IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6, NO. 5, SEPTEMBER 1987 - 795

Optimal Chaining of CMOS Transistors in a
Functional Cell

SHMUEL WIMER, RON Y. PINTER, MEMBER, IEEg, aND JACK A. FELDMAN

Abstract—We describe an algorithm that maps a CMOS circuit dia-
gram into an area-efficient, high-performance layout in the style of a
transistor chain. It is superior to other published algorithms of this
kind in terms of the class of input circuits it accepts, its efficiency, and
the quality of the results it produces. This algorithm is intended for
the automatic generation of basic cells in a custom or semicustom de-
sign environment, thereby removing the burden of arduous mask def-
inition from the designer. We show how our method was used to com-
pose cells in a row into a functional slice (e.g. an adder) that can be
used in, say, a data path.

1. INTRODUCTION

N THEIR SEMINAL paper [10], Uehara and van

Cleemput suggested a layout paradigm for CMOS cir-
cuits that is geared towards minimizing the diffusion re-
quired in the artwork. Their primary concern was to chain
both the p-type and n-type transistors in such a way that
their source or drain ports abut as much as possible,
thereby also minimizing the need for additional intracell
routing. In order to make the most of this method, good
algorithms are needed to generate chains that maximize
the occurrences of diffusion ports adjacencies, and then
find the smallest number of chains that realize the circuit.

The functionality of such an algorithm is to map a cir-
cuit diagram (topology) into a layout (geometry). Nor-
mally, the circuit is given as a graph, describing the con-
nectivity of the transistors. The layout is produced as a
stick diagram which can be then instantiated into mask
data by a circuit compactor. Both the algorithm suggested
in the original paper and later work (e.g., [8]) require that
the n-part and the p-part of the circuit graph be mutual
duals. Moreover, the algorithms of [7] and [8] require that
it be a series—parallel graph. On the other hand, the recent
work reported in [3] and [6] does not guarantee optimal
results in terms of minimum diffusion or any other opti-
mization criterion (although it tries to cut down on inter-
connect in general).

In this paper, we relax any constraining conditions on
the circuit graph and provide a general algorithm that can
handle arbitrary graphs optimally. This is done by allow-
ing a p-type and an n-type transistor to share a column
(i.e., have the same position in a chain) not only when
they are complementary, but also when they have a source
or drain port in common. We then formulate a sequence
of combinatorial problems that faithfully represent all the

Manuscript received October 20, 1986; revised March 9, 1987.

The authors are with the IBM Israel Scientific Center, Technion City,
Haifa 32 000, Israel.

IEEE Log Number 8715657.

optimization considerations, and devise eflicient algo-
rithms for their solution.

The results of our technique are longer chains with
sparser intra- and interchain routing problems. For ex-
ample, the CMOS full-added circuit shown in Fig. 1 (from
[5, p. 92]) was laid out in one chain, as shown in Fig. 2,
which is not possible under the constraints of the other
algorithms. Moreover, our framework can handle second-
ary optimization criteria, such as minimizing intracell
routing density, gracefully and efficiently. Our algorithm
has been analyzed and implemented; it runs almost in-
stantaneously on circuits with up to a few dozen transis-
tors.

The rest of this paper is organized as follows. Section
IT gives a precise formulation to the problem (including
the target layout style), and Section III provides compar-
ison to other work. Then we describe our algorithm in
Section IV, exemplify its usage in the context of a func-
tional slice generator (Section V), and conclude with re-
sults and possible extensions in Section VI.

II. DEFINITIONS

A CMOS circuit is given by a list of its constituent tran-
sistors. Each transistor has a rype, p or n, determining
whether it is to be realized in an n channel or a p channel,
respectively. It also has three ports: a gate, a source, and
a drain. The interconnection between transistors is de-
fined in terms of labels that are attached to ports. Each
such label defines a subset of ports, called a net. All ports
in a net must be electrically connected, and ports with
disjoint labels must be isolated. Fig. 1(b) shows a textual
description of the circuit given in Fig. 1(a), where the
labels in each transistor description are attached to the
gate, source, and drain, in this order.

The layout generated by our algorithm is in the style
proposed by Uehara and vanCleemput [10]; namely, the
transistors are arranged in a row (or an array) of transistor
pairs. Each pair consists of one p-type and one n-type
transistor, occupying a column. The two transistors are
aligned vertically at the centers of their gates which are
realized by vertical strips of polysilicon. If the gates of
the two paired transistors belong to the same net (which
is not necessarily the case), then the two strips are con-
nected straight through the column.

Diffusion runs horizontally along each side of the row:
the n-doped on the top (with p-type transistors along it)
and the p-doped on the bottom. Whenever they belong to
the same net, adjacent diffusion ports (i.e., the source or

0278-0070/87/0900-0794$01.00 © 1987 IEEE

796 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. CAD-6, NO. 5. SEPTEMBER 1987

CMOS full adder

G

IP4 P
IN4 N
IP3 P
IN3 N
M1 P BI
M3 P BI _ _
M9 P N_A_XOR B 1 N_SI
M10 N A_XOR_B 1 N_SI
M11 P A_XOR_B CI_1 N_SI
M12 N N_A XOR_B CI_1 N_SI
M13)3 N_A_XOR_B CI_1 N_CO
M14 N A_XOR_B CI_1 N_CO
M15 P A_XOR_B Al N_CO
M16 N N_A_XOR_B AI N_CO
M5 P Al A_XOR_B BI
M6 N N_AI A_XOR_B BI
M7 P N_AI N_A_XOR_B BI
M8 N Al N_A_XOR_B BI
M2 N BI A_XOR_B N_AI
M4 N BI N_A_XOR_B AI
1P2 P CI_1 VD 1
IN2 N CI_1 1 GND
IP1 P Al VDD N_AI
IN1 N AT N_AI GND
(b)

Fig. 1. Circuit diagram for a CMOS fuil adder (from [5, p. 92]). Each
inverter is instantiated as a pair of p-type and n-type transistors. (a) Sche-
matic capture. (b) Textual description (transistors’ list).

the drain) are connected as part of the row; otherwise, a
gap' must be left. No diffusion is used anywhere else in
in the cell.

Additional wiring is usually required to complete the
realization of the circuit’s internal connectivity as well as
its connections to the 1/0 signals. We use only one layer
of metal in the cells we generate. Power supplies run hor-
izontally along the whole cell in metal: V,; on the top,
and V, (or ground) along the bottom. Metal for intracell
routing can be used anywhere in the channel that is cre-
ated between the power rails (which may entail routing
over the devices). Polysilicon is also used in places free
from both devices and previously routed gate connec-
tions. Fig. 2(a) shows a stick diagram of the circuit de-
scribed in Fig. 1(a).

III. CompPaRISON TO OTHER WORK

Our circuit description is purely topological. Some al-
gorithms, such as in [7] and [8], require additional infor-

'Gaps between adjacent transistors can be implemented either by a phys-
ical break in the diffusion run, or by inserting an “‘isolation device’’ {7],
i.e., a transistor whose gate is connected either to ¥, or ground (depending
on its type). In either case, a gap takes up considerably more space than a
regular diffusion connection between two adjacent transistors.

Hths

Ground

n-chain

intracell
routing

n-well

(b)

Fig. 2. Results of applying our algorithm to the circuit diagram of Fig. 1.
(a) Stick diagram. (b) Mask data.

mation as part of their input, which is then used to guide
the layout algorithms. Moreover, special conditions are
imposed on the structure of the input circuit so that the
algorithms that are provided would apply, most com-
monly that the circuit be series—parallel (corresponding to
and/or logic), which is rather restrictive.

Other algorithms, such as [3] and [6], use the same in-
put as ours, and—like us—can handle arbitrary circuits,
but then the resulting layout is not necessarily optimal. In
this section, we first survey algorithms that are restricted
to series—parallel circuits, and guarantee optimality based
on this structure, and then describe algorithms of the more
general kind.

A. Algorithms for Series-Parallel Circuits

Following [10], two circuit graphs are defined, one for
the n-type transistors and the other for the p-type devices.
Then, in each graph, the nets (consisting purely of source
or drain ports) are the nodes, and one edge corresponds
to each transistor, connecting its source and drain. The
gate identification is an additional label, and edges rep-
resenting complementary transistors have the same label
in the two graphs. By definition, the graphs representing
the p and the n portions must be duals of each other, and
edges bearing the same label are mutual duals.

Algorithms in this class attempt to find a sequence of
labels (i.e., transistor pairs) such that tracing the edges in
sequence will result in Euler paths in both graphs. Need-
less to say, this approach uses the circuit’s logical struc-

WIMER et al.: OPTIMAL CHAINING OF CMOS TRANSISTORS

ture as a suggestive layout, thereby reducing the com-
plexity of the layout algorithms at the cost of limiting their
potential solution space considerably.

When the desired sequence of labels is found, a layout
which utilizes one piece diffusion for the p side and one
for the n side can be deduced. Since it is not guaranteed
that such a sequence does exist, a number of solutions
were devised to overcome this difficulty.

1) The first of the two algorithms reported in [8] finds
(in linear time) the smallest number of paths covering the
circuit graph. The number of diffusion gaps is then
uniquely determined by the way the input circuit is de-
scribed.

2) In [10], it is suggested to introduce additional
““dummy’’ devices which have no functional role. This
may result in wasted area and have an adverse effect on
the performance of the resulting circuit.

3) Another approach is to permute the devices, i.e., the
edges in the graph, in a way that does not change a cir-
cuit’s functionality but that may facilitate more diffusion
adjacencies. Evidently, the components that are com-
bined in series fashion can be permuted at each level, tak-
ing advantage of the commutativity of the or function,
and likewise the parallel components. These permutations
are, of course, limited to the series-parallel structure of
the graph, but they allow efficient examination of the thus-
allowed search space. In the second algorithm presented
in [8], the authors study this approach to the extent of
trying to find exactly one Euler path to cover the whole
circuit; if no single such path exists, the algorithm fails
to produce a layout.

4) The study reported in [7] went one step further: they
still retrict the transistor ordering to permutations induced
by the series—parallel structure, but first they solve the
problem of finding the smallest number of paths that cover
the graph allowing permutations (combining items (1) and
(3)), still in linear time, and secondly they find one path
under the permutation model by adding dummy devices
to it. In a sense, these are the ultimate results of this ap-
proach.

All in all, these solutions can be characterized by find-
ing a layout that adheres to the circuit structure as sug-
gested by the circuit diagram; therefore they can handle
only series—parallel circuits. Since in all cases this can be
done efficiently, the choice between the alternatives de-
pends on whether the order of the transistors as given
needs to be respected due to circuit performance consid-
erations. Since sizes and ordering of transistors may be
the result of static timing analysis, permuting the devices
(during the layout process) may be considered detrimental
and thus excluded.

B. Algorithms for General Circuits

Hill’s algorithm [3] can handle arbitrary circuits. It is
divided into two? stages: transistor placement followed by
interconnect (intracell routing). Placement starts by pair-

2A preprocessing step splits wide transistors into smaller ones connected
in parallel.

797

ing p devices with the n devices, forming columns which
are then ordered in a row. Pairing is done heuristically,
requiring that the two transistors in a pair have the same
gate; i.e., they must belong to the same ‘‘logical unit”’
(in Hill’s terminology). P-type and n-type transistors that
have a common diffusion port are preferred. The transis-
tor pairs are then ordered in a row, using a min-cut pro-
cedure repetitively, allowing pairs of different logic gates
to be placed together if they are topologically strongly
connected. Then, the transistor pairs are flipped® (hori-
zontally) to maximize the number of adjacent source and
drain ports belonging to the same net, thus reducing the
diffusion runners and the number of contacts. Both the
pairing stage and the transistor ordering stage attempt to
reduce the intracell routing which follows.

The routing step aims to reduce the total wire length
while the performance of the cell serves as a constraint.
Several routing methods are employed, starting with abut-
ting transistors, going to more expensive methods such as
routing over the transistors, and finishing with channel
routing which is the most expensive method.

None of the steps guarantees an optimal solution, even
to the problem that is set up for that stage alone—starting
from min-cut all the way to routing.

A similar approach to automatic CMOS cell generation
was proposed by Miyashita, e al. [6], consisting of tran-
sistor pairing, followed by placement of transistor pairs,
and finally a routing phase.

The algorithmic approach for the placement phase is
based on iterative improvement. Two objective functions
control heuristic: the total sum of the weighted wire
lengths, and the weighted maximum channel density. For
the routing phase, a modified maze router is used in order
to accommodate multilayer wiring, supporting diagonal
wiring.

Both methods described in this section, as well as the
method presented in this paper, implement the circuit’s
connectivity as it is specified in the input. The large va-
riety of solutions that is explored in each case is due to
geometric combinations that are considered directly in
terms of the layout.

IV. THE LAYOUT ALGORITHM

The algorithm is a six-stage procedure. We first de-
scribe the top level, and then elaborate on each step sep-
arately.

1) Generate transistor pairs as candidates for sharing a
column. ,

2) Form chains of transistor pairs such that adjacent
transistors have common diffusion ports on both the
p side and the n side; each such chain is assigned a
cost reflecting its overall merit.

3) Select a realization of the circuit using the chains
that were formed in the previous step so that the to-
tal cost of the realization (i.e., the sum of the costs
of its constituents) is minimized.

3Given a linear order of transistor pairs, we have observed that the optimal

flip can be found in linear time using dynamic programming; it is not clear
from the paper what technique was used by Hill.

798

4) Decide in which order to put the chains that were
selected in the previous stage along the cell.

5) Additional interconnections are now required to
complete the realization of the circuit. This is done
by the routing stage.

6) Finally, compact the stick diagram that was gener-
ated.

Fig. 2(b) shows the layout obtained for the circuit de-
scribed in Fig. 1 (after compaction). The transistor sizes
were supplied as parameters by the user.

A. Pairing

The pairing criterion for a p-type and an n-type transis-
tor is either that they both have the same gate or that they
have a common diffusion port (source or drain).

As an example for pairing, take a CMOS complemen-
tary logic circuit in which each p transistor has a comple-
mentary n transistor and vice versa, having the same sig-
nal for their gates. Then, if some signal is connected to
m gates of p devices, and hence also to the gates of m n
devices, m’ pairs result. When two devices constitute a
pair, routing of the gate signal is very easy since the gates
are vertically aligned and they can be connected by one
piece of polysilicon.

Another example is a dynamic CMOS logic circuit in
which transmission gates are widely used. Here the com-
plementary transistors are connected source to source and
drain to drain and they are gated by complementary sig-
nals. Although the gates cannot be connected as in com-
plementary logic, pairing these transistors eases the rout-
ing. Since their sources and drains are vertically aligned,
they can be connected without occupying any horizontal
track in the layout.

B. Chain Formation

The objective of this step is to form diffusion chains
such that each such chain can be placed as a contiguous
run of diffusion; i.e., when all the transistors in a chain
are arranged in a line, adjacent diffusion ports belong to
the same net (both in the p channel and the n channel).

An optimal inplementation comprises several chains
which are not necessarily maximal; i.e, some of them may
be contained in longer ones. Hence chain formation is
done gradually, step by step, where in the ith step we
attempt to create all the chains having i pairs. This is ac-
complished by taking chains of length i — 1 and then add-
ing all those pairs whose end terminals abut with the end
terminals of the chains (the pair may be flipped).

We assign a cost (merit) to each chain thus formed.
This cost may reflect properties of the chain, such as its
length, its internal routing density, and electric perfor-
mance characteristics.

Notice that the chaining process may generate chains
whose participating transistor sets are identical, but their
pattern (ordering) within the chains is different. In such a
case, the chains are treated as equivalent and only the
chain with the best score is kept as the representative of
each equivalence class. This may result in a suboptimal
layout in respects other than diffusion gap minimization,

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6, NO. 5, SEPTEMBER 1987

such as overall routing density, but it reduces the time and
memory requirements to reach a solution.

C. Circuit Covering

To realize the circuit, we select a subset of the chain
set (formed in the previous stage) such that every transis-
tor appears in at least one chain. Obviously, in a legal
covering of the circuit each transistor should not appear
more than once. Hence, we must solve a set partitioning
(SP) problem, where the variables (i.e., the sets) are the
chains created in step 2, and the constraints (i.e., the ele-
ments) are the transistors of the circuit which must be re-
alized.

Every SP variable bears the cost of the corresponding
chain, and the SP problem attempts to find a solution in
which the cost is minimal. If a unit cost is assigned to
each chain, an optimal solution of the SP problem guar-
antees a cell utilizing minimum diffusion. When each
chain’s cost reflects the total wire length of the intrachain
routing, the cost of an SP solution stands for the expected
total wire length in the cell.

The SP problem is known to be NP-complete, but we
use a very effective enumerative algorithm, which is out-
lined here. We first convert the SP covering matrix into a
graph as follows.

1) Every vertex corresponds to some SP variable.

2) Two vertices are connected if the sets of SP con-
straints satisfied by the corresponding variables are
disjoint.

3) Every vertex is assigned a rank equal to the number
of SP constraints by the corresponding SP variable.

Our basic observation is that every feasible solution to
the SP problem corresponds to a clique whose total sum
of vertex ranks equals to the number of SP constraints.
Thus the SP problem can be solved efficiently by running
the clique finding algorithm proposed by Bron and Ker-
bosch [1], which has the following attractive properties.

1) It is well suited for sparse graphs that result from
our dense covering matrices.

2) Backtracking takes place early.

3) Its expected running time is independent of the num-
ber of SP constraints (because they are coded as
ranks).

Notice that if the number of p devices is different from
the number of n devices, then no feasible solution exists.
We overcome this problem by introducing dummy de-
vices, whose number and type resolve the difference.

D. Chain Placement

The chains are ordered so as to minimize the intercon-
nect density of the resulting cell (relative to the chains
that have been formed). With »n chains in the realization
(as obtained by solving the SP problem), there are 2"n!
different arrangements of chains in the cell, where n! ac-
counts for all permutations of chains along the cell, and
2" accounts for all the possible orientations per a given
permutation (each chain can be either reflected or not). If
the number of chains is small (less than 5), which is usu-

WIMER ¢t al.: OPTIMAL CHAINING OF CMOS TRANSISTORS

ally the case, an exhaustive enumeration is performed (for
n = 4 there are only 384 cases to check).

For a cell composed of more than 4 chains, a random
sample from the space of all possible arrangements is
drawn, and the arrangement with lowest channel density
is selected. Our experience shows that the “‘good’’ ar-
rangements are evenly distributed in the solution space.
Thus, if a large enough sample is drawn, a “‘good’’ ar-
rangement will be found with high probability. Another
alternative would be to employ a branch-and-bound pro-
cedure to obtain the optimal chain ordering.

E. Routing

In this phase, we deal with both the intra- and inter-
chain interconnect. There are two consequences of the
chaining strategy that affect the routing considerations.

1) If two paired transistors have the same gate signal,
or if (either of) their diffusion ports belong to the
same net, then the appropriate aligned signal should
be routed straight through the column.

2) Since diffusion ports are made adjacent as much as
possible, it is desired to complete the routing with-
out insertion of extra columns between adjacent
ports.

Also, power supplies run in parallel to transistor chains
on metal (we assume that only one level of metal is avail-
able for cell layout).

By and large, this is a channel routing situation. We
need to guarantee completion, on the one hand, but we
do not want to add columns between transistors, on the
other hand. The ‘‘greedy’” channel routing algorithm of
Rivest and Fiduccia [9] best suits our needs: it may re-
quire additional columns, but they are placed at the end
of the channel, i.e., where the transistor chains end and
no additional diffusion runs are incurred. We made appro-
priate changes to the ‘‘greedy’’ channel routing algorithm
S0 as to obey our constraints and in order to accommodate
the highly populated, desirably narrow channels that we
create, as follows.

¢ Top priority is given to the case 7, = T, # 0; i.e.,
both top and bottom terminal positions are occupied
by the same net, even when the channel is not yet
saturated. Then the terminals are connected imme-
diately by a vertical poly strip; i.e., we do not leave
this to the collapsing stage.

¢ Collapsing is allowed in metal over vertical poly
wires (this is common in gate columns), thus making
better use of the column.)

¢ The decision which track to continue a new net on is
integrated with the step of bringing the new nets in;
this change tends to help in trying to maintain narrow
channels.

As high a quality as they may be, the results of a chan-
nel router are usually unacceptable verbatim in the con-
text of functional cell layout, even after the aforemen-
tioned adjustments that gear its decisions in a desirable
way. In order to improve the acceptability of the layout,
a number of measures are taken so that the resulting lay-

799

out is competitive with the quality of hand designed cells.
These improvements are effected both as preprocessing
steps that deal with special cases that are better not left to
the router itself and as cleanup steps that are performed
after the router is done and retouch certain parts of the
layout.

There are three preprocessing steps aimed both at re-
ducing the channel’s density and improving the perfor-
mance of the circuit being laid out.

1) Nets that connect ports placed only on one transistor
chain (the p chain or the n chain, but not both) are
routed over the transistors in metal.

2) Nets connecting several transistor gates (but not
other signals, i.e., they can be routed purely in poly)
are routed outside the channel area in a fork-like
structure (as long as they do not cross other nets in
this class, as explained below).

3) If the diffusion ports across a gap belong to the same
net (this can happen only on one side since other-
wise a chain would have been formed), they are con-
nected in diffusion.

The first two steps are implemented by the same labeling
algorithm, which finds an optimal assignment of nets to
the appropriate classes in linear time. We shall describe
here the algorithm for selecting the nets that are to be
implemented as poly forks (step 2), which is more com-
plicated; step 1 can be performed in a similar way.

We model a prospective fork (i.e., a candidate poly net)
by its two extreme points (leftmost and rightmost); thus
it is represented by an interval. In this way, no attention
is paid to the positions of the internal prongs, since indeed
these positions are not relevant to any of the constraints
and optimization criteria that are involved. The potential
forks of the transistor arrangement of Fig. 3(a) are given
in Fig. 3(b), where each gate is marked by the name of
its net and the corresponding interval is marked by the
same name. Each interval is assigned a weight reflecting
the desirability of its implementation as a fork; this weight
could be, for example, its length, the number of contacts
saved by routing it this way, or the maximal density of
the channel along its span.

The problem of finding a set of nonoverlapping inter-
vals that maximizes the sum of these weights can be for-
malized and optimally solved as follows. Define G = (V,
E, w) to be a transitively reduced graph where V is the
set of intervals, (u, v) € E if interval u is to the left of
interval v and they do not overlap, and for every vertex v
€ V assign a real weight w(v). Fig. 3(c) shows the graph
corresponding to the arrangement of Fig. 3(a). The fol-
lowing labeling algorithm is then applied.

1) For each source s, assign A(s) = w(s).

2) For each unlabeled vertex v all of whose predeces-
sors have already been labeled, assign N(v) = w(v)
+ max {N\(u)}, where u ranges over all predeces-
sors of v.

3) A pointer is kept to keep track of the maximizing
predecessor of each node. In this way, the solution
can be traced in the end.

800 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. CAD-6, NO. 5, SEPTEMBER 1987

il g

A CBD B EDEDE F EF
(a)

Fig. 3. Modeling polysilicon forks as intervals. (a) Transistor arrange-
ment. (b)Fork intervals. (¢) Graph to be labeled.

This algorithm runs in linear time. In order to maximize
the chances of successfully routing the cell, this algorithm
needs to be run twice, since forks can be implemented by
having their horizontal segment pushed under the Gnd line
or under the V, ; line. We do not know how to find two
sets of (each) nonoverlapping intervals that maximize the
total sum of weights, and we believe this problem is in-
tractable. Therefore, we simply solve the problem twice
in succession, where the intervals participating in the so-
Iution for the first pass are removed before the second pass
is invoked.

After the ‘‘greedy’’ routing algorithm is done, most
vertical wires run on poly even if they do not connect two
aligned gates directly. At this point, it is desirable to re-
duce the number of contacts that were incurred by this
methodology and increase the usage of metal where pos-
sible. This is done by two clean-up measures, as follows.

1) Vertical wires that connect diffusion ports without
crossing assigned tracks are wired on metal.

2) Vertical wires that cross assigned tracks are changed
to metal as much as possible in order to make min-
imal usage of the poly layer and reduce the number
of poly-metal contacts.

F. Compaction

All the layout work done so far was performed on a
virtual grid. It is desirable, of course, to get rid of any
slack area—after the circuit elements are fleshed out—by
compaction. This can be done with any circuit compactor
one desires, ideally one that provides truly two-dimen-
sional compaction.

We use the compactor of the PSI system [2], which is
based on the one-dimensional algorithm from [4]. The
circuit is compacted horizontally and vertically in sepa-

rate stages that can be applied repeatedly and in any or-
der. This compaction regime suits most needs of a cell
gencrator like ours, where the devices are arranged in a
matrixlike structure.

Fig. 2(b) shows the results of fleshing out the stick dia-
gram of Fig. 2(a) and then compacting it in both direc-
tions.

V. Row GENERATION

In this section, we demonstrate how several cells that
were generated with our algorithm can be composed into
a row, constituting a functional unit. Due to its incremen-
tal structure, the various stages of the algorithm can be
applied at different levels of granularity, thereby affording
a nice tradeoff between computation time and eflicient
layout. In this section, we first described one way in which
the combination can be implemented, and then discussed
the alternatives and their relative merits.

When several cells are pieced together, a number of
signals could become common among them. For exam-
ple, the carry-out of a one-bit full-adder is the carry-in to
its neighbour in an n-bit adder (this kind of global inter-
connect information is furnished in addition to the cell
descriptions, of course). The net adjacency information
should obviously affect the ordering of cells along the row,
but with our cell generation methodology it can also be
used to affect the way in which each individual cell is
generated.

We introduce the concept of instantiating a cell in a
composition context: if the signals that are connected to
the right or left of a cell that participates in a functional
slice are known in advance, we can take advantage of this
information and affect cell generation in such a way that
the cell produced is modeled to better fit the intended con-
text than if it were generated stand-alone.

In practice, this concept affects both the placement and
the routing stages of the cell generation algorithm. During
placement, the left and right connections are used as fol-
lows.

1) During chain formation, the density computations
that are used in deciding which chain is selected to
represent a given set of transistors (in case the same
set appears more than once) takes these connections
into account.

2) During chain ordering, similar consideration is given
to nets that emanate from chains.

After placement is completed, the whole row is routed in
one pass. The channel router completes the interconnec-
tions in one scan; its speed (practically linear in the size
of the circuit) allows us to use it verbatim for the com-
position phase, even for rows with more than one thou-
sand transistors. Notice that the third preprocessing step
mentioned in Section IV-E may result here in large sav-
ings.

In the methodology that was described so far, each cell
was placed individually, thereby breaking the complexity
of the placement problem into two hierarchical stages.
Using this methodology, we took advantage of the fact
that cells were repeated in identical form along the cell.
One could, at the expense of computing time, start using

WIMER et al.: OPTIMAL CHAINING OF CMOS TRANSISTORS

the cell generation algorithm for the whole assembly at an
earlier stage, namely chain ordering. In other words, all
the chains selected for the constituent cells can be given
as input to the chain ordering algorithm and placed in one
step. In a sense, Hill [3] took this approach to the ex-
treme by making one pair ordering stage for a whole com-
posite.

On the other hand, one could finish the routing before
row assembly. Here, the signals going to the Ieft and the
right of each cell can be given to the Rivest-Fiduccia al-
gorithm (which can accommodate such a specification) in
advance, and then the ready-made cells can be glued to-
gether. Then, of course, care should be taken as to what
track the signals are assigned to in neighbouring cells so
that they can be abutted safely.

All in all, our composition method is flexible and well
suited for a wide range of applications. Our cell genera-
tion algorithm is robust and can be used in a number of
variations in this context.

V1. CONCLUSIONS

We have described a new algorithmic method for laying
out circuits from their schematics which is superior to pre-
vious published methods of this class in a number of ways,
as follows.

s It accepts a broader class of circuit diagrams (there
are no structural limitations on the circuit graph).

¢ It can accommodate multiple optimization criteria
and at the same time honor constraints as specified
by the designer.

* More general types of solutions are considered, re-
sulting in smaller and better layouts.

¢ The algorithmic steps are clear and provide the basis
for a flexible framework for extensions.

e It is efficient and practical.

Our algorithms have been programmed into approxi-
mately 5000 lines of Pascal (not including the front and
the back end, but counting some necessary data base con-
versions). They have been tested on circuits describing
cells with up to 50 transistors, and the running times range
from 1 to 10 CPU seconds on an IBM 4381 model 2,
depending on the structure of the circuit.

The algorithms have a clear formulation and at the same
time are practical and flexible. We have demonstrated
their extensibility in the context of a slice generation tool,
with which we can put any number of cells in a row. We
have implemented functional slices with more than one
thousand transistors within seconds, ¢.g., a 32-bit ripple-
carry adder took 15 seconds (on a 4381) to lay out. Our
framework can be futher extended to accommodate addi-
tional optimization criteria as well as constraints that arise
in certain design environments.

ACKNOWLEDGEMENT

The authors would like to thank 1. Berger for many
helpful discussions and his encouragement. They would
also like to thank E. Adams and J.-F. Lee of the IBM
Watson Research Center at Yorktown Heights for making
PSI [2] available to us.

801

REFERENCES

{1} C. Bron and }. Kerbosch, ‘‘Algorithm 457—Finding all cliques of an
undirected graph,”” Commun. Ass. Comput. Mach., vol. 16, 1973.

[2] R.-D. Fiebrich, Y.-Z. Liao, G. Koppelman, and E. N. Adams,
“PSI—A symbolic layout system,”” IBM J. Res. Develop., vol. 28,
no. 5, pp. 572-580, Sept. 1984.

{3] D. Hill, “*Sc2—A hybrid antomatic layout system in Proc. ICCAD,
Nov. 1985, pp. 172~174.

{4} Y. Z. Liao and C. K. Wong, ‘‘An algorithm to compact a VLSI sym-
bolic layout with mixed constraints,”” in Proc. 20th Design Automat.
Conf., June 1983, pp. 107-112.

[51 §. Mavor, M. A. Jack, and P. B. Denyer, Introduction to MOS LSI
Design. Reading, MA: Addison-Wesley, 1983.

[6] H. Miyashita, T. Adachi, and K. Ueda, **An automnatic cell pattern
generation system for CMOS transistor-pair array LS1,”” Integration,
vol. 4, pp. 115-133, 1986.

{71 R. Miiller and T. Lengauer, ‘‘Linear algorithms for two CMOS layout
problems,”” in Proc. Aegean Workshop Comput., july 1986.

[8] R. Nair, A Bruss, and J. Reif, ‘‘Linear time algorithms for optimal
CMOS layout,"" in VLSI: Algorithms and Architectures, P. Bertolazzi
and F. Luccio, Bds. New York: Elsevier North-Holland, 1985, pp.
327-338.

[9] R. L. Rivest and C. M. Fiduccia, A ‘Greedy’ channel router,”” in
Proc. 19th Design Automat. Conf., June 1982, pp. 418-424.

{10} T. Uehara and W. M. vanCleemput, **‘Optimal layout of CMOS func-
tional arrays,”” IEEE Trans. Comput., vol. C-30, 5, pp. 305-312,
May 1981.

Shumel Wimer received the B.Sc. and the M.Sc.
degrees in mathematics from Tel Aviv University
in 1977 and 1980, respectively.

From 1977 to 1981, he worked at 1AT (Israel
Aircraft Industry). From 1981 to 1985, he was
employed by National Semiconductor Tel Aviv,
where he worked on VLSI CAD tools. He is cur-
rently a Research Staff Member at the IBM Israel
Scientific Center, where he works on algorithms
for the layout of VLSI circuits.

*

Ron Y. Pinter (M’83) received the B.Sc. in com-
puter science from the Technion—Israel Institute
of Technology in 1975, and the $.M. and Ph.D.
degrees in electrical engineering and computer
science from the Massachusetts Institute of Tech-
nology in 1980 and 1982, respectively.

During 1982-1983, he was a Member of the
Technical Staff in the Computing Sciences Re-
search Center, AT&T Bell Laboratories, Murray
Hill, NJ. In December 1983, he joined the 1BM
Israel Scientific Center, where he is currently the
manager of the Programming Languages Group. He is also an adjunct lec-
turer in the Electrical Engineering Department at the Technion—Israel In-
stitute of Technology. His research interests include layout algorithms for
integrated circuits, computational geometry, programming language de-
sign, and code generation algorithms.

Dr. Pinter is a member of the Association for Computing Machinery
and the IEEE Computer Society.

*

Jack A, Feldman, was bormn in Bucharest, Ro-
mania, in 1958, In 1983, he received the B.Sc.
and M.Sc. degrees in computer engineering from
the Polytechnic Institute of Bucharest. He is cur-
rently studying toward the M.Sc. degree in elec-
trical engineering at the Technion—Israel Institute
of Technology.

In 1985, he joined the IBM Israel Scientific
Center as a Research Fellow, where he is working
on problems related to the automated design of
VLSI circuits. He is interested in algorithms and
systems for design automation.

