
I37 IhEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 8,  NO 7,  JULY 1989 

Depth-First-Search and Dynamic Programming 
Algorithms for Efficient CMOS 

Cell Generation 
REUVEN BAR-YEHUDA, JACK A. FELDMAN, RON Y. PINTER, A N D  SHMUEL WIMER 

Abstruct-We describe a new algorithmic framework for mapping 
CMOS circuit diagrams into area-efficient, high-performance layouts 
in the style of one-dimensional transistor arrays. Using efficient search 
techniques and accurate evaluation methods, the huge solution space 
that is typical to such problems is traversed extremely fast, yielding 
designs of hand-layout quality. In  addition to generating circuits.that 
meet prespecified layout constraints in the context of a fixed target im- 
age, on-the-fly optimizations are performed to meet secondary opti- 
mization criteria. A practical dynamic programming routing algo- 
rithm is employed to accommodate the special conditions that arise in 
this context. This algorithm has been implemented and is currently 
used at IBM for cell library generation. 

I. INTRODUCTION 
HE AUTOMATIC generation of high-performance T integrated circuits in the layout style of a one-dimen- 

sional transistor array, as suggested by Uehara and 
vancleemput [lo], has been studied recently from a num- 
ber of different angles. In some cases [6], [5], [ 111, the 
primary goal was to minimize the amount of diffusion re- 
quired in the artwork, while other considerations, such as 
reducing internal wiring and accommodating performance 
constraints, were handled (if at all) as secondary issues. 
In other cases [4], [ 11, the order of importance was re- 
versed: another criterion, such as low routing density or 
minimal wire length, was the driving goal, and then a 
considerable amount of time was spent minimizing dif- 
fusion gaps. In both cases, the primary goal was obtained 
reasonably efficiently, but accommodating other concerns 
came at a significant running-time cost (as the sizes of the 
circuits grew larger). 

In this paper, we propose an algorithmic method in 
which the generation of the layout is driven by a set of 
optimization criteria and composition constraints making 
it possible to control various aspects of the layout such as 
diffusion breaks, metal utilization, and wire length. The 
solution space is expanded by a depth-first-search (DFS) 

Manuscript received March 28. 1988; revised October 14, 1988 and 
December 20, 1988. The review of this paper was arranged by Associate 
Editor A. E. Dunlop. 

R .  Bar-Yehuda is with the Computer Science Department, Technion, 
Haifa, Israel, and with the IBM Israel Scientific Center, Technion City. 
Haifa 32 000, Israel. 

J .  A. Feldman, R. Y. Pinter, and S .  Wimer are with the IBM Israel 
Scientific Center, Technion City, Haifa 32 000, Israel. 

IEEE Log Number 8927530. 

procedure using the constraints to effectively reduce the 
branching factors, and applying the optimization criteria 
to sharply bound and eliminate unnecessary expansions. 
Particular care has been taken in choosing the implemen- 
tation method so as to provide truly optimal solutions 
when possible in linear time: several incremental dynamic 
programming calculations are conducted on the fly, and 
the supporting data structures are maintained efficiently. 

The results of our technique are layouts that fit tight 
intracell routing requirements, utilizing diffusion adjacen- 
cies wherever possible to save layout acea and meeting 
user-specified performance constraints. In addition, the 
algorithms proposed here can handle arbitrary circuit 
graphs, as opposed to several restricted algorithms that 
can handle only series-parallel circuits [6], [ 5 ]  or only 
circuits having an equal number of P-type and N-type 
transistors. For example, the CMOS latch shown in Fig. 
1 was laid out as shown in Fig. 2, using only four routing 
tracks, two over the P transistors and two over the N tran- 
sistors, relatively short metal straps, and as many diffu- 
sion adjacencies as possible. The algorithms have been 
coded in Pascal, and were applied to an entire library of 
fairly large leaf cells containing several dozen transistors, 
each at substantial productivity gains. 

The rest of this paper is organized as follows. Section 
I1 defines the target image of the layout, explaining some 
of the constraints. Then we describe the algorithms in 
Section 111, and summarize the results in Section IV. 

11. THE LAYOUT IMAGE 

The image of the target layout affects both the con- 
straints and the optimization criteria that guide the gen- 
eration algorithm. Here is one possible setting, which will 
also be used as the framework for the layout algorithm as 
described in the next section. This image is illustrated by 
the layout shown in Fig. 3 .  

The transistors are arranged in two horizontal, par- 
allel rows-one for the P-type devices and the other 
for the N-type transistors. 
The transistors can be assigned only to fixed hori- 
zontal locations, in the manner of a grid, at a fixed 
pitch. 

0278-0070/89/0700-0737$01 .OO 0 1989 IEEE 



738 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL 8. NO 7. JULY 1989 

T 

......... . ........ .... .. ... .. ......_...... .._.. _ _ _ _ _  . .. _. ... . ...... ._ .,. . .. ... ... .. ... .. .... .. ..._.___. .. ......._. .. .. . . . .... 

-~ . ... . __  _ _ _ _  
Fig. I .  The circuit diagram for a CMOS latch 

Fig. 2 .  The layout of the CMOS latch from Fig. 1. This result was ob- 
tained by running the algorithm allowing two routing tracks on each side, 
with minimal stretching of the diffusion runs. 

Diffusion is used to connect adjacent diffusion ports 
(source or drain) on each row, and vertical polysili- 
con lines connect aligned gates. 
Diffusion breaks (on either side) may be instantiated 
as gaps or as isolation devices (transistors whose gate 
is connected to power, e .g . ,  [4]). Either way, a break 
incurs a significant increase in width. 
Internal routing is performed in one layer of metal 
over each row of transistors, using a fixed number of 
wiring tracks. The image presented in this work al- 
lows two wiring tracks on each side. 
Poly-metal contact is allowed on top of the active 
area of a transistor. 
A net connecting the P and N regions but having no 
aligned common gates in any P-N transistor pair re- 
quires the insertion of an additional vertical poly 
strip. This strip connects the portions of the net in 
both the P and the N regions, as illustrated by the 
left-most poly strip in Fig. 3.  

Fig. 3 .  A small cell, exemplifying the fixed image. Notice the internal 
routing and the isolation device. 

A reserved area is left between the rows for external 
routing, but it can be (and is, when possible) used 
for internal horizontal routing on poly between ad- 
jacent gates of the same net to reduce wiring density. 

Working with a (relatively) fixed image as the one de- 
scribed here has a number of advantages, as argued in [7]. 



BAR-YEHUDA et ul . :  DEPTH-FIRST-SEARCH A N D  DYNAMIC PROGRAMMING ALGORITHMS 739 

Control: The algorithms used to generate cells have 
full control over all parameters of the layout, thus 
making it possible to predict the final layout. In con- 
trast, the final layout in virtual grid is somewhat un- 
predictable since compaction is used as a post-pro- 
cess. 
Complexity: A fixed grid provides a succinct and 
clear level of abstraction of the physical layout, 
thereby making the layout algorithms easier to de- 
velop and maintain. 
Composition: When library cells are combined into 
a macro, much simpler layout tools than complex 
placement and routing techniques can be used in such 
a structured environment. The composition of cells 
into larger designs is smoother and, due to the re- 
duction in interconnect, most of the time is also more 
space efficient. 

In addition, the utility of such an image is enhanced when 
having to formulate constraints and objectives other than 
just minimizing diffusion breaks or cell density, namely, 
more accurate physical design measures such as the num- 
ber and type of contacts, routing jogs, and wire lengths. 

111. THE LAYOUT ALGORITHM 
The layout algorithm has three main components, as 

follows: 

1) The primary driver is a DFS [ 3 ]  routine, expanding 
potential transistor placemenfs (or orderings) along 
the generated array. This driver generates a virtual 
search tree on which a branch-and-bound procedure 
is performed. Only placements that can be subse- 
quently routed are generated. 

2) During the DFS expansion, the internal optimal ori- 
entation of the transistors in each potential place- 
ment is determined on the fly. The computation of 
these orientations is done in constant time for each 
new node that is expanded. 

3 )  The internal, detailed routing of the best placement 
that was found by the DFS is then performed. 

Each component is now described in greater detail in the 
following subsections. 

A .  Depth-First-Search Expansion of Transistors 
Let N , ,  * * . , N,, and P , ,  * * * , P,, be the N-type and 

P-type transistors of the input circuit, respectively (if n 
# p we introduce dummy devices, whose number and 
type resolve the difference). The set of all possible place- 
ments can be generated using an enumeration tree, where 
each node (except the root) is marked by an ordered pair 
( Pi, N, ). If each transistor appears exactly once on the 
labeled path from the root to a leaf, then such a path rep- 
resents a (say) left-to-right assignment of the transistors 
in the layout. A path from the root to an internal node 
corresponds to a partial assignment. Note that each label 
stands for all four possible orientations of its associated 
P-N pair, each having a (possibly different) cost. We ex- 

plain in Section 111-B how the best of these orientations is 
picked; the cost of a partial layout depends on a number 
of layout characteristics that can be computed dynami- 
cally, such as 

1) number of diffusion breaks, 
2) alignment of transistors having the same signal for 

a gate (to facilitate vertical polysilicon connec- 
tions), 

3 )  total wire length. 

These measures are combined into a lexicographic objec- 
tive function, according to the above order. The location 
of the vertical poly strips that are inserted to connect nets 
residing on both regions (see the layout image) are deter- 
mined in the placement phase, since their insertion might 
introduce a break in the diffusion run and affect the wiring 
density. Therefore, their optimal location is found by con- 
sidering them as if they were transistor pairs. 

A simplified variation of the DFS algorithm is given 
here (using pseudo-Pascal notation): 

v: =root; 
repeat 

while v has unvisited outgoing, acceptable edges do 

pick (v,u) as the unvisited outgoing edge of 

v :=u;  (* forward step *) 

begin 

least cost; 

end; 
if (v is a leaf) and (Cost(v) is acceptable) 

then begin 
record solution; 
update acceptability threshold; 

end; 
v : = the father of v in the tree; (* backward step *) 

until the root has no unvisited outgoing edges; 
output (minimal cost solution); 

The convergence rate of the DFS procedure is mainly 
affected by the following factors: 

1) The branching strategy: It is desirable to reach a 
good solution as soon as possible. This is obtained 
by selecting the order of expanding the outgoing 
edges as those that yield the smallest increment in 
the cost of the partial placement. 

2 )  The bounding cost: Whenever the cost of a partial 
solution exceeds the cost of the best complete so- 
lution reached so far, backtrack takes place. There- 
fore, the immediate low-cost solution obtained in 
item 1 further prunes the search tree. 

3 )  The bounding constraint: The number of feasible 
edges that can be extended from each node is 
strongly bounded by wiring density considerations. 

An efficient data structure is used to control the order in 
which the edges emanating from each node are visited: 

1) A number of linked lists are threaded among the de- 
vices, and each is organized according to one of the 



740 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL X. NO. 7. J U L Y  1YXY 

ingredients contributing to the cost function; hence 
the least-cost computation is fast. 

2) All density recalculations are done incrementally, 
using a constant number of operations per node. 

Every forward step of the DFS generates a new virtual 
edge. There are two possibilities. In the first one all the 
edges emanating from a node (transistor pair) are gener- 
ated and sorted according to their order of preference prior 
to the search, and then stored in the memory. Since there 
are O ( n )  transistor pairs, and each of them can be con- 
catenated to other 0 ( n  ), thus resulting in 0 ( n  ) edges per 
node, this approach demands O (  n 2 )  space. Since each 
edge is traversed only once in each direction, the time 
complexity of the algorithm is linear in the number of 
edges (and hence the number of nodes) in the traversed 
tree. In the second alternative only the nodes along the 
path from the root are stored in the memory, thus de- 
manding an O ( n )  space. This, however, spoils the time 
complexity since whenever a node is traversed in the for- 
ward direction, the selection of the next edge to be trav- 
ersed necessitates regeneration of all the possible edges 
and selecting among them the desired one. This adds an 
O ( n )  factor to the time complexity. Since run time is the 
limiting factor and for practical problems an O (  n 2 )  space 
requirement is easily accommodated, the first approach 
was implemented. 

It is important to note that imposing constraints on the 
resulting layout, as opposed to minimizing a layout mea- 
sure, can be gracefully incorporated into the DFS scheme. 
Moreover, it speeds up the DFS expansion. For example, 
there is no point in minimizing the wiring density as long 
as it is less than the allowable maximum. 

B. Optimal Orientation of Devices 

During placement, several possible orientations of the 
devices in each growing solution may be feasible at the 
same time, as long as the wiring density of the P and N 
sides does not exceed the given bound. We would like, 
however, to keep only the best solution, i.e, the one 
yielding the most diffusion abutments. 

This “optimal flip” problem was addressed in [4], and 
a branch-and-bound-placement algorithm, which enu- 
merates all the 22“ possible orientations (for a circuit with 
2 n  devices), was suggested. This problem was also ad- 
dressed implicitly in [ l l ]  at the pairing stage, which is 
performed before placement. In this subsection we pre- 
sent a dynamic programming algorithm that solves this 
optimization problem in linear time. Moreover, our so- 
lution can be integrated into the DFS procedure, requiring 
constant time per node expansion. For the sake of presen- 
tation, we describe the scheme as if it were applied to a 
given sequence of pairs realizing the whole circuit, but it 
is easy to see how it can be combined with the DFS. 

The algorithm proceeds from left to right. At each step 
a new pair is processed and concatenated in its optimal 
orientation to the previously processed pairs. A device is 
in the “0” orientation if its left terminal is the drain and 

pal‘ pair 4 pair k + l  p a r  1 

d::’ 
0 0 .  0 

0 0 0 0 
0 0 1 0  0 0 

“k * * 1  

Fig. 4 .  The structure of the optimal flip dynamic programming algorithm. 

the right terminal is the source, or in the “I” orientation 
if the device is flipped. The orientation of a pair is de- 
noted by the concatenation of the P and the N orienta- 
tions, and the set ‘k = { 00,01,10, l l } denotes all possi- 
ble orientations of a pair. Let Pp,  where 1 5 i 5 n and 
U E ‘k, denote that the ith P-N pair from the left is in the 
U orientation (the superscript is omitted when the orien- 
tation is immaterial). Let d:;:, I denote the penalty result- 
ing from concatenating Py+, to P:. Fig. 4 illustrates all 
the possible concatenations of kth and k + l th pairs. 
Every arc is assigned with an appropriate penalty, indi- 
cating whether the pairs in the corresponding orientation 
abut. 

, P k -  ,, P ; ) ,  1 I k I n ,  U 
E 9, denote the k leftmost pairs whose orientation has 
been found so as to minimize the cost of their implemen- 
tation, where the rightmost P-N pair is in orientation U .  

Let cz denote the cost of s[, resulting from the individual 
penalties of consecutive pairs. 

Since the diffusion ports of a new concatenated pair may 
interact only with those of it5 immediate predecessor, it  
is obvious that given si7, the optimal orientation of P k +  , 
is independent of the orientations of all the P, ,  1 I i I 
k - 1.  Therefore, the cost of s;, I ,  U E \k, is given by 

Finally, let s r  = (PI ,  

The above observation yields a dynamic programming 
procedure to find the optimal orientation for Pk + I .  The 
overall structure of the dynamic programming procedure 
is illustrated in Fig. 4. After the nth step is done, the 
optimal orientation is obtained by taking s z  yielding the 
minimum among cg0, . . , cf,’. From this final state we 
retrieve the optimal orientation by going backward from 
k = n down to k = 1. Note that the calculation in (1) is 
performed four times for each pair, thus requiring O ( n )  
time altogether for a given pair order. Since s‘ I is ’ a se- 
quence whose length does not exceed n ,  only O (  n )  space 
is required. 

C.  Routing 
At this stage, some of the internal connections were al- 

ready taken care of by abutting adjacent diffusion ports, 
and others are handled trivially using vertical connections 



BAR-YEHUDA YI u l . .  DEPTH-FIRST-SEARCH A N D  DYNAMIC PROGRAMMIK 

on poly between aligned gates. Also, all other connec- 
tions between nets that reside on both rows (and these are 
rare) are realized by vertical poly lines whose optimal lo- 
cation is determined in the placement phase. as already 
described. The routing step deals with the wiring of the 
remaining connections that must be performed in the given 
tracks. The feasibility of the routing problem is guaran- 
teed due to the DFS in the placement, which backtracks 
whenever the wiring density is exceeded. However, some 
extra area may be encountered due to several spacing rules 
of the specific image described below. Therefore, the goal 
of the routing algorithm is to minimize this additional 
area. 

1) Contacts on the same track cannot be placed in con- 
secutive columns, even if they belong to the same 
net. This situation is illustrated in Fig. 5(a). A 
straightforward solution is to stretch the diffusion as 
shown in Fig. 5(b), thus introducing an extra area. 
A more efficient solution is given in Fig. 5(c) by 
using jogs. A real situation is shown in Fig. 3 on 
the leftmost side of the cell. 

2) The horizontal distance between a contact and a ver- 
tical metal wire that belong to different nets must 
exceed one unit. To satisfy this rule, the layout in 
Fig. 6(a) was stretched as shown in Fig. 6(b). A 
more efficient solution is illustrated in Fig. 6(c). No- 
tice that such a situation occurs in Fig. 3 .  

3) Contacts on two consecutive gates are not allowed 
on the outer track in either side. The violation in 
Fig. 7(a) can be resolved by stretching, as shown in 
Fig. 7(b), or, more efficiently, by searching for a 
solution in which the consecutive contacts are either 
on different tracks or on the inner track, as shown in 
Fig. 7(c). 

Since routing is allowed over the two transistor rows in 
a prescribed number of tracks, the situation seems remi- 
niscent of one-dimensional routing, for which the track 
assignment problem can be solved using interval graph 
coloring [8]. Such a solution restricts the metal to be in- 
stantiated as straight lines. Moreover, interval graph col- 
oring cannot obtain an optimal layout under the spacing 
rules mentioned above. Also, the above examples indicate 
that the jog introduction is beneficial. Consequently, an 
algorithm supporting jogs is in order. 

To handle this unique situation, we propose a dynamic 
programming algorithm which accomplishes the wiring 
whenever possible with minimal space insertion. A dy- 
namic programming approach has been proposed for the 
single-row routing problem (e.g., [9], [2]). The function- 
ality of our algorithm is to assign poly-to-metal and dif- 
fusion-to-metal contacts, and horizontal metal segments, 
to the wiring tracks. The vertical metal segments which 
implement the jogs are determined implicitly by this as- 
signment. To allow the introduction of jogs, we model 
the contacts as zero-length intervals, and break up wiring 
segments into unit-length intervals. Initially, each inter- 
val is assigned to its original x coordinate as was decided 

IG ALGORITHMS 74 1 

v - . Y  
X x z x  9 *  

X 
. . ?  

x & x  

(a) (b) (c) 
Fig. 6. Accommodating spacing rule no. 2 .  

M cuter 
N inner 

by the placement phase, while its y coordinate, namely, 
the wiring track to which it will be assigned, is not deter- 
mined yet. Then, the algorithm assigns the intervals to the 
wiring tracks and specifies the horizontal spacing. This 
way, zero-length and unit-length intervals originating 
from the same net may be assigned to different wiring 
tracks, thus creating jogs everywhere along the span of 
the net (internal points as well as end points). 

The dynamic programming algorithm proceeds as fol- 
lows. First, the zero and unit intervals are sorted accord- 
ing to their left-end coordinate, where ties are broken ar- 
bitrarily. Then, they are processed in their order one at a 
time. Let t denote the current step of the algorithm Z, the 
currently processed interval, and x ,  the left-end x coordi- 
nate of I , .  Since two items distant at more than two units 
are not affected by the spacing rules, only those intervals 
preceding I ,  whose right-end x coordinate is greater than 
or equal to x, - 2 may affect the decision to which track 
I ,  or later intervals will be assigned. This set of intervals, 
called the afecting intervals at time t ,  is denoted by A,, 
and is calculated as a preprocess. By definition, once an 
interval leaves A,, it cannot reenter to any A,. r > q. 

Evidently, the only information relevant to the assign- 
ment of I ,  and later intervals to the wiring tracks is how 
the intervals of A,  are distributed (permuted) among the 



742 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 8, NO. 7. JULY 1989 

wiring tracks. Let us identify a permutation of AI’s  inter- 
vals with a state of the dynamic programming procedure 
at time t .  To every state we associate two costs: a primary 
cost, which measures the minimal total horizontal spacing 
required so far to reach that state (due to the spacing rules 
discussed formerly), and a secondary cost, which mea- 
sures the total length of vertical wires that have been in- 
troduced so far, due to jogs. Also, for every state we as- 
sociate a vector whose ith element describes the total 
space inserted up to and including the original i x-coor- 
dinate, 1 I i I x,. 

Let SI denote the set of all the states after I, has been 
processed. Then, S I ,  I is generated as follows. For every 
state in S, the algorithm attempts to generate every feasi- 
ble continuation by assigning I,+ I to every wiring track. 
Every legal assignment defines a state of SI + I .  In the con- 
tinuation of a state of S, to a state of S I + ,  the spacing 
vector allows us to know whether or not a space must be 
inserted due to the current continuation. The spacing vec- 
tor of a state in SI+ is defined by the spacing vector of 
its predecessor state in SI and the space insertion (if any) 
resulting by the assignment of I, + I .  

Generally, several different states in SI may lead to the 
same permutation of A,  + I ,  thus defining identical states 
in S,, I .  Since we are concerned only with optimal solu- 
tions, the one yielding the lowest cost is saved, while the 
previous one is discarded. A tie in the primary cost is 
broken by the secondary cost. A tie in both of them is 
broken arbitrarily. After the last interval has been pro- 
cessed, the algorithm selects that state with the minimal 
cost, and the optimal solution is retrieved by going back- 
wards in time. 

The number of states at each time step is defined by the 
different permutations of the affecting intervals, whose 
number is proportional to the number of wiring tracks. 
This follows from the fact that k wiring tracks may oc- 
cupy at most k intervals, and when I , +  is assigned, only 
x,, x,, and x,- I affect the assignment. Since the inter- 
vals (contacts and unit-length wires) are processed one at 
a time, the overall time complexity of the algorithm is 
exponential in the number of wiring tracks and linear in 
the number of intervals. Practically, there are few wiring 
tracks, so the number of states at every time never ex- 
ceeds several hundred, which makes the dynamic pro- 
gramming approach attractive. 

In [9] the states were coded in a data structure called 
trie, which adds a factor of 0 ( k  log k )  to the time com- 
plexity, where k is the number of wiring tracks. We pro- 
pose to use a hashing function for the state coding, thus 
reducing the above factor to O ( k ) .  

IV. DISCUSSION 
We have described a new algorithmic method for laying 

out circuits from their schematics which has several ad- 
vantages over other published algorithms, especially in 
terms of running times and the quality of the layouts pro- 
duced. The algorithm has a clear formulation and at the 
same time is practical in the context of a cell generation 

Fig. 8.  A large cell, with more N-type than P-type transistors. 

tool. Our framework can accommodate additional opti- 
mization criteria as well as constraints that arise in certain 
design environments. 

The algorithms presented in this paper have been pro- 
grammed in Pascal. The typical run time for a 60-transis- 
tor circuit is a few seconds on an IBM 3090 machine, 
compared to several hours (or even days) needed by hand 
layout. To test the programs, an entire library (containing 
more than 300 cells) was generated automatically and the 
results were compared to an existing version that was done 
by hand. The whole process took one day (with one de- 
signer), compared to 3 months manually. In terms of 
quality (cell width and performance), the automatically 
generated cells were never worse-and were often bet- 
ter-than those created manually. The image of two wir- 
ing tracks on each side has been proved a practical one to 
comprise an extended set of leaf cells. Figs. 3 and 8 ex- 
emplify two typical cells, displaying features that were 
traditionally considered out of the scope for automatic 
tools, such as routing jogs, dealing with an unequal num- 
ber of P-type and N-type transistors, and polysilicon 
“bridges” between adjacent gates. 

The recent success of leaf-cell generators increases the 
demands for more powerful tools to handle much larger 
cells. Our experience indicates that for the transistor 
placement problem the DFS procedure reached its limit. 
Therefore, new directions such as partitioning, cluster- 
ing, and grouping must be employed to break the problem 
into smaller pieces which the DFS procedure can handle 
efficiently. As for routing, since the complexity of the al- 
gorithm is dominated by the number of wiring tracks, it 
is equally applicable for much larger cells. 

ACKNOWLEDGMENT 
The authors would like to thank I. Berger for his sup- 

port and encouragement, E. Gofman for his contribution 
to the ideas that led to the algorithm of Section 111-B, and 
to R. Nair of the IBM Watson Research Center at York- 
town Heights, NY, for making a layout back-end system 
available. They would also like to thank all the anony- 
mous reviewers for their helpful comments. 

REFERENCES 
[ I ]  J .  Bhasker and S .  Sahni, “Optimal linear arrangement of circuit com- 

ponents,” J .  VLSl Comput. Syst., pp. 87-109, 1987. 
121 D. Du, 0. Ibarra and F. Nevada, “Single-row routing with crossover 

bound,” IEEE Trans. Computer-Aided Design, vol. CAD-6, pp. 190- 
201, 1987. 

Rockville, MD: Computer Science 
Press, 1979. 

[3] S .  Even, Graph Algorithms. 



BAR-YEHUDA EI a l . :  DEPTH-FIRST-SEARCH AND DYNAMIC PROGRAMMING ALGORITHMS 743 

D. D.  Hill. “Sc2-A hybrid automatic layout system,” in Proc. IC- 

R. Muller and T. Lengauer. ”Linear algorithms for two CMOS layout 
problems,” in Proc.  Aegeun Workshop Comnpu/ing. July 1986. 
R. Nair, A.  Bruss. and J .  Reif, “Linear time algorithms for optimal 
CMOS layout.” in VLSI: Algorithms cttidArchirec.tur~s. P. Bertolazzi 
and F. Luccio, Eds. New York: Elsevier (North-Holland), 1985, 

R. Nair, “MLG-A case for virtual grid symbolic layout without 
compaction,” in Proc. ICCAD. 1987, pp. 180-183. 
T.  Ohtsuki et U / . .  “One-dimensional logic gate assignment and in- 
terval graphs,” IEEE Trans. Circuits Syst.. vol. CAS-26. pp. 675- 
684. 1979. 
R. Raghavan and S .  Sahani. “Optimal single row routing.” in Proc. 
ACM/IEEE Desigti Auromut. Cotif., 1982. pp. 38-45. 
T .  Uehara and W.  M .  vanCleemput. “Optimal layout of CMOS func- 
tional arrays,” IEEE Truns. Comput.. vol. C-30, pp, 305-312. 1981. 
S .  Wimer. R. Y .  Pinter, and J .  A.  Feldman, “Optimal chaining of 
CMOS transistors in a functional cell,” IEEE Truns. Computer-Aided 
Desigti, vol. CAD-6, pp. 795-801. 1987. 

CAD, 1985. pp. 172-174. 

pp. 327-338. 

Reuben Bar-Yehuda received the B Se . M Sc , 
and Ph D degree\ in computer science from the 
Technion-Israel Institute of Technology. Hdifa. 
lsrde1. in 1978. 1980. dnd 1983, respectively 

Since 1983 he ha\ been d Lecturer i n  the Com- 
puter Science Depdrtment at the Technion Dur- 
ing the year\ 1984-1986, he was d viriting Assis- 
tant Professor at Duke University. Durham, NC 
Since 1986 he ha\ been d faculty member at the 
IBM Israel Scientific Center. Haifd, Israel His re- 
search intererta include combinational optimiza- 

tion algorithm\. distributed algorithms. radio conimunicdtion, layout of 
VLSI circuit\. m d  computational geometry 

: 

Jack A. Feldman wdr born in  Bucharmt. Ro 
mania He received the B Sc and M Sc degree\ 
in computer engineering from the Polytechnic In-  
rtitute of Bucharest in 1983 dnd the M Sc degree 
in electrical engineering from the Technion-Is 
rael Institute of Technology, Hdifa, Isrdel. in 
1988 

In  1985, he joined the IBM Irrael Scientific 
Center as a Resedrch Fellow Since 1988 he ha\ 
been a Research Staff Member at the IBM Scien- 
tific Center, Haifd, Israel Hir current interest 15 

in algorithms for layout of VLSl circuits and sy\tems 

* 
Ron Y .  Pinter received the B Sc degree in com- 
puter science from the Techion-Israel Institute of 
Technology, Hdifd, Israel, in 1975 dnd the S M 
and Ph D degrees in electricdl engineering dnd 
computer science from the Masrachusetts Institute 
of Technology, Cambridge, in 1980 dnd 1982. re 
spectively 

During the year\ 1982-1987, he nar d Member 
of the Technical Staff in the Computing Sciences 
Resedrch Center, AT&T Bell Laboratories. Mur- 
ray Hill .  NJ In December 1981, he joined the 

IBM I\rael Scientific Center, Haifa, Israel, where he wa\ the manager of 
the Programming Languages Group He I \  dlso an Adjunct Senior Lecturer 
in the Electrical Engineering Department at the Technion. and has taught 
at the Hebrew University, Jerusaleni For the academic year 1988189, Dr 
Pinter I S  visiting the Department of Computer Science, Yale Univer\ity, 
New Haven, C T  His research interests include parallel programming tech- 
niques. code generation algorithms. layout for integrdted circuits. and 
computationdl geometry 

Dr Pinter I S  a member of the As\ociation for Computing Machinery 
and ACM SIGPLAN 

* 
Shmuel Wimer, for a photograph and a biography, please see page 145 of 
the February 1989 issue of this TRANSACTIONS. 


