1178 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 8, AUGUST 1993

An Efficient Algorithm for Some Multirow Layout
Problems

Jack A. Feldman, Israel A. Wagner, and Shmuel Wimer

Abstract—Automatic generation of standard CMOS logic cells
has been studied intensively during the last decade. Some ma-
turity has been achieved, and several commercial tools are
available. The continuous progress in VLSI technology pre-
sents new challenges in developing efficient algorithms for the
layout of standard CMOS logic cells and in combining them
within functional macros.

In this paper, three multirow layout problems are presented:
transistor orientation, contact positioning and symbolic-to-
shape translation. It is shown that these multirow problems
have a common property, which we call quantitative depen-
dency. Using this property, an optimization technique is pre-
sented, which is based on a penalty-delay strategy. It is proved
that the penalty-delay strategy assures optimality, and that the
optimal solution can be obtained in linear time.

The algorithmic approach is based on the observation that
optimal layout decisions in any region within a cell or a macro
depend only on quantitative measures of the decisions in other
regions, rather than on their details. This suggests to depart
from the traditional approach of handling the different regions
separately and combining them afterward into a single unit, an
approach that may degrade the quality of the final layout. In-
stead, the entire macro can be processed at once, taking into
account the mutual quantitative dependency between distin-
guished regions.

1. INTRODUCTION

HE AUTOMATIC generation of standard CMOS
logic cells has been addressed in many papers, and
several commercial layout systems offer such generators
in their toolkit. The automatic layout generation of a cell
is usually divided into two steps. First, a symbolic layout
is generated, and then it is translated into mask shapes.
Symbolic layout is divided further into placement and
routing, which are usually carried out separately, whereas
translation to mask shapes is performed either by employ-
ing a compactor or by a direct shape embedding. When a
direct mapping into shapes is attempted, ground rules
consideration should not be deferred to the final stage.
Placement and routing algorithms capable of handling
symbolic spacing rules are essential for high-quality lay-
out.
The optimal transistor placement problem was studied
extensively. Several heuristics for general CMOS logic

Manuscript received March 5, 1992; revised January 8, 1993. This paper
was recommended by Editor Margaret Marek-Sadowska.

The authors are with the IBM Israel Scientific Center, Technion City,
Haifa, Israel.

IEEE Log Number 9207795.

cells have been proposed, and for some specific circuit
structures optimal algorithms exist [9]. In general, how-
ever, even when restricted to a linear array of transistors
[15], the problem is NP-hard [4] and thus solved in two
steps: find the linear order of P-N transistor pairs, and
then find for every transistor its optimal orientation
(““flip’’) within the array [6]. In [1] the two problems have
been addressed simultaneously. For CMOS cells that con-
sist of several transistor rows, the problem of optimal
transistor flip was presented in [11] and was solved by an
optimal algorithm for the specific problem.

Several papers (cf., [3], [5], [6]) have addressed the
problem of transistor placement in CMOS cells in two
separate steps. In the first step, a linear ordering of the
transistors in P and N rows that takes into account wiring
density and total wire length is sought. This step also at-
tempts to maximize the likelihood of diffusion abutments
occurring between consecutive transistors. The proper
orientation of the transistors is ignored in this step. Then,
a second step consists of finding the optimal orientation
(flip) for each transistor, under the linear ordering im-
posed by the first step. The optimal orientation step aims
at minimizing the extra space caused by diffusion gaps
between adjacent transistors. The minimum wire length
obtained in the model of [3] and [5] is not harmed by the
optimal orientation step. Practically, transistor flip may
increase the wiring density by at most one, while the total
wire length can only be reduced.

The optimal flip problem has been studied in several
papers. In [6] the problem was solved for a single row in
a branch-and-bound procedure, in time complexity ex-
ponential in the number of transistors. In [11] the problem
was solved by a dynamic programming approach in time
complexity linear in the number of transistors, regardiess
of the number of rows. In [1] the dynamic programming
solution for a single row was embedded in the linear or-
dering step of transistors.

Most routing algorithms for CMOS logic cells look for
a feasible solution, but do not consider symbolic spacing
rules. Symbolic spacing rules capture the technology
ground rules in terms of symbolic configurations and as-
sociated penalties. Like placement, optimal routing of
CMOS cells is a difficult problem and, therefore, is solved
in several steps. Usually, the cell area is divided into sev-
eral regions, the interconnecting nets are first assigned to
these regions, and then each region is routed separately
[171, 171.

0278-0070/93$03.00 © 1993 IEEE

FELDMAN et al.: ALGORITHM FOR MULTIROW LAYOUT PROBLEMS

The outcome of this process is a symbolic layout in
which wire segments and contacts are assigned to wiring
tracks and grid points. Still, a postprocess of the resulting
symbolic routing that takes into account all the different
regions simultaneously may yield a significant area re-
duction. This can be accomplished by transformations of
the symbolic layout that pose better initial conditions for
the shape mapping process that follows.

Such a problem was solved in [1] for the case of a sin-
gle row cell, as a part of a dynamic programming routing
algorithm for the entire cell. Its complexity was linear in
the number of transistors, but grew exponentially with the
number of transistor rows and wiring tracks. Therefore,
when many rows of transistors and/or many wiring tracks
within each row are being involved, breaking the problem
into two steps is suggested. In the first, a simple routing
algorithm (e.g., interval graph coloring) is employed.
Then, a second step finds the most feasible track location
for each contact.

The translation from symbolic layout to mask shapes is
usually carried out by a compactor [10], [13]. A common
practice for CMOS cell layout is to align transistors and
wires to grid locations whose pitch is dictated by the tech-
nology ground rules and design methodology. This allows
a convenient composition of smaller cells into large ma-
cros [12], [14]. Still, local displacement of contacts
around the grid points are tolerated. This degree of free-
dom can be utilized to yield a smaller layout when the
spacing rules between adjacent contacts dictate the cell
size.

The preceding problems, which arise in the various
phases of the cell generation, can be represented by a
unified mathematical model. The optimization problem
resulting from this unified model can be solved efficiently
in linear time, employing a greedy-like approach based
on a ‘‘penalty-delay’’ strategy.

The rest of the paper is organized as follows. The next
section formally presents the layout problems and shows
how they all are mapped into the same optimization prob-
lem. The application to optimal transistor flip is discussed
first. Then, an application for local symbolic routing
changes is shown, followed by an application for optimal
contact displacement in the final mask layout. Section III
describes an optimal algorithm to solve the problem, and
proves its correctness. Section IV concludes and presents
some problems for further research.

II. THREE LAYyouT PROBLEMS

In this section, three layout problems are defined that
reflect different aspects of VLSI layout optimization.

A. Placement: Optimal Transistor Flip

The following problem was presented and solved in
[11]: Let T be an arrangement of m X n transistors in a
two-dimensional array, where

Ti,j = (Si,j’ Di,j)-

1179

§; j and D; ; are the nets connected to the source and drain
diffusion terminals of the transistor, respectively. If the
right net of the transistor in position (i, j) is the same as
the left net of the transistor in position (i, j + 1), the
corresponding terminals abut. Otherwise, a space must be
inserted between the two terminals, thus increasing the
layout width. When a space is inserted in some row of
column j, this penalty is paid throughout the entire col-
umn, since all the transistors must be aligned in both rows
and columns. Consequently, one is interested in orienting
the transistors in such a way that the number of space
insertions is minimized. See Fig. 1 for an example. For-
mally, let x; ; be the orientation of the transistor T; ;, de-
fined by

l’
x;,j = 2

In this case, all x values are taken from the set {1, 2}.
Let X be an m X n matrix of the preceding orientation
variables. The actual left and right diffusions of a transis-
tor, for a given configuration X, will be defined as

if T; ; is oriented (S; ;, D;)
if T , is oriented (D, ;, S;).

Leﬁ(x . .) S,',j, ifx,-,/- =1
’ t’ =
/ D, ;, ifx;; =2
Di,j’ if .x,‘,j =1
Right(X, i, j) = .
Sjyj, lfx,-']- = 2. v
The penalty of two consecutive orientations is given by
ﬁ,j(xi,j— 1 xi,j)

—_ 0’
= N

Therefore, the objective function that measures the to-
tal space insertions is given by

if Right(X, i,j — 1) = Left(X, i, j)

otherwise.

n
m
FX) =]_§2 I‘n_ai‘ {f;’,j(xi.j~ 1s xi.j)}-
The optimal transistor flip problem is to find X that min-
imizes F(X). The maximum taken for each pair of con-
secutive columns in the preceding equations reflects the
fact that once a space is inserted in one row, the penalty
is paid in all the remaining rows, regardless of whether a
space insertion is needed in the other rows.

B. Symbolic Layout Optimization

Another problem in layout generation occurs during
symbolic-to-geometric mapping. Here, the layout is de-
scribed by using symbols and their relative locations
(symbolic layout). The next step is to map the symbolic
layout into a set of real shapes. This process determines
the absolute location of the shapes, and may result in ex-
tra spaces due to design rule constraints [16].

The two problems described subsequently deal with the
issue of symbolic layout modifications during the sym-

1180

— — — — —
row 1 SR REREHEREHE REHERE!
row 2 ul v vl W] lw] 1x)six] fwlsix] |z
row 3 il 1k] Ik i ik]| [mfs)m] [nlilo] In
hd _— et
(a)

— — - — —
row 1 el |b| Ib] |a):|b] |al laf tel jc] |Q
row 2 ul (v] {v] vlsl=] W] W) 1] 1] |z
row 3 SIRINEISENHER L RE R R

- - - - -

(b)
Fig. 1. Two possible solutions for a multirow transistor flip problem: (a)
nonoptimal solution (three gaps); (b) optimal solution (one gap).

bolic-to-shape conversion stage. The modifications we
deal with are local relocations of symbolic objects to avoid
design rule violations. This results in space reduction. For
some technologies, gate-contact to gate-contact spacing
rules may be larger than gate-to-gate spacing rules. As a
result, a uniform grid for all physical layers is too restric-
tive. The minimum distance between two adjacent con-
tacts on gates forbids them to reside on two horizontally
adjacent grid points. In the sequel, we discuss two ways
to solve this problem.

1) Optimal Vertical Contact Relocation: One way to
solve this design rule problem is to shift a contact verti-
cally to an upper or lower vacant track, if one is available.
Fig. 2(a) shows the wiring part of a symbolic layout.
There, devices are aligned vertically, and this alignment
must be preserved to enable vertical connections between
devices. Wires and contacts can be assigned only to pre-
defined wiring tracks within each row. We restrict our
discussion to those wires whose endpoint is connected to
a transistor gate by means of a metal-to-polysilicon con-
tact. Then, if two contacts reside on the same track in two
consecutive columns, shifting one of them to another track
(if possible) will resolve the conflict, and thus will avoid
an extra spacing. This requires an extra orthogonal piece
of metal to bridge the new contact track and the original
wire track, as shown in Fig. 2(b) and (d). See Fig. 2(c)
and (d) for nonoptimal and optimal solutions, respec-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 8, AUGUST 1993

tively. Note that the contact locations are bounded to fea-
sible values only; that is, a contact cannot be located on
a track that will cause a short-cut with another net [see
Fig. 2(b)].

Formally, let C be the poly-to-metal contact matrix in
a symbolic form:

11
C",j = 0,

Assume that every row i, 1 < i < m, contains k wiring
tracks. Let the wire segment to which the contact ¢; ; has
to be connected reside on track ¢ within row i. Let o; ; and
B;,; be the numbers of the lowest and highest vacant
tracks, respectively, on which ¢; ; can be legally relo-
cated. In other words, tracks o; j, o; ; + 1, ++ , ¢t — 1,
Lo LB 1, B;,j» are vacant at column j. Then, the
set s; ; of legal positions for each contact will be defined
ass; ;= {a; ;, - - -, B; ;}, and the decision variables will
be represented by an m X n matrix X:

{t €5,
x,"j =
0,

Let f be a penalty function defined on two consecutive
columns as follows:

S -1 X j)

if there is a contact in row i and column j.

otherwise.

ifC,"j = 1.

otherwise.

1, if (ci,j—l =G = 1) and (x,"j_l = x,-,l-).
0, otherwise.

Then the objective function that measures contact-to-con-
tact conflicts is given by

FX) = j=22 m;gf {fOx 15 %)}

The optimal vertical contact relocation problem is to min-
imize F(X).

2) Optimal Horizontal Contact Offsetting: Another
way to handle the contact adjacency problem is by mov-
ing the contacts off-grid. In some technologies, offsetting
the left contact to the left and the right one to the right
yields the legal distance between them. This offsetting is
large enough to avoid design rule violation, and small
enough to keep the contact connected to the gate below
it, without moving the devices apart on the grid.

A more complex situation occurs when a sequence of
horizontally adjacent contacts exists in one or more rows.
Obviously, not all the conflicts can be resolved by the
preceding contact offsetting, and some extra grid spacings
have to be inserted. As in the former example, this area
penalty is being paid in all the rows simultaneously.
Therefore, the problem is to decide about the contact off-
setting such that the unresolved contact adjacencies can
be handled with a minimal number of column insertions.
See Fig. 3 for an example.

As before, assume that every row i, 1 < i < m, con-
tains kK wiring tracks, and let ¢ (1 < ¢ < k) denote a spe-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 8, AUGUST 1993 1181

row 1

(@)

row 3

©)

row 3

. contact
wire
[penalty
row 1 — | l
. lI
®) row 2
~
row 3 jf‘—-. T
e
row 1 ﬂ
() —3 p———
row 2

row 3 ‘_J.

Fig. 2. Solving the multirow contact adjacency problem by vertical relocation. (a) initial routing (no contacts); (b) illegal
solution; (c) nonoptimal solution (five penalties); (d) optimal solution (three penalties).

(@)

()

row

row

row

row

row

row

+ & + + & +

|

grid point

contact

penalty

4 & & @ @

& & & @
+ & + + ®
B+ + & +
£ + # & +

« + + #

Fig. 3. Solving multirow contact adjacency problem by horizontal offsetting. (a) nonoptimal solution (four penalties); (b) op-
timal solution (one penalty).

1182

cific track within the row. Let C be the poly-to-metal con-
tact matrix in a symbolic form.

f
C,"j =
0’

The decision variation are represented by an m X n
matrix X. Let x; ; indicate whether a contact c; | is shifted
to the left, unshifted, or shifted to the right.

1, if (¢; ; > 0) and offset to left.
2, if (¢;; > 0) and no offset.

there is a contact in row i and column
J residing on track ¢.
otherwise.

3, if (¢c;, ; > 0) and offset to right.
0, otherwise.

The local cost resulting from two consecutive contacts is
defined as

f(xi,j—l’xi,j)

1, if (ci‘j—l = ci,j > O)
= { and (x,',j_I € {2, 3} Orx,')j € {l, 2})
0, otherwise.

Then, the objective function that measures area penalty
(in grid units) due to contact-to-contact conflicts is given
by

FOO) = % max { £y 5.}

The optimal horizontal contact offsetting problem is to
minimize F(X).

III. SOLVING THE GENERAL MULTIROW PROBLEM

Although the preceding problems reflect different as-
pects of VLSI layout optimization, Section IT showed how
they are all mapped to the same optimization problem. In
the following, the problem is investigated to provide the
basis for an algorithm for its solution.

The idea behind the algorithm is to delay the first pen-
alty payment to the rightmost possible column. Once a
penalty is being paid, the remainder of decision variables
are considered as a new, independent problem.

A. Some Definitions

Assume that X is an m X n matrix of variables x; ;, in
which each variable may take a value from a predefined
finite set s; ;, namely,

x,-‘jes,»‘j, ISlsm,ISJSn

It is assumed that s; ; < {0, - - - , k}, where k is a small
integer. According to the definitions in the previous sec-
tion, in our three problems £ < 4. Let us define X as the
set of all legal matrices X:

X é {X'Vl <i< m, 1 S] = n:x,»,jesi,j}.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 8, AUGUST 1993

Foreachl <i <mand2 <j < n, define f; ; as a two-
valued function, operating on two horizontally adjacent
variables in X:

L i@ X s oy X s = {0, 1},

Now consider a mathematical program, reflecting the
property that once a penalty occurs in a row, it affects the
whole column, regardless of what value f has in other
TOWS.

Problem 1: Minimize:

FOO = % max {f,;00,-1 %)}

subject to
XeX

An optimization of this form has the property that the
interdependency between the rows of X is only quantita- ~
tive, that is, the contribution of a variable to the total cost
depends on the values of its neighbors and on the contri-
butions made by other variables in the same column, but
not on the actual values of variables in other rows. The
name quantitative dependency is suggested for this prop-
erty.

In the sequel, an algorithm will be presented to solve
this problem in time complexity O (mnk?).

One may look at the jth term of the summation in Prob-
lem 1 as a penalty that may be paid between columns
j — 1 and j, depending on the values of X in these col-
umns.

Before solving Problem 1, some definitions are in or-
der:

Definition 1: F* is the minimum value of the objective
function:

F* £ min {F(X)}.
XeX

Definition 2: F(X, j,, j,) is the contribution to F(X)
made by a submatrix of X, ranging from column j, to col-
umn j,:

i

FX,jij) & | 2

m
Jr+1 r,n=ai({fiiCj—1, %}

Definition 3: F*(ji, j,) is the minimum of the contri-
bution to F(X) made by a submatrix of X, as defined in
Definition 2:

F*(ji1, j2) & min {F(X, ji, j»)}.
XeX
It follows from the above definitions that F* £ F*(i, m).

B. ‘‘Delay the Penalty as Much as You Can’’ Is an
Optimal Strategy

The following discussion proves the optimality of de-
laying the penalty payment as much as possible:

Lemma 1: F*(p, q) is monotonous, that is, if j, < j,
< js =< ja (i.e., [J2, J3] S [J1; jal then:

F*(ji, ja) =2 F*(jp, j3)

FELDMAN ez al.: ALGORITHM FOR MULTIROW LAYOUT PROBLEMS

Proof: 1t follows from the preceding definitions, that
for every X there is.

FX, j1sja) = F&X, ju, jo) + FX, jz, J3) + FX, js, ja).

Since F(X) and hence F* are always nonnegative, it fol-
lows that

F*(jisJa) 2 F*(ji,) + F*(ja, j3) + F*(js, ja)-
Q.E.D.

Definition 4: Assume that 1 < j < n. Considering all
the possibilities for X, let N(j) denote the next penalty
location, which is the first column where a penalty is man-
datory, starting at column j.

N(j) = mlax {l|3a X FX, j, 1) =0}
j=l=n
Note that N(j) is always defined, since by definition: F(X,
J»Jj) = 0. The procedure NPL listed in Fig. 4 computes
N(j) and assigns proper values to columns j,j + 1, - - -,
N(j)—1,N(j)of X.
Theorem 1: The following recursion holds for F*(j,

n):

F*(j,n) = {0’ e
I 1+ F*NG) + 1,1, N(G)<n

Proof: If N(j) = nthen, from the definition of N(j)
there is an X for which F(X, j, n) = 0, hence F*(j, n)
= 0.If N(j) < n, we show first that:
a)F*(j,n) <1+ F*(N(j) + 1, n): Since F*(j, n) is
a minimum value, we only need to show that there exists
some X for which F(X, j,n) = 1 + F*(N(j) + 1, n).
Denote by X'’ a configuration for which F(X’, j, N(j))
= 0 [such an X' exists due to the definition of N(j)]. In
addition, denote by X" a configuration such that F(X",
N(j)+1,n) =F*(N(j) + 1, n). Now let us superpose
X" and X" to create X ” by taking columnsj, « -+ , N(j)
from X' and columns N(j) + 1, - - - , n from X". (Col-
umns 1 - - - j — 1 are irrelevant from the matter.) Due to
the construction of X", the following three statements
hold:

D FX™,j,N(j) =0
2) FX”,N(j),N(j)+ D =1
3) FX”",N(j)+1,n)=F*N(j) + 1,n)

It follows that:
F*(j,m) = FX", j, n)
=FX",j, NG + X", N(j), NG) + 1)
+ FX",N@(j)+ 1,n)
<1+ F*WN() + 1, n)

b) F*(j,n) =2 1 + F*(N(j) + 1, n): From Lemma 1,
F* is monotonous, so we have.

F*(j,m) 2z F*(j,N(j) + 1) + FX(N(j) + 1, n).

But F*(j, N(j) + 1) = 1, since by definition N(j) is
the rightmost column for which a penalty (f = 1) can be

1183

Function NPL(j):integer;
var STOP: boolean;
begin
(* 1. Find Nezt Penalty Location and assign back-values *)
N(j) =
STOP:= false;
while (N(j) < n) and not{STOP) do
if(Vie(1,..., m}3u € s, : backli, N(j),u] # ¢) then
begin
NG) =N +1;
fori:=1tomdo
for all v € s, n;) do
u' 3u’ € sin(j)-1 such that:
(N(j) = 7 or back[i, N(j) — 1,w] # ¢) and

back(i, M),] Jinp (v, v) =0
¢ otherwise
end
else STOP := true;
NPL := N(j);

(* 2. Construct a partial solution for the columns [j,.. ., N(@j)=NPL(j) ")
fori:=1tomdo
find a o’ such that (4’ € s; n(;)) and (back[i, N(j),u] # ¢);
Zing) =
for t := N(7) — 1 downto j do
fori:=1tomdo
4 := back[i, ¢, z;441)
end;

Fig. 4. Computing NPL ().

avoided. Hence.
F*(j,n) =21+ F*(N(j) + 1, n).

Composing claims a and b completes the proof of the
theorem. Q.E.D.

C. Implementation

In the following we show a detailed implementation of
an algorithm induced by Theorem 1, which is based on a
recursive call of a function F*(j, n) (see Fig. 5) that
computes a partial optimal solution. When called with
j = 1, it computes the optimal value F*(X) and, as a by-
product, proper values are assigned to X. This function
calls another function, NPL (j) (see Fig. 4) to determine
the column where the next penalty must be paid, and to
assign proper values to the variables of X between col-
umns j and N(j).

The inputs for function NPL are j is the starting col-
umn, f; ;(x; ; 1, X; ;) the local cost functions, and s; ; the
set of values that variable x; ; may take, s; ; € {1, - - -,
k}.

The algorithm proceeds from left to right in a greedy
manner; it first scans the input matrix from column j to
the right, until it finds a column where a penalty must be
paid. The term greedy refers to the penalty location de-
cisions, which are being taken ‘‘on the fly’’ in the forward
scan. Then, the optimal partial solution is retrieved by
going backward from column N(j) to column j. This re-
quires a backward pointer to indicate for each value v of
a variable for which f may still get a zero value, its orig-
inating value in the previous column. These backward
pointers are constructed during the forward (left to right)
scan, and implemented by the data structure back:

!

u', u' € s;;_, such that:
back[i,j — 1, u'] # ¢
and f;;(u’', v) = 0.

b, otherwise.

backli, j, v] =

1184

Function F*(j, n):integer;
var j: integer;
begin
j':=NPL(j);
ifj”=nthen F*:=0
else Fr=14+F(y+1,n);
end;

Fig. 5. Computing F*(j, n) recursively.

column: 1 10 20

Fig. 6. Initial nonoptimized layout; width = 22 columns.

backli, j, v] = ¢ means that assigning x; ; the value v
necessarily results in a penalty between columns j — 1
and j.
The following corollary results from Theorem 1:
Corollary 1: Calling the function F*(j, n) withj = 1
solves Problem 1.
Proof: Follows from two facts:

a) The function F*(j, n) realizes the recursion for-
mula of Theorem 1.

b) The function NPL indeed finds a column that obeys
Definition 4. This follows from the fact that upon
leaving the ‘‘while’’ loop, the variable N(j) is set
to the column with the highest index that can still
be reached from j through zero-cost transitions, and
is then returned as the function’s value. The partial
solution X; ... y(;, is obtained by a backward re-
trieval through the values of back[i, t, v]. Q.E.D.

To evaluate the time complexity of the algorithm, note
that there are m rows and n columns in X. For each x; ;
the algorithm checks all possible values of x; ;(s; ;) against
all possible values of x; ;_(s;;_). Since Vi, j there is
|s; ;| = k, it turns out that the overall time complexity is
O (mnk?).

D. Results

The effectiveness of the algorithm described above is
demonstrated in the CMOS cell in Figs. 6-9. There, the
three optimization problems were addressed in the pro-
cess of cell generation. In Fig. 6 a nonoptimized layout
of a three-way NAND CMOS cell is shown. Its width is
22 columns. By applying the optimal flip algorithm, the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 8, AUGUST 1993

[=f=——mmm

column: 1 10 20

Fig. 8. Layout after optimal vertical contact relocation; width = 16 col-
umns.

column: 1 10 20

Fig. 9. Layout after optimal horizontal contact offsetting; width = 14 col-
umns.

layout in Fig. 7 results, in which the total cell width is
reduced by two columns. Next, vertical contact relocation
was employed, yielding an improvement of four columns,
as shown in Fig. 8. Finally, the horizontal contact offset-

FELDMAN et al.: ALGORITHM FOR MULTIROW LAYOUT PROBLEMS

ting was introduced to create the layout in Fig. 9, where
additional gain of two columns was achieved. Totally,
right columns were reduced from cell width by applying
our three algorithms in sequence.

IV. CoNncLusIONS

This paper addressed several layout problems occurring
in various stages of a cell-generation process, such as de-
vice placement, intracell routing, and symbolic-to-shape
mapping. We proved that this variety of problems can be
captured in a single mathematical model that can be solved
optimally in time linear in the size of the problem. The
efficiency of the proposed algorithm is demonstrated in
multirow fashioned layouts, such as those occurring in
datapath architectures. The inherent property common to
all of the layout problems discussed herein is that a local
area penalty occurring in one row propagates through the
rest of the rows. It was proved that problems having this
property can be solved in linear time to minimize the total
area penalty in the layout.

The model in this paper assumes that a single layout
decision has a binary penalty: 1, if a space has to be in-
serted; 0, otherwise. This is a practical model for gridded
layouts. For nongridded ones, a more general penalty
model might be necessary. It is an open question whether
the theory presented here may apply in such a case. It
might be worth identifying more layout problems with
similar properties, so that could benefit from the optimal-
ity and efficiency of the proposed algorithm.

REFERENCES

[1] R. Bar-Yehuda, J. A. Feldman, R. Y. Pinter, and S. Wimer, *‘Depth-
first-search and dynamic programming algorithms for efficient CMOS
cell generation,”’ IEEE Trans. Computer-Aided Design, vol. CAD-
8, pp. 737-743, July 1989.

[2] S. Ben-Yehuda and R. Pinter, ‘‘Symbolic layout improvement using
string matching based local transformations,”’ in Proc. Decennial
Caltech Conf. VLSI, Mar. 1989, pp. 227-239.

[3] J. Bhasker and S. Sahni, ‘‘Optimal linear arrangement of circuit com-
ponents,”” J. VLSI Computer Syst., vol. 1, pp. 87-109.

[4] S. Chakravarty, X. He, and S. S. Ravi, ‘‘Minimum area layout of
series-parallel transistor network is NP-hard,”’ IEEE Trans. Com-
puter-Aided Design, vol. CAD-10, pp. 943-949, July 1991.

[5] C. K. Cheng, ‘‘Linear placement algorithms and applications to VLSI
design,’’ Networks, vol. 17, pp. 439-464, 1987.

[6] D. D. Hill, ‘“Sc2—A hybrid automatic layout system,”’ in Proc. IC-
CAD, 1985, pp. 172-174.

[7]1 C. Hwang, Y. Hsieh, Y. Lin, and Y. Hsu, *‘An efficient layout style
for 2-metal CMOS leaf cells and their automatic generation,’” in Proc.
28th ACM/IEEE Design Automation Conf., pp. 481-486.

[8] J. F. Lee, ‘A layout compaction algorithm with multiple grid con-
straints,”’ Research Report RC 16480 (#73183), IBM, Jan. 25, 1991.

[9] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Lay-
out. New York: Wiley, 1990.

{10] Y. Liao and C. K. Wong, ‘‘An algorithm to compact on VLSI sym-
bolic layout with mixed constraints,”” IEEE Trans. Computer-Aided
Design, vol. CAD-2, no. 2, pp. 62-69, Apr. 1983.

[11] R. Nair and A. Stauffer, ‘‘Optimal transistor orientation in CMOS

1185

cell layout,”” Research Report RC 13419 (#60053), IBM, Jan. 14.
1988.

{12] R. Nair, ‘“MLG-A case for virtual grid symbolic layout without com-
paction,”’ Proc. IC-CAD, 1987, pp. 180-183.

[13] R. D. Fiebrich, Y. Z. Liao, G. Koppelman, and E. Adams, *‘PSI: A
symbolic layout system,’’ IBM Res. Develop., Sept. 1984.

[14] E. Seewann, S. L. Runyon, R. K. Montoye, Q. Nguyen, and J. C.
Ridings, ‘“VLSI circuit design for the RISC system/6000 processor,”’
IBM RISC System/6000 Technology, SA23-2619, 1990, pp. 98-104.

[15] T. Uehara and W. M. van-Cleemput, ‘‘Optimal layout of CMOS
functional arrays,”’ IEEE Trans. Computers, vol. C-30, pp. 305-312,
May 1981.

[16] N. Weste and K. Eshragian, Principles of CMOS VLSI Design.
Reading, MA: Addison-Wesley, 1985, pp. 271-274.

[17] S. Wimer, R. Y. Pinter, and J. A. Feldman, ‘‘Optimal chaining of
CMOS transistors in a functional cell,”’ IEEE Tran. Computer-Aided
Design, vol. CAD-6, no. 5, pp. 795-801, Sept. 1987.

Jack A. Feldman received the B.Sc. and M.Sc.
degrees in computer science from the Polytechnic
Institute of Bucharest, and M.Sc. degree in elec-
trical engineering from the Technion—Israel In-
stitute of Technology, Haifa, Israel, in 1983 and
1988, respectively.

In 1985 he joined the IBM Haifa Research
Group, where he has been research staff member
since 1988. He was also a teaching assistant in the
Electrical Engineering Department at the Tech-
nion. His research interests include combinatorial
optimization, computational geometry, layout for integrated circuits, and
CAD system integration.

Israel A. Wagner received the B.Sc. degree in
computer engineering from the Technion—Israel
Institute of Technology, Haifa, Israel, in 1987,
cum laude, and M.Sc. degree in computer science
from the Hebrew University, Jerusalem, Israel, in
1990, cum laude.

In 1990 he joined the IBM Haifa Research
Group, where he has been research staff member
since 1991. He was also a teaching assistant at the
Hebrew University and a research engineer at
General Microwave, Jerusalem, Israel. His re-
search interests include manual and automatic VLSI design, computational
geometry, and graph algorithms.

Shmuel Wimer received the B.Sc. and M.Sc. de-
grees in mathematics from Tel-Aviv University in
1977 and 1980, respectively, and the D.Sc. de-
gree in electrical engineering from the Technion—
Israel Institute of Technology, in 1988.

In 1977-1981 he worked for the Israeli Aircraft
Industry in the area of simulation and modeling of
aerodynamic systems. In 1981 he joined the VLSI
design center of National Semiconductor in Tel-
Aviv, and was there until 1985 in the area of de-
velopment of CAD tools for logic simulation and
optimization, and layout of VLSI circuits and systems. In 1985 he joined
IBM Israel Science and Technology and Scientific Center, as a research
staff member, where he works on development of tools and algorithms for
the physical design of VLSI circuits and systems. From 1989 to 1992 he
managed the physical design group, and he is presently a program manager
for VLSI physical design.

