
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL 8, NO 2. FEBRUARY 1989 139

Optimal Aspect Ratios of Building Blocks in VLSI

Abstract-The building blocks in a given floorplan may have several
possible physical implementations yielding different layouts. This pa-
per discusses the problem of selecting an optimal implementation for
each building block so that the area of the final layout is minimized. A
polynomial algorithm that solves this problem for slicing floorplans was
presented elsewhere, and it has been proved that for general (non-slic-
ing) floorplans the problem is NP-complete. We suggest a branch and
bound algorithm which proves to be very efficient and can handle suc-
cessfully large general non-slicing floorplans. The high efficiency of the
algorithm stems from the branching strategy and the bounding func-
tion employed in the search procedure. The branch and bound algo-
rithm is supplemented by a heuristic minimization procedure which
further prunes the search, is computationally efficient and does not
prevent achieving a global minimum. Finally, we show how the non-
slicing and the slicing algorithms can be combined to handle efficiently
very large general floorplans.

Index Terms-Floorplan, area optimization, layout, aspect ratio,
branch and bound.

I. INTRODUCTION AND BACKGROUND
OST OF THE existing algorithms for floorplanning M require a completely defined geometry of the build-

ing blocks. Floorplanning however, is attempted at the
very early stage of VLSI physical design, when there is
only a rough estimate of the building blocks geometry. In
many cases a good estimate of the building blocks areas
is available at this stage, but their exact dimensions can
still be varied in a wide range. An example is the register
file block consisting of 64 registers in a CPU. This reg-
ister file can be organized as a 1 X 64, 2 X 32, 4 X 16
or 8 x 8 array, and if we consider also the two possible
orientations for a single register and the whole file, there
are 14 different implementations, as shown in Fig. 1 .
Given the floorplan of a chip, we wish to take advantage
of the many possible implementations of its building
blocks and search for those implementations yielding a
minimum area layout.

In [5] a similar problem has been solved, where it was
assumed that the dimensions of each building block can
vary continuously in some given interval while its area is
assumed to be invariant. In [3] the problem of finding an
optimal orientation of the building blocks in slicing floor-

Manuscript received April 27, 1988; revised September 23. 1988. The

S. Wimer is with the IBM Israel Scientific Center, Technion City, Haifa

I . Koren is with the Department of Electrical and Computer Engineer-

I . Cederbaum is with the Department of Electrical Engineering,

IEEE Log Number 8824844.

review of this paper was arranged by Associate Editor A. E. Dunlop.

32000, Israel.

ing, University of Massachusetts, Amherst, MA 01003.

Technion-Israel Institute of Technology, Haifa 32000, Israel.

plan was discussed and an efficient polynomial solution
was presented. Its time and storage requirements are O (b
log b) , where b is the number of building blocks. Notice
that the optimal orientation problem (in which each build-
ing block has two possible implementations) is a special
case of our problem. Another efficient polynomial algo-
rithm to determine the optimum geometry of the building
blocks was presented in [2]. There, the geometry of the
blocks is constrained by a piecewise-linear function,
which can approximate any smooth function. Its com-
plexity is O (k b log b) , where k is the maximal number
of breakpoints in a geometry constraining function. It was
also shown in [3] that the optimal orientation problem for
general (non-slicing) floorplans is NP-complete, and an
integer programming method to find the minimum area
layout was presented in [6].

Consequently, the more general problem of determin-
ing the optimal dimensions (and not just the optimal ori-
entation) of the building blocks in non-slicing floorplans
is NP-complete. Since non-slicing floorplans often occur
in practice, we propose in this paper a branch and bound
algorithm. The proposed algorithm has been implemented
and proved to be efficient and capable of handling suc-
cessfully large floorplans. In the next section we briefly
discuss the algorithm for the optimal orientation problem
in slicing floorplans. In Section I11 we present the branch
and bound algorithm for the general case. Section IV sug-
gests combining of the above two algorithms, enabling us
to handle much larger floorplans. In Section V some ex-
amples are presented and the efficiency of the algorithm
is discussed. Final conclusions are presented in Section
VI.

11. SLICING FLOORPLANS

A common representation of a floorplan is through a
pair of dual polar graphs, called the x-graph and the y-
graph and denoted by G (U , E) and H(I/, F), respec-
tively (e.g., [l] , [5]) . Fig. 2(a) shows a floorplan whose
vertical line segments are denoted by u l through us and
its horizontal line segments by U I - U g . Fig. 2(b) shows the
corresponding dual polar graphs, one drawn on the top of
the other. A vertex in G(U, E) represents a vertical line
segment of the floorplan. An arc e directed from U; to uj
exists if there is a sub-rectangle in the floorplan whose
left and right edges lie on the corresponding vertical line
segments. The source and the sink of G (U , E) corre-
spond to the leftmost and the rightmost vertical line seg-
ments of the floorplan, respectively. H(I/, F) is defined

0278-0070/89/0200-0139$01 .OO 0 1989 IEEE

140 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 8, NO. 2, FEBRUARY 1989

I I

8 x 8

Fig. 1 . Some possible implementations of a register file. (c)
Fig. 3. A slicing floorplan and its x-graph and decomposition tree.

(a)
Fig. 2 . A floorplan and

(b)
its graph representation.

similarly for the horizontal line segments. A building
block is denoted by B;, 1 5 i 5 b , and . . it is assigned a
finite set of n; possible dimensions { (xf, yf) }SI corre-
sponding to its various possible implementations. . . Its area
a; is invariant and thus given by xfyf = ai, 1 I j I n; .
When the width and the height of the building blocks are
specified they are assigned to the corresponding arcs in G
and H . Then, the width w and the height h of the layout
are determined by the length of the longest (critical) paths
in G and H , respectively.

In the case of a slicing floorplan the above graphs are
series-parallel. A series-parallel graph can be repre-
sented by a decomposition tree [4] and Stockmeyer’s al-
gorithm [3] is based on it. Fig. 3 depicts a slicing floor-
plan, the corresponding series-parallel x-graph and its
decomposition tree. Each leaf represents an area in which
a certain block must be placed in one of its two possible
orientations. Having b blocks, there are 2 b possible con-
figurations of the layout. Among them we are looking for
the one that minimizes the area A = wh.

Stockmeyer’s algorithm starts at the leaves of the de-
composition tree. At each step it attempts to combine two
smaller blocks into a bigger one, called super block. The
main idea behind it is that if two super blocks at a lower
level can be implemented in n I and n2 different ways, re-
spectively, it is unnecessary to consider all the n, x n2
possible combinations for the resulting super block at the

higher level. Instead, it is proved that only O (n , + n 2)
possible combinations are relevant to the optimal final
layout. If at some level k , 1 I k I log b , of the decom-
position tree we list all the relevant possible implemen-
tations of each super block, the total number of imple-
mentations in this list is O (b) and the time required to
generate them is also O (b) , resulting in a total running
time and storage requirement of O (b log b) . The super
block at the root of the decomposition tree is the entire
layout, having a list of O (b) possible implementations
(each one is a pair of possible width w and height h).
Among the elements in this list we choose the one which
minimizes the area A = wh.

The above algorithm is also valid when several possible
implementations for each Bi are considered rather than
only the two orientations. Instead of starting at a leaf with
only two possible implementations, we consider B; to be
a super block having as many as desired possible imple-
mentations, and proceed the same way as before.

111. BRANCH AND BOUND ALGORITHM FOR GENERAL
FLOORPLANS

Our goal is to assign dimensions to the building blocks
B;’s so that A = wh is minimized. If B; has n; possible
implementations, the space of all the assignments of di-
mensions contains n!=, n; states, each one yields some
area A = wh. These states can be enumerated by an enu-
meration tree, in which blocks are first assigned to levels,
and then at each level we examine all the possible dimen-
sions of the corresponding block. Each node of the enu-
meration tree corresponds to a partial layout. A path start-
ing at the root and ending at a leaf represents a complete
layout. Fig. 4(a) depicts a 3-block floorplan, where B , ,
B,, and B3 may have 4, 3, and 2 possible implementa-
tions, respectively. The full enumeration tree is shown in
Fig. 4(b), where at each node the dimensions of the cor-
responding block are indicated. The areas of the partial
layouts are written next to the corresponding nodes.

The branch and bound algorithm proceeds as follows.

WIMER ef < I / . , BUILDING BLOCKS IN VLSl 141

64 40 48 30 45 30 63 42 45 30 36 30 66 48 44 40 33 40

Fig. 4. A floorplan and the corresponding search tree

First we determine which block should be considered at a
given level of the enumeration tree. Without loss of gen-
erality we assume that B, is considered at the ith level,
where the root of the tree is at level 0 and the leaves are
reached at level b . At the root we assign to each arc of G
and H the smallest length it may have among all the pos-
sible implementations of its corresponding block. Then,
going downwards from level i to level i + 1, appropriate
lengths are assigned to the arcs of G and H corresponding
to B, + I . When going backwards, the lengths of the arcs
are reset to their initial values. At each node we calculate
the width w and the height h of the partial layout. When
going downwards along a path from the root to a leaf, A
= wh is non-decreasing since w and h are non-decreasing
in the number of already laid out blocks. Let A,,, denote
the minimum value of A = wh achieved thus far at some
leaf of the tree. Then, the enumeration proceeds as fol-
lows:

begin (branch and bound)

Assign initial lengths to the arcs of G and H ;
while not the root is backwards traversed do

A m i n = 03;

begin i f A 2 A,,,
then backtrack
else if all possible implementations of the current
block are exhausted

then backtrack
else i f a leaf was reached

then i f A < A,,,
then A,,, = A and backtrack
else backtrack

else forward step;
end;

end (branch and bound);

In a forward step we assign a pair of possible width
and height of the block considered at the current level,
to the appropriate arcs in G and H . In a backward step
the length of the arcs are reset to their initial values.
Notice that when the above procedure is applied to the
tree in Fig. 4(b), the starred nodes are not traversed.
The reason for this is that the area of the partial layout
upon traversing their parent node is greater than the
area of some complete layout that has been previously
examined.

The efficiency of the above branch and bound pro-
cedure is affected by the following factors.

1) The value of Amin. It is desirable to reduce it as soon
as possible, resulting in earlier backtracks.

2) The area A = wh of the partial layout at a node is a
lower bound on the area of a complete layout ob-
tained at any leaf reachable from this node. There-
fore, if we succeed to raise this lower bound, a
backtrack will occur sooner.

3) The order in which the possible dimensions of a
block are examined at the corresponding level of the
tree.

In the following we discuss each of the above items in
greater detail.

3.1 Fast Reduction of Alnin

Reaching a leaf with a lower A,,,, we may consider it
as a good starting point for a heuristic search in which we
attempt to further reduce the area as much as possible,
applying a non-enumerative search. The following search
procedure attempts to find a local minimum of the area of
a complete layout in the sense that no further reduction

142 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 8, NO. 2, FEBRUARY 1989

can be achieved by changing the dimensions of a single
block.

begin (further reduction)
while reduction do

begin f o r i = 1 to b do
find (x j , x j) , 1 I j I n j , which minimizes A ;
$ A A m i n

then A,,, = A ;

end (further reduction);
end;

The above heuristic search must terminate after a finite
number of steps since G and Hare finite graphs whose arc
lengths are selected from a finite set of possible values.
When this procedure ends, the search in the branch and
bound algorithm continues from the leaf where the further
reduction procedure has been invoked. This guarantees
that the global minimum can still be achieved.

3.2 Lower Bound on A

In the following we calculate a lower bound on the area
that must be added to the partial layout as a result of plac-
ing the yet unplaced blocks in their appropriate regions in
the floorplan, regardless of the specific dimensions they
will be assigned. Then, if in the branch and bound pro-
cedure the statement “ $ A 1 A,,,” is replaced by “ $ (A
+ bound) 2 A,,,,” the backtrack will occur earlier.

Suppose that the algorithm has reached some node at
the level i (the dimensions of B, through B, - are deter-
mined while B, is currently considered). Let G, - I and
H, - I denote the graphs corresponding to the partial layout
of the first i - 1 blocks, whose width and height are de-
noted by w, - l and h, - l , respectively. For i s j s b, let
1, be the length of the longest path in G, , from the source
to the vertex representing the vertical line segment sup-
porting the left edge of B,, and let rJ be the length of the
longest path in G, - I from the vertex representing the ver-
tical line segment supporting the right edge of B, to the
sink. Similarly we denote by tJ and bJ the length of longest
paths in H, - I corresponding to the vertices representing
the top and the bottom horizontal line segments support-
ing B,. The area available in the partial layout for the
placement of any yet unplaced block B,, regardless of its
final implementation, is given by (vv- - rJ - 1,) x
(h , - l - b, - t ,). Ifa, > (w , - ~ - r, - 1,) X (h , - l -
bJ - t,), the embedding of B, (in any of its possible im-
plementations) requires at least a, - (w , - I - r, - lJ) X
(hJ - I - bJ - tJ) additional area in the complete layout.
Therefore, a lower bound on the total additional area re-
quired to complete the layout is given by

c max {O, a, - (w , - , - r, - 1 ,) x (h l p 1 - bJ - r ,) }
h

J = I

This additional area provides a very effective bound that
can be calculated at any downwards traversed node of the
search tree.

3.3 Ordering the Possible Implementations of the
Blocks

We first derive a backtracking condition which can be
invoked in the general implicit enumeration scheme. Let
v be some downwards traversed node of the tree, let Bi be
the building block considered at v (with some implemen-
tation (x i , y i)) and let T(v) denote the subtree rooted at
v. The branch and bound algorithm enumerates (implic-
itly) all the paths of T (v). For a node p E T (v) we denote
by G(p) and H (p) the graphs corresponding to the par-
tial layout at this node, and by r (p) and A (p) their long-
est paths, respectively. (For the sake of clarity we assume
that the longest paths are unique, but the following dis-
cussion holds also for multiple critical paths.) Then, the
following lemma provides a backtracking condition.

Lemma 1: Let M be the set of nodes which have been
reached from v such that no further forward step was taken
at them (the “front” of the traversed portion of T (U)),
and let p E M be a terminating node of a path starting at
U. Assume also that for every p E M the pair (e ; , J) of
dual arcs corresponding to Bj (whose length at v is given
by (x i , y i)) , satisfies e; $ r (p) a n d i $ A (p). Then, the
remaining implementations of Bj at v need not be further
considered, and backtracking at v can be performed.

Lemma 1 states that if the result obtained by examining
T (v) is independent of the specific implementation
(x i , y i) of Bi which is considered at U, then the exami-
nation of all the subtrees whose roots are the remaining
implementations of B j , cannot yield further reduction of
Amin. Notice that all the subtrees rooted at the nodes cor-
responding to different implementations of Bj are iso-
morphic, except the roots themselves.

Proof: Having the dimensions of B 1 , . . * * , Bj - I al-
ready fixed, let Y ; + ~) , * - * , (xki , y i i) be the re-
maining implementations of Bj which have not yet been
considered. Assume to the contrary that there exists some
completion starting at a node w corresponding to some
implementation (x f , y f) , k + 1 5 1 I n j , of B j , leading
to a lower Amin. The complete layout thus obtained cor-
responds to a leaf a E T (w) , and is determined by the
implementation of . . B,, * * , Bi, * , Bb, given by
(x;l, y;,>, * - 9 (x i , y ; > , * , (xi”,, yi”,). Take this im-
proved layout and replace the implementation (x i , y j) of
Bj by (xh, y h) . The resulting complete layout corresponds
to some leaf E T (v), which has already been enumer-
ated, as illustrated in Fig. 5 . There are two possibilities.

p has been reached from v explicitly. According to
the lemma hypothesis, e; $ A (p) .
Now, since the complete layouts corresponding to a

respectively, are distinguished only in the length as-
signed to the arcs e; and A, the length of r (a) and
A (a) cannot be smaller than that of r (0) and
A (p) , respectively. This contradicts the assump-
tion that a lower Amin is obtained at the leaf a.
If a backtrack occurred at a node y along the path
from v to f i (the leaf 0 E T(v) was not reached),

(0) and J

and@, g i v e n b y (G (a !) , H (a)) a n d (G (P) , H (P)) ,

WIMER CI U / . : BUILDING BLOCKS IN VLSI 143

ditions of Lemma 2 together with those of Lemma 3 pro-
vide a stronger backtrack criterion than Lemma 1 does,
since the existence of the conditions in Lemma 1 imply
both the existence of those in Lemmas 2 and 3 simulta-
neously .

Y 3,

B , - , _...__...__...__...~~~.~~....

B , -. -. . .

IV. COMBINING THE GENERAL AND THE SLICING
ALGORITHMS

Stockmeyer’s algorithm [3], though efficient fails to
handle general floorplans. On the other hand, although the
branch and bound algorithm, as previously presented, is
general, it is time consuming for floorplans with many
blocks. Therefore, we propose to combine them and de-

Bb ~~~~~~~ .:..h Fig. 5 . 1 (V I Proof of Lemma 1. T(w)

this resulted from the observation that no further re-
duction of A,,, can be obtained in T (y) . Moreover,
according to the Lemma hypothesis, this resolution
was independent of B , , meaning that e, $ r (y) and

@ A (y). Let 6 E T (U) be the node corresponding
to y E T(v). Following the same arguments as in
the first possibility, we can conclude that the bound
on the area of any completion calculated at 6 cannot
be smaller than the bound calculated at y. But since
a backtrack occurred at y , the same must happen at

The backtracking condition established in Lemma 1 is
independent of the order in which the possible implemen-
tations of a building block are examined. However, a par-
ticular order of examination may yield an earlier back-
tracking. In what follows we suggest such an ordering.

* , (x n , y ,) is said to be
in an increasingly interlaced order if x , I xl for odd i and
for a l l j > i , and y, 5 yJ for even i and for a l l j > i . For
example, the series (1,64), (64, l) , (2,32), (32,2),
(4,16), (16,4), (8,8) is in an increasingly interlaced or-
der. Following the same arguments as in Lemma 1, we
can derive the following backtracking condition.

Lemma 2: Let the series of B,’s implementations be in
an increasingly interlaced order, and let v be a node cor-
responding to an odd numbered implementation of B, . Let
M be the set of nodes which have been reached from v
such that no further forward step was taken at them. As-
sume that for every p E M there existSA @ A (p) . Then,
the remaining implementations of B, at v need not be fur-
ther considered, and a backtrack at v can take place.

Similarly, we claim the following.
Lemma 3: Let the series of B,’s implementations be in

an increasingly interlaced order, and let v be a node cor-
responding to an even numbered implementation of B, .
Let M be the set of nodes which have been reached from
v such that no further forward step was taken at them.
Assume that for every p E M there exists e, $ r (p). Then,
the remaining implementations of B, at v need not be fur-
ther considered, and a backtrack at v can take place.

The backtracking conditions established in the above
lemmas can be easily checked upon traversing a node
backwards. Notice that when the series of blocks’ imple-
mentations is in an increasingly interlaced order, the con-

6, thus resulting in a contradiction.

A series of pairs (xl, y l), .

vise an algorithm which can handle very large general
floorplans. To this end, we first decompose G into its
maximal series-parallel components. This can be done in
linear time as described in [4]. A maximal series-parallel
component satisfies:

Lemma 4: Let Gi, 1 5 i 5 q , be a maximal series-
parallel component of G, and let Hi be its corresponding
portion of H . Then, the pairs (Gi, Hi), 1 I i I q, cor-
respond to the maximal slicing portions of the floorplans
given by (G, H) .

Pro08 Every series-parallel graph is planar and con-
sequently, a dual graph exists. Since the duals of two
edges connected in series are two edges connected in par-
allel and vice versa, Hi is a maximal series-parallel com-
ponent of H , and the q dual pairs (Gi, Hi) correspond to

Let b, be the number of arcs in Gi and H i , 1 I i I q .
To each of the components Gi we apply Stockmeyer’s al-
gorithm, thus obtaining a list of O(bi) relevant possible
implementations. We may look now at each slicing com-
ponent as a super block having several possible imple-
mentations. Next, we replace Gi and Hi by a single arc in
G and H , respectively. We then apply the branch and
bound algorithm to the new G and H , in which the number
of arcs has been reduced from b = E:=, bi to q.

The following example demonstrates the effectiveness
of the combined algorithms. We shall see how the size of
the search tree is significantly reduced.

Example I : Fig. 6(a) depicts a 20-block general floor-
plan, where the thick lines enclose the maximal slicing
portions (corresponding to the maximal series-parallel
components in G and H) . In this example q = 5 and b l
= b2 = b3 = b4 = b5 = 4. Let each building block have
8 possible implementations. The entire problem cannot be
solved by Stockmeyer’s algorithm. Employing the branch
and bound algorithm, a tree having = 10I8 leaves must
be considered. If we first apply Stockmeyer’s algorithm
to the slicing components, we obtain about 32 possible
implementations for each super block that are relevant for
further consideration. Then, applying the branch and
bound algorithm to the super blocks, a tree with only 325
= will have to be considered.

In the above discussion we combined the two algo-
rithms hierarchically. At the lower level we employed
Stockmeyer’s algorithm to the maximal slicing compo-

maximal slicing portions of the floorplan.

144 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 8. NO. 2, FEBRUARY 1989

Fig. 6 . Combination of slicing and non-alicing structures

nents and then at the higher level we employed the branch
and bound algorithm. Sometimes it may happen that such
a hierarchy does not exist. An example is the floorplan
given in Fig. 6(b). Here, it is impossible to find any slic-
ing components at the lower level. However, the thick
lines define a slicing structure at the higher level and we
wish to take advantage of this structure. As in the former
discussion, we shall employ the two algorithms hierar-
chically, but in this case the branch and bound at the lower
level and Stockmeyer’s algorithm at the higher level. To
establish this hierarchy more formally, some definitions
are in order. Let GI and G2 be floorplan graphs with
sources s, and s2, respectively, and sinks ti and t2 , re-
spectively. We say that G is a series composition of GI
and G2 if t l (t 2) and s2(sI) are identified. G is called a
parallel composition of GI and G2 if sI is identified with
s2 and t l is identified with tz . Obviously, the result of se-
ries or parallel composition of floorplan graphs is a new
floorplan graph. A floorplan graph is called elementary
non-series-parallel if it cannot be obtained as a series of
parallel composition of floorplan graphs. Following
Lemma 4, we may prove that

Lemma 5: Let G,, 1 I i 5 q , be a maximal elementary
non series-parallel component of G, and let HI be its cor-
responding portion in H . Then, the pairs (G I , NI), cor-
respond to a maximal elementary non-slicing portions or

rn
Lemma S suggests decomposing of G and N into their

maximal elementary non-series-parallel components, em-
ploy the branch and bound procedure to each component
individually and then proceed with Stockmeyer’s algo-
rithm for the series-parallel structure at the higher level.
The following example shows the advantage of this ap-
proach.

Example 2: Let each building block in Fig. 6(b) have
8 possible implementations. The entire problem cannot be
solved by Stockmeyer’s algorithm. Employing the branch
and bound algorithm, a tree having 820 = 10l8 must be
examined. If we first employ the branch and bound al-
gorithm to the maximal elementary non series-parallel
components (enclosed by the thick lines), we shall con-
sider a tree of 85 = 10‘ s leaves for each component. We
next employ Stockmeyer’s algorithm to the combined
structure in which there are four blocks, each one has at
most 8’ possible implementations (practically, very few
complete layouts are relevant to the higher level). Then,
according to the complexity of Stockmeyer’s algorithm,

the floorplan given by (G, H) .

I2 5.20) IS, 10)
(10.5)(20,2 51

12.161 14.81
(8.4)(16.2)

12,161 (4.81
(8.4)(16,2)

(5.91 16.7 51

(1.201
Id (2.91 5,41(9.2) (4.4 51

(5.5)
(8.3 121

12.81 13 2.51
(4.41
(5.3 ZI(8.2)

(5.12)
(6, % 01
(7 5.81
(8.7 51
(10.61
112.51

(2.5.18) (5.91 (2,221

(5 5.81
18.5 5) I (6.14) (7,121 18.10 51

(10 5.81 (12.71(14,6)

12.26) (4.13) 16 5.8)
18.6.51(13.4) 126.21

11,551
12.27 51
(5.11)
16.87.81

(11.51 (27.5.2) (5.5.141 17.11)
(55.1) (11.7)114.5 51

(2.10)
(4.51
(5.41
11 0.21

13.1 61 (6.81
18.61 (1 6.3)

12.26) (4.13) 16 5.8)
18.6.51(13.4) 126.21

11,551
12.27 51
IS 1 1)

Fig. 7 . A 24-block floorplan

the total time and memory required at this step is bounded
rn

It is not necessary for the smallest area implementation
of a maximal elementary non-series-parallel component
to participate in the entire layout which occupies mini-
mum area. However, if two different implementations of
a non series-parallel component have width wI and w2,
respectively, and height hl and h2, respectively, satisfy-
ing w2 ? wI and h, 2 h2, the latter implementation need
not be considered at the higher level. The branch and
bound algorithm presented in Section 111 is slightly mod-
ified to produce all the relevant implementations of the
components at the lower level. Its output is a list of (w,
h) pairs which are the relevant implementations. Initially
this list is empty. At every node of the enumeration tree
we check whether the width and the height of the corre-
sponding partial layout dominate the width and the height
of some pair in the list. If this happens to be the case, a
backtrack takes place. Otherwise, the algorithm proceeds
in a forward step. Whenever a leaf is reached, the corre-
sponding pair is added to the list, while every existing
pair dominating the new pair is deleted from the list.

by 0 [4 X 85 log (4 X S 5)] = O (106.3).

V. COMPUTATIONAL RESULTS
Fig. 7 depicts a 24-block floorplan, where the possible

implementations of each block are listed as (x, y) pairs
within the corresponding regions. There is a total of 2.03
x 10l6 possible configurations (equivalent to a SO-block
optimal orientation problem), and the algorithm proposed
in this paper searches for the one yielding the smallest
area. Summing up the areas of the individual blocks yields
1024 area units. Notice that if the blocks take the high-
lighted implementations in Fig. 7, the area of the result-
ing layout is of size 1024, which is obviously the desired
minimum.

The branch and bound algorithm was run four times.

WIMER et a l . : BUILDING BLOCKS I N VLSI

TABLE 1
RESULTS OF A 24-BLOCK FLOORPLAN

Further Improved Increasingly
Area Area Interlaced

No Heuristics Reduction Bound Order

Visited Nodes
leaves 2.38 x I O - ” 5.32 x 10 I’ 1.84 X 10 I’ 4.95 x

145

Initially, the basic algorithm without any heuristic was
employed. In the second run, the further area reduction
discussed in Section 3.1 was introduced. Next, the im-
proved area bound discussed in Section 3.2 was supple-
mented. Finally, the backtracking conditions based on the
increasingly interlaced order of block implementations,
discussed in Section 3.3, were incorporated. Table I sum-
marizes the results and demonstrates the effectiveness of
the above heuristics. To reduce the dependence of the
comparison on the specific software implementation and
the computer system used, the results are given in terms
of the ratio between the number of visited nodes and the
total number of leaves in the search tree.

VI. CONCLUSIONS AND FURTHER RESEARCH
Given a general (non-slicing) floorplan and several pos-

sible physical implementations for each building block,
this paper presented a practical algorithm that determines
the implementation of each building block such that the
area of the entire layout is minimized. Although this prob-
lem is NP-complete, the suggested branch and bound al-
gorithm handles successfully large floorplans. It was
shown that one can take advantage of the slicing struc-
tures which are usually found in general floorplans, by
combining the branch and bound algorithm with the
known polynomial algorithms for the slicing case. This
combination further increased the size of the problems that
can be solved.

The branch and bound algorithm presented in this paper
can be further improved by taking into account the fol-
lowing factors, when assigning the blocks to the levels of
the enumeration tree. A block affects the dimensions of
the final layout through its size, we wish therefore, to
consider larger blocks at higher levels. Also, a block
whose corresponding arcs belong to many paths is more
likely to affect the layout than a block whose arcs belong
to fewer paths. The variance of the blocks’ dimensions
may also affect the assignment of blocks to the tree levels.
All these issues are currently studied.

ACKNOWLEDGMENT
Discussions with R. Y . Pinter are gratefully acknowl-

edged.

REFERENCES
[I] M. J . Ciesielski and E. Kinnen, “Digraph relaxation for2-dimensional

placement of IC blocks,” IEEE Trans. Compurer-Aided Design, vol.
CAD-6, pp. 55-66, Jan. 1987.

121 R. H. J. M . Otten, “Efficient floorplan optimization,” in ICCD83-
IEEE Int. Conf on Computer Design, pp. 499-502, 1983.

[3] L. Stockmeyer, “Optimal orientations of cells in slicing floorplan de-
signs,’’ Inform. Conrr., vol. 57, pp. 91-101, 1983.

[4] I. Valdes, R. E. Ta jan , and E. L. Lawler, “The recognition of series
parallel digraphs,” SIAM J . Comput., pp. 298-313, 1982.

[5] S. Wimer, I. Koren, and 1. Cederbaum, “Floorplans, planar graphs
and layouts,” IEEE Trans. Circuits Syst . , vol. 35, pp. 267-278, Mar.
1988.

[6] K. Zibert and R. Saal, “On computer aided hybrid circuit layout,” in
IISCS74-IEEE Int. Symp. on Circuits and Systems, pp. 314-318,
1974.

*
Shmuel Wimer received the B.Sc. and M.Sc. de-
grees from Tel-Aviv University, Tel-Aviv, Israel,
in mathematics, in 1977 and 1980, respectively,
and the D.Sc. degree in electrical engineering from
the Technion-Israel Institute of Technology,
Haifa, Israel, in 1988.

From 1978 to 1981 he was with the Israeli Air-
craft Industry. From 1981 to 1985 he was with
National Semiconductor Design Center in Tel-
Aviv. Since 1985 he has been a research staff
member with the IBM Scientific Center, Haifa, Is-

rael. His current interest is in algorithms for layout of VLSI circuits and
systems.

*
Israel Koren (S’72-M’76-SM’87) is a professor
in the Department of Electrical and Computer En-
gineering, University of Massachusetts, Amherst
Previously he was with the Departments of Elec-
tncal Engineering and Computer Science at the
Technion-Israel Institute of Technology, where he
became the Head of the VLSI Systems Research
Center in 1985. Prior to that he has held positions
with the University of California at Berkeley, and
at Santa Barbara, and the University of Southern
California, Los Angeles. He has been a consultant

to Digital Equipment Corp., National Semiconductor, Tolerant Systems,
and ELTA-Electronics Industnes. His current research interests are fault-
tolerant VLSI and WSI architectures, Models for Yield and Performance,
floorplanning of VLSI chips and computer Arithmetic. He was the chair-
man of the IEEE International Workshop on Defect and Fault Tolerance in
VLSI Systems October 1988.

*
Israel Cederbaum (SM’53-F’62) received the
M.Sc degree i n mathematics from the University
of Warsaw, Poland, the degree of Electncal En-
gineer from the Polytechnic Institute of Warsaw,
Poland, and the Ph.D. degree in applicable math-
ematics from the University of London, England,
in 1930, 1934, and 1956, respectively.

From 1950 to 1966 he was employed by the
Scientific Department, Israel Ministry of De-
fense. Since 1963 he has been with the Technion-
Israel Institute of Technology, Haifa, Israel. He

was a visiting professor at Columbia University, NY, at the University of
California, Berkeley, at Cornel1 University, Ithaca, NY, the City College
of New York, at the Osaka University, Osaka, Japan, and the Swiss Fed-
eral Institute of Technology (E T.H.), Zurich, Switzerland

Dr Cederbaum is a member of the Association of Engineers and Ar-
chitects, Israel

