Siþ1
þ eCi

� �
þ aikRi

qg

qW i

¼ 1.

(3.11)

Substituting (3.11) into (3.10) yields

W i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ai

lþ kaiRi

bþ
d

Si

þ
d

Siþ1
þ eCi

� �s
. (3.12)

Eq. (3.12) demonstrates the dependency between wire
width at minimum total sum of delays and the correspond-
ing driver resistance, spacing to adjacent wires, signal
criticality and the capacitive load. Substitution of (3.12)
into the expression for effective signal resistance presented
in Definition 3.1 yields:

<i ¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aiðlþ kaiRiÞ

bþ d=Si þ d=Siþ1 þ eCi

s
þ aihRi. (3.13)

Whenever RiXRj implies RiXRj, symmetric hill order
according to wire driver resistances yields minimum total
sum of weighted delays among all possible orders.

As can be seen from (3.13), in order to satisfy the required
relation in the numerator, RiXRj should imply aiXaj,
namely, the weaker the driver is, the more critical the signal
is. For the term d/Si+d/Si+1 at the denominator it has been
shown in (3.5) that optimality implies that the spaces are
necessarily monotonically increasing with driver resistance,
which also imposes a non-decreasing relation between Ri and
Ri. The only term remaining ‘‘free’’ is the capacitive load at
the denominator of (3.13). In order to obtain a monotonic
relation in (3.13) the following condition between resistance
of drivers, their corresponding capacitive loads and signal
criticality weights is imposed:

Theorem 3.3. (Sufficient conditions for optimality of sym-

metric hill order): Let a n signal bundle have arbitrary

drivers and capacitive loads. Let si, sj, 0pi, jpn�1 be any

two signals and let (Ri, Ci, ai) and (Rj, Cj, aj) be their driver

resistance, capacitive load and signal criticality weight,

respectively. If the relation RiXRj implies CipCj4aiXaj,

then symmetric hill order according to driver resistances

yields minimum total sum of weighted delays among all

orders.

Proof. If follows from Eq. (3.13) that if RiXRj implies
CipCj4aiXaj, then RiXRj. We can therefore replace the
‘‘effective driver resistance’’ phrase in Theorem 3.1 by
‘‘driver resistance’’ and obtain the same result. &

A special case of the Theorem 3.3 occurs in real design
when all signals are of same criticality, at ‘‘first order’’
circuit implementation. In that case if RiXRj ^ CipCj ;
0pi; jpn� 1, symmetric hill ordering is optimal and sizing
optimization should be performed in this order. The true
criticality of the signals due to the physical realization is
then discovered. As a result the signals are assigned
criticality weights according to how far is their delay from
the requirement, and the signal order in the bundle is
then verified to be in symmetric hill order according to
(3.13). If relation (3.13) is not satisfied, the signals are
reordered to satisfy symmetric hill, and wire resizing takes
place again.
4. Implications of MCF

So far we ignored crosstalk effects between wires by
assuming MCF ¼ 1. In order to account for worst-case
wire switching, the cross capacitances should be multiplied
by MCF values. Thus, the delay equation in (2.5) turns
to be

f 3 p; W̄ ; S̄
� �

¼
Xn�1
i¼0

aiDi p; W̄ ; S̄
� �

¼
Xn�1
i¼0

ai aþ RiðkW i þ gþ CiÞ

	

þ
bþ eCi

W i

þ hRi þ
d

W i

� �
MCF i

Si

þ
MCF iþ1

Siþ1

� ��
,

ð4:1Þ

where MCFi is Miller coupling factor between wires i�1
and i (for side wires it is the MCF between the wire and the
sidewall). In practice, worst-case crosstalk effect on delays
is usually represented by MCFi ¼ 2 for 1pipn�1. If
sidewall shielding wires are inactive, they do not induce
Miller effect, i.e. MCF0 ¼MCFn ¼ 1. Denoting MCFint for
all 0oion�1 and MCFside for i ¼ 0 and i ¼ n, (4.1) can be
rewritten as follows:

f 3 p; W̄ ; S̄
� �

¼
Xn�1
i¼0

aiDi p; W̄ ; S̄
� �

¼ MCF int

Xn�2
i¼1

ai aþ RiðkW i þ gþ CiÞ

	"

þ
bþ eCi

W i

þ hRi þ
d

W i

� �
1

Si

þ
1

Siþ1

� ��

þ a0 aþ R0ðkW 0 þ gþ C0Þ
�

þ
bþ eC0

W 0
þ hR0 þ

d

W 0

� �
MCF side=MCF int

S0
þ

1

S1

� ��

þ an�1 aþ Rn�1ðkW n�1 þ gþ Cn�1Þ þ
bþ eCn�1

W n�1

	

þ hRn�1 þ
d

W n�1

� �
1

Sn�1
þ

MCF side=MCF int

Sn

� ��

.

Decomposing f3 into order independent and dependent
components, the order dependent component is the
following:

f II
¼

MCF int

A� nW

Xn�2
i¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<i þ<iþ1

p
þ

ffiffiffiffiffiffiffiffi
r<0

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
r<n�1

p" #2
,

(4.2)
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where r ¼MCFside/MCFint is called MCF ratio. If worst-
case crosstalk is assumed between internal wires, then
r ¼ 1/2. The following shows that the order of wires which
minimizes the total weighted sum of delays is ascending,
where wires with strongest and weakest drivers are placed
oppositely near the walls and all others are sorted
monotonically between them (Fig. 1(c)). Before proving
optimality of the ascending order, a few more properties
are in order(Fig. 4).

Property 4.1. End value repositioning for MCF ratio ¼ 1/2:
let (R0,y,Rn�1) be a sequence of positive real numbers
and (Ri, Ri+1) a pair of successive entries. If RipR0p
Ri+1 (similarly RipRn�1pRi+1), then repositioning R0

(similarly Rn�1) in between Ri and Ri+1 decreases the SRS
of the sequence (Fig. 4).

Proof. We need to show thatffiffiffiffiffiffiffiffi
1
2
<0

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<0 þ<1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<i þ<iþ1

p
X

ffiffiffiffiffiffiffiffi
1
2
<1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<i þ<0

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<0 þ<iþ1

p
.

Denote p ¼ <1=<0; q ¼ <i=<0p1; r ¼ <iþ1=<0X1,

then the inequality turns into
ffiffi
1
2

q
þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ p
p

þ
ffiffiffiffiffiffiffiffiffiffiffi
qþ r
p

Xffiffiffiffiffi
1
2
p

q
þ

ffiffiffiffiffiffiffiffiffiffiffi
qþ 1
p

þ
ffiffiffiffiffiffiffiffiffiffiffi
1þ r
p

. Rearranging, we obtain
ffiffi
1
2

q
þffiffiffiffiffiffiffiffiffiffiffi

1þ p
p

�

ffiffiffiffiffi
1
2
p

q
X

ffiffiffiffiffiffiffiffiffiffiffi
qþ 1
p

þ
ffiffiffiffiffiffiffiffiffiffiffi
1þ r
p

�
ffiffiffiffiffiffiffiffiffiffiffi
qþ r
p

. The left-hand

side is minimized for p ¼ 0. The right-hand size is
monotonic increasing in q, thus maximized for q ¼ 1.
Therefore, if the inequality still holds for minimal left-hand
side and maximal right-hand side, it always holds. Indeed,

substituting p ¼ 0 and q ¼ 1 yields
ffiffiffiffiffiffiffiffi
1=2

p
þ

ffiffiffi
1
p

X

ffiffiffi
2
p
þffiffiffiffiffiffiffiffiffiffiffi

1þ r
p

�
ffiffiffiffiffiffiffiffiffiffiffi
1þ r
p

, which is definitely true. &

We show next the existence of optimal insertion for the
case of MCF ratio ¼ 1/2.

Property 4.2. Optimal insertion for MCF ratio ¼ 1/2: Let
(R0,y,Rn�1) be a sequence of ascending positive real
numbers, let R4Rn�1. Then the location where inserting R

into the sequence minimizes the new SRS, is between Rn�1

and the wall. Hence the new sequence is also ascending.
Fig. 4. Optimal insertion case: the location near the wall
Proof. Let us examine all n+1 possible locations for R

insertion. It follows from the pair swapping Property 3.1
that among the n�1 locations of which are not adjacent
to walls, the best one is between Rn�1 and Rn�2. If
we show that positioning R between Rn�1 and the
wall yields smaller SRS, we are done. We therefore

need to show that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<n�2 þ<
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<þ <n�1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1
2
<n�1

q
Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

<n�2 þ<n�1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<n�1 þ<
p

þ

ffiffiffiffiffiffi
1
2
<

q
. Denote p ¼ <n�2=

<n�1p1; q ¼ <=<n�1X1. Substitution in the above in-

equality yields
ffiffiffiffiffiffiffiffiffiffiffi
pþ q
p

þ

ffiffi
1
2

q
X

ffiffiffiffiffiffiffiffiffiffiffi
pþ 1
p

þ

ffiffiffiffiffi
1
2
q

q
. Rearran-

ging, we obtain
ffiffiffiffiffiffiffiffiffiffiffi
pþ q
p

�

ffiffiffiffiffi
1
2
q

q
X

ffiffiffiffiffiffiffiffiffiffiffi
pþ 1
p

�

ffiffi
1
2

q
. The left-

hand side is monotonic increasing in q, so if we prove that
the inequality holds for the minimal value of q, regardless
of p, the inequality will always hold. Substitution of q ¼ 1

in the inequality yields
ffiffiffiffiffiffiffiffiffiffiffi
pþ 1
p

�
ffiffiffiffiffiffiffiffi
1=2

p
X

ffiffiffiffiffiffiffiffiffiffiffi
pþ 1
p

�
ffiffiffiffiffiffiffiffi
1=2

p
,

which is indeed true, independent of p(Fig. 5).
It remains to show that positioning R between R0

and the wall is inferior compared to positioning
R between Rn�1 and the wall. In terms of SRS, this

translates to showing that
ffiffiffiffiffiffiffiffiffiffiffiffi
1
2
<n�1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<0 þ<
p

þ

ffiffiffiffiffiffi
1
2
<

q
Xffiffiffiffiffiffi

1
2
<

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<þ <n�1

p
þ

ffiffiffiffiffiffiffiffi
1
2
<0

q
. Denote p ¼ <0=<n�1p1;

q ¼ <=<n�1X1. Substitution yields
ffiffi
1
2

q
þ

ffiffiffiffiffiffiffiffiffiffiffi
pþ q
p

Xffiffiffiffiffiffiffiffiffiffiffi
qþ 1
p

þ

ffiffiffiffiffi
1
2
p

q
. Rearranging, we obtain

ffiffi
1
2

q
þ

ffiffiffiffiffiffiffiffiffiffiffi
pþ q
p

�ffiffiffiffiffi
1
2
p

q
X

ffiffiffiffiffiffiffiffiffiffiffi
qþ 1
p

. The left-hand side is monotonic decreasing
is better than the location between two largest values.
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in p, which follows from q=qp
ffiffi
1
2

q
þ

ffiffiffiffiffiffiffiffiffiffiffi
pþ q
p

�

ffiffiffiffiffi
1
2
p

q
 �
¼

1=2
ffiffiffiffiffiffiffiffiffiffiffi
pþ q
p� �

� 1=2
ffiffiffiffiffi
2p
p� �

p 1=2
ffiffiffiffiffiffiffiffiffiffiffi
pþ p
p� �

� 1=2
ffiffiffiffiffi
2p
p� �

¼ 0.

Therefore, if the inequality holds at minimum of left-
hand side, it always holds. Substituting p ¼ 0 we obtainffiffiffiffiffiffiffiffi

1=2
p

þ
ffiffiffi
q
p

X
ffiffiffiffiffiffiffiffiffiffiffi
qþ 1
p

, which is always true for qX1. &

The above properties establish the theorem below.

Theorem 4.1. (Optimal ordering with MCF ratio ¼ 1/2):
Let a signal bundle have arbitrary drivers, arbitrary
capacitive loads, wire width decreasing with the corre-
sponding driver resistance and MCF at walls 1/2 of MCF

between wires inside the bundle. Then ascending order of
the signals in the bundle according to effective signal
resistances yields minimum total weighted sum of delays.

Proof. Let p* ¼ (R0,y,Rn�1) be sorted left to right in
ascending order, and let f II(p*) be the corresponding term
in the total sum of delays which depends on the SRS. We’ll
show by induction that for any other ordering p of driver
resistances f II(p*)pf II(p).

For a bundle comprised of one or two signals the
induction hypothesis trivially exists. For a bundle of three
signals, the optimality of ascending order follows from the
optimal insertion property. By the induction hypothesis,
ascending order is optimal for any n�1 signals bundle.
Assume on the contrary that there exists a n signal
bundle whose optimal order p0 is not ascending. It follows
from the non-optimality contradictory hypothesis that
f II(p*)4f II(p0).

Consider the location of the successive pair (Rn�2,
Rn�1)Cp* in p0. It certainly cannot occur next to the right
side wall. Because if it did, then Rn�1 can be dropped from
both p* and p0. The remaining part of p*, p*,n�1, is
ascending ordered, while the remaining part of p0, p0,n�1, is
not. SRS in both p*,n�1 and p0,n�1 is decreased by d ¼ffiffiffiffiffiffiffiffiffiffiffiffi

1
2
<n�1

q
�

ffiffiffiffiffiffiffiffiffiffiffiffi
1
2
<n�2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
<n�2 þ<n�1

p
. On the other hand, it
Fig. 6. Proof of optimal order
follows from the induction hypothesis that p*,n�1 is an optimal
order, while p0,n�1 is not, thus implying that f II(p*,n�1)o
f II(p0,n�1). Consequently, f II

ðp�Þ ¼ f II
ðp�;n�1Þ þdof II p0;n�1

� �
þd ¼ f II

ðp0Þ, thus contradicting f II(p*)4f II(p0).
The above shows that it is impossible for an optimal

ordering to have the pair (Rn�2, Rn�1) residing next to the
right wall (unless this is the ascending order p*, which we
aim to prove is optimal). We’ll show next that any order p0

claiming to be optimal must have Rn�1 positioned next to
the right wall, by showing that if this was not the case, we
could always decrease the corresponding SRS by changing
the position of one of the other R‘s.

Indeed, if this was not the case, let <min ¼ min
0pipn�2

<i.

Assume that Rmin is located in p0 between Rn�1 and the left
wall, as shown in Fig. 6. (If Rmin is located in p0 between
Rn�1 and the right wall, we could have mirrored the order
since SRS is invariant over mirroring of R‘s order). Pick R0

which is located next to the right wall. Let R00 be the
rightmost located between Rn�1 and the left wall such that
R00pR0pRn�1, as shown in Fig. 6. Such R00 must exist
since RminpR0pRn�1. Let R000 be located next to R00 on its
right side as shown in Fig. 6. It follows from the way we
selected R0 and R00 that R00pR0pR000. We can now apply
the properties of end value repositioning for MCF ratio 1

2

and reposition R0 between R00 and R000, thus decreasing the
corresponding SRS. Such decrement could not happen if
Rn�1 would have been located next to the right wall.
But having Rn�1 necessarily located next to the right

wall implies that Rn�2 must be left adjacent to Rn�1, since
if this was not the case we could apply again the properties
of end value repositioning and pair swapping and insert
Rn�2 between Rn�1 and its left adjacent R.
In summary, we’ve shown that any order aiming at

minimizing SRS for MCF ratio 1/2 must have (Rn�2, Rn�1)
next to the right wall. Consequently, the ascending order is
superior over any other ordering having (Rn�2, Rn�1) next
ing with MCF ratio ¼ 1/2.
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to right wall as already shown, which concludes the proof.
Similar arguments hold for the case where the pair (Rn�1,
Rn�2) is positioned next to the left wall. &

Consider now the case where the MCF occurring
between the end signals and the walls is zero. This case
corresponds to active shielding [4]. Therefore, the MCF

ratio between the end signals and the internal ones is zero.
In the following we’ll show that the order of effective
drivers yielding the smallest SRS is such that the two
signals having weakest drivers are located near the walls,
one at each side. The strongest one is located at the center.
The rest are evenly and symmetrically distributed on both
sides in ascending order of their effective driver strength,
from the ends towards the center. Such an order is called
symmetric valley, defined formally as follows.

Definition. Symmetric valley ordering: Let R0pR1p,?,
pRn�2pRn�1 be a sequence of n positive real numbers
increasingly ordered. Assume without loss of generality
that n is even. Let us split it into even and odd interleaved
subsequences R0pR2p,?,pRn�2 and R1pR3p,?,
pRn�1. Reverse the order of numbers in the odd
subsequence, thus turning it into monotonic decreasing
sequence. Finally, concatenate the odd and the modified
(reversed) even subsequences into one sequence. The new
sequence thus obtained is said to be ordered in symmetric

valley ordering (as it resembles descending and climbing a
symmetric valley). Fig. 7 illustrates how such an order is
obtained. The following property is analogous to optimal

insertion of maximal value 3.2 derived for symmetric hill

order.

Property 4.1. Optimal insertion of minimal value: Let
(R0,y,Rn�1) be a sequence of positive real numbers
ordered as a symmetric valley. Let Romin{R0,y,Rn�1}.
Then the location where inserting R into the sequence
minimizes the new SRS, is at the center between the two
smallest numbers. Hence the new sequence is also in
symmetric valley order.

We skip the proof of this property, as it follows similarly
to the proof of optimal insertion of maximal value 3.2. The
following theorem manifests the optimal ordering for 0
MCF ratio.

Theorem 4.2. (Optimal ordering with MCF ratio ¼ 0): let a

signal bundle has arbitrary drivers, arbitrary capacitive loads

and wire width decreasing with the corresponding driver
Fig. 7. Construction of symmetric valley ordering: (a) sort numbers in ascend

order of numbers in the odd subsequence; (d) concatenate the even and the m
resistance. Let the MCF at the side walls be 0 and MCF of

wire pairs inside the bundle be equal to all. Then, the

symmetric valley order of the signals in the bundle according

to effective driver resistances yields minimum total weighted

sum of delays.

Proof. Like the case of MCF ratio 1, where the optimal
order is symmetric hill, the pair swapping Property 3.1 and
local maximum elimination Property 3.3 hold also for this
case, since both involve comparing SRS of internal signals
only. Following similar arguments as in symmetric hill
order, with the aid of optimal insertion of minimal value

Property 4.1, the proof is identical to Theorem 3.1. &

Theorems 3.1, 4.1 and 4.2 manifested the optimal signal
ordering in a bundle for typical cases of MCF boundary
conditions, where external to internal signal MCF ratios
are 1, 1

2
and 0. The implied orders are independent of the

effective drivers’ strengths and are valid under very wide
wire width settings applicable for most practical design
scenarios. An interesting question is what happens for
other MCF ratios. With some further manipulations of
SRS it can be shown that:
�

ing

odi
When the ratio of end MCF to internal MCF is equal or
greater than 1, symmetric hill order yields minimal total
weighted sum of delays, independently of effective
drivers’ strength.

�
 When the ratio of end MCF to internal MCF is equal to

1
2
, ascending order yields minimal total weighted sum of
delays, independently of effective drivers’ strength.

�
 When the ratio of end MCF to internal MCF is equal to

or smaller than 0 symmetric valley order yields minimal
total weighted sum of delays, independently of effective
drivers’ strength.

For all other ratios, namely, 0oro1/2and 1/2oro1 the
order depends on the specific values of effective drivers’
strength and may be none of the above.
5. Crosstalk noise reduction

Instead of incorporating delay uncertainty into the delay
expression by using worst-case Miller factor, we may
directly consider delay uncertainty and optimize it simul-
taneously with the nominal (crosstalk-free) signal delay.
order; (b) split sequence into odd and even subsequences; (c) reverse

fied subsequences.
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For calculating crosstalk noise effectively, several models
have been presented in the literature, e.g. [17,26]. For peak
noise voltage Vp we use a simple model, given in [17]. The
peak noise in wire i can be represented as

V
p
i ¼ V dd

RiCci
þ Rwi

Cci
=2

Di�1 þ Di þ Diþ1
. (5.1)

In (5.1), the numerator represents a part of wire delay
caused by coupling capacitance, and the denominator
represents the sum of Elmore delays of the wire and its
neighbors. Rewriting (5.1) in terms of (2.2), obtain

V
p
i ¼ V dd

ðd=W i þ hRiÞð1=Si þ 1=Siþ1Þ

Di�1 þ Di þ Diþ1
; 0oion� 1,

V
p
0 ¼ V dd

ðd=W 0 þ hR0Þ1=S1

D0 þ D1
,

V
p
n�1 ¼ V dd

ðd=W n�1 þ hRn�1Þ1=Sn�1

Dn�1 þ Dn

. ð5:2Þ

For analytical modeling of the delay uncertainty caused
by effects of crosstalk noise on circuit timing, we use
superposition-based approximations, proposed in [27].
According to the approximation, the upper bound of delay
uncertainty of wire i can be expressed as

dmax;i ¼ Di lnð2V
p
i =V dd þ 1Þ. (5.3)

Let us introduce two new objective functions:

h1 ¼
Xn�1
i¼0

dmax;i (5.4)

and

h2 ¼ max
i

dmax;i, (5.5)

which are the total sum of delay uncertainties and the
largest delay uncertainty among the wires in the bundle.

According to [28], after some simplifications (5.2) can be
represented in the form V

p
i � V dd ðRi=ðRi�1 þ Ri þ Riþ1ÞÞZ,

where Z represents the ratio of cross-coupling capacitance
to total wire capacitance.
Table 1

Average improvement (best vs. worst ordering) for random problem instances

Bundle length (mm) Bundle width

1.5mm (%) 2mm (%) 2.5mm (%) 3m

300 10.14 9.13 8.13 7

17.19 14.98 12.7 10

500 11.31 9.5 8.21 7

17.24 15.18 13.29 10

800 9.82 8.76 7.79 7

16.22 14.11 13.08 11

1200 8.78 8.23 7.38 6

14.18 14.58 13 11

1500 7.63 7.2 6.94 6

14.13 14.02 12.97 11
As it follows from this expression, if the driver of a wire
is significantly larger than the driver of its neighbors, then
the wire with the smaller driver (as a crosstalk victim) will
be exposed to serious noise from the wires with the larger
drivers (aggressors). Therefore, crosstalk noise will be
minimized, if neighboring wires have roughly equal drivers
[28]. It can be achieved by ordering wires in the bundle in
one of the monotonic orders discussed above.
Although we have not performed direct mathematical

optimization of delay uncertainty, our experiments have
shown that total delay uncertainty (5.4) is reduced by
minimizing the total weighted sum of delays (2.4), and the
worst delay uncertainty (5.5) is reduced by minimization
the worst wire delay (2.3), using a symmetric hill order.
6. Experimental results

Numerical experiments for various problem instances
were performed using 65 nanometer technology para-
meters. Continuous optimization has been used, and
results were verified for allowed discrete sizes as required
by the technology. Delay improvements were verified by
SPICE simulations of several circuits before and after
optimization.
In all experiments we assume uniform timing require-

ments, unless mentioned otherwise.

Experiment 1. This experiment demonstrates the benefit of
wire ordering. Random problem instances using five signals
were evaluated as follows: Each signal was assigned a
driver randomly. The range of driver resistances was 50O
to 3 kO, and load capacitances in the range 10–200 fF were
assigned according to driver strength to avoid excessive
driver loading, such that the conditions of Theorem 3.3
were always satisfied. For each problem the wire widths
and spaces were optimized once to yield minimum total
sum of delays, and again to yield minimum worst-wire
delay (MinMax). This was repeated for all the 5! ¼ 120
possible orders. The procedure was done for eight different
, in sum-of-delays (upper half cell) and worst wire delay (lower half cell)

m (%) 3.5 mm (%) 7 mm (%) 9.5 mm (%) 12 mm (%)

.25 6.62 3.12 2.25 1.97

.86 9.84 4.6 2.86 2.13

.46 6.71 3.32 2.43 2.14

.81 9.64 5.13 3.07 2.94

.32 6.5 2.47 1.92 1.05

.09 9.98 5.14 3.24 1.83

.89 6.35 2.24 1.7 1.1

.63 9.84 5.13 2.72 1.51

.54 6.12 2.1 1.81 0.97

.51 10.15 4.99 2.62 2
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bundle widths A—1.5, 2, 2.5, 3, 3.5, 7, 9.5 and 12 mm, and
five different bundle lengths L—300, 500, 800, 1200 and
1500 mm. The optimization impact (% improvement of best
versus worst ordering, after width/space optimization,
averaged over 20 random problem instances for each
width and length configuration) is presented in Table 1.
This experiment demonstrates that net ordering can
significantly improve results of wire sizing and spacing
optimization, especially when the bundle width is tightly
constrained. All obtained optimal orders for total sum of
delays minimization came out as symmetric hills (as
expected, since Theorem 3.2 is always satisfied in this
example). As can be seen from the table, bundle worst wire
delay (lower half cell) is more sensitive to the ordering than
the total sum of delays (upper half cell).

Experiment 2. This experiment evaluates the benefit of
ordering for a large number of wires in the bundle. The
impact of net ordering on interconnect bundles containing
a large number of wires was evaluated, using 15
representative interconnect bundles in 65 nm technology.
The number of signal wires per bundle varied from 10 to
128. The width of each bundle was determined by
allocating per wire four times the minimal width implied
by the minimum design rules. Driver resistances varied
from 50O to 2.5 kO, averaging 1.24 kO. Exhaustive search
to find the worst and best ordering is infeasible for such
problems. Instead, a poor ordering has been guessed, and
the corresponding signal delays were compared with results
of symmetric hill ordering. The experiment confirmed that
symmetric hill net ordering could improve delays by a
significant percentage: After net ordering and sizing
optimization, up to 18.3% in average delays were obtained.
On average, the interconnect delay improvement in this
experiment was 11.8%, which is equivalent to 5% of the
clock cycle used in the given technology.

Experiment 3. This example demonstrates how the set of
wire driver resistances influences the impact of ordering
optimization. The effect of signal ordering on MinMax
delay in bundles with both strong and weak drivers is
shown in Table 2. A bundle of 7 signals with driver-load
pairs of (50O, 50 fF) or (3 kO, 5 fF) is examined for various
numbers of the weak drivers. Bundle width and length were
A ¼ 3 mm and L ¼ 500 mm. As can be expected, when the
numbers of strong and weak drivers were about equal,
Table 2

% Improvement of best versus worst ordering, after width/space

optimization, for a signal channel with two driver strengths

No. of weak drivers Percent of improvement in worst delay (%)

1 0.11

2 8

3 12.7

4 16.3

5 10.76

6 5.25
signal ordering is most effective. The worst ordering is
indeed the interleaved one, described in Fig. 2(a), while the
best one is clearly symmetric hill.

Experiment 4. This example demonstrates the influence of
driver’s resistances range on ordering optimization impact.
The range of drivers is specified by the ratio Rmax/Rmin,
where Rmax and Rmin are the largest and the smallest driver
resistances in a set of wires being ordered. 19 different
seven-wire sets were evaluated, with driver resistances
distributed uniformly around a constant average of 1 kO.
In these sets, Rmax/Rmin varied from 1 (all drivers equal) to
6.4. Bundle length is 700 mm and width is 3 mm in all cases.
The results are presented in Fig. 8. As can be seen,
optimization impact increases with resistance range. Worst
wire delay optimization is influenced much more than
optimization of average delay. For larger range of driver
resistances, the increase in delay improvement saturates.

Experiment 5. This experiment demonstrates the impact of
signal criticality weight. Consider a 3 mm-wide bundle of
500 mm length with five nets in it with drivers of different
strengths, and all load capacitances are equal to 10 fF. The
cross section of the bundle after sum-of-weighted-delays
optimization when all nets have uniform timing require-
ments (all weights are 1) is shown in Fig. 9a. The wire with
the largest driver (2.8 kO), is allocated the largest spaces, as
expected. After ordering optimization, according to sym-
metric hill order by driver resistances, this wire is placed in
the middle of the bundle (Fig. 9b). Assume now that the
net with the strongest driver (0.05 kO) is the most critical
and is assigned a ¼ 10. The situation after sum-of-
weighted-delays optimization and ordering optimization
are shown at Fig. 10a and b respectively. Now, the critical
net is placed close to the middle and shares a large space
with the weakest driven net. In both cases, the average
weighted delay was reduced by about 8%. In the second
case, the net with the strongest driver was allocated larger
width in order to reduce wire resistance due to net
criticality. The experiment shows that the weighted sum
method takes into account simultaneously both wire driver
resistance and net criticality.

Experiment 6. This experiment demonstrates a-priory
assignment of wire widths by a heuristic that guarantees
optimality of symmetric hill ordering. This is compared
Fig. 8. Influence of relative range of drivers on optimization impact.
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Fig. 9. A bundle with uniform timing requirements; (a) cross section after weighted sum minimization without ordering; (b) cross section after weighted

sum of delays minimization with ordering (symmetric hill order according to driver resistances).

Fig. 10. A bundle with a critical wire; (a) cross section after weighted sum minimization without ordering (the critical wire is at the leftmost position);

(b) cross section after weighted sum minimization with ordering (symmetric hill order according to effective signal resistance).
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with the most general optimization where ordering, width
and spacing are searched exhaustively. In this experiment,
delays obtained by exhaustive simultaneous ordering/
sizing/spacing optimization are compared with results
of heuristics using symmetric hill order for total sum of
delays objective. Another set of random 1600 instances
was generated with the same range of drivers and the
same set of bundle widths and lengths, but all load
capacitances equal to 10 pF. Heuristic wire width assign-
ment with the inverse linear width function W ¼

(1/(a+bR)) was applied. For each value of bundle
width and length, the delay difference between the
optimal result of exhaustive search and the result of
the heuristic was expressed as a fraction of the delay
difference between best and worst results of the exhaustive
search. On average for all these problem instances, the
global minimum delay was approached as closely as
0.37%. Hence, the heuristic wire width assignment, which
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Table 3

Percent of average improvement in delay uncertainty (best vs. worst

ordering) for random problem instances, obtained by sum-of-delays

optimization (upper half-cell—average wire delay uncertainty, lower half-

cell—worst wire delay uncertainty)

A ¼ 2 mm A ¼ 5mm A ¼ 8mm A ¼ 12mm A ¼ 20 mm

L ¼ 300mm 21.9 27.1 28.8 31.3 38.6

26.6 32.2 38.2 48.1 46.7

L ¼ 500mm 22.1 26.9 28.4 30.6 32.6

29.1 30.5 39.3 45.2 39.8

L ¼ 800mm 22.8 28.6 28.7 32.5 33.8

28.3 34.7 38.4 36.6 44.1

L ¼ 1200mm 23.5 27.7 29.2 34.4 33.4

25.3 30.7 37.0 41.2 38.9

L ¼ 1500mm 24.1 27.6 29.9 34.4 29.3

24.8 30.5 37.2 37.1 39.9
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allows to use symmetric hill ordering instead of exhaustive
search, is effective.

Experiment 7. In this experiment we demonstrate crosstalk
reduction results by wire ordering. We evaluated 20
random problem instances using five signals. Each signal
was assigned a driver randomly. The range of driver
resistances was 100O to 2 kO and load capacitances in the
range 200–10 fF were assigned accordingly to satisfy
Theorem 3.3. For each problem the wire widths and spaces
were optimized twice: first to yield minimum total sum of
delays, and second to yield minimum worst wire delay.
This was done for all the 5! ¼ 120 possible order
permutations. The procedure was repeated for five
different bundle widths of 2, 5, 8, 12 and 20 mm, and five
different lengths of 300, 500, 800, 1200 and 1500 mm. For
the best and worst timing orders, the total sum of delay
uncertainties and maximum delay uncertainty were calcu-
lated. The crosstalk results for total sum of delays
optimization is presented in Table 3 (the results for worst
wire delay optimization are very similar) In each cell, the
upper half cell represents improvement in total sum of
delay uncertainties and the lower half cell—improvement
in maximum delay uncertainty. The experiment demon-
strates that net ordering can significantly improve bundle
noise immunity. The maximum delay uncertainty is
affected more than sum of delay uncertainties.
7. Conclusion and open questions

Reordering of wires in a constrained-width interconnect
bundle has been studied. It has been shown that a
monotonic order of the signals according to their effective
driver resistance yields the smallest average weighted delay
among all possible orderings of signal wires. The weighted
delay objective was chosen in order to approximate
MinMax optimization. Three variants of monotonic
ordering have been found to be optimal, depending on
the MCF ratio between the signals at the sides of the
bundle and that of the internal wires.
The monotonic order property exists for a very broad

range of VLSI circuit settings arising in common design
practice. The paper proposed a simple, yet near-optimal,
setting of wire widths within the bundle to yield the best
average weighted delay.
The above theoretical results have been validated by

numerical experiments on 65 nm process technology and
industrial design data. In all cases the ordering optimiza-
tion yielded improvement in the range of 10% in wire
delay, translated to about 5% improvement in the clock
cycle of high-performance microprocessor implemented in
that technology.
The authors could not prove that monotonic ordering by

effective signal resistance yields the smallest MinMax
timing slack, as it does for the average weighted delay. It
is an interesting and important question what are the
problem settings that ensure that monotonic ordering
would yield the smallest MinMax delay.
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