BAR-ILAN UNIVERSITY (RA)

School of Engineering

Ramat-Gan 52900, Israel

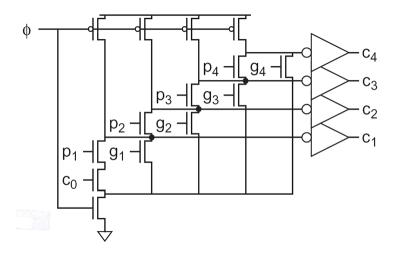
אוניברסיטת בר-אילן (ע"ר)

בית הספר להנדסה

רמת-גן 52900

9 פברואר 2012 פרופ׳ שמואל וימר

מבוא לתכנון מעגלי VLSI מבוא לתכנון מעגלי תשע"ב סמס' א' מועד א'

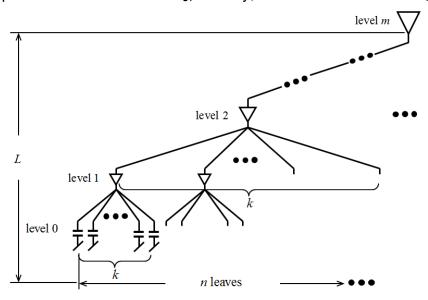

- יש לענות על כל השאלות. משקל השאלות השונות נתון בגוף השאלות.
- יש לנמק את כל תשובותיכם. אין צורך לפתח מחדש תוצאות שהוכחו בכיתה, אלא אם כן נאמר מפורשות לעשות כן.
 - משך המבחן שלוש שעות (עייפ תקנות האוניברסיטה לא תנתן הארכה).
 - יש לשרטט מערכות ודיאגראמות באופן ברור!
 - סך כל הנקודות הוא 120, הציון המירבי בכל מקרה לא יעלה על 100.
- השמוש בכל חומר כתוב (ספרים, רשימות) מותר .השמוש במחשב או בכל אמצעי אלקטרוני אחר אסור בהחלט.

בהצלחה

Problem No 1 (50 points)

The following CMOS circuit is performing some logic functions. Its inputs are c_0 , p_i and g_i , and outputs are c_i , 1<=i<=4. Φ is a <u>symmetric</u> clock signal.

Assume size 4 of all n-type transistors involved in logic computations (evaluation).



- 1. Explain how the circuit operates when Φ =0 and Φ =1.
- 2. Write the equations of the outputs as functions of the inputs.
- 3. What is the purpose of this circuit?
- 4. You are required to design the circuit in the most efficient way to yield best timing, with minimum power and area. What should be the size of the p-type transistors connected to Φ? Explain in details.
- 5. What is the critical path in this circuit? What transistors are involved? Explain in details.
- 6. Assume that the critical output is driving a similar circuit. What should be the size of the p-type and n-type transistors of that inverter?
- 7. Find the input-to-output delay of the critical path in terms of unit transistor resistance R and capacitance C. <u>Use Elmore lumped delay model</u>. Elaborate your calculations.
- 8. What is the maximum clock cycle this circuit can operate? (Express in terms of R and C.)

Problem No 2 (40 points)

A signal tree driving $n=k^m$ capacitive loads c_0 is shown below. The distance from the driver to every receiver is L, and we assume full symmetry and identity of every path from driver to receiver.

- The wire connecting the last driver to the load has resistance \mathbf{R} and capacitance \mathbf{C} . Wires of successive levels has same length growing factor \mathbf{s} and width sizing factor $\boldsymbol{\beta}$.
- The last driver has resistance r and input and output capacitances c. Drivers are sized from level to level by factor a. The internal delay of all drivers at all levels is d.
- The capacitive load of a leaf is c_0 , namely, the last driver drives kc_0 load.

- 1. What is (are) the critical path (s)?
- 2. Write the appropriate delay expression. <u>Use Elmore lumped and distributed delay models appropriately.</u>
- 3. Assuming $\beta = 1$, find the optimal sizing factor α of a driver such that the delay from driver to leaf load is minimized.
- 4. Assuming $\alpha = 1$, find the optimal sizing factor β of a wire such that the delay from driver to leaf load is minimized.
- 5. What are α and β that minimize the delay from driver to leaf load?
- 6. Assume that power is the only interest. How would you then determine α and β ?
- 7. Assume that area is the only interest, how would you determine α and β then?

Problem No 3 (30 points)

We wish to perform unsigned multiplication P=11101101₂ x 01100101₂ in radix-4 Booth-encoded multiplier.

1. Write the partial products. Elaborate your computations step by step in details.

2.	Fill in the corresponding dot diagram with the appropriate values.