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Abstract—The effect of wire delay on circuit timing typically in-
creases when an existing layout is migrated to a new generation
of process technology, because wire resistance and cross capaci-
tances do not scale well. Hence, careful sizing and spacing of wires
is an important task in migration of a processor to next genera-
tion technology. In this paper, timing optimization of signal buses is
performed by resizing and spacing individual bus wires, while the
area of the whole bus structure is regarded as a fixed constraint.
Four different objective functions are defined and their usefulness
is discussed in the context of the layout migration process. The
paper presents solutions for the respective optimization problems
and analyzes their properties. In an optimally-tuned bus layout,
after optimizing the most critical signal delay, all signal delays (or
slacks) are equal. The optimal solution of the MinMax problem is
always bounded by the solution of the corresponding sum-of-de-
lays problem. An iterative algorithm to find the optimally-tuned
bus layout is presented. Examples of solutions are shown, and de-
sign implications are derived and discussed.

Index Terms—Interconnections, integrated circuit layout,
timing.

I. INTRODUCTION

I NTERCONNECT delays have become dominant in CMOS
VLSI digital systems as a result of technology scaling [1],

[2]. In recent generations, wire resistance and cross-capacitance
between adjacent wires have become increasingly important
in their effect on signal delay. For a given metal layer, wire
resistance and cross-capacitance depend on wire width and
inter-wire spacing, respectively. Allocation of wire widths and
spaces for bus structures under a total area constraint is an
important problem in process migration of existing mask lay-
outs (also known as “process shifting”), which often produces
excessive wire delays in the new layout. In state-of-the-art
technology migration, about 10% improvement in timing of
buses is achievable by judicious allocation of wire widths and
inter-wire spaces. The strategy of allocating widths and spaces
to maximize performance in bus structures was proposed in
[3] without formal analysis and solution. The nature of this
problem allows tradeoff between the resistance of a wire and
its coupling capacitances to adjacent wires, by increasing wire
width while reducing spaces, or vice versa. Wire resistance
affects only the delay of the signal carried by the wire, while
coupling capacitances affect the delays of both the wire and its
neighbors. For multiple nets, the optimal solution involves si-
multaneous tradeoffs among all wires sharing a given common
area.
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Fig. 1. Structure of the bus: n parallel signal wires share a fixed total width A
between two shield wires.

The wire sizing problem has been addressed in [4] and [5]
for a single wire and for a single-net interconnect tree. Simulta-
neous wire sizing and driver sizing has been presented in [6], [7].
The problem of sizing and spacing multiple nets with consider-
ation of coupling capacitance in global interconnect has been
addressed in [8], considering general tree structures for nets
with fixed terminals, without a total area constraint. The authors
modeled coupling between nets by converting cross-capacitance
into an effective fringe capacitance, which resulted in a decou-
pled delay model for each net. The routing tree for each net was
sized independently, using an algorithm based on dynamic pro-
gramming [9]. Coupling capacitance has been considered more
explicitly in the context of physical design algorithms for min-
imizing crosstalk noise [4], [10], [11] or dynamic power [12].
The authors of [13] derived layout guidelines and presented a
simultaneous multiple-net spacing algorithm for area minimiza-
tion in general layouts under a noise-constraint.

This paper addresses the problem of simultaneously as-
signing widths and spaces to n parallel wires, representing a bus
or several interleaved busses, as illustrated in Fig. 1. Such ge-
ometry is commonly used in practice, and its simplicity enables
straightforward mathematical analysis. With given drivers,
load capacitances and timing requirements for the individual
signals, wire widths and spaces are allocated to maximize
circuit speed. Note that driver strengths, load capacitances and
required arrival times are not necessarily equal. The total sum
of widths and spaces is a given constraint, representing the total
width available for the bus structure in the layout. The problem
is presented in the context of technology migration, but the
same methods can be used to optimize an initial design, not just
a migrated one.

II. PROBLEM FORMULATION

Consider a bus of signal nets between two side-
walls (wires at fixed locations, connected to or ) as shown
in Fig. 1. and , respectively, denote spaces to the right
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Fig. 2. Equivalent circuit for calculating the ith signal delay.

and left neighbors of wire . The length of each wire is L. The
sum of wire widths and spaces between the left and right side
walls is given in the following constraint, which represents the
total width of the available area for laying out the signal bus

(1)

Another set of constraints on wire sizing is geometrical de-
sign rules, which are imposed by the manufacturing technology.
In modern processes of 90 nanometers and below, the width and
the space of wires are bounded in some range as follows:

and (2)

(3)

III. DELAY MODEL

Signal delays are expressed by an Elmore model using simple
approximation for capacitances. The delay of signal can be
calculated from the -model equivalent circuit shown in Fig. 2,
where is the effective output resistance of the driver,
is the wire resistance, is the wire area and fringe capaci-
tance, and are coupling capacitances to the right and
left neighboring signals, and is the capacitive load presented
by the receiver’s input. Using technology parameters these can
be expressed as , , and

, where is area capacitance coefficient, is
fringe capacitance coefficient, is a line-to-line coupling coef-
ficient, and is the metal sheet resistance. These are first-order
approximations [14] which capture the fundamental nature of
the problem.

Under Elmore delay model, the delay of signal from
driver’s input to receiver’s input is given as follows:

(4)

Note that the cross-coupling capacitances between wires
are multiplied by a Miller coupling factor (MCF) [16] in the

model equation. For nominal delays, without delay uncertainty
induced by crosstalk, is assumed. This is valid in par-
ticular when adjacent wires are functionally interleaved, such
that simultaneous transitions of neighbor wires are avoided.
If all wires can switch simultaneously, the cross-capacitance
terms are typically multiplied by a uniform MCF of 2. For
such a case, inter-wire tradeoffs would become even more
pronounced in optimizing the bus layout. In the remainder of
this paper we assume . The coefficients of wire width
and spaces in (4) will be marked as , , , , . The delay
expression can be rearranged as

(5)
Note that in (5), the coefficient is not indexed since it en-

capsulates only technology parameters, which are common to
all delays. The other coefficients are indexed since they include
parameters related to the signal’s driver and receiver.

Despite its simplicity, this Elmore-based modeling approach
is widely used as a high-fidelity estimator in practical intercon-
nect optimizations. Although it uses first-order capacitance ap-
proximations, and even though it does not account for signal
slope effects, it is effective in guiding the search toward im-
proved timing, as was verified by detailed circuit simulations
on examples below. A multiplicative factor of 0.7 is generally
used to fit the Elmore model with 50% signal delay. With more
elaborate empirical parameter tuning, the model accuracy can be
improved further: In [15], good absolute accuracy versus circuit
simulation has been obtained by applying a parameter fitting
procedure to a similar wire delay model, where the cross-ca-
pacitances were replaced by a fringing-field term.

IV. SENSITIVITY OF SIGNAL DELAY-TO–WIRE WIDTH AND

SPACES

Consider a single wire placed between two side-walls. The
delay of the wire is given by (5), with . Partial derivatives
with respect to and are as follows (note that the delay
function is symmetrical in variables ):

(6)

(7)

Omitting the index , for each specific value of the sen-
sitivity to is zero at a certain point . This point
is the minimum delay point for the given value of . Sensitivity
to decreases monotonically with increasing of and .

In layout migration, wire width and spaces to neighbors
cannot change independently. The additional constraint applied
to and is

and therefore for fixed (8)

(9)

The sensitivities to both and are thus identical. An ex-
ample is shown in Fig. 3 using 90-nm technology parameters
for different driver resistances—100, 500, and 1000 , driving
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Fig. 3. Delay sensitivity to width and space for a single wire.

a wire of 1000- m length, with load capacitance of 50 fF and
the distance between walls is 1.5 m. Sensitivity to both and

was calculated for values of from 0 to 1.5 m. At the min-
imum delay point, sensitivity to wire width and spaces is zero,
because the effect of any change in wire resistance balances out
with the respective change in capacitances. A similar balance is
obtained also when a bus with multiple wires is optimized, as
will be discussed below. For wide buses, where inter-wire sepa-
ration is large, the optimal width for each wire depends mostly
on values of driver resistance and load capacitance of the wire,
according to (8). This may be used as a first approximation for
assigning initial values to wire widths in bus optimization.

V. TIMING OBJECTIVES FOR BUS OPTIMIZATION

We are seeking wire width and space allocation yielding “op-
timal timing.” The definition of optimality depends on the de-
sign scenario. In the following we’ll define four commonly used
timing objectives.

First objective aims at maximizing the total sum of slacks
(same as maximizing the average slack). Let be the required
time of the signal . The objective is thus defined as follows:

(10)

When required times are still undetermined, an objective of
minimizing total sum of delays is commonly used. Notice that
from a mathematical point of view this is equivalent to maxi-
mizing the first objective, since

(11)

The term however is constant and does not affect
the optimization. In the sequel we’ll discuss the minimization
of total sum of delays . Without loss of generality the results
are applicable to maximization of total slack .

Both (10) and (11) are cumulative metrics, integrating the
contribution of all signal wires. These are useful objectives for
design migration, where the goal is to deliver overall timing
speedup. The important factor in such a design scenario is the
average speedup, which is well reflected by (10) and (11).

When tuning of critical signals is of interest, the design sce-
nario calls for MinMax optimization problems. Hence, a third
objective is to minimize the worst slack among all signals, ex-
pressed by below. Note that we exchanged the terms of the
slack for the sake of mathematical convenience

(12)

A fourth objective aims at minimizing the delay of the slowest
signal in the bus. It can be used when timing constraints are not
known yet. The corresponding objective function is

(13)

In the following, we will explore the optimization of the ob-
jective functions through by varying the widths and spaces
of the bus wires. We first note that all the objectives have a global
optimum since the underlying problems are all convex or con-
cave. The convexity proof is given in Appendix A. Additional
useful properties of the underlying optimization that suggest ef-
ficient solutions are discussed below. Let us ignore design rules
(2) and (3) for the sake of easing the analysis. These do not
change the nature of the problem.
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VI. OPTIMIZING TOTAL SUM OF SLACKS OR DELAYS

We are aiming at minimizing (11) subject to (1). In order
to find the minimum of under constraint, let us calculate
partial derivatives

(14)

(15)

(16)

(17)

At minimum, there exists some real number (Lagrange mul-
tiplier), satisfying . Rearranging and substituting
yields the following:

(18)

(19)

We define to represent a sidewall con-
nected to power or ground. The above equations plus the area
constraint equation (1) impose algebraic equations in

variables , , .
The equations to obtain the maximum of total sum of slacks

are identical to (18) and (19). Similar arguments hold, except
that minimum is replaced by maximum and convexity by con-
cavity.

VII. MINIMIZING MAXIMAL DELAYS AND NEGATIVE SLACK:
MINMAX PROBLEMS

Objective functions (12) and (13) dealing with worst delay
and slack are not differentiable. Therefore, the respective
MinMax optimization problems cannot be solved analytically.
Although general convex programming or Lagrange relaxation
[7] can be employed, we propose a solution approach based on
the following properties of these specific problems, yielding an
efficient iterative solution with guaranteed convergence.

Theorem 1 (Necessary Condition): In the optimal solution of
minimizing the maximal delay in (13) [worst slack in (12)] sub-
ject to the area constraint (1), all the delays (slacks) are equal.

Proof: Let us prove the case of delays. Assume on the con-
trary that the above assertion does not hold. Namely, in the op-
timal solution, there exists a wire whose associated delay is
greater than all others. If there are few maximal ones, pick one
having a neighbor with a smaller delay. Such one must exist, as
otherwise the delays satisfy the statement of the theorem.

There exist therefore signals , and , such that their
corresponding delays , and , respectively, satisfy

and . We may now narrow wire
slightly, thus increasing its delay, say by a magnitude that does

not exceed in the worst case. We may simi-
larly narrow wire and increase its delay by
if indeed. Such narrowing must reduce since
the width of wire didn’t change, but its spacing from neigh-
bors was increased. Which was a maximal delay was thus
reduced. If this was the single maximal delay, a contradiction
follows since the maximal delay was reduced, while other de-
lays do not exceed it. If there are several wires with maximal
delay, the same procedure repeats itself for the next maximal
delay wire, until all maximal delays are reduced. This proce-
dure must terminate since the problem it finite.

The proof for objective of worst negative slack follows
similarly.

Theorem 1 imposes necessary conditions on optimal solu-
tions. It is not true that any solution whose delays (or slacks)
are all equal is optimal. The convexity of the max objective
functions ensures a unique and global minimum. These func-
tions are continuous but not differentiable, so we cannot rely
on equating first derivatives to zero in order to express suffi-
cient conditions for optimality. We’ll instead attempt to change
one of the space or width variables. A single variable however
cannot change alone due to the area constraint. We’ll therefore
attempt to make a local change of a triplet or

, without changing any other variable, such that
or are invariant. We define

this as an area preserving local modification. Clearly, it affects
only the delays of or , respectively.
All other delays are unaffected.1

Let be arbitrarily small and be real positive
numbers. Area preserving local modification of
will result in the triplet , for
which wire width is increased (decreased), while its neighbor
spaces are decreased (increased). Similarly, the modification of

will result in the triplet
. Notice the correspondence between the plus and

minus signs in the modified triplets.
Since max delay (or worst slack) is a convex objective whose

global minimum is the MinMax point, the following statement
is in order.

Postulate: For any equal delay (or slack) solution other than
the MinMax one, there exists an area preserving local modifi-
cation which reduces the delay (or slack) of a signal without
increasing the delay of any other signal.

The following theorem provides a sufficient condition for an
equal delay (or slack) solution to be the global minimum.

Theorem 2 (Sufficient Condition): Let all the delays in max
delay (worst slack) objective function be equal to each other.
This is then the MinMax solution if for all and any
the following relations exist:

(20)

1This is true under the assumptions stated in this paper, because signal slope
effects are neglected. However, in reality cross-coupling might slightly affect
other delays, as a result of slope change.
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(21)

(22)

where , , , and are the coefficient of delay (5). The proof
can be found in Appendix C. Notice that the terms comprising
the conditions (20), (22) are reminiscent of the derivatives in
(14) and (15). Hence, an equal delay (slack) solution is optimal
if no area-preserving local modification can be found to improve
any of the bus wires.

VIII. ITERATIVE ALGORITHM FOR MINMAX DELAY OR SLACK

Theorems 1 and 2, and the convexity properties discussed
earlier suggest an iterative algorithm to obtain a minimum of
maximal delay (It can be easily adapted to maximize the most
critical slack). The algorithm works in two phases which repeat
themselves until convergence.

The first phase equates the delay of all signals by iterations.
It picks the signal whose delay is currently maximal. It then re-
duces the delay by equating it with its two neighbors, a tech-
nique used in the proof of Theorem 1. This is repeated until all
delays are equal.

The second phase checks for existence of the sufficient condi-
tion posted in Theorem 2. It then picks the triplet which mostly
violates the sufficient condition and performs an optimal area
preserving local modification which is reducing the delay of the
triplet’s signals.

This gives a rise for another iteration of first phase, as the
delay of all the signals can equate at a lower value. If the suffi-
cient condition is satisfied however, the algorithm terminates at
optimum.

The algorithm for maximal delay minimization is outlined
below. Some heuristics aiming at speeding up convergence are
included.

MinMaxDelay ()
set initial solution;
do {
while (not all signal delays are

equal) {// first phase
1. Pick signal with maximal delay;
2. Equate delay of the selected

signal with its two neighbors
}

if (sufficient condition fulfilled)
terminate; // optimum reached

else // second phase
1. Find the triplet which vio-

lates the sufficient condition most
strongly;

2. Reduce delay of triplet’s signal
by area preserving local modification;
}

Fig. 4. Distributions of signal delays in MinMax solution (top) compared with
minimal sum-of-delays solution (bottom).

Convergence of the above algorithm can be proven as follows:
The inner loop of while (first phase) iterates over signals and
reduces the maximal delay. Therefore, the maximal delay, which
is positive, is monotonically decreasing. Hence, it must reach a
limit. In the outer do loop the delay (equal for all signals) is also
monotonically decreasing, thus it must reach a limit as well.

IX. RELATION BETWEEN MINIMAL TOTAL SUM AND

MINMAX SOLUTIONS

We further study the relation between the optimal solutions of
total sum and MinMax optimizations, for either delay or slack
optimizations. We may interpret the delay (slack) of the bus

(analogously for slacks) as a vector in -di-
mensional vector space over real positive numbers. The addition
of delay (slack) vectors is interpreted as connecting two busses
serially, signal by signal. It is not difficult to prove that the objec-
tive function of total sum of slacks (10) or delays (11), and the
objective function of max slack (12) or delay (13) are nothing
but the norms and , respectively. Let be any
vector in -dimensional vector space . The norm equivalence
theorem states that there exist real positive numbers and
satisfying . This means that an optimal
solution of minimizing the total sum of delays is also a good
MinMax solution and vice versa. Indeed, the following theo-
rems claim that the optimal solution of the MinMax problem
is bounded from both sides by the optimal solution of the total
sum problem. The notation is shown in Fig. 4, illustrating distri-
butions of signal delays in the solution of a minimal total delay
problem and in the solution of the corresponding MinMax delay
problem.

Theorem 3: Let , and be the smallest, average and
largest delay, respectively, among all the bus signals in the op-
timal solution of minimal total sum of delay. Let be the delay
of each signal in the MinMax optimal solution. There exists then

.
Proof: The inequality is satisfied by

definition. It is impossible that . Otherwise, the op-
timal MinMax solution yields total sum of delay , thus
contradicting the optimality of . It is also impossible that

as it yields a solution whose max delay is smaller
than , contradicting the optimality of .
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Fig. 5. (Top): cross section of the bus after MinMax delay optimization, annotated with values of wire widths and spaces. (Bottom): width and spaces shown as
graphs versus wire position in the bus.

Fig. 6. (Top): cross section of the bus after sum-of-delays optimization, annotated with values of wire widths and spaces. (Bottom): width and spaces shown as
graphs versus wire position in the bus.

Theorem 4: Let , and be the smallest, average and
largest slack of a signal, respectively, in the optimal solution of
maximal total sum of slack. Let be the slack of a signal in
the MinMax optimal solution. There exists then

.

X. EXAMPLES

Exampel 1: Sidewall Effects in a Uniform Bus: Figs. 5 and 6
illustrate the optimal solutions of MinMax and sum-of-delays

optimization, respectively. The bus has eight signals whose
wire length is 500 m. All drivers are of 500- resistance
and all load capacitances are 50 fF. The area allocated for
the bus is 7 m.

In case of MinMax optimization all signal delays are iden-
tical as expected. Notice that wire width and space have “oscil-
lations” decaying toward the center of the bus. This is caused by
the side walls, which get relatively small spaces to the extreme
wires, because unlike all other spaces their cross-capacitance is
not shared by two signals. The narrow space needs compensa-
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Fig. 7. (Top): cross section of the bus after MinMax slack optimization. (Bottom): width and spaces shown as graphs versus wire position in the bus.

tion by a wide wire, otherwise large delay will occur. This
phenomenon repeats itself for the next adjacent wires, with de-
creasing amplitude. In the minimization of sum-of-delays, the
first and last wires are affected similarly as in MinMax opti-
mization due to same reason: sidewalls don’t care for space.
All other signals however have the same width and space. Con-
sequently, the extreme wires have larger delay than all others.
Despite differences in width-space distributions between two
cases, numerical values of delays are very close. Comparing av-
erage delay obtained in sum-of-delays optimization with delay
obtained by MinMax optimization yield ps and

ps, which are indeed very close.
For deeper insight while comparing total sum-of-delays with

MinMax problems, let’s simplify the bus model and ignore
the sidewall effect. This is done by dropping the sidewalls and
assuming that the leftmost signal and the rightmost signal are
adjacent. Pictorially, it is equivalent to placing the signal bus
on a cylindrical surface, thus obtaining two neighbors for every
signal. The optimal solution satisfies the following theorem
whose proof is given in Appendix B.

Theorem 5: Let all signals have identical drivers and iden-
tical receivers and let their order be cyclical (placed on a
cylindrical surface). Then in the optimal solution of maxi-
mizing (minimizing) the total sum of slacks (delays), all the
widths, spaces and delays are necessarily equal.

We now characterize the optimal solution of MinMax delay
in a cyclical uniform bus by a direct consequence of Theorems
3 and 5 above.

Corollary 1: For a cyclical bus where all signals have iden-
tical drivers and identical receivers, the minimization of max
delay yields the same solution as the minimization of total sum
of delays.

Proof: Follows directly from Theorem 3 which states that
, where , and are the

smallest, average and largest delays in the minimal total sum

of delays, respectively, and is the delay of a signal in the
optimal MinMax solution. Theorem 5 states that for cyclic uni-
form bus there exists . Hence, the corollary
follows.

Returning to Example 1 above, let us modify the bus to be
cyclical. Both MinMax optimization and minimal sum-of-delay
optimization were solved in MATLAB and yielded a result
65.524 ps. In conclusion, a uniform bus is similar to a cyclical
bus, except for the edge effects near the sidewalls. Therefore,
optimal solutions for total delay and MinMax delay are almost
identical. Note that the identity of optimal solutions for total
sum and MinMax does not exist for slacks, even in a uniform
cyclical bus. Maximizing total sum of slacks is the same as
minimizing total sum of delays; hence delays of signals are all
equal in the optimized uniform cyclical bus. Slacks, however,
are not equal to each other as they depend on the required time
which may change from signal to signal. In the optimal solution
of the MinMax slack problem, all slacks are equal.

The next example deals with optimizing total slack and worst
slack in a uniform bus with side walls.

Example 2: Slack Optimization: Fig. 7 illustrates the case
where a required time is assigned to each signal. Using the same
bus from Example 1, a required time of 65 picoseconds was as-
signed to the fifth wire, while all other wires were allowed 70
picoseconds. Applying MinMax optimization of the slacks re-
sults in equal slacks of 1.4 picoseconds for all signals, as shown
in Fig. 7. The distribution of wire widths and spaces is depicted
in the bottom part of Fig. 7. Its nature is similar to the case of
MinMax delay optimization. Notice however that the nonuni-
formity in required time disturbs the symmetry obtained in Ex-
ample 1.

The wire which was assigned the most difficult (earliest) re-
quired time became wide, while its spacing to adjacent wires
became larger too. This is for the sake of reducing its RC delay,
thus compensating for the early required time.
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Fig. 8. Nonuniform bus minmax optimization.

Fig. 9. Nonuniform bus total sum of delays optimization.

Recall that maximizing total sum of slack is not affected by
required times as this optimization is identical to minimizing
total delay, as discussed earlier.

Example 3: Non-Uniform Bus: This example presents an in-
terleaved bus structure, with alternating drivers; odd-numbered
wires have strong drivers , and even-numbered
wires have weak drivers . Wire length is 3000

m and load capacitance 70 fF in this example. A total bus
width is constrained to 10 m. Results of optimizing this bus
are depicted in Figs. 8 and 9. Notice first that the wire width
and space distributions of MinMax optimization differ signifi-
cantly from total sum-of-delays minimization. Since in MinMax
optimization all the delays must be equal, and since the weak
and strong drivers are interleaved, the spaces must be equal to

each other. An exception is the leftmost space. This is due to the
asymmetry resulting from a strong driver on the left side and a
weak driver on the right side of the bus. The equality of spaces
and signal delays implies that signals with strong drivers will be
narrower than those driven by weak drivers, as demonstrated in
the bus cross section. Minimization of total sum-of-delay also
yields alternating widths of wires, but neither uniformity nor
symmetry exists. Notice also that wider wires were allocated to
strong drivers in this case. It is interesting to compare the de-
lays obtained by the two optimizations. Although all the rela-
tions proved in Theorem 3 do exist, the MinMax delay is much
worse than the average delay in the total sum-of-delay optimiza-
tion. In fact, it is very close to the maximal delay of the latter
distribution.
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TABLE I
MIGRATION OF CIRCUIT BLOCK IN 65 NANOMETER TECHNOLOGY

Fig. 10. Optimal solution parameters � , � , � , � (see Fig. 4) versus
bus width constraint A, for the circuit of Example 4.

Example 5: Optimal Delay Dependency on Bus Width: Let
us change the total width of the bus in Example 4. The MinMax
delay is compared to the minimum, average and maximum delay
of the corresponding total sum-of-delays optimization, for var-
ious bus widths, as illustrated in Fig. 10. According to Theorem
3, the MinMax delay of all wires always resides between the av-
erage and the maximal wire delay in the total sum-of-delay min-
imization. As the bus width constraint is relaxed (larger widths),
the MinMax result approaches the maximal delay of the other
optimization. This is due to the fact that large bus width decou-
ples the signals, so signals of weak and strong drivers are opti-
mized independently.

Example 6. Migration of a Bus in an Industrial Circuit: A
20-wire metal 3-bus structure from an industrial circuit block
was migrated from 90- to 65-nm technology, with a clock fre-
quency target of several GHz. The total width of the bus is 13.53

m, length of wires is 500 m. Before optimization, wire widths
and spaces were determined by shrinking the old layout, as spec-
ified in Table I below. Two kinds of drivers are used in the bus:
strong drivers with resistance of 85 and input capacitance of
14 fF and weak drivers with resistance of 2.17 k put capaci-
tance of 0.75 fF.

Total sum of delays timing optimization was run on this bus
and results are presented in Table I. The delays in Table I were
obtained from circuit simulations, performed with extracted
parasitics from actual layouts before and after optimization,
using accurate industrial tools. The delays are represented as
a percentage of the clock cycle time. As seen in the table,
average timing of the bus was improved by about 13%. It was
achieved by decreasing widths of wires and varying spaces,
thus decreasing wire capacitances on the slower signals. As ex-
pected, the timing improvement of critical signals as well as the
improvement in total sum of delays were obtained by trading
off the less critical signals whose delay got worse. Almost all
wires were narrowed to the minimal allowed value of 0.11 m.
Since the bus is relatively short, wire resistance effect is not
critical and therefore most of the channel area was allocated to
inter wire spaces in order to decrease loading of weak drivers
by inter-wire cross capacitances. Minimization of worst wire
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delay has also been performed, and results were verified by
circuit simulation, using extracted layout capacitances and
resistances, yielding 36.2% of clock cycle time versus 46.5%
before optimization (compare with the average wire delay of
25.6% and maximum wire delay of 38.3% in sum of delays
optimization). Elmore delay estimates were about 35% larger
than circuit simulation results.

XI. DISCUSSION AND CONCLUSION

It has been noted in general circuit timing optimization that
whenever MinMax formulation is used, all timing paths tend
to become equally critical, as proven in theorem 1 for the bus
sizing problem. This phenomenon was termed path-balancing
[17], [18]. Shaping of delay distributions involves a number of
considerations: minimization of critical delay for maximal cir-
cuit speed tends to push the right tail of the path delay distri-
bution toward the center, and minimization of area and power
often tends to push the left tail toward the center. Circuit tuning
by MinMax optimization results in a very narrow distribution
of delays, as illustrated in Fig. 4. However, a narrow distri-
bution where many paths are critical, is more sensitive to pa-
rameter variability [17]–[19]. A modification of the objective
function in MinMax formulation has been proposed, involving
a penalty function [18] which separates the most critical paths
from others. An alternative approach is to use the total sum ob-
jective, at least in the initial stages of layout migration. At the
optimal the solution of total sum minimization, every wire is at
a balance point where sensitivity to the value of wire width and
spaces approaches zero, as illustrated in Fig. 3. In contrast, the
MinMax solution takes most signals away from this stable point
in order to equalize all of the delays or slacks, and therefore the
circuit becomes more sensitive to variations in geometrical di-
mensions. Our computational experiments in bus tuning show
that typically, most signal delays become much worse while
the critical signal become only slightly better as resources are
shifted to make all wires equally critical. In other words, the
largest wire delay in the total sum solution is typically a tight
bound on the solution of the MinMax problem, as seen in the
example of Fig. 9.

In conclusion, we have characterized the problem of simulta-
neously allocating wire widths and spaces to all wires in parallel
bus structures under a total area constraint, for circuit perfor-
mance optimization. We have demonstrated its importance in
migration of layouts to new generations of CMOS process tech-
nology. Our results show that total sum of delays (or slacks)
is a useful objective function for minimization. Compared with
MinMax delay tuning, it is mathematically more convenient,
leads to robust solutions which are less sensitive to parameter
variations, and typically produces bus layouts which closely ap-
proach the best achievable performance. We have also presented
an iterative algorithm for MinMax performance tuning of bus
layouts, based on problem-specific necessary and sufficient con-
ditions for optimality.

APPENDIX A
THE OPTIMIZATION PROBLEMS ARE ALL CONVEX

Proposition: The objectives functions , , , pre-
sented above are all convex or concave. Their associated

constraints are linear, and therefore also convex. Consequently
all the optimization problems have unique, global minimum or
maximum, depending on convexity or concavity.

Proof: The area and design rules constraints given in (3),
(4) and (5) are all linear equalities or inequalities. Altogether
they define a convex feasible region on which the above objec-
tive functions are defined.

The function in (2) is a sum of terms de-
pending on the variables , and . In order to
prove its convexity it is sufficient to see the convexity for
each term, since a linear combination with positive coeffi-
cients of convex functions is convex too. Convexity exists
if all its second order derivatives are nonnegative. Deriving
twice all the terms comprising yields ;

;
; ;

, which are all nonnegative.
Consequently, the delay of single signal is convex

The function defined in (10) is a negative sum of convex
terms and therefore yields a concave function. Its maximization
on convex region yields unique global maximum. For similar
reasons, defined in (11) is convex and has therefore global
minimum.

Both functions and of maximal slack delay as defined
in (12) and (13), respectively, are convex since they are a max-
imum of convex functions. Their minimization on convex region
yields therefore a unique global minimum.

APPENDIX B
PROOF OF THEOREM 5

Proof: From (11) we obtain

(23)

In the above, we identify with due to the cyclic ordering
of signals. Note also that the coefficients are not indexed since
all drivers and receivers are identical.

Assume that the optimization problem (3), (18) and (19) was
solved and the optimal solution is given. Let
and denote the total wire widths and total spacing
in the optimal solution. Obviously, there exists . Let
us show that among all the settings of area preserving and ,
the one in which all and are identical is optimal.

Examination of (23) shows that it consists of the fol-
lowing sums , and

. The
first two sums are minimized only when all are equalized
and all are equalized. We’ll show the term is also
minimized by such equalization.

Substitution of and
in and then differentiating by each of the
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variables , yields

(24)

(25)

Note that in both (24) and (25) the second term is identical
and independent of for all equations. Consequently, all the
derivatives of by widths satisfy same equation, and so
the derivatives by spacing. Therefore, there exist two real num-
bers and , satisfying and

. This implies that
and is indeed the optimal and

unique solution.
In conclusion, minimal total sum of delays requires iden-

tical wire widths and identical wire spacing. Identical signal de-
lays follow immediately due to identical drivers and identical
receivers.

APPENDIX C
PROOF OF THEOREM 2

Proof: Assume to the contrary that a given equal delay
solution is not minimal. According to the above postulate there
exists area preserving local modifications that will reduce the
delay of a signal without increasing the delay of any other signal.
Four modifications are possible: Increasing or decreasing wire
width, and increasing or decreasing a space. Let us consider
each.

Case 1) Increasing wire width is impossible since area
preservation implies that at least one of the adja-
cent spaces is decreased. This however increases
the delay of the adjacent signal that shares this
space.

Case 2) Decreasing the width results in the new triplet
, where

. The delays and do not
increase as their adjacent spaces do decrease. For
the new delay to decrease there must exist some

, such that substitution of the new width
and spaces in (2) yields

Dropping the term implies that delay re-
duction requires the above square brackets to be

positive. Case 1 can be viewed as being obtained
by using negative , thus implying an opposite in-
equality than the above. Hence, (20) follows.

Case 3) Decreasing a space results in the new triplet
. We require that none

of and is increased. This implies the for
some , there exists

Dropping the term implies that delay re-
duction requires the above square brackets to be
positive. Hence, (21) and (22) must be non-nega-
tive.

Case 4) Increasing a space results in the new triplet
. This is exactly the

same as case 3, but with negative . Therefore, the
braces need now be non-positive.
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