BAR-ILAN UNIVERSITY (RA)

School of Engineering

Ramat-Gan 52900, Israel

אוניברסיטת בר-אילן (ע"ר)

בית הספר להנדסה

רמת-גן 52900

2012 מרץ 2012 פרופ׳ שמואל וימר

מבוא לתכנון מעגלי VLSI מבוא לתכנון מעגלי תשע"ב סמס' א' מועד ב'

- יש לענות על כל השאלות. משקל השאלות השונות נתון בגוף השאלות.
- יש לנמק את כל תשובותיכם. אין צורך לפתח מחדש תוצאות שהוכחו בכיתה, אלא אם כן נאמר מפורשות לעשות כן.
 - משך המבחן שלש שעות.
 - יש לשרטט מערכות ודיאגראמות באופן ברור! הכתיבה בעט בלבד. כתיבה בעפרון לא תבדק!
 - סך כל הנקודות הוא 120, הציון המירבי בכל מקרה לא יעלה על 100.
- השמוש בכל חומר כתוב (ספרים, רשימות) מותר .השמוש במחשב או בכל אמצעי אלקטרוני אחר אסור בהחלט.

בהצלחה

Problem No 1 (45 points)

You are given a digital system of 500 million transistors operated at 1.2V in 100nm process technology with gate capacitance of 1fF/micron and diffusion capacitance of 1fF/micron. The transistors are divided as follows

- 20 million are logic with average size of 12λ. Logic activity is 0.1.
- 480 million are memory with average size of 4λ. Memory activity is 0.05.

The process has two Vt voltages and two oxide thicknesses. Sub-threshold leakage current for OFF device is:

•

- 20nA/micron for low Vt
- 0.02nA/micron for high Vt

Gate leakage is:

- 3nA/micron for thin gate oxide
- 0.002nA/micron for thick gate oxide

Memory uses low-leakage everywhere; logic uses low-leakage for 80% of its devices.

- 1. Neglecting wire capacitance, estimate the dynamic power consumption per MHz?
- 2. Estimate the static power. Explain step by step all your calculations and assumptions (if any).
- 3. What would be the static power if there were no low-leakage devices?
- 4. We wish to put two cores (chips) on a silicon die. It is assumed that switching power is 50% devices and 50% interconnects. What will be the maximal clock speed if we can afford 40W peak power dissipation?

Problem No 2 (75 points)

In order to speed-up addition, an n-bit adder comprising a mix of n_f -bit ripple-carry adder and n_r -bit carry-chain adder, $n=n_f+n_r$, is proposed as shown below. It is assumed that the signals $p_i=a_i\oplus b_i$ and $g_i=a_ib_i$, $n_f\le i\le n-1$ are available.

The internal design of the n_r -bit carry-chain is shown below.

The above chain consists of the following switches

- 1. Explain how speed-up is achieved.
- 2. Explain how the switch is working.
- 3. Implement the switch with appropriate transistors and explain your choice.
- 4. Write the expressions of the signals P_j and G_j . Explain the role of the MUX and elaborate how $(c_{\mathrm{out}})_{n-1}$ is correctly computed.

- 5. What are the critical paths? How they depend on n_f and n_r ?
- 6. Assume that the internal delay of a full-adder used in the ripple-carry is α , the on resistance of a switch is r and the capacitive load at switch nodes is c. Write the expression for which the worst-case delay is minimized.
- 7. What are the expressions of $n_{\scriptscriptstyle f}$ and $n_{\scriptscriptstyle r}$ at the minimum?
- 8. How the delay of the carry-chain depends on n and n_r ?