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Analysis of Strategies for Constructive General Block 
Placement 

SHMUEL WIMER AND ISRAEL KOREN, MEMBER, IEEE 

Abstract-The problem of general block placement in VLSI is the 
topic of this paper. Among the existing approaches to its solution we 
concentrate on the constructive one, where blocks are selected and lo- 
cated one at a time. Two of the main features of the constructive ap- 
proach are its high computational efficiency and its ability to support 
both automatic and interactive placement. 

We present some well-known strategies for the selection of the next 
block to he located, propose new ones and establish a methodology to 
evaluate them. We then show that the optimization problem arising in 
constructive placement can be reduced into several, much simpler, sub- 
problems. Next, objective functions for locating the selected block to 
achieve a “good” layout are presented. We discuss objective functions 
of three different metrics: the squared Euclidean, rectilinear and Eu- 
clidean, obtain appropriate optimization problems and solve them an- 
alytically, using efficient computational schemes. These solutions have 
been implemented and are used in a real VLSI chip design environ- 
ment. Finally, we show that the squared Euclidean and the rectilinear 
metrics are preferable to the Euclidean one. 

Zndex Terms-Constructive placement, layout, physical design, op- 
timization. 

I. INTRODUCTION 
0 COPE WITH the problem of designing a chip such T that some requirements on the electrical performance, 

total area, design duration and flexibility for changes, are 
met, an hierarchical methodology should be adopted. We 
call the building blocks at some level of the hierarchy son 
blocks, and the block created by combining son blocks 
together is called a father block. When performing the 
layout of a father block, we have to know only the total 
dimensions of its son blocks and how they communicate 
with each other. The layout procedure is in general very 
complicated and hence, is partitioned into two separate 
phases, placement and routing. An overview of various 
placement algorithms can be found in [6] and [ 101. 

This paper concentrates on constructive placement al- 
gorithms, where at each step we first select a block and 
then locate it, one at a time. Consequently, a constructive 
algorithm consists of a strategy for selecting a yet un- 
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placed block and a scheme for locating the selected block 
in the available area, optimizing some objective function. 
A major advantage of these algorithms is the considerably 
lower computational effort required to execute them, 
compared to that required by other placement methods, 
since they lead to simpler optimization problems. How- 
ever, a global minimum is seldom achieved and it is pos- 
sible to get stuck at a local minimum. Another important 
advantage of constructive placement algorithms is that 
they allow human intervention at any step of the algo- 
rithm, which suits an environment where the designer may 
wish to be involved in the layout process. 

In the next section we review several well-known strat- 
egies for selecting the next block to be located, we then 
propose new ones and compare them. In Section I11 we 
propose a significant reduction in computations for opti- 
mal locations. Then, in Section IV we present objective 
functions for various metrics. 

A layout package based on the theory presented in this 
paper was developed and is used in a real chip design 
environment [9]. It supports human intervention in the 
layout process, i.e., the selection and location of a block 
at any step can be accomplished either automatically or 
manually. 

11. SELECTION STRATEGIES AND THEIR EVALUATION 
The placement problem can be stated as follows: given 

a collection of blocks with logical interconnections be- 
tween them, find among all the feasible arrangements of 
blocks the “best” one. In order to find it, we must have 
some objective function that should reflect an estimate of 
the expected cost of routing which is performed once the 
placement is completed, and the total chip area used. A 
constructive placement algorithm attempts at each step to 
expand a partial configuration such that the increase of the 
objective function is minimal. 

Given the geometry of the father block Bo and its b son 
blocks Bi, 1 I i I 6 ,  and the logical interconnections 
between their ports through several nets, the problem of 
the optimal placement of general blocks is to minimize a 
nonnegative real funct ionf(a , ,  x,, y, ,  - , ab, xb, y h ) ,  

where ai is the orientation of the ith son block (generally, 
there are eight possible orientations resulting from two 
reflections and four rotations), and ( x i ,  y,) is the location 
of its center within the coordinates of Bo. The functionf 
is the cost of a complete valid placement, in which all the 
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son blocks are contained within the area of the father block 
and no two disjoint son blocks overlap. The algorithms 
presented in this paper can be employed without a given 
geometry for Bo by initially allowing Bo to be arbitrarily 
large and then reducing it to the desired size after the 
placement of all B,’s has been completed. 

Even for a very simple objective function, the solution 
of the placement problem is very complicated. There are 
b discrete variables G I ,  1 I i 5 b, each one of them can 
assume one out of eight possible values, and 2 b contin- 
uous variables xI, y,, 1 I i I b. The non-overlapping 
requirement imposes O( b 2 )  constraints of mixed type. 
For a typical number of b = 16 it is prohibitively complex 
to solve the problem analytically or even numerically. In 
the constructive placement scheme a block configuration 
is obtained incrementally. At every step a new unplaced 
block is selected and then located optimally within the 
available free area. A phase of placement improvement 
can take place after all B,s have been placed, where local 
changes like reflection and rotation of blocks, and local 
shifts, might further reduce the cost. 

Several selection strategies were suggested [4]. In what 
follows we present four strategies and propose a meth- 
odological approach to their comparison. Let B denote the 
set of all the blocks, B’ the set of already placed blocks 
and B” the set of yet unplaced blocks. Initially B‘ = { B o }  
and B” = B - { B o ) ,  while finally B” = 4 and B’ = B .  
We define a linkage I( Bk, B , )  between two blocks Bk and 
B, as the total sum of weights of nets that connect Bk and 
B,. Each net is a collection of ports located in various 
blocks, and weights are assigned to nets according to their 
relative significance (e.g., number of wires, required sig- 
nal propagation speed, etc.). The following are strategies 
for the selection of the next block to be located. 

Among all Bk E B” select the one for which C B I c B ,  

I ( & ,  B , )  is maximized. This strategy tends to locate 
strongly connected blocks as close as possible, but it 
does not consider the utilization of the father block’s 
area and often leads to a non-feasible configuration. 
As the placement proceeds, the free area becomes 
fragmented and placing large son blocks becomes 
more difficult. To avoid this problem, we may use 
the following strategy. 
Among all Bk E B” that satisfy CBIEBr  1(& ,  B , )  > 0 
select the one with the maximal area. Although this 
strategy increases the likelihood for a complete fea- 
sible configuration, it often results in an unaccept- 
able routing length. 
A third strategy, which is a compromise between the 
first two, suggests to select blocks according to their 
linkage to already placed blocks and according to 
their area as well. Among all Bk E B” select the one 
for which Ak CB,EBf I ( & ,  B , )  is maximized, where 
Ak is the area of Bk. The reason for taking the prod- 
uct of the area and the linkage, and not their sum is 
to avoid normalization. 

A selection strategy should consider not only the 
linkage to already placed blocks, but also to unplaced 
blocks. For example, the next block to be located can 
be selected as follows: Among all Bk E B“ select the 
one for which CBIEBr I ( & ,  B , )  > 0 and C B I E B ,  I ( & ,  
B , )  - CBIEB,,  1( Bk, B , )  is maximized. This strategy 
tends to defer the selection of son blocks which are 
strongly connected to unplaced blocks. Actually. it 
results in clustering of the blocks [4]. 

In Section IV we propose another selection strategy which 
is motivated by a physical interpretation of the objective 
function. 

Figs. 1-3 are three configurations obtained for an ex- 
ample of 16 blocks and 16 nets, employing the first three 
selection strategies. The cost appearing in the three fig- 
ures is the weighted sum of the squared Euclidean dis- 
tances between ports participating in the same net. For 
the example depicted in Figs. 1-3, the third strategy based 
on connectivity and area considerations yields the best re- 
sult, while the second one which is based only on area 
considerations yields the worst result. The above men- 
tioned cost does not consider the total area directly. It 
depends only on the length of the interconnections be- 
tween blocks, which in turn may affect the area. Still, the 
example shows that blocks are placed tightly for all three 
strategies. Part of unoccupied inter-block area may be uti- 
lized in the routing phase that follows the placement and 
which demands the establishing of channels between 
blocks. However, if after channels are opened, there is 
still free area in the periphery, the frame of the father 
block can be contracted, thus reducing its total area. 

Clearly, the order of preference among the various se- 
lection strategies may depend on the definition of the 
placement cost, the method used to locate the selected 
block and the specific example considered. We would like 
therefore, to have a more “objective” measure for com- 
paring the effectiveness of various selection strategies, a 
measure that will be applicable to any definition of the 
placement cost. Given a problem, each selection strategy 
determines a sequence of blocks to be placed. We say that 
a sequence of blocks is feasible if its results in a feasible 
placement, that is, every selected block can be success- 
fully located in its turn within the currently available area, 
using the given optimization algorithm. Consider now the 
space of all feasible sequences, each yielding some value 
of the placement cost. If we select at random a sequence 
from the above space, then the corresponding cost is a 
random variable with some probability density function. 
Fig. 4 is an histogram obtained by drawing a random sam- 
ple of 2500 feasible sequences from the space imposed by 
the example of Figs. 1-3. 

Let S be a selection strategy, and let Cs denote the cost 
of a complete placement achieved by using S .  Let z denote 
the cost of a placement which is based on a random se- 
lection of blocks, and let g(z)  denote its probability den- 
sity function. Then, the average number of random place- 
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Fig. 1. Placement with strategy based on connectivity 

SED cost I 37Ei09 

Fig. 3. Placement with strategy based on area and connectivity. 
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ments (random feasible sequences) that must be performed 
to achieve a configuration that yields a cost lower than 
Cs, is denoted by Ns,  and given by 
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Fig. 4. Distribution of placement cost. 

1 . (2.1) This type of strategy evaluation was proposed in [5] for 
the quadratic assignment problem. The probability den- 
sity function g (2) can be obtained from the sampled data 

- - 1 
Ns = ccs dz) dz 

P r ( 2  5 CS) 
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using curve fitting. The problem of deriving g(z) analyt- 
ically is now being investigated. For our example we have 
estimated Ns numerically obtaining N, = 110, Nb = 1.2, 
and N ,  = 1000, as shown in Figure 4. This means for 
example, that under the above cost of placement and the 
algorithm to optimally locate the currently selected block, 
1000 random selection sequences on the average, must be 
performed to achieve a cost lower than that obtained by 
the third strategy, compared to the first strategy where 
only 110 random selection sequences are required. These 
figures (i.e.,  110, 1.2, and 1000) are more informative 
than the placement costs and they may serve as a better 
indication which strategy we should employ. An analyti- 
cal expression for g(z) (when and if found) may even 
further improve our situation. 

111. SIMPLIFICATION OF THE OPTIMIZATION PROBLEM 
The location of a new block is restricted by the frame 

of the father block, the frame of already placed blocks and 
their position within the father block. These restrictions 
can make the minimization problem very difficult to solve. 
However, the rectangular shape of the blocks makes the 
solution feasible. Let us decompose the free area between 
the already placed blocks into smaller rectangles called 
prime free rectangles (PFR) which are the maximal rect- 
angles contained in the free area. PFR’s were defined in 
[7] for describing rectilinear figures. In Fig. 5 abdc and 
efgc are prime, while hub is not. There is a finite number 
of PFR’s. Obviously, for every valid location of a new 
block there exists at least one PFR containing that block. 
Therefore, it is suggested to solve the minimization prob- 
lem for each PFR separately, and then select the solution 
that yields the lowest value of the objective function. 
Computationally this is much simpler than solving the op- 
timization problem at once by constraining the currently 
located block not to overlap any already placed block. 

In a similar way we can introduce external constraints 
on the location of blocks. For example, assume that we 
want to place the pads of a chip only after the internal 
placement has been completed. It is known however, that 
the pads will occupy the periphery. Therefore, this area 
must be reserved as long as placement of blocks contin- 
ues. In the layout package that has been developed, the 
user may define two types of constraints: those that are 
common to all blocks, like the one mentioned above, and 
those that are defined only for a certain block. The latter 
are generally used to prevent a block from being located 
in certain areas. For instance, when we locate the micro- 
code ROM in a CPU, it be desirable to have the flexibility 
of increasng the ROM area. This flexibility may be 
achieved by disallowing the placement of the ROM in the 
interior area of the CPU, leaving only the area in the pe- 
riphery available for its location. Invoking such a ‘‘local’’ 
constraint, the interior area of the CPU is blocked, leav- 
ing only the area in the periphery available for the loca- 
tion of the microcode ROM. 

When a new block is located, we attempt to find its 
optimal orientation and position in every PFR. Before 
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Fig. 5 .  Prime free rectangles 

solving the optimization problem, it is checked whether 
locating the block in the current orientation is feasible, 
otherwise the orientation is changed. Clearly, the total 
computation time is directly determined by the number of 
the PFR’s, which is given in the following lemma. 

Lemma: Assuming that n blocks have already been 
placed, there are at most ( 1 / 2 ) n 2  + O ( n )  PFR’s. 

The proof is a trivial modification of a proof given in 
[8], where the problem of finding the PFR’s in a rectangle 
enclosing a set of n points is discussed. An O ( n 2 )  algo- 
rithm to generate all the PFR’s is presented there, and it 
is also proved that the expected number of PFR’s is O (  n 
log n ) .  

IV. MINIMIZING THE OBJECTIVE FUNCTION 
To locate the selected block optimally, an objective 

function which reflects its contribution to the total place- 
ment cost must be determined. It may reflect the expected 
routing length, the utilization of the area or both, and it 
requires the representation of nets in some way. Many 
graph representations of nets are possible. Among them 
are the complete graph, shortest spanning tree, Steiner tree 
and others [4], [13]. 

In the following a net is represented by the complete 
graph connecting its ports, a representation which is 
sometimes used [2] [ 121. The edge length is measured in 
three different metrics: Squared Euclidean Distance 
(SED), Rectilinear Distance (RD) and Euclidean Dis- 
tance (ED).’ Let Bk denote the block to be located, and 
assume that the preliminary test for a feasible placement 
(in one of its eight possible orientations) within some 
PFR, has been successful. Let R denote the feasible rect- 

‘The notion of a metric is adopted although SED does not satisfy the 
triangle inequality. 
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angle for positioning the center of B,, R = { (x, y )  1 a I 
x I b, c I y 5 d } .  The width (height) of R equals the 
width (height) of the PFR under consideration minus the 
width (height) of Bk (after orientation), as illustrated in 
Fig. 6. Assume further that B, is connected to p ports of 
the father and the already placed blocks. Let (xi, y ; ) ,  1 
I i I p ,  be the ports’ positions in the father block ( B o )  
coordinate system. Let (U;, vi), 1 I i I p ,  denote the 
positions of the above p ports of Bk in the Bk coordinate 
system, where (0, 0 )  is its center position. Since the rel- 
ative positions of B,’s ports are fixed, their positions 
within the father block are determined by the position of 
B,’s center. Therefore, we are looking for (x,  y )  E R  such 
that if we locate there the center of B,, the contribution to 
the cost of the current partial placement is minimized. Let 
f ( x ,  y )  denote that contribution, then our problem can be 
stated as: minimizef(x, y ) ,  subject to: a 5 x I b,  c I 
y I d .  

4.1. Squared Euclidean Distance (SED) Metric 
Our problem is: 

minimize f ( x ,  y)  

subject to: a I x I 6 ,  c I y I d (4.2) 
where wi is the weight assigned to the net to whom the ith 
port belongs. Denoting ti = x i  - U,, v i  = yi - U ;  results 
in 

Expression (4.3) has the following physical interpreta- 
tion. If we look at every w, as the elasticity constant of a 
spring that connects the point (x,, y , )  with the point (x + 
u I ,  y + U , ) ,  then f is the potential energy of a system 
whose components are the already placed blocks and Bk. 
This energy is added to the system, and we search for an 
(x, y ) which minimizes this addition. This interpretation 
is related in some way to the directed forces algorithms 
for placing IC’s on a PCB or standard blocks in a VLSI 
chip [ 113. A feasible PFR is identified with an empty slot 
on the PCB or an empty space in a row of standard blocks. 

Equations (4.1)-(4.2) are a convex program and can be 
solved analytically [ 11. Let (x* ,  y* ) solve (4.1)-(4.2), 
then x* and y* can be found separately. For x* there exist 
three possibilities: 

1) If P 

w14, 
x* = r=l 

c w, 
P 

r = l  

satisfies a < x* < b ,  then this x* solves the prob- 
lem, else 

2) If Cr= I w, ( a  - 4, ) 2 0 then x *  = a solves the prob- 
lem. else 

B. father block 
B I -  B, already placed blocks 
Ba currently placed block 
F prime free rectangle 
R feasible rectangle for (2.y) 

Fig. 6 .  The feasible rectangle for locating the center of the new block. 

3) The sum Zy=,w,(b - 4 , )  I 0, and x* = b solves 
the problem. 

The value of y* is obtained in a similar way. 
Before proceeding to the next objective function, let us 

give another interpretation to the SED cost which natu- 
rally leads to a new selection strategy. Assume that we 
have n nets N,, 1 5 j 5 n ,  each one has n, ports. Let 
(x i ,  y i )  be the position of a port that belongs to NJ within 
the father block, 1 5 k I n,. Then, the cost of a complete 
placement is given by 

n n1 

SED cost = c w, c [ ( x i  - xj)’ + ( yJk - yj)’]. 
j = I  k , l = l  

(4.4) 
Define the “center of gravity” ( X J ,  7,) of a net NJ to be 

Assigning a unit mass to every port, we can define the 
“moment of inertia” Z,, of NJ as 

q 

I /  = c [ ( x i  - xJ)2 + (yJk - 7 J ) 2 ] ,  1 I j  I n. 
k =  1 

It can be shown that the minimization of (4.4) is equiva- 
lent to the minimization of the total sum of the moments 
of inertia of the nets, where every moment is weighted by 
the factor nJ wJ, namely, 

n 

SED cost = ,gI n,w,J. (4.5) 

From (4.5) we see that in order to minimize the SED cost, 
the ports must be concentrated around the center of grav- 
ity of the nets to whom they belong. This motivates a new 
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strategy for selecting the next block to be placed, namely: 
select a block from B” such that nets with larger prod- 
uct of weight and cardinality (number of participating 
ports) are completed first. 

4.2. Rectilinear Distance (RD) Metric 

The function f(x, y )  is convex in R, but the program 
(4.10)-(4.11) cannot be solved analytically and some 
search technique is required. This search should not rely 
on the derivatives offsince they do not exist at the points 
( t , ,  y )  and ( x ,  7,). However, any search technique that 
necessitates only the calculation off guarantees the global 

The problem is: minimum. 

minimize f ( x ,  y )  4.4.  Comparison of the Objective Functions 

metrics is preferable. To answer this question we must 
consider the quality of the final placement and the com- 
putation time required to achieve it. Experimental results 

P 

r = l  

An interesting question is which one of the above three 
= c w,((x - E , (  + ( Y  - 711) ( 4 . 6 )  

( 4 . 7 )  subject to: a 5 x I b ,  c I y I d. 

f is continuous in R,  but at the points ( E , ,  y )  and ( x ,  7,) 
it is not differentiable. Consequently, the technique used 
in the SED case is not applicable here and another ap- 
proach is required. Let us define t o  = a, t,+ I = b, 70 = 

c and 7,+ = d. Now sort { t,}::: and { q,}::: in in- 
creasing order and let { CY, } ::: and { @, } 7:: be the sorted 
lists, respectively. Indexes s and t ,  satisfying s < t ,  exist 
such that CY, = a and CY, = b. In the same manner, indexes 
q and r ,  satisfying q < r ,  exist such that @, = c and 0, 
= d. Let Rk,[ be a rectangle defined as follows: 

s s k ~ t - 1 ,  q s l s r - 1 .  ( 4 . 8 )  

Clearly, 

R = U ( 4 . 9 )  
k , l  

The functions x - ti and y - v i ,  1 I i I p ,  do not 
change sign on Rk,I and hence f is linear there and achieves 
its minimum at one of the four comer points ( a k ,  P I ) ,  

(4 .9)  that f achieves its minimum value on R among the 
( r  - s + 1) x ( Y  - q + 1)  points 

(ak+l, @ I > ,  (ak, @ / + I )  or ( C Y k + l ,  @ / + I > .  It follows from 

( ( Y k ,  @[), S I k I t ,  4 I 1 I r. 

It is easy to solve (4 .6)-(4.7)  by observing that the func- 
tionf(x, y )  defined in (4 .6)  is a positive combination of 
the convex functions I x - ti I + 1 y - v i  1 ,  1 I i 5 p .  
Hence, f is convex too, and it has one minimum in R,  
which is global. It follows that the minimum off  can be 
found by searching on the grid points ( a k ,  P I ) ,  s I k I 
t ,  q I I 5 r ,  requiring O [ ( t  - s )  + ( r  - q ) ]  evaluations 
off. 

4.3. Euclidean Distance (ED) Metric 
The problem is: 

minimize f ( x ,  y )  
P 

= c w, J ( x  - ti? + ( y  - 
r = l  

subject to: a I x I b, c I y I d. 

( 4 . 1 1 )  

show that a “good” placement is “good” in all the three 
metrics. Table I shows some results of a 16 block and 16 
net example. We see that even when optimization is done 
by using RD or ED metrics, the results obtained by using 
the SED metric are the best. Table I1 shows some results 
for random placements of the above example obtained by 
random sequence of block selection. We observe that the 
ratio between the RD and ED costs is almost constant. 
This ratio is 4 / l r  and it can be explained as follows. As- 
sume that every block is placed randomly. For every pair 
of ports which belong to the same net, the ratio between 
their RD and ED distance is I cos y I + I sin y 1 ,  where y 
E [ O ,  2 ~ 1 .  Now, if we look at y as a random variable in 
[0, 2 ~ 1 ,  then the mean of 1 cos y 1 + 1 sin y 1 is given by 

. n2a 
I 4 - ( [cos  yI + lsin yl) dy = - 21r 0 T 

which is the observed ratio. 
Consider now the ratio between SED and RD costs. Let 

the net NJ have n, ports. Assuming a unit weight (w, = 1 ) 
for every net, we can interpret a complete placement as a 
point in a 2 Cy=,  nJ ( nJ - 1 ) dimensional vector space. A 
component of that vector is ( x i  - xj) or ( y i  - yj) ,  where 
( x i ,  y i )  and ( x : ,  y:) are the coordinates of two ports be- 
longing to the same net NJ.  In the above notations, the RD 
cost and the square root of the SED cost are the II and l2 
norms, respectively. It is known that any two norms on a 
finite dimensional vector space are equivalent [ 3 ] .  Hence, 
there exist two constants which bound the ratio between 
the RD cost and the square root of the SED cost from 
above and below. But unlike the case of RD and ED costs, 
these constants depend on the specific problem. 

We have seen that the SED and RD minimization prob- 
lems have an analytical solution whose evaluation is very 
fast. In contrast, the ED minimization problem necessi- 
tates the use of a search technique which might be time 
consuming. Since the above analysis shows that all three 
metrics are somehow “equivalent”, we recommend to 
adopt either the SED or the RD objective function and 
reject the ED one. 

V. CONCLUSIONS A N D  FURTHER RESEARCH 
The constructive approach to the placement of general 

blocks in VLSI has been discussed in this paper. Five se- 

__ 
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TABLE I 
COST OF A 16 BLOCK 16 NET OPTIMAL PLACEMENT 

~~~ ~~ 

Metric Used for 

Cost in Terms of 

Minimization SED RD ED 

SED 1.46 x io9 1.72 x io9 1.86 x io9 
RD 2.99 x IO6 3.02 x IO‘ 3.29 x IO‘ 
ED 2.45 x IO6 2.49 x 10‘ 2.67 x IO‘ 

TABLE 2 
COST OF A 16 BLOCK 16 NET RANDOM PLACEMENT 

~ ~~ 

Random Placement No. 1 No. 2 No. 3 No. 4 
Cost in Terms of 

SED 3.70 x io9 3.61 x io9 4.76 x io9 4.06 x io9 
RD 5.25 x 10‘ 5.01 x IO‘ 6.04 x IO6 5.58 x IO6 
ED 4.14 x 10‘ 3.99 x 10‘ 4.76 x 10‘ 4.42 x 10‘ 

0.996 0.986 0.997 0.992 RD cost T 

ED cost 4 
-- 

lection strategies were presented, three of which have been 
implemented in a placement package that was developed. 
In an example we saw that a selection strategy which 
combines connectivity and area considerations, yields 
better final results than when either area or connectivity 
are considered alone. To determine which selection strat- 
egy is preferable in general, we established a probabilistic 
methodology allowing us, for a given objective function, 
to compare various selection strategies. This methodol- 
ogy can be further improved by deriving a law of distri- 
bution for the placement cost. We have also shown that 
the complexity of optimally placing a block in the frag- 
mented available area can be significantly simplified by 
decomposing the area into prime free rectangles. 

The major part of this paper is devoted to the analysis 
of objective functions based on various net metrics. The 
resulting optimization problems are convex programs 
whose global minima (for the cost contributed by the cur- 
rently placed block, and not for the whole problem) are 
guaranteed and can be found by using very efficient com- 
putational schemes. It has been shown that the final re- 
sults in all the metrics are highly correlated. Conse- 
quently, the squared Euclidean and the rectilinear metrics, 
which are computationally much simpler, are preferred. 

ACKNOWLEDGMENT 
The Design Center support of this research and fruitful 

discussions with A.  Levi are gratefully acknowledged. 

REFERENCES 
M. Avriel, Nonlinear Programming: Analysis and Methods. Engle- 
wood Cliffs, NJ: Prentice-Hall, 1976. 
J .  P. Blanks, “Near-optimal placement using a quadratic objective 
function,” in Proc. 22nd Design Automation Conf., pp. 609-615, 
1985. 
A. L. Brown and A. Page, Elements of Functional Analysis. New 
York: Van Nostrand, 1970. 

[4] M. A. Breuer Ed.,  Design Automation of Digital Systems: Theory and 

[SI C .  H. Heider. “An N-steD 2-variable search aleorithm for the com- 
Techniques. Englewood Cliffs, NJ: Prentice-Hall, 1972. 

- 
ponent placement problem,” Nav. Res. Logist. Q . ,  vol. 20, pp. 699- 
124, 1973. 
D. P. LaPotin, “A global floor-planning approach for VLSI design,” 
Ph.D dissertation, Dept. of EE and CE Carnegie-Mellon Univ., 1985. 
E. Lodi et al., “On two-dimensional data organization I.” Ann. Soc. 
Polonae, Series IV: Fundamenta Informaticae It, 1979, pp. 21 1-226. 
A. Naamad et al., “On the maximum empty rectangle problem,” 
Discrete Applied Math., vol. 8 ,  1984, pp. 267-277. 
National semiconductor Tel-Aviv, CHIPLAN user’s guide, 1984. 
T. Ohtsuki Ed., Layout Design and Verification. New York: North- 
Holland, 1986. 
N. R. Quinn, Jr.,  “The placement problem as viewed from the phys- 
ics of classical mechanics,” in 12th Design Automation Con$ Proc., 
pp. 173-178, 1975. 
L. Sha and R. W. Dutton, “An analytical algorithm for placement of 
arbitrarily sized rectangular blocks,” in Proc. 22nd Design Automa- 
tion Conf., pp. 602-608, 1985. 
J .  Soukup, “Circuit layout,” Proc. IEEE, vol. 69, pp. 1281-1304, 
1981. 
D. J .  Ullman, Computational Aspects of VLSI, Computer Science 
Press, 1984. 

est is algorithms for la ‘Y 

* 

Shmuel Wimer received the B.Sc. and M.Sc. de- 
grees from Tel-Aviv University, Tel-Aviv, Israel, 
in mathematics, in 1977 and 1980, respectively. 

From 1978 to 1981 he was with the Israeli Air- 
craft Industry. From 1981 to 1985 he was with 
National Semiconductor Design Center in Tel- 
Aviv. Since 1985 he is with the IBM Scientific 
Center in Haifa, Israel. He is currently working 
towards his D.Sc degree in the Department of 
Electrical Engineering at the Technion - Israel In- 
stitute of Technology. His current research inter- 

‘out of VLSI circuits and systems. 

* 

Israel Koren (S’72-M’76) received the B.Sc. 
(cum laude), M.Sc. and D.Sc. degrees from the 
Technion - Israel Institute of Technology, Haifa, 
all in electrical engineering, in 1967, 1970, and 
1975, respectively. 

Since 1979 he is with the Departments of Elec- 
trical Engineering and Computer Science at the 
Technion - Israel Institute of Technology, where 
he became the Head of the VLSI Systems Re- 
search Center in 1985. Previously he has held po- 
sitions with the University of California, Santa 

Barbara and the University of Southern California, Los Angeles. In 1982 
he was on sabbatical leave with the University of California, Berkeley. 
Currently he is a Visiting Professor at the University of Massachusetts, 
Amherst. He has been a consultant to National Semiconductor, Israel, in 
architecture of microprocessors and high-speed algorithms for arithmetic 
operations, in 1984-1986, to Tolerant Systems, San Jose, CA, in archi- 
tecture of fault-tolerant distributed computer systems in 1983, and to ELTA, 
Electronics Industries, Israel, in architecture of parallel signal processors 
in 1981-1982. His current research interests are fault-tolerant VLSI and 
WSI architectures, models for yield and performance, floor-planning of 
VLSI chips and computer arithmetic. 

- 1  1 


