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Abstract--The topics discussed in this paper are minimization of the 
area occupied by a layout and related results concerning networks flow and 
rectilinear representation of planar graphs, based on a graph model of 
floorplans and layouts. We do not restrict OUT analysis to sliced floorplans 
but allow arbitrary floorplans. Given an arbitrary floorplan and the areas of 
the embedded building blocks, we prove the existence and uniqueness of a 
zero wasted area layout, and characterize it by a necessary and sufficient 
condition. On the basis of this condition we develop a scheme to generate 
zero wasted area layouts. We prove that given a family of dual network 
pairs for which the product of dual arc lengths are invariant, the minimal 
product of their longest paths is not smaller than the maximal product of 
their shortest paths. We also show that the maximal product of the flows in 
such a family of dual network pairs is given by the total sum of the arc 
length product of each individual pair of dual arcs. Finally, based on the 
zero wasted area layout, we present an efficient procedure to derive a 
rectilinear representation for any planar graph. 

Index Terms -Floorplan, optimization, layout, graph representation, 
planar graphs, network flow. 

I. INTRODUCTION 
HE objective of many engineering problems such as in T VLSI design, building architecture and allke, happens 

to be a valid layout of some building blocks of a rectangu- 
lar shape. The first step towards this goal is to obtain a 
floorplan which is a partitioning of the floor rectangle into 
smaller ones. In the design of such a floorplan the engineer 
takes into account all the information in his possession 
about the required or admissible mutual positions of the 
building blocks. Fig. 1 shows a floorplan in whch the 
rectangle Bo is partitioned into eight subrectangles B ,  
through B,. In the second step a layout is derived from the 
floorplan by embedding the physical rectangular building 
blocks into the floorplan’s sub-rectangles, such that blocks 
do not overlap, and their relative position in the floorplan 
is preserved. Fig. 2 illustrates a layout derived from the 
floorplan gven in Fig. 1. We say that the floorplan de- 
termines the topology of the layout. 

In many cases not all the geometrical dimensions of the 
building blocks are predetermined, and the layout designer 
can set their values arbitrarily. These values can therefore 
be determined so as to optimize some measure of the 
layout. For example, in VLSI chp design, Bo can be a 
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CPU and the Bi’s are functional blocks llke ALU, control 
unit, regster file, etc.. The designer may have a good 
estimate of the functional blocks’ expected areas at a very 
early stage of the design cycle, whle their length and width 
can still be changed so as to minimize the chip area. In 
building architecture Bo can be a house and the B,’s are its 
rooms. If the cost of the house is dominated by the cost of 
its external walls and only the areas of its rooms are 
predetermined, we may set their dimensions such that the 
layout’s perimeter is minimized. 

Most floorplans that have been discussed in the litera- 
ture are sliced floorplans, for whch the partitioning begins 
with the entire rectangle Bo whch is sliced into several 
slices either horizontally or vertically. This procedure is 
then repeated for every resulting slice until the small- 
est sub-rectangles which represent building blocks are 
reached. Ths  approach has been employed for example, in 
min-cut placements of VLSI designs [lo], [ll], [13]. The 
slicing procedure induces a very restrictive topology of the 
floorplan. However, there are other less restrictive methods 
to obtain a floorplan, for example, one can derive a 
floorplan of a VLSI chp from the adjacency graph of its 
constituting blocks. A simple non-sliced floorplan is dis- 
cussed in [3]. Recently, a method for modifying a given 
initial floorplan, has been presented in [2]. There, the 
initial stiff floorplan is relaxed, thus enabling to consider 
an entire class of possible configurations, from whch the 
most promising floorplan is selected. Even when the initial 
floorplan is sliced, the final “best” floorplan may be 
non-sliced. The resulting floorplan is then used to de- 
termine the topology of the layout, which can be further 
optimized, as discussed later in this paper. In most cases, 
the layout optimization algorithms that were proposed for 
sliced floorplan are not applicable for the general floor- 
plan. 

In ths paper we study arbitrary floorplans whch cannot 
be obtained by any slicing procedure (like the one in Fig. 
1) and discuss the problem of minimizing the area of a 
general layout obtained from an arbitrary floorplan. The 
goal of area minimization is typical in VLSI design, where 
the cost of a chp  is dominated by its area. The problem of 
minimizing the area in sliced floorplans has been discussed 
in [15]. There, the dimensions of the building blocks are 
fixed, but the blocks can be arbitrarily oriented in parallel 
to the xy orthogonal axes. A polynomial algorithm to 
determine the orientation of each block in the layout, such 
that minimal wasted area results in, is presented there. The 
algorithm applies a divide and conquer approach to the 
recursive structure of the series -parallel digraph [17] rep- 
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Fig. 1. Eight sub-rectangle floorplan. 

0 1 2  3 4 5 6 7 8 9 1 0 1 1 1 1  

Fig. 2. A layout derived from the floorplan in Fig. 1 

resenting the sliced floorplan. It is also proved there that 
for general floorplans the problem of optimal orientation 
is NP-complete. 

The rest of the paper is organized as follows. To study 
general floorplan we first present in Section I1 a graph 
model of floorplans and show how this model yelds a 
layout. Using this graph model, we prove a theorem that 
separates the product of the longest paths from the prod- 
uct of the shortest paths in a family of dual network pairs. 
We then discuss the problem of obtaining a zero wasted 
area layout in Section 111. We prove that there always 
exists a unique zero wasted area layout, and obtain a 
necessary and sufficient condition for its existence. We 
also present a flow interpretation of this condition which 
simplifies the problem of finding the zero wasted area 
layout. Section IV presents an algorithm to construct a 
rectilinear representation of any nonseparable planar 
graph, based on the graph model for floorplans and the 
theory presented in Section 111. Conclusions and open 
questions for further research are presented in Section V. 

11. FROM FLOORPLAN TO LAYOUT 
A floorplan can be described by the vertical and hori- 

zontal line segments which determine the partitioning. In 
Fig. 1 there are five vertical line segments u1 through u5 
and six horizontal line segments u1 through U,. These h e  
segments are not allowed to intersect each other. The 
floorplan's topology can be represented by two planar 
digraphs G(U,  E )  and H(V, F) constructed as follows. A 
vertex in G(U, E )  represents a vertical line segment of the 
floorplan. We order the vertices according to the distance 
of the corresponding line segments from the leftmost side 

of the rectangle. Two vertices U, and uJ in G are connected 
by an arc e directed from U, to uJ if there is a sub-rectan- 
gle in the floorplan whose left and right edges lie on the 
corresponding vertical line segments, respectively. G (  U, E )  
is called the x-graph of the floorplan. Fig. 3(a) is the 
x-graph of the floorplan given in Fig. 1. It has one source 
and one sink corresponding to the leftmost and rightmost 
vertical line segments of the floorplan. Notice that G(U, E )  
is an acyclic digraph, since closing a cycle would require 
the closing arc to be directed oppositely. The planar di- 
graph H(V, F) is defined similarly for the horizontal line 
segments and is called the y-graph of the floorplan. Fig. 
3(b) depicts the y-graph of the floorplan given in Fig. 1. In 
Fig. 3(c) these graphs are drawn one above the other. We 
see that an arc of the x-graph intersects one and only one 
arc of the y-graph and vice versa. In addition, the direc- 
tion of turning by an angle a < T an arc of the x-graph to 
its dual arc in the y-graph, so that their orientations 
coincide, is the same for all the dual arc pairs. Conse- 
quently, we may consider each graph to be the dual of the 
other. Notice that the source and the sink of G are both 
located in the infinite face of H and vice versa. In this 
representation, a pair of dual arcs (e, f ) where e E E and 
f E F, intersect each other if and only if they correspond 
to the same sub-rectangle in the floorplan. This graph 
model was used in [l] to represent the dissection of a 
rectangle into squares, and the above graphs were called 
polar dual. We shall use also the notion dual networks. 

A sub-rectangle of the floorplan is occupied in the 
actual layout by some physical block which has a width x 
and a height y. These dimensions are introduced into G 
and H by assigning them as weights to the corresponding 
arcs. The weighted x-graph and y-graph are denoted by 
G(U,  E, X) and H(V, F, j ) ,  respectively, where X = 
(xl,- . e ,  xb) and j = (y1; - -, y 6 )  are the weights. The ac- 
tual layout can now be derived from G and H as follows. 
Assign a zero x-coordinate to the leftmost vertical line 
segment (represented by the source of G) and zero y-coor- 
dinate to the uppermost horizontal line segment (repre- 
sented by the source of H). The position of every block in 
the layout is then determined by the coordinates of its 
upper left corner which can be calculated by computing 
the length of the longest paths in G and H starting at the 
sources and ending at the corresponding vertices of G and 
H. An overview of using this model in various design 
systems is found in [2]. 

Example I :  Let the dimensions of the blocks to be 
placed in the floorplan shown in Fig. 1, be 

x1 = 3, x2 = 2, x j  = 5, x4 = 2, 

y, = 2, y, =1, y3 = 2, y4 = 3, 

x ,=5 ,  x6=1, x ,=2 ,  x,=4, 

ys = 3, y6 = 2, y, = 7, yg = 5. 

Assigning the above weights to the corresponding arcs in G 
and H and then computing the length of the longest path 
from the source to each node in G and H results in the 

rn layout drawn in Fig. 2. 
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(a) (b) (C) 

Fig. 3. The graph representation of the floorplan in Fig. 1. 

Unless otherwise stated, we use the notion path for a 
directed path starting at the source and ending at the sink. 
Such paths of maximal length will be called critical paths. 
The width w and the height h of the layout equal to the 
length of the critical paths in G and H ,  respectively. Once 
w and h are known, we can calculate the area A of the 
layout. In Fig. 2 we see that not all the area is occupied by 
blocks. The unutilized area is considered to be wasted and 
should be minimized. 

Before proceeding to Section 111, we prove a separation 
theorem, based on the graph representation of floorplans 
and layouts. This theorem states that given a family @ = 

{ ( G ,  H ) }  of dual network pairs for which the product of 
dual arcs' length is invariant, there exists a constant which 
separates the product of their shortest paths from the 
product of their longest paths. 

Theorem I :  Consider an arbitrary assignment of weights 

H ,  respectively, where ( G ,  H )  E @, such that for any two 
dual arcs, the product of their weights satisfies 

X = ( x , , * . - , x b )  and y = ( y l , * * * , y b )  to the arcs of G and 

x J y J = a J ,  I <  j < b .  (2-1) 
Let w and h be the length of the longest paths in G and 
H ,  respectively, and let z and g be the length of the 
shortest paths in G and H ,  respectively. Then, the minimal 
product of the longest paths length is separated from the 
maximal product of the shortest paths length as follows: 

b 

Proof: Interpreting x j  as the width of a building block 
BJ, yj as its height and ai as its area, we can derive a 
layout from G and H .  Since in a valid layout no two 
blocks overlap, and since w(X) and h ( j )  are the width 
and the height of the layout, we conclude that for every arc 
length assignment satisfying (2.1), there exists: 

b b 

w ( ~ ) h ( j )  2 x j y j =  a j .  
j = l  J = 1  

To prove the lower bound we generate an invalid layout as 
follows. Rather than determine the coordinates of the 
upper left corner of a block by the length of the longest 
paths from the sources to the corresponding vertices in G 
and H ,  we determine them by the length of the shortest 
paths from the sources to the corresponding vertices. We 

then define the width z (X)  and the height g ( j )  of the 
resulting invalid layout as the length of the shortest paths 
in G and H ,  respectively. In the invalid layout thus created, 
there is no vacant area, some blocks may overlap, and 
some may extend beyond the right and bottom edges of 
the layout. Therefore, 

b b 

z(E)g(y) C XJYJ C aj .  (2.4) 
J = 1  J = 1  

Equations (2.3) and (2.4) hold for every X and j satisfying 

We may ask whether the separator C,b,laJ is achievable, 
that is, whether there exists an assignment of arc lengths 
satisfying (2.1) for which the inequalities of (2.2) become 
equalities. Obviously, in such a case, all the critical paths 
in G and all the critical paths in H are equally long. In 
Section I11 it is proved that the equalities in (2.2) are 
achievable, and the resulting layout has therefore a zero 
wasted area. 

(2.1), which proves (2.2). 

111. MINIMIZING THE AREA OF A LAYOUT 
In this section we discuss the problem of minimizing the 

area of a layout when the areas of its building blocks are 
predetermined but not their dimensions. Let xj  and yj 
denote the length of the arcs ej and h, respectively. The 
dimensions xi and yj of the building block Bj, 1 < j < b, 
will be determined as to minimize the area of the layout. 

The area A of the layout depends upon the length of the 
paths from source-to-sink in G and H .  Let ri, 1 6  i < k, 
and A ;, 1 < i < I ,  denote the paths from source to sink in G 
and H ,  respectively. Each path rj in G consists of several 
arcs ej and we define a k X b zero-one matrix K as 
follows : 

ej E I'i 
otherwise. 

L is a I x b zero-one matrix defined similarly for H .  Let 
w be the length of a critical path in G and let h be the 
length of a critical path in H (notice that G and H may 
possess several critical paths). Then, by definition 

b 

C K i j x j - w < 0 ,  l < i < k  (3 4 

~ , ~ y ~ - h < ~ ,  l < i < i  (3.3) 

j = l  
b 

j = 1  
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(c )  0 1 2 3 4 5 6 7  

Fig. 4. Five block floorplan and the implied layout. 

where xi, yj, w ,  and h are all unknown. The dimensions xJ 
and yj of the block Bj have to be set so that the area a j  of 
Bj is preserved, i.e., 

Xjyj=aj, I <  j < b .  (3.4) 

If in addition to (3.4), the aspect ratios of the building 
blocks, defined by yJ/xJ, are constrained to some range, 
then this can be expressed by the following inequality: 

(3.5) x:<xJ<xJ,  h 1 <  j < b .  

The corresponding constraints imposed on yJ are obtained 
from (3.4) and (3.5). Our objective is, therefore, to find 
weights xJ, yJ, 1 < j < b, so that the area 

A =  wh (3.6) 

is minimized and the constraints (3.2)-(3.5) are satisfied. 
Equations (3.2)-(3.6) constitute a nonlinear mathemati- 

cal program, which can be solved by using appropriate 
mathematical programming algorithms [8], but its solution 
is very difficult. In the following we show that a closed 
form solution can be obtained by employing the x-graph 
and the y-graph corresponding to the floorplan. 

3.1. Necessary and Sufficient Conditions for Minimal Area 
Let us first relax the restrictions concerning the aspect 

ratios of the building blocks, given in (3.5). We show now 
that any given layout with area A ,  represents a whole 
family of layouts, each one of them with area A and an 
arbitrary aspect ratio h / w .  

Lemma 1: Let G(U,  E ,  X) and H( V, F, j )  be the x- 
graph and the y-graph, respectively, of a given floorplan. 
Let ai be the area of BJ, 1 < j < b, that is, a j  = xJyJ. Let 
w ,  h ,  and A be the width, height and area of the layout 
implied by G and H ,  respectively, and let p = h / w  denote 
its aspect ratio. Then, for every X > 0 there is an assign- 
ment of arc lengths X(X) and y(X) such that the area of 
the resulting layout is A and its aspect ratio is A. 

Proof: The length of the critical paths in G and H ,  w ,  
and h ,  respectively, satisfy wh = A .  Create now new graphs 
G’(U, E ,  X’) and ”(V, F, j ‘ )  isomorphic to G and H ,  
respectively, which satisfy 

(b) 
0 1 2 3 4 5 6 7 8 9 10111213 

1 . 5  

L 1 ’  

Fig. 5. Transformation of the layout in Fig. 4. 

The following is true: 

1) Every pair ( eJ ,  4 )  of dual arcs in G’ and H’ repre- 
sents a building block whose area is a,, since 

X;Y~ = x j w ~ j m  = x j ~ j  = a,.  
2) The longest paths of G’ and H’, whose lengths are w’ 

and h’, respectively, are isomorphic to those of G 
and H. In addition, the above transformation multi- 
plies by the length of every path in G and by 
fl the length of every path in H.  

Consequently , 
w’h’= w d f i h d m  = wh = A 

and 

A. 
h’ h m  h X  
-=-- - - -=  
w’ w w  W P  

Example 2: Fig. 4(a) shows a five block floorplan whose 
x-graph and y-graph are given in Fig. 4(b) and the actual 
layout is shown in Fig. qc). The aspect ratio of the above 
assembly is 1. Fig. 5(a) shows the transformed graphs 
obtained by multiplying each arc of G by 2 and each arc 
of H by 1/2. The layout corresponding to G’ and H is 

The area of a layout consists of areas occupied by blocks 
and unoccupied areas between them. The latter is consid- 
ered as wasted and we wish to reduce it as much as 
possible.’ We may ask whether under the assumption of 
nonrestricted aspect ratio of building blocks, there exists 
an assignment of lengths to the arcs of G and H such that 

shown in Fig. 5(b) with aspect ratio 1/4. 

‘A t ical layout algorithm of VLSI chips requires some area between 
blocks% the inter-block connections. If this area is estimated and then 
added to the block area, the remaining unoccupied area can be consid- 
ered wasted. 
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a zero wasted area layout is obtained. Notice that if such a 
layout exists, then according to Lemma 1, a whole family 
of layouts can be obtained by applying a uniform stretch 
transformation to all building blocks (the term uniform 
stretch means that one dimension is stretched while the 
other is contracted by a reciprocal magnitude). 

We attempt to characterize the zero wasted area layout 
by proving necessary and sufficient conditions on G and 
H to represent such optimal layouts. We begin by proving 
some properties of the paths in G. 

Lemma 2: Let G(U, E, 2) be an acyclic directed graph 
with a single source, a single sink, and arc lengths X. Then, 

1) each arc belongs to some path from source to sink, 

2) if every e E E belongs to some critical path, then all 

Proof: Let u1 and U, denote the source and the sink, 
respectively. Consider an arc (u i ,  uj), i # 1, j # m. Since 
u1 is the only source of G, there exists an arc ( U k ,  ui) 
incident into ui, and since G is acyclic, the vertices u k ,  U,, 
and U, are distinct. If uk = u1 then ui is reachable from 
the source, otherwise the process is repeated. Since G is a 
finite graph, after a finite number of such steps we estab- 
lish a path from u1 to ui. Similarly, we can establish a path 
from ui to U,, which proves the first claim. 

To prove the second claim, assume to the contrary that 
there exist a path Q from source to sink which is not 
critical. Let ul, - - - , ui, uj ,  , U, denote the vertices along 
B. Let ui be the last vertex on Q such that the portion of Q 
from u1 to ui is a path of maximal length connecting u1 to 
ui. Obviously ui # U,, otherwise Q is critical. Therefore, 
the arc connecting ui with uj is not the longest path 
between these two vertices and a longer path between them 
must exist. This means that the arc from ui to ui cannot 
participate in any critical path, thus establishing a con- 
tradiction. 

Lemma 3 (necessary condition): Let G(U, E ,  X) and 
H(V, F, J )  be the x-graph and y-graph of some zero 
wasted area layout whose area is A. Let ai be the area of 
the j th  building block, 1 Q j G b, that is, 

and 

the paths from source to sink are critical. 

h h 

A =  c xiyj= ai. 
j - 1  j = l  

Then all the paths of G and H are critical. 
Proof: Let I? be a critical path of G and let w denote 

its length. Assume to the contrary that G contains a path 
B which is not critical. Then according to Lemma 2, there 
exists an arc e E E whose length is x which does not 
belong to any critical path of G. Let re be a path of 
maximal length from source to sink containing e and let 
we be its length. Then w - we = Q > 0. We transform G and 
H into G’ and H’ as follows. G‘ is identical to G except 
that e is replaced by two consecutive arcs e’ and e’‘ whose 
lengths are x and c, respectively, as illustrated in Fig. 6. 
H’ is identical to H, except that f E F (the dual of e) 
whose length is y, is replaced by two parallel arcs f’ and 

Y /x Y 

Fig. 6. Proof of Lemma 3. 

c3 H - 
Fig. 7. Proof of Lemma 4. Maximum cardinality of a path in G 

equals 1. 

f” of length y each. Considering (e’,  f’) and (e”, f”) as 
pairs of dual arcs, we ensure that G‘ and H’ are dual 
graphs corresponding to a floorplan. The length of the 
critical paths in G’ and H’ are the same as that of G and 
H. Hence they impose a layout whose area is A with b + 1 
blocks, where ( e” ,  f”) is a pair of dual arcs corresponding 
to the additional block. Consequently, 

b + 1  b b 

A >  xJyJ= c xJyJ+cy>  a J = A  

which is a contradiction. Therefore, all the paths in G and 
H are critical. 

The following lemma proves that the equality of the 
length of all paths in G and similarly for H is sufficient to 
obtain a zero wasted area layout. 

Lemma 4 (sufficient condition): Let G(U, E ,  X) and 
H( V, F, J )  be the x-graph and y-graph corresponding to 
some floorplan implying a layout whose area is A, and let 
a, be the area of BJ, 1 Q j G b. If all the paths from source 
to sink in G and H are critical, the layout has zero wasted 
area, i.e., 

J -1 J - 1  J = = 1  

b 
A =  aJ .  

J -1 

Proof: The proof proceeds inductively on the maximal 
cardinality of a path in G (the cardinality of a path is the 
number of arcs along it). When the maximum cardinality 
is 1, the condition is trivially sufficient, as shown in Fig. 7. 
Here all the paths are of cardinality 1, and since they are 
all critical, all the arcs of G are equally long. In H there is 
a single path which is obviously critical. Therefore, 

b b b 
A = w h = w  yJ= xJyJ= aJ 

J = 1  J = 1  J - 1  

which means that there is no wasted area. 
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-by 

Fig. 8. Proof of Lemma 4. Reducing the maximum cardinality of a path 
in G .  

Assume that the lemma holds for maximal cardinality 
not greater than n - 1, and let G have some paths with 
maximal cardinality n. We show that the cardinality of any 
path consisting of n arcs can be reduced to n - 1 by 
applying a finite series of transformations to G and H 
preserving the layout area. Assume that k arcs eJ whose 
length are x,, 1 Q j Q k ,  are connected to the sink of G as 
illustrated in Fig. 8(a). Let xi = min, , kxJ. Every arc eJ 
for which x, > x, is replaced by two consecutive arcs ej’ 
and e;‘ whose lengths are XI = xi and x,” = x, - xi, re- 
spectively. The corresponding dual arcs in H are replaced 
by two parallel arcs having the same length, as shown in 
Fig. 8(b). The layout implied by the new dual digraphs has 
the following properties: 

1) The lengths of the critical paths in the new G and H 
are the same as that of the critical paths in the 
original G and H. 

2)  The total sum of block areas in the new G and H 
equals to that of the original G and H. P 

The new graphs are further transformed as follows. The 
tail and the head vertices of the parallel arcs in H are each 
replaced by two vertices as illustrated in Fig. 8(c). The two 
resulting paths in H are disjoint and equally long. Finally, 
the new vertices which have been introduced into G ,  and 
the tail vertex of ej are all combined into a single vertex, 
thus resulting in a separable x-graph with components G, 
and G, as shown in Fig. 8(d). Let H,  and H, denote the 
corresponding y-graphs. The layout imposed by ( G l ,  HI) 
has zero wasted area as proved formerly. Furthermore, the 
two resulting layouts have the same height since the critical 
paths of HI and H2 have the same length and they can be 
matched without wasting area. Therefore, if (G, ,  H,) im- 
poses a zero wasted area layout the lemma is proved. At 

least one path in G,  has a cardinality lower than that of 
the corresponding path in G .  If we employ the above series 
of transformations repetitively to (G, ,  H,), then after a 
finite number of steps the maximal cardinality of any path 
in G must be reduced to n - 1 (or lower), resulting in a 
pair of dual graphs ( G ,  H) that satisfy the induction 

Lemm 3 and 4 are summarized in the following theorem. 
Theorem 2: The layout implied by two dual x-graph 

and y-graph has zero wasted area if and only if every path 

The above necessary and sufficient condition for zero 
wasted area layout provides a basis for a scheme to find 
this layout when the areas of the building blocks are given. 
Using the path matrices K and L defined in (3.1), a 
solution of the system 

hypothesis. 

in these graphs is critical. 

b 

KIJxJ - w = 0, 1 d i d  k (3-7) 

L,,y,-h=0, l < i Q l  (3.8) 

x,y,=a,, 1~ j < b  (3.9) 

J - 1  
b 

J -1 

b 
w h =  c a , = A  (3.10) 

that satisfies x, > 0, y, > 0, w > 0, and h > 0, yields the 
desired layout. 

Notice that according to Lemma 4, an arbitrary feasible 
solution of (3.7) and (3.8) provides a zero wasted area 
layout. Then, (3.10) is automatically satisfied. In addition, 
since 

J ” 1  

b b 

x,y, = a, = wh = A 
/ = I  I - 1  

an arbitrary equation from the set (3.9), e.g., for j = b,  
may be omitted. The b - 1 remaining equations imply that 

X b Y b = A -  x,y,=A- c a ,=ab .  

With respect to the linear part (3.7) and (3.8) of the 
system, the number of independent equations is defined in 
the following. 

Lemma 5: Let Q be a (k + I) X 2b matrix defined as 
follows: 

b - 1  b - 1  

J = 1  J =1 

Q = ( :  ei (3.11) 

where K and L are defined in (3.1). Then, the rank of Q 
equals b + 1. 

Proof: Assume that G and H contain m and n 
vertices, respectively. Let us augment G and H by adding 
to each of them a ( b  + 1)th arc directed from the sink to 
the source. The path matrices K and L defined in (3.1) are 
thus modified to circuit matrices and 1 corresponding 
to the extended graphs G and p, respectively, by adding a 
( b  + 1)th column of - 1’s to each of them. 
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L...L 
Fig. 9. Proof of Lemma 5. 

Consider first 5 and the corresponding circuit matrix 
K. Let u1 and U, denote its source and sink, respectively, 
and C, de_note the full circuit matrix corresponding to the 
set of all G’s circuits.’As is well known [14], there exists 

rank C, = #arcs- #vertices+ 1 = ( b  + 1) - m + 1 
= b - m + 2 .  (3.12) 

K is a submatrix of C,, and, therefore, 

rank Q b - m + 2. (3.13) 

Take now an arbitrary ’ow cq of Cc and let S be its 
corresponding circuit in G. It may happen that S contains 
the additional arc (U,, ul). In such a case, the rest of S 
presents a path prom ul to urn, and cq is up to a sign 
identical with some row of the matrix E. If however, the 
arc (U,, ul) does not belong to S, we partition S into a 
sequence of sections S = (Sl, S,,. - ., Sr), such that the 
direction of the arcs along each section is preserved, and 
the directions of every two consecutive sections alternate, 
as illustrated in Fig. 9(a). It can be readily verified that r 
must be an even number (see Lemma 6 in Section IV). 
Without loss of generality we may assume that the odd 
sections 1 Q i Q r /2  are clockwise directed, while the 
even sections S2i, 1 Q i Q r / 2  are counterclockwise di- 
rected. Applying the same technique as in Lemma 1, we 
may extend each of the above sections to a path starting at 
u1 and ending at U,. In case of a vertex common to two 
leaving consecutive sections, the extending path connects 
the source to this vertex, while in the case of two entering 
consecutive sections, the common vertex is connected to 
the sink, as illustrated in Fig. 9(b). Let Pi, 1 Q j G r denote 
the paths corresponding to the sections of S .  To each of 
these paths augmented by the additional arc(u,, u l )  there 

*In the full circuit matrix of a di raph the rows correspond to oriented 
circuits and the columns corresponi to arcs. The (i, j )  element equals 1 if 
circuit i contains arc j and their directions coincide. It e uals -1 if 
circuit i contains arc j and they have opposite directions an1 it equals 0 
if circuit i does not include arc j .  -.. 

is a corresponding row kpj in the circuit matrix K satisfy- 
ing 

i = r/2 i = r/2 

cq = c kP,,-, - c kP,, (3.14) 
i-1 i-1 

since each of the terms corresponding to an extension of a 
section appears in (3.14) twice, once with a plus sign and 
once with a minus sign, as can be seen from Fig. 9(b). 
Consequently, all the terms corresponding to the exten- 
sions will cancel out. 

are a basis of 
C,, and, therefore, 

rank E = b - m + 2. (3.15) 
We show now that the (b + 1)th column of E (consisting 
of - 1’s) is linearly dependent on the first b columns. Let 
X = (x1; - -, x b )  be a real vector satisfying (3.7),3 and let ik 
be a k-vector of 1’s. Then, (3.7) can be rewritten as 

1 - 

Equation (3.14) proves that the rows of 

(3.16) 
W 

thus proving the linear dependency. Consequently, 

rank K = rank K =  b - m + 2 .  (3.17) 

Similarly, we can prove that the matrix L satisfies 
rank L = b - n + 2.  (3.18) 

Recall that the vertices of G and H correspond to the 
vertical and the horizontal line segments of the floorplan, 
respectively. We claim that the total number of line seg- 
ments in a floorplan equals b + 3. This can be shown by 
applying the Euler theorem of planar graphs, which says 
that if G has m vertices, f faces, and b arcs, then 
m + f = b + 2 (the outer face is included) [4]. Let n be the 
number of vertices in H. Then n = f + l  since the outer 
face of G contains two vertices of H. Combining these two 
equalities, we conclude that m + n = b + 3, where by defi- 
nition, m + n is the total number of segments in the 
floorplan. Now, from (3.11), (3.17), and (3.18) we conclude 
that 

rankQ = rankK +rank L = 2b - ( m  + n ) + 4  = b + 1 
(3.19) 

which proves the lemma. 

given w and h ,  such that 
Summarizing the above discussion, we notice that for a 

b 

wh= z a j = A  
J -1 

the number of unknowns and the number of independent 
equations are both equal to 2b. There remain the questions 
whether there exists always a freasible solution of the 
system (3.7)-(3.9), and (if the answer to the first question 
is affirmative) whether the solution is unique (up to the 

31t is shown in Section IV that it is always possible to assign lengths to 
the arcs of G such that all its paths are cntical. 
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transformation discussed in Lemma 1). The following the- 
orem answers these questions. 

Theorem 3 (existence and uniqueness): A solution corre- 
sponding to a zero wasted area always exists, and it is 
unique up to a uniform stretch transformation. 

Proof: Without loss of generality we may assume that 
w = h = = z, since according to Lemma 1, if a solution 
exists, we can get any w and h satisfying w h = A  by 
applying a uniform stretch transformation. Let us define 
the following two sets in R2b: 

2 

SZ 

b 3% Fig. 10. Proof of Theorem s, 3. sz 
S = ( X , j ) I  K i i x j - z = O ,  l g i b k ;  

(X*, j*) satisfying xi*,* = ai, 1 b j b b. Here again we 
assign x,? and y,* to the appropriate arcs and construct a 

0 { j - 1  

b b 
A = ai = xi*,* = (z*)’ > z 2  = A (3.24) 

j - 1  j = l  

i b 
C L .  1, .Y .  I - Z = 0, i Q I (3.20) layout which satisfies 

j - 1  

T =  { ( X , ~ ) I X ~ ~ ~ > U ~ ,  x ~ > o ,  y j > o ,  I Q  j g b } .  
(3.21) 

The set S, defined in (3.20) is a subspace in R2’ (whose 
dimension equals b - 1 since according to Lemma 5 the 
rank of Q in (3.11) equals b + 1). The set T defined in 
(3.21) is convex and closed since it is an intersection of b 
convex closed sets. It is not difficult to see that (X, j )  E T 
is an extremal point4 if and only if it satisfies x,y, = a,, 
1 b j G b. S, and T must satisfy one and only one of the 
following possibilities: 

1) S, supports T, 
2) S, n T # 9, and the intersection contains an internal 

point of T, 
3) S,nT=+. 

Fig. 10 provides a simplified illustration of these possibili- 
ties. Let us examine each one of them. In the first one, the 
points common to S, and T are boundary points of T. It is 
well known that a subspace supporting a convex set must 
contain at least one of its extremal points [5]. Let (X*, j * )  
be that point. Therefore, (3.7)-(3.9) are satisfied and 
(X*, j * )  provides a zero wasted area layout. 

We show now that the other two cases are impossible. 
Let (X*, j * )  E S, n T be an internal point of T. Then, 
there exists some r for which x:y: > a,. Assign x: and 
y,*, 1~ j Q b ,  to the appropriate arcs and construct a 
layout. This layout satisfies (3.7) and (3.8) with w = h = z, 
implying a zero wasted area. Therefore, 

b b 
A = z 2  = x,*y,* + x:y,* > a, = A  (3.22) 

J -1 J = 1  
J + *  

which is impossible. For the third case, let us define z* as 
follows 

z* = sup { zlS, n T = $I } . (3.23) 

Then, z* > z and S,* supports T at an extremal point 

4A point of a convex set is called extremal if it cannot be a midpoint of 
any other two different points belonging to the convex set. 

which is impossible. This completes the proof of existence. 
To prove uniqueness, assume that (Z’, j ’ )  and (Z2, j 2 )  

are two different real positive solutions of (3.7)-(3.9) (they 
are necessarily extremal points of T) .  Define ( X 3 ,  j 3 )  to 
be the mid point of ( X 1 , j l )  and ( X 2 , j 2 ) .  Since S, is a 
subspace, ( X 3 , j 3 )  satisfies (3.7) and (3.8). By definition, 
(X3, j 3 )  is not an extremal point of S,, and, therefore, 
there exists some r for which x:y,? > a,. Let us build a 
layout whose block dimensions are (x,’, y:), 1 Q j Q b. 
Following the same arguments as in the proof of the 
existence, we obtain the following contradiction: 

b b 

A = z 2  2 x,’y; + x:y,? > U ,  = A .  (3.25) 
J -1 / = I  
J # r  

Therefore, (3.7)-(3.10) have a unique real positive solu- 
tion. m 

Example 3: We wish to find a zero wasted area floor- 
plan corresponding to the graphs given in Fig. 4(b). The 
areas of the building blocks are given as follows: a1 =15, 
a 2 = 6 ,  a 3 = 2 8 ,  a,=21, a,=30. The total area of the 
layout is A = E?,,a, = 100. According to Lemma 1, w = h 
= 10 are determined arbitrarily to satisfy (3.10). Equations 
(3.7)-(3.9) have the following solutions: 

which is feasible, and 

x i  = 3, x i  = 3, X ;  = 4, X ;  = 7, X ;  = 6 

385 
x;’ = - 85 

x;’ = - x y  =lo-  - - - 14 ’ 64 14’  64 ’ 
385 85 

which are not feasible since x y  < 0. Recall that a feasible 
solution implies a family of layouts whose aspect ratios are 
determined arbitrarily. rn 

Example 4: Fig. ll(a) depicts a 20-block floorplan where 
the desired area of each block appears at the center of the 
appropriate region. The corresponding G and H were 
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Fig. 11. 20-block floorplan and the implied zero wasted area layout. 

derived by a computer program. Equations (3.7)-(3.10) 
were then solved and the resulting layout is shown in Fig. 
ll(b). We can see that all the blocks’ dimensions match, 
yielding a zero wasted area layout. 

3.2. Constrained Aspect Ratios 
A more realistic situation is of constrained aspect ratios 

of the building blocks. For example, a block in VLSI may 
have an aspect ratio from some restricted interval de- 
termined by the various possibilities of implementation. In 
architecture, the aspect ratio of a room cannot assume any 
arbitrary value but must be such that the functionality of 
the room is retained. In the unconstrained case we have 
determined necessary and sufficient conditions for zero 
wasted area layouts. The existence of this optimal situation 
in the constrained case is discussed in the following 
corollary. 

Corollary 2.1: Let the aspect ratio y j / x j  of Bj be con- 
strained in a given interval [ a,, pi], 1 < j < b. A zero wasted 

area layout exists if the aspect ratios A = (A,,. e ,  A b )  of 
the corresponding unconstrained case satisfy 

Proof: According to Lemma 1 and Theorem 3, is 
uniquely determined up to a real positive multiplying 
factor. Let K E n,b,,[aJ/AJ, pJ/AJ]. Lemma 1 shows that 
if the aspect ratio of each block is multiplied by K ,  the area 
of the layout whose building blocks’ aspect ratios are 
A , , . - - , A b  is preserved. Since aJ,<~AJ<<’ ,  1 6  j < b ,  a 
zero wasted area layout for the constrained case does exist. 

Corollary 2.1 characterizes the situation of zero wasted 
area for the case of aspect ratios constrained in finite 
intervals. However, it may happen that the condition in 
corollary 2.1 is not satisfied and some optimization al- 
gorithm must be employed to minimize the wasted area. A 
practical way to find a layout of minimum area is to 
approximate the aspect ratios, which in this discussion are 
continuous functions defined on some intervals, by a finite 
set of possible aspect ratios for each block, or by piecewise 
linear function. Under these approximations the problem 
of minimizing the layout area in slicing floorplans was 
solved by polynomial algorithms [12]-[15]. For general 
floorplans the problem is NP-complete [15] and an effi- 
cient branch and bound algorithm was presented in [18]. 

3.3. Flow Conditions for Zero Wasted Area Layoul 
The number of rows in K and L, k and I ,  respectively, 

may grow exponentially with the number of arcs in G and 
H (which equals the number of blocks). Therefore, solving 
(3.7)-(3.10) may be very tedious. We show in what follows 
that the k + I path equations in (3.7)-(3.8) can be replaced 
by b + 3 flow equations. To this end, we first define two 
new graphs G’(U, E ,  J )  and H‘(V, F, X), which are iso- 
morphic to G and H except their arc lengths which are 
obtained by interchanging the lengths of the arcs in each 
dual pair of G and H .  Recall that there is one to one 
correspondence between paths in G and cutsets in H and 
vice versa [9], and similarly for G’ and H’. Therefore, in 
case of a zero wasted area layout, the total weights of arcs 
in all the cutsets of G’ and H’ equal to h and w ,  respec- 
tively. This shows that we can interpret the arc weights as 
flows with the same flow passing through each cut. 

Considering vertices, the above interpretation means 
that the out-flow of the source equals the in-flow of the 
sink ( h  in G’ and w in R), and for any other vertex, the 
in-flow equals the out-flow. Let m and n be the number of 
vertices in G‘ and H’, respectively. Let M be the m X b 
vertex-arc incidence matrix of G’, defined as follows: 

if e., leaves U ,  

MIJ = - 1, if eJ enters U, (3.26) i :: otherwise. 

N is an n X b vertex-arc incidence matrix defined similarly 
for H’. The k + 1 path equations in (3.7) and (3.8) can now 
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be replaced by the following m + n flow equations of G' (a)  ( C )  

and H' 
b c Mi,y, = 0, ui is neither a source nor a sink (3.27a) 

;-1 

Mi,y, - h = 0, ui is the source 
b 

(3.27b) 
; = 1  

b 
MIJ yJ + h = 0, U, is the sink (3.27~) 

J = 1  

b 
q J x J  = 0, U, is neither a source nor a sink (3.28a) 

J = 1  

b c N,,xJ - w = 0, U, is the source (3.28b) 
J = 1  

b 
q J x J  + w = 0, U, is the sink. (3.28~) 

Consequently, instead of k + I path equations we have 
now only m + n  flow equations, and as was proved in 
Lemma 5 ,  m + n = b + 3. We have thus reduced signifi- 
cantly the number of equations to be solved. 

It is well known that the minimal cut in a planar 
network is equivalent to the shortest path in the dual 
network, where each dual arc is assigned the weight of its 
corresponding primal [9]. Equation (2.4) in Theorem 1 
proves that given dual parametric networks whose arc 
lengths satisfy (2.1), the product of their shortest paths is 
bounded by C,b_lx,yJ. Theorem 2 proves that this bound is 
achieved when all the paths in each graph are equally long. 
These results can now be applied to bound the product of 
the maximal flows in such networks. 

Corollary 2.2: Let G and H be two dual networks, 
whose arc capacitance satisfy (2.1). Then, the product of 
their maximal flows is bounded by C,b_IxJyJ, and this 
bound is achieved when all the cuts in each network pass 
the same flow. 

J = 1  

IV. RECTILINEAR REPRESENTATION OF 
PLANAR GRAPHS 

In Section I1 we saw how a floorplan can be represented 
by planar graphs. The floorplan is actually some rectilinear 
representation of these graphs. An interesting question is 
whether the converse exists, i.e., whether for any given 
planar graph there exists such a rectilinear representation. 
This question has also practical implications and the use of 
the rectilinear representation of a planar graph in the 
layout of MOS circuits is now under investigation. The 
existence question was studied in [16], where the following 
theorem is proved. 

Theorem 4 (Thomassen [16]): If G is a 3-connected 
planar graph, then G has a representation in the plane 
such that the vertices of G correspond to vertical line 
segments and two vertices of G are adjacent if and only if 
the corresponding segments can be connected by an hori- 

Fig. 12. Rectilinear representation of planar graphs. 

zontal line segment not intersecting any other vertical line 
segment. w 

The proof of the above theorem in [16] is inductive and 
does not provide an efficient procedure to generate the 
rectilinear representation. 

In what follows we obtain the above rectilinear repre- 
sentation by using the dual digraphs corresponding to a 
floorplan, and the layout they imply. The procedure is 
based on the observation that if the implied layout has 
zero wasted area, then the layout and the floorplan are 
identified. The steps of the procedure are outlined in the 
following: 

1) Modify the given planar graph into an acyclic di- 

2) Obtain its dual, which is also an acyclic digraph 

3) Assign lengths to the arcs of the dual graphs such 

4) Derive a zero wasted area layout (floorplan) from the 

5) The resulting floorplan is transformed to obtain the 

We next describe in detail the five steps of the procedure 
which are also illustrated in Fig. 12 which follows the 
above steps. In step (1) directions are assigned to the edges 
of the planar graph G ,  employing the st-numbering proce- 
dure [6]. Given any two vertices s and t of a nonseparable 
graph G ( U , E ) ,  this procedure generates a one to one 
function, g : U 4 { 1,2,. . , IU I} satisfying: 

graph having unique source and sink. 

having unique source and sink. 

that all their paths are critical. 

above x-graph and y-graph. 

rectilinear presentation. 

1) g(s) =I, 
2) s( t )  = IUI, 
3) for every u E U - { s, t } there are adjacent vertices p 

In [6] an algorithm that produces an st-numbering in 
O( I El) time units is presented. We can choose any two 
vertices on the external face of our planar graph and 
designate them as s and t. Applying the st-numbering 

and q such that g( p )  < g( U) < g( 4). 
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G -  
l-4 - -  I 

\ from s 
from s 

Fig. 13. Proof of Lemma 6 .  

procedure, a digraph is obtained in which s and t are the 
source and the sink, respectively. 

In the second step we first construct the undirected dual 
of G ,  denoted by H .  Then, directions are assigned to the 
arcs of H such that the orientation when going from the 
head of an arc in G to the head of its dual arc in H 
(clockwise or counterclockwise) is preserved. We have to 
prove that the resulting digraph is acyclic, with unique 
source and sink (i.e., H is st-numbered). Otherwise, it 
cannot yield a layout. This is proved through the following 
two lemmas. 

Lemma 6: Let G be a nonseparable planar acyclic di- 
graph with unique source and sink. Then, the direction of 
the arcs along any face is changed exactly twice. 

Proofi Let s and t denote the source and sink, respec- 
tively. Obviously, the direction must be changed since G is 
acyclic. Also, the number of changes must be even. To 
prove it observe that any direction of the arcs along a face 
can be obtained by starting from a cycle where there are 
no changes in the direction. Then, reversing the direction 
of an arcs either adds two changes in the direction, or it 
does not add any change. 

Assume to the contrary that the direction is changed 
more than twice. Consider first a face containing neither s 
nor t. There must be at least four vertices along the face 
such that two of them have only incoming arcs and two of 
them having only outgoing arcs, ordered as illustrated in 
Fig. 13. Since G is st-numbered, there exist paths connect- 
ing vertices a and c with s, and paths connecting vertices 
b and d with t. Since G is acyclic, the circuits a - d - c - 
s - a and b - c - d - t - b cannot have a common vertex 
which is not a part of the face, otherwise the planarity of G 
is contradicted. Similar considerations can be applied to 

Lemma 6 proves that the external face of the x-graph is 
composed of two paths connecting the source to the sink, 
that is, an upper one and a lower one. Consider the vertex 
of H which is above the upper path of G .  We may direct 
all the edges connected to this vertex of H and which cross 
the corresponding arcs on the upper path of G ,  in such a 
way that the direction of turning by an angle a < 7~ an arc 
of G to its dual arc in H ,  so that their orientations 
coincide, is the same for all the dual arc pairs. Since all the 
arcs along the upper path of G have the same direction, 
directing the dual arcs of H results in a source. The sink of 
H is obtained similarly by the dual arcs of the lower path 

the faces containing the source or the sink. 

Fig. 14. Proof of Lemma 7. 

of G .  The above source and sink of H are unique since any 
other source or sink in H implies a cycle in G, which is 
impossible. We still have to show that H is acyclic. 

Lemma 7: Let G be an acyclic planar digraph having 
unique source and sink. Then its dual is acyclic too. 

Proofi Assume to the contrary that its dual H con- 
tains a cycle C.  Then all the dual arcs of G are directed 
inwards (outwards), as illustrated in Fig. 14. Let G' denote 
the portion of G enclosed in C.  Since G' has no cycles, it 
must have a source (and a sink). But this contradicts the 
fact that s is the only source of G. An alternative proof is 
to look at some vertex of G'. There is a path connecting 
this vertex to the sink. This path must have an edge going 

In step (3) of the procedure we assign nonnegative real 
numbers to the arcs of G and H such that all their paths 
are critical. The assignment proceeds as follows. The di- 
recting of the arcs which follows the st-numbering process 
yields a graph in which an arc U, + U, is always directed 
from a vertex with a lower number to a vertex with a 
higher number. Initially the source ( u l )  is labeled with 
zero, that is l ( u , )  = 0, and all the other vertices are un- 
labeled. Let U, be the set of all the vertices having an arc 
directed to U,. Then, the label of U, is defined by 

outward C,  which again results in a contradiction. 

/(U,)= max {I(U,)+I}. 
U/ E (I, 

Let uk E V, be a vertex satisfying I( u k )  = max E ,,,I( U,). 
Then the arc U k +  U, is assigned the length 1. For the 
remaining vertices U, E U, the arc U, + U, is assigned the 
length I( U,) - I( U,). The paths in the resulting graph are 
all critical. 

In step (4) we construct a layout from G(U,  E ,  X) and 
H( V, F, j ) .  The resulting layout has zero wasted area since 
Theorem 2 states that the criticality of all the paths in the 
x-graph and y-graph is necessary and sufficient for a zero 
wasted area layout. The resulting layout can be treated as 
if it was a floorplan since they are now identified. 

Finally, the floorplan constructed in the fourth step is 
trivially transformed to obtain the desired rectilinear rep- 
resentation. The floorplan is in one to one correspondence 
with the original planar graph, where a vertex corresponds 
to a vertical line segment, and an edge connecting two 
vertices corresponds to the sub-rectangle supported by the 
two corresponding vertical line segments. In each sub-rect- 
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angle we draw now a horizontal line segment passing 
through its center and extending up to its left and right 
edges. We then drop all the former horizontal line seg- 
ments of the floorplan, yielding a representation that 
satisfies the conditions of Theorem 4. Fig. 12(e) illustrates 
the final result of the construction. 

V. CONCLUSIONS 
We have discussed in this paper the problem of minimiz- 

ing the area of a layout, given its floorplan and the areas of 
its building blocks, by allowing the dimensions of these 
blocks to be determined arbitrarily. The floorplans consid- 
ered are general ones and are not restricted to sliced 
floorplans. A necessary and sufficient condition for the 
existence of a zero wasted area layout was derived and its 
uniqueness was proved. Then, a closed form solution to 
generate it was presented. It was also proved that for a 
family of dual network pairs for which the product of dual 
arc length is invariant, the minimal product of their longest 
paths is not smaller than the maximal product of their 
shortest paths. Based on the zero wasted area layout 
analysis, we proved that the maximal product of the flows 
in such dual parametric networks is given by the total sum 
of the capacitance product of each individual pair of dual 
arcs. Finally, an efficient procedure to derive a rectilinear 
representation for any planar graph, based on the layout 
and floorplan graph model, was presented. There are other 
engineering applications where different geometric mea- 
sures could be optimized and other constrains are imposed 
on the building blocks (like perimeter and diagonal). This 
suggests a class of optimization problems. It is an interest- 
ing question whether efficient solutions can be derived by 
taking advantage of the graph model, rather than applying 
some mathematical programming procedures which are in 
most cases time consuming. 
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