

Update date: 10.01.14

Digital VLSI Circuits and Systems

83-612

Shmuel wimer

Course format: Lectures and Training

First Semester 2013 Weekly hours: 2 lecture + 1 training

1) Course objectives:

Understand and acquire knowledge in designing modern digital VLSI circuits and systems. Learning the theory and modeling of the basic factors affecting the design: performance, power, area and cost. Get hands on algorithms aiding the VLSI design.

2) Course format:

Frontal lectures – in the classroom. Frontal training – in the classroom.

3) Course content:

Week	Торіс	Reading
1	Scaling, transistor scaling, device enhancements, interconnect scaling, interconnect enhancement.	
2	Interconnect design, capacitance, resistance, inductance.	
3	Signal propagation analysis, lumped and distributed models, closed form solutions, Elmore delay, Penfield-Rubinstein algorithm.	
4	Power dissipation, transient power, static power, dynamic power.	
5	Interconnect coupling noise, active and passive device noise, switching activity, coupling.	
6	Global signaling, interconnect topology optimization, sizing, spacing, tapering, repeaters.	
7-8	Power generation, voltage regulation, power converters. Power distribution, supply noise, grid, power planes, decoupling, power noise reduction.	
9	Synchronous design, self-timing, GALS, synchronizers.	
10-11	Clock generation, PLL, DLL, clock distribution, clock gating.	
12	Adders design	
13	Multipliers design	
14	Memories design, SRAM, DRAM	

4) Prerequisites:

Digital Integrated Circuits 83-313

5) Course requirements:

Presence in lectures, contribution to the discussion, biweekly homework assignments.

6) **Grading:**

Final exam: 75%; Homework exercises: 25%; Pass grade (60) in the final exam is mandatory.

7) Textbooks and supplementary reading:

E. Salman and E. Friedman, High Performance Integrated Circuit Design, McGraw Hill.

N.H.E Weste and D. Harris, CMOS VLSI Design, 3rd Edition, Pearson. All lectures are on-line available.