
Digital Logic Design:

A Rigorous Approach

Guy Even and Moti Medina

School of Electrical Engineering, Tel-Aviv University

© Guy Even and Moti Medina 2010, 2011, 2012
This is the authors version of the book. The book shall be available for purchase from
Cambridge University Press and other standard distribution channels. The reader may
take one copy only for personal use. Unauthorized distribution is not allowed.

2

Preface

This book is an introductory textbook on the design and analysis of digital logic circuits.
It has been written after 15 years of teaching hardware design courses in the school of
Electrical Engineering in Tel Aviv University. The main motivation for writing a new
textbook was the desire to teach hardware design rigorously. By rigorously, we mean that
mathematical language and exposition is used to define the model, to specify functionality,
to describe designs, to prove correctness, and to analyze cost and delay. We believe that
students who study formal courses such as Algebra and Calculus can cope well with a
rigorous approach. Moreover, they are likely to benefit from this approach in many ways.

The book covers the material of an introductory course in digital logic design including
an introduction to Discrete Mathematics. It is self-contained, begins with basic gates and
ends with the specification and implementation of simple microprocessor. The goal is to
turn our students into logic designers within one semester.

The rest of this preface deals with the rational, structure, and audience of the book.
We conclude with a list of the highlights some of which are new to a hardware design
book.

How to acquire intuition? It is not fashionable these days to emphasize mathematical
rigor. Mathematical rigor is perceived as an alienating form that dries out the passion
for learning and understanding. Common teaching tactics avoid rigor (i.e., the holy
definition-theorem-proof triple) and resort to examples. Since intuition is what really
matters (and we of course agree with that!), in the rare cases when one feels compelled
to provide a proof, the following strategy is employed. First, a long intuition precedes
the proof, in an attempt to explain in advance what the proof does and why it actually
works (is this part actually an apology for what is about to come?). Then, a long proof
follows using partially defined terms. All we can say is that this strategy is in complete
disregard of the statement: “When you have to shoot, shoot. Don’t talk” [Tuco in The
Good, the Bad and the Ugly].

Recall the huge endeavor of 19th century Mathematicians to formalize the calcu-
lus of real functions. Weierstrass and others undertook the task of providing a formal
abstraction of the presumably well understood notions of real numbers, real functions,
continuous functions, etc. We still remember our surprise when Weierstrass’s function
was first described to us: continuous everywhere and differentiable nowhere... The lesson
is clear: intuition is gradually acquired and must be based on solid fundamentals.

What does this have to do with digital design? The quest for intuition is confronted

i

ii PREFACE

by the fact that it is hard to formulate precise statements about objects such as digital
circuits. Our approach is to give the students a solid rigorous basis for their intuition.
Of course, examples are easy to follow, but might give the students the false impression
that they understand the topic. We have seen many brilliant students in engineering
disciplines that find it hard to acquire intuition based only on examples. Such students
can easily cope with a rigorous exposition in which delicate issues are not hidden or
brushed aside.

Learn from the success of data structures and algorithms. We believe that
successful teaching means that a student can implement the material from the course.
After studying data structures, a student should be able to program search trees, sorting,
and hashing. We believe that the same goal should be set for a logic design course.
Unfortunately, most textbooks describe various circuits, provide examples for why they
work, but do not train engineers who can actually design digital circuits.

The goal of this book is to bring students to a level that will enable them to under-
stand a specification of a combinational or synchronous circuit, to design it, to prove the
correctness of their design, and to be able to analyze the efficiency of the design (i.e.,
delay and cost).

We do not restrict this goal to isolated circuits. We show how a system is built from
different circuits working in concert. In fact, we present a simple microprocessor, the
design of which combines multiple modules, including: an arithmetic logic unit (with an
adder, logical operators, and a comparator), a shifter, a file register (with the general
purpose registers), and main memory.

The knowledge highway. Our goal is to turn our students within one semester into
logic designers. To meet this goal we follow a bottom-up approach that begins with the
basics and ends with a simple microprocessor. We solidify the presentation by using
mathematical notations and statements and by defining the abstraction precisely. The
effort spent on a formal approach pays off simply because it enables us to teach more
material, in more depth, and in a shorter time. It is not surprising that towards the end
of the course, students can not only design nontrivial modules, they can also identify
errors in designs and suggest ways to correct these errors.

Our teachers. When writing this book, the first author and, by transitivity, the second
author were mainly influenced by three people: Shimon Even, Ami Litman, and Wolfgang
Paul.

It was Shimon Even who stated that: (1) Never complain or be surprised by the
students lack of knowledge - just teach it! (2) Digital design is the same art as algorithm
design. The only difference is the model of computation. (3) Identify the methods and
be systematic. In other words, turn digital design into a discipline.

It was Ami Litman who demanded: (1) Always verify that your abstraction makes
sense. Don’t hesitate to refute the model by introducing absurd consequences. (2) In-
troduce a design by a sequence of evolutionary modifications starting with a simple

iii

straightforward yet costly design and ending with an evolved yet efficient design. Each
modification preserves functionality, and hence, the final design is correct. Describe each
modification as a general transformation that can be applied in a wide variety of settings.
(3) Focus on large instances. Optimization of small instances depends on the technology
and is not likely to reveal insights.

Wolfgang Paul’s rules are: (1) Formulate a precise specification and prove that the
design satisfies the specification. (2) Write the equations that describe the delay and
cost. Solving these equations asymptotically is nice, but from a practical point of view,
it suffices to solve them numerically for the sizes one needs to actually design. (3) Keep
in mind that the goal is to design a correct well understood system. Avoid fancy opti-
mizations that eventually impede this goal. This rule applies both for teaching and for
actual design.

Our Students. Our students are Electrical Engineering undergraduate students in
their second or third semester. The students lack background in discrete mathematics,
and the first part of the book deals with filling this gap. This is considered the easy part
of the course.

Following the logic design course, our students take courses on devices (both analog
and digital). Students who choose the computers’ track also study computer organization,
computer architecture, and practice digital design in a lab with an FPGA platform. In
this lab they implement the simplified DLX microprocessor described in Part IV of the
book. This implementation is from basic gates (e.g., no library modules such as adders
are used). In the end of the lab, the students program a nontrivial program in assembly
language and execute it on their design.

Apart from training the students in logic design, we also teach discrete methods that
are used in data structures and algorithms. In particular, we focus on induction and
recursion, trees and graphs, and recurrence equations.

Structure of the book. The book consists of four parts: (I) Preliminaries, (II) Com-
binational Circuits, (III) Synchronous Circuits, and (IV) A Simplified DLX.

The first part of the book is a short introduction to discrete mathematics. We made
an effort to include only topics in discrete math that are actually used in the other parts.
This is considered the easy part of the course, however, it is essential for students that
lack background in discrete mathematics. In addition, this part helps students get used
to working with definitions, mathematical notation, and proofs.

The second part of the book is the heart of the book. It focuses on Boolean functions
and on methods for building circuits that compute Boolean functions. We begin by
representation by Boolean formulas, e.g., sum of products and product of sums. This
establishes the connection between Boolean functions and propositional logic. We then
define combinational gates and combinational circuits and define two quality measures:
cost and propagation delay.

The study of combinational circuits begins with circuits that have a topology of a tree.
At this point we introduce lower bounds on the number of gates and the propagation delay
of a combinational circuit that implements a Boolean function such as the or of n bits.

iv PREFACE

Logical simulation is presented in an algorithmic fashion using topological ordering of a
directed acyclic graph. The same approach is used for computing the propagation delay
of combinational circuit.

We proceed with a variety of combinational circuits (e.g., decoders, encoders, selectors,
shifters, and adders). Designs are presented in a parametric fashion, where the parameter
is the length of the input. Whenever possible, designs are recursive and proofs are by
induction.

Chapter 10 in the second part explains the digital abstraction. The purpose of this
chapter is to build a bridge between the analog world and the digital world.

Synchronous circuits are studied in the third part of the book. We first introduce
the clock signal and edge triggered D-flip-flops. Only one type of flip-flop is discussed in
detail. This discussion explains the different timing parameters of a flip-flop including
an explanation of why so many parameters are required. Other types of flip-flops are
considered as finite state machines with two states and are implemented using a D-flip-
flop and additional combinational logic. Synchronous circuits are viewed in two ways:
(1) Memory modules, such as: registers, random access memory (RAM), and read-only
memory (ROM), and (2) Finite state machines, including their analysis and synthesis.

Algorithmic issues related to synchronous circuits include logical simulation and cal-
culation of the minimum clock period. These algorithms are presented via reductions to
combinational circuits.

Students who have studied the first three parts of the book should have a good idea
of what computer aided design tools for designing digital circuits do.

The last part of the book deals with the design of a simple microprocessor. Connec-
tions are made between the machine language, assembly, high level programming, the
instruction set architecture (ISA). We present an implementation of the simple micro-
processor using the modules from Parts II and III. The design methodology is to present
the simplest microprocessor implementation that supports the ISA. We present an un-
pipelined multi-cycle microprocessor based on a simple datapath and a small finite state
machine.

How to use this book? This book is written as a textbook for an introductory course
in digital design to undergraduate students in Electrical Engineering and Computer Sci-
ence. The following material is considered advanced, and may be omitted: (i) Section 5.6:
More on Unique Binary Representation, (ii) Chapter 8: Computer Stories: Big Endian
vs. Little Endian, (iii) Section 9.6: Minimization Heuristics, (iv) Chapter 10: The Digital
Abstraction, (v) Sections 17.3-17.5. Advanced material as well as advanced questions and
examples are marked with an asterisk ∗.

When we teach this course, we spend roughly five weeks on Part I, five weeks on
Part II, and five weeks on Parts III and IV.

We suggest to start the course very rigorously and gradually relax rigor when repeating
a proof technique that was used before.

Logic design, like swimming, cannot be taught without immersion. We therefore
include homework assignments in which students practice logic design using a schematic

v

entry tool and a logic simulator. We found the open source Logisim software both easy
to use and powerful enough for our purposes.

We also use a DLX assembly simulator so that students can practice assembly pro-
graming of constructs in high level programming (e.g., if-then-else statements, loops,
arrays, etc.).

Highlights. We list the main highlights of the book.

1. The book is self-contained. We do not assume the students have any prior knowledge
of discrete math, propositional logic, asymptotics, graphs, hardware, electronics,
etc.

2. A complete teaching tool. In each chapter, we tried to make a clear separation be-
tween (i) conceptual parts containing new materials, (ii) applications and examples
that are based on this new material, and (iii) problems. There are many benefits
to this approach both for the teacher and the student. One clear advantage is that
the examples can be covered in greater detail during recitations.

3. “Nothing is hidden”. We adhere to the rule that all the details are complete, and
every claim is proven.

4. Methodology as a “ritual”. Each design is presented in four steps: specification,
design, correctness proof, and analysis of delay and cost. The specification formally
defines what a circuit should do. Without a formal specification, it is impossible
to prove correctness. Most designs are described using recursion, and correctness
is usually proved using induction. Finally, analysis of cost and delay is carried out
by formulating recurrence equations and solving them.

5. The recursion-induction pair. Instead of designing circuits for specific input lengths,
we consider the task of designing circuits with a parameter n specifying the length
of the inputs. For example, we consider addition of n-bit numbers, n:1-selectors,
etc. These designs are described recursively. The first advantage is that we present
a precise and formal definition of the design for any input length. The second
advantage is that we prove the correctness of the design for any input length.
Naturally, the proof is carried out using induction.

6. Modeling circuits as graphs. We use the language of graphs to describe formulas
and circuits. Boolean formulas are defined by parse trees. Circuits are defined using
directed graphs. This approach enables us to present a clean and precise definition
of propagation delay and minimum clock period using longest paths in a directed
graph. With a small effort, it is possible to extend this approach also to the more
elaborate setting of nonuniform delays between input and output ports of gates.

7. Lower bounds. We prove simple lower bounds on the cost and the delay of a com-
binational circuit that implement Boolean functions. The ability to formally state
that a design is an optimal adder design is remarkably powerful. Our lower bounds

vi PREFACE

are stated in terms of the number of inputs that an output depends on (i.e., the
“cone” of an output). These lower bounds are easy to apply to all the Boolean
functions that are discussed.

8. Algorithmic approach. Tasks such as logical simulation, computation of propagation
delay, and minimum clock period are presented as algorithmic problems. Algorithms
are presented for solving these problems, and the correctness of these algorithms is
proven.

For example, the algorithmic approach is used to teach timing analysis as follows:
we present an algorithm, prove its correctness, and run it on an example. In this
fashion, the topic of timing analysis is described in a precise and concise fashion
that does not require lengthy examples. One may ask why not teach about timing
analysis with different delays for different transitions (i.e., the time required for
transition of the output from zero to one does not equal the time required for the
transition from one to zero). Indeed, this question pertains to the lasting argument
about the usefulness of worst case analysis. We resort to worst case timing analysis
simply because it is intractable to decide whether the output of a combinational
circuit ever equals one (see Section 9.5).

9. Relations to analog world. In Chapters 10 and 17 we connect the physical analog
world to the digital abstraction. Two physical phenomena are discussed in detail:
noise and metastability. We show how noise is overcome by using different threshold
for inputs and outputs. We show how metastability is mitigated using the timing
parameters of a flip-flop (i.e., setup time, hold time, contamination delay, and
propagation delay). We explicitly mention issues that can not be resolved within
the digital abstraction (e.g., reset controller).

10. Zero propagation delay as functional model. In Chapter 18 on memory modules we
introduce the zero delay model. In the zero delay model transitions of all signals are
instantaneous. This means that the flip-flop’s output at a certain cycle equals the
value of the input sampled during the previous cycle. This simplified discrete timing
model is used for specifying and simulating the functionality of circuits with flip-
flops. The advantage of this approach is that it decouples the issues of functionality
and timing into two separate issues.

Karnaugh Maps. A quick comparison of this book with other books on Logic Design
will reveal that we mention Karnaugh maps [6] only very briefly in Section 9.6.6. There
is a good reason for this brief mentioning.

Karnaugh maps are a technique for finding the minimum number of products in a
sum-of-products representation of a Boolean function. The input to the technique of
Karnaugh maps is the truth table of the Boolean function. Thus, the input to this
technique is exponential in the number of variables, and therefore cannot be considered
efficient. In addition, the maps are actually two-dimensional tables, and are convenient
to use for at most four variables. Experts, of course, are proud that they can use this

vii

technique also for five and even six variables! Given that the technique of Karnaugh maps
has an exponential running time and is limited to few variables, we do not think it is an
important issue in Logic Design. One should bear in mind, that the difference between
a reasonable representation and the best representation for a function over six variables
is constant. Moreover, with such small functions, even exhaustive search makes sense if
one is really interested in finding the “best” representation.

Teachers insisting on teaching heuristics for finding the minimum number of products
in a sum-of-products representation of a Boolean function can teach the Quine-McCluskey
heuristic [13, 14, 9]. Our presentation of the Quine-McCluskey heuristic uses a layered
graph over the implicants instead of a tabular approach. We hope that this choice favors
notions over notation. Unfortunately, the full details of the heuristic require almost 10
pages. We therefore marked this section by an asterisk.

Recurrence Equations. We use recurrences to describe the cost and delay of circuits
defined recursively. We do not introduce the “master theorem” for solving recurrences.
The reason is that we find this theorem to be too general for the students at this stage
(they do learn it later in the algorithms course). Instead, we resort to solving the specific
recurrences we encounter later in the book.

References. There are many books on Discrete Mathematics. Two Discrete Math
books that also treat Boolean Algebra and Logic Design are by McEliece et. al [10] and
Mattson [8].

There are many books on Logic Design and Computer Structure. We were mainly
influenced by the book of Mueller and Paul [11] in the choice of combinational circuits and
the description of the processor. We use the simplified timing diagrams from the notes
of Litman [7]. These notes also helped with the description of the digital abstraction
and flip-flops. The book by Ward and Halstead [16] describes, among other things, the
problem of meta-stability, arbitration, and the abstraction provided by an instruction set
architecture. The book by Ercegovac et. al [3] uses a hardware description language to
design circuits. The book by Ercegovac and Lang [2] deals with computer arithmetic.

Most textbooks do not introduce Boolean formulas via parse trees. In the book by
Howson [5] propositional logic is described by trees.

More material on finite automata (a.k.a. finite state machines) appears in the book
by Hopcroft and Ullman [4]. The book by Savage [15] starts with basic hardware and
ends with advanced material in computability.

The DLX processor architecture was designed by John L. Hennessy and David A.
Patterson [12] as an educational architecture that demonstrates the principles of a RISC
processor without the elaborate details of a commercial processor. Our simplified DLX
architecture is based on it and on the simplified architecture designed in the RESA lab
in Wolfgang Paul’s group in the University of the Saarland. See also the book by Mueller
and Paul [11] for a concise description of the DLX architecture and its implementation.

Book Homepage. The homepage of the book is:

viii PREFACE

http://www.eng.tau.ac.il/~guy/Even-Medina/

We plan to maintain this homepage so that it contains the following:� Authors version of the book in PDF format.� Slides that we use for the teaching.� Errata and a simple form for reporting errors.� Links to simulators (Logisim and a DLX assembly simulator).� Supplementary material.

Finally, we would like to thank the anonymous reviewers. Reports of mistakes (all of
which are solely our fault) would be greatly appreciated.

Guy Even and Moti Medina
Tel Aviv, March 2012

http://www.eng.tau.ac.il/~guy/Even-Medina/

Contents

Preface i

I Preliminaries 1

1 Sets and Functions 3

1.1 Sets . 3

1.2 Relations and Functions . 10

1.3 Boolean Functions . 14

1.3.1 Truth Tables . 15

1.4 Commutative and Associative Binary Operations 16

2 Induction and Recursion 21

2.1 Induction . 22

2.2 Recursion . 25

2.3 Application: One-to-one and Onto Functions 27

3 Sequences and Series 33

3.1 Sequences . 33

3.2 Series . 35

4 Directed Graphs 43

4.1 Definitions . 44

4.2 Topological Ordering . 47

4.3 Longest path in a DAG . 49

4.4 Rooted Trees . 53

5 Binary Representation 59

5.1 Division and Modulo . 59

5.2 Bits and Strings . 60

5.3 Bit Ordering . 61

5.4 Binary Representation . 62

5.5 Computing a Binary Representation . 65

5.6 More on Unique Binary Representation∗ . 73

ix

x CONTENTS

6 Propositional Logic 77
6.1 Boolean Formulas . 77
6.2 Truth Assignments . 83
6.3 Satisfiability and Logical Equivalence . 86
6.4 Interpreting a Boolean Formula as a Function 87
6.5 Substitution . 91
6.6 Complete Sets of Connectives . 94
6.7 Important Tautologies . 98
6.8 De Morgan’s Laws . 100

6.8.1 Negation Normal Form . 101

7 Asymptotics 107
7.1 Order of Growth Rates . 107
7.2 Recurrence Equations . 111

8 Computer Stories: Big Endian vs. Little Endian∗ 119

II Combinational Circuits 121

9 Representation by Formulas 123
9.1 Sum of Products . 124
9.2 Product of Sums . 128
9.3 The Finite Field GF (2) . 131

9.3.1 Polynomials over GF (2) . 134
9.4 Satisfiability . 135
9.5 Relation to P vs. NP . 135
9.6 Minimization Heuristics∗ . 136

9.6.1 Basic Terminology and Properties . 137
9.6.2 The Implicants’ Graph . 138
9.6.3 Essential Prime Implicants . 139
9.6.4 Optimality Conditions . 140
9.6.5 The Quine-McCluskey Heuristic . 142
9.6.6 Karnaugh Maps . 145

10 The Digital Abstraction∗ 151
10.1 Transistors . 152
10.2 A CMOS inverter . 154
10.3 From analog signals to digital signals . 155
10.4 Transfer functions of gates . 157
10.5 The bounded-noise model . 159
10.6 The digital abstraction in presence of noise 160

10.6.1 Input and output signals . 160
10.6.2 Redefining the digital interpretation of analog signals 160

10.7 Stable signals . 162

CONTENTS xi

10.8 Summary . 163

11 Foundations of combinational circuits 165
11.1 Combinational gates - an analog approach . 166
11.2 Back to the digital world . 168

11.2.1 Example . 169
11.3 Combinational gates . 170
11.4 Wires and Nets . 171
11.5 Combinational circuits . 173
11.6 Properties of Combinational Circuits . 176
11.7 Simulation and Delay Analysis . 178
11.8 Completeness . 182
11.9 Cost and propagation delay . 186
11.10Example: relative gate costs and delay . 187
11.11Semantics and Syntax . 187
11.12Summary . 188

12 Trees 191
12.1 Associative Boolean functions . 192
12.2 Trees of associative Boolean gates . 193

12.2.1 Cost analysis . 194
12.2.2 Delay analysis . 195

12.3 Optimality of trees . 200
12.3.1 Definitions . 200
12.3.2 Lower bound on cost . 202
12.3.3 Lower bound on delay . 204

12.4 Summary . 206

13 Decoders and Encoders 209
13.1 Buses . 210
13.2 Decoders . 212

13.2.1 Division in Binary Representation . 212
13.2.2 Definition of Decoder . 213
13.2.3 Brute force design . 214
13.2.4 An optimal decoder design . 214
13.2.5 Correctness . 215
13.2.6 Cost and delay analysis . 216
13.2.7 Asymptotic Optimality . 218

13.3 Encoders . 219
13.3.1 Hamming Distance and Weight . 219
13.3.2 Concatenation of Strings . 219
13.3.3 Definition of Encoder . 220
13.3.4 Brute Force Implementation . 220
13.3.5 Implementation and Correctness . 221

xii CONTENTS

13.3.6 Cost Analysis . 223
13.3.7 Reducing the Cost . 223
13.3.8 Cost and delay analysis . 224
13.3.9 Asymptotic Optimality . 225

13.4 Summary . 225

14 Selectors and Shifters 229
14.1 Multiplexers . 230

14.1.1 Implementation . 231
14.2 Cyclic Shifters . 234

14.2.1 Implementation . 235
14.2.2 Correctness and analysis of cost and delay 235

14.3 Logical Shifters . 238
14.3.1 Implementation . 239

14.4 Arithmetic Shifters . 241
14.4.1 Two’s complement . 241
14.4.2 Arithmetic shifter . 241

14.5 Summary . 243

15 Addition 245
15.1 Definition of a binary adder . 246
15.2 Ripple Carry Adder . 247

15.2.1 Correctness proof . 248
15.2.2 Delay and cost analysis . 249

15.3 Lower Bounds . 249
15.3.1 Carry bits . 249
15.3.2 Cone of adder outputs . 249
15.3.3 Lower bounds . 250

15.4 Conditional Sum Adder . 251
15.4.1 Motivation . 251
15.4.2 Implementation . 251
15.4.3 Delay and cost analysis . 252

15.5 Compound Adder . 253
15.5.1 Implementation . 253
15.5.2 Correctness . 254
15.5.3 Delay and cost analysis . 255

15.6 Reductions between sum and carry bits . 256
15.7 Redundant and non-redundant representation 256
15.8 Summary . 257

16 Signed Addition 261
16.1 Representation of negative integers . 262
16.2 Computing a two’s complement representation 263
16.3 Negation in two’s complement representation 264

CONTENTS xiii

16.4 Properties of two’s complement representation 266
16.5 Reduction: two’s complement addition to binary addition 268

16.5.1 Detecting overflow . 270
16.5.2 Determining the sign of the sum . 271

16.6 A two’s-complement adder . 272
16.7 A two’s complement adder/subtractor . 273
16.8 Summary . 275

III Synchronous Circuits 279

17 Flip-Flops 281
17.1 The clock . 282
17.2 Edge-triggered Flip-Flop . 283
17.3 Arbitration∗ . 285
17.4 Arbiters - an impossibility result∗ . 286
17.5 Necessity of critical segments∗ . 289
17.6 A Timing Example . 290

17.6.1 Non-empty intersection of Ci and Ai 291
17.7 Bounding Instability . 291
17.8 Other types of memory devices . 295

17.8.1 D-Latch . 295
17.8.2 Clock enabled flip-flops . 296

17.9 Summary . 297

18 Memory Modules 301
18.1 The Zero Delay Model . 302

18.1.1 Example: Sequential xor . 303
18.2 Registers . 303

18.2.1 Parallel Load Register . 303
18.2.2 Shift Register . 304

18.3 Random Access Memory (RAM) . 304
18.3.1 A simple Implementation of a RAM 307

18.4 Read-Only Memory (ROM) . 307
18.5 Summary . 309

19 Foundations of Synchronous Circuits 311
19.1 Definition . 312
19.2 The Canonic Form of a Synchronous Circuit 314
19.3 Timing Analysis: the canonic form . 314

19.3.1 An Easy Example . 315
19.3.2 Input/Output Timing Constraints . 318
19.3.3 Sufficient Conditions . 319
19.3.4 Satisfying the Timing Constrains . 320

xiv CONTENTS

19.3.5 Initialization . 320
19.4 Functionality: the canonic form . 322
19.5 Finite State Machines . 323
19.6 Timing analysis: the general case . 324

19.6.1 Timing Constraints . 325
19.6.2 Algorithms: feasibility and minimum clock period 326
19.6.3 Algorithms: correctness . 327

19.7 Simulation of Synchronous Circuits . 329
19.8 Synthesis and Analysis . 330

19.8.1 Analysis . 330
19.8.2 Synthesis . 331

19.9 Summary . 331
19.10Problems . 332

20 Synchronous Modules: Analysis and Synthesis 337
20.1 Example: a two-state FSM . 338
20.2 Sequential Adder . 339

20.2.1 Implementation . 340
20.2.2 Analysis . 341

20.3 Initialization and the Corresponding FSM . 342
20.4 Counter . 343

20.4.1 Implementation . 343
20.4.2 Analysis . 343

20.5 Revisiting Shift Registers . 344
20.5.1 Analysis . 345

20.6 Revisiting RAM . 345
20.6.1 Analysis . 345
20.6.2 Synthesis and Analysis . 347

IV A Simplified DLX 351

21 The ISA of a Simplified DLX 353
21.1 Why use abstractions? . 354
21.2 Instruction set architecture . 355

21.2.1 Architectural Registers and Memory 355
21.2.2 Instruction Set . 357
21.2.3 Encoding of the Instruction Set . 363

21.3 Examples of Program Segments . 365
21.4 Summary . 366

22 A Simplified DLX: Implementation 369
22.1 Datapath . 370

22.1.1 The Outside World: The Memory Controller 370

CONTENTS xv

22.1.2 Registers . 371
22.1.3 ALU Environment . 372
22.1.4 Shifter Environment . 374
22.1.5 The IR Environment . 374
22.1.6 The PC Environment . 375
22.1.7 The GPR Environment . 375

22.2 Control . 376
22.2.1 A High Level View of the Execution Cycle 377
22.2.2 The Control FSM . 377

22.3 RTL Instructions . 379
22.4 Examples of Instruction Execution . 380
22.5 Summary . 383

Bibliography 393

Index 395

xvi CONTENTS

List of Figures

1.1 Venn diagrams . 8
1.2 Venn diagram for U ∖ (A ∪B) = Ā ∩ B̄ . 10
1.3 A diagram of a binary relation R ⊆ A ×B . 11
1.4 Composition of functions . 12

2.1 A counter example to “all the horses have the same color 24
2.2 Graphs of real functions. 29

4.1 A directed graph G = (V,E) . 44
4.2 A DAG . 46
4.3 A decomposition of a rooted tree G in to two rooted trees G1 and G2. . . . 55

6.1 An example of a parse tree . 79
6.2 A parse tree of a Boolean formula . 91
6.3 A substitution in Boolean formulas . 92

9.1 The implicants’ graph. 144
9.2 The implicants’ graph Gf1 . 147

10.1 Schematic symbols of an N-transistor and a P-transistor 152
10.2 A qualitative graph of Rsd as a function of Vg 154
10.3 A CMOS inverter . 154
10.4 A digital interpretation of an analog signal in the zero-noise model. 156
10.5 Two inverters connected in series. 160
10.6 A digital interpretation of an input and output signals. 161

11.1 Propagation delay and contamination delay of a combinational gate. 169
11.2 An input gate and an output gate . 171
11.3 Three equivalent nets. 172
11.4 A terminal that is fed by a net and a terminal that feeds a net. 173
11.5 A combinational circuit. 173
11.6 Symbols of common gates. 176
11.7 A Half-Adder . 177
11.8 Two examples of non-combinational circuits. 177
11.9 The merging operation on DAGs . 184
11.10The combinational circuit Cϕ . 185

xvii

xviii LIST OF FIGURES

12.1 Two implementations of an or-tree(n) with n = 4 inputs. 194
12.2 Two trees with six inputs. 196
12.3 The induction step in the proof of Theorem 12.18 205

13.1 Vector notation: multiple instances of the same gate. 211
13.2 Vector notation: b feeds all the gates. 212
13.3 A recursive implementation of decoder(n). 215
13.4 An implementation of decoder(2). 216
13.5 A recursive implementation of encoder′(n). 222
13.6 A recursive implementation of encoder∗(n). 224

14.1 An (n:1)-mux based on a decoder (n = 2k). 231
14.2 A recursive implementation of (n:1)-mux (n = 2k). 233
14.3 An example of a cyclic shift. 234
14.4 A row of multiplexers implement a cls(4,2). 235
14.5 A barrel-shifter(n) built of k levels of cls(n,2i) (n = 2k). 236
14.6 A bit-slice of an implementation of lbs(n,2i). 240

15.1 A Ripple Carry Adder rca(n). 248
15.2 A recursive description of rca(n). 248
15.3 A Conditional Sum Adder csa(n). 252
15.4 A Compound Adder comp-adder(n). 254

16.1 A (wrong) circuit for negating a value represented in two’s complement. . . 266
16.2 A two’s complement adder s-adder(n) . 273
16.3 A two’s-complement adder/subtractor add-sub(n). 274
16.4 Concatenating an s-adder(n) with an adder(n). 276
16.5 A wrong implementation of add-sub(n). 277

17.1 A clock signal. 282
17.2 Clock signal examples . 283
17.3 A critical segment and an instability segment. 284
17.4 A simplified timing diagram of an edge-triggered flip-flop 285
17.5 A schematic of an edge-triggered flip-flop . 285
17.6 A player attempting to roll a ball so that it passes point P 288
17.7 The event of metastability . 288
17.8 An arbiter based on a flip-flop without a critical segment. 289
17.9 A circuit and its simplified timing analysis. 292
17.10The simplified timing diagram in the case that Ai ∩Ci ≠ ∅. 293
17.11A chain of k inverters and a chain of k flip-flops. 293
17.12Comparison of segments of instability in two chains. 294
17.13A timing diagram of a D-Latch. 295
17.14A a schematic of a clock enabled flip-flop. 296
17.15Implementations of a clock enabled flip-flop. 297
17.16Slow and fast signals. 298

LIST OF FIGURES xix

17.17A schematic of a “new” flip-flop. 298

18.1 A sequential xor circuit. 303
18.2 A 4-bit parallel load register. 304
18.3 A 4-bit shift register. 305
18.4 A schematic of a ram(2n). 306
18.5 A simplified implementation of a ram(2n) . 308
18.6 An implementation of a memory cell. 309
18.7 An implementation of a rom(2n). 309

19.1 Stripping away the flip-flops from a synchronous circuit. 313
19.2 A synchronous circuit in canonic form. 315
19.3 A simple synchronous circuit. 317
19.4 A synchronous circuit in canonic form with reset. 321
19.5 A state diagram of an FSM that counts (mod 4). 324
19.6 An overly pessimistic timing analysis example for the canonic form. 325
19.7 A circuit. 332
19.8 An LFSR synchronous circuit with four ff’s. The ⊕ denotes a xor gate. . 335

20.1 A two-state FSM and its implementation by a synchronous circuit. 339
20.2 A sequential adder. 341
20.3 An n-bit counter. 344
20.4 A 4-bit shift-register, and an FSM of a 2-bit shift-register. 346
20.5 A schematic of a ram(2n),and an FSM of a ram(21). 347
20.6 A toy. 349

21.1 Instruction formats of the simplified DLX. 357

22.2 The memory controller. 371
22.3 A sketch of the ALU . 372
22.1 Datapath of the simplified DLX machine . 386
22.4 An implementation of the GPR environment 387
22.5 Sketch of the state diagram of the control of the simplified DLX machine . 388
22.6 The sequence of control states in the execution of the lw instruction. . . . 389
22.7 Executing RTL instructions. 390
22.8 The sequence of control states in the execution of the ‘beqz’ instruction. . 391
22.9 A simple data path. 391

xx LIST OF FIGURES

List of Tables

1.1 Multiplication table . 12
1.2 Truth tables of four basic Boolean functions. 15
1.3 Multiplication tables of three basic Boolean functions. 15
1.4 Truth table the identity function I ∶ {0,1} → {0,1}. 15
1.5 The truth table of the 3-bit carry function. 16
1.6 The truth tables of and(and(a, b), c) and and(a,and(b, c)) 18

6.1 The tautology X ∨ ¬X . 86
6.2 Two logically equivalent Boolean formulas . 87
6.3 The implication connective . 89
6.4 The nand and nor connectives . 90
6.5 The equivalence connective . 90
6.6 The truth tables of the addition and the simplification tautologies 99
6.7 The truth table of the “proof by contradiction” tautology 99

9.1 The max Boolean function . 127
9.2 The not(max) Boolean function . 130
9.3 The truth table of f ∶ {0,1}3 → {0,1}. 137
9.4 The truth table of f1 ∶ {0,1}3 → {0,1}. 147
9.5 The truth table of f2 ∶ {0,1}3 → {0,1}. 148
9.6 The Karnaugh Map of f2 ∶ {0,1}3 → {0,1}. 148
9.7 The prime implicants of f2 . 149

11.1 Costs and delays of gates . 188

16.1 Comparison between representation of negative integers 263
16.2 Values of C[n],C[n − 1], [S⃗], and z for various values of [A⃗] , [B⃗] and C[0].272

18.1 Comparison of simulations of a parallel load register and a shift register. . 305

20.1 The truth table of λ. 338

21.1 I-type Instructions . 363
21.2 R-type Instructions (in R-type instructions IR[31 ∶ 26] = 06) 364
21.3 Register assignment for Example 21.8 . 365
21.4 Conversion of C code to a DLX’s machine code. 365

xxi

xxii LIST OF TABLES

21.5 Register assignment. 366
21.6 Conversion of C code to a DLX’s machine code. 366

22.1 The type input and its corresponding function ftype. 373
22.2 Determining the transition from the Decode state 380
22.3 The RTL instructions and active control outputs per control state. 381
22.4 Summary of the control outputs . 382

List of Algorithms

4.1 Topological sorting . 48
4.2 Longest path in a DAG . 50
4.3 tree height . 56
5.1 Computing a binary representation . 66
5.2 An LSB-to-MSB binary representation computation 70
6.1 An algorithm for generating a Boolean formula from a parse tree 80
6.2 Evaluating the truth value of the Boolean formula 84
6.3 Evaluating the truth value of the Boolean formula 85
6.4 An algorithm for evaluating the De Morgan dual 101
6.5 An algorithm for computing the negation normal form 102
9.1 An algorithm for computing the set of prime implicants I(f) 143
11.1 A simulation algorithm for combinational circuits 179
11.2 Weighted longest path in a DAG . 182
12.1 Balanced-Tree(n) . 199
16.1 Computation of two’s complement representation 264
19.1 FEAS(C) . 327
19.2 Min-Φ(C) . 328
19.3 SIM(C,S0,{INi}n−1i=0) . 330

xxiii

xxiv LIST OF ALGORITHMS

Part I

Preliminaries

1

Chapter 1

Sets and Functions

Contents
1.1 Sets . 3

1.2 Relations and Functions . 10

1.3 Boolean Functions . 14

1.3.1 Truth Tables . 15

1.4 Commutative and Associative Binary Operations 16

This chapter introduces two major notions: sets and functions. We are all familiar
with real functions, for example f(x) = 2x + 1 and g(x) = sin(x). Here the approach is
somewhat different. The first difference is that we do not limit the discussion to the set
of real numbers. Instead, we consider arbitrary sets, and are mostly interested in sets
that contain only a finite number of elements. The second difference is that we do not
define a “rule” for assigning a value for each x. Instead, a function is simply a list of
pairs (x, y), where y denotes the value of the function when the argument equals x. The
definition of functions relies on the definitions of sets and relations over sets. That is why
we need to define various operations over sets such as: union, intersection, complement,
and Cartesian product.

The focus of this book is Boolean functions. Boolean functions are a special family of
functions. Their arguments and values are finite sequences of zero and ones (also called
bits). In this chapter we show how to represent a Boolean function by a truth table and
multiplication tables. Other representations presented later in the book are: Boolean
formulas and combinational circuits.

1.1 Sets

A set is a collection of objects. When we deal with sets, we usually have a universal set
that contains all the possible objects. In this section we denote the universal set by U .

The universal set need not be fixed. For example, when we consider real numbers, the
universal set is the set of real numbers. Similarly, when we consider natural numbers the

3

4 CHAPTER 1. SETS AND FUNCTIONS

universal set is the set of natural numbers. The universal set need not be only abstract
objects such as numbers. For example, when we consider people, the universal set is the
set of all people.

One way to denote set is by listing the objects that belong to set and delimiting them
by curly brackets. For example, suppose the universe is the set of integers and consider
the set A = {1,5,12}. Then 1 is in A, but 2 is not in A. An object that belongs to a set
is called an element . We denote the fact that 1 is in A by 1 ∈ A and the fact that 2 is
not in A by 2 /∈ A.

Definition 1.1 Consider two sets A and B.

1. We say that A is a subset of B if every element in A is also an element in B. We
denote that A is a subset of B by A ⊆ B.

2. We say that A equals B if the two sets consist of exactly the same elements. For-
mally, if A ⊆ B and B ⊆ A. We denote that A and B are equal sets by A = B.

3. The union of A and B is the set C such that every element of C is an element of
A or an element of B. We denote the union of A and B by A ∪B.

4. The intersection of A and B is the set C such that every element of C is an element
of A and an element of B. We denote the intersection of A and B by A ∩B.

5. The difference A and B is the set C such that every element of C is an element of
A and not an element of B. We denote the difference of A and B by A ∖B.

The empty set is a very important set (as important as the number zero).

Definition 1.2 The empty set is the set that does not contain any element. It is usually
denoted by ∅.

Sets are often specified by a condition or a property. This means that we are interested
in all the objects in the universal set that satisfy a certain property. Let P denote a
property. We denote the set of all elements that satisfy property P as follows

{x ∈ U ∣ x satisfies property P}.
The above notation should be read as follows: The set of all elements x in the universal
set U such that x satisfies property P .

Every set we consider is a subset of the universal set. This enable us to define the
complement of a set as follows.

Definition 1.3 The complement of a set A is the set U ∖A. We denote the complement
set of A by Ā.

Given a set A we can consider the set of all its subsets.

Definition 1.4 The power set of a set A is the set of all the subsets of A. The power
set of A is denoted by P (A) or 2A.

1.1. SETS 5

We can pair elements together to obtain ordered pairs.

Definition 1.5 Two objects (possibly equal) with an order (i.e., the first object and the
second object) are called an ordered pair. We denote an ordered pair by (a, b). This
notation means that a is the first object in the pair and b is the second object in the pair.

Consider two ordered pairs (a, b) and (a′, b′). We say that (a, b) = (a′, b′) if a = a′ and
b = b′.

We usually refer to the first object in an ordered pair as the first coordinate. The second
object is referred to as the second coordinate.

An important method to build large sets from smaller ones is by the Cartesian product .

Definition 1.6 The Cartesian product of the sets A and B is the set

A ×B
△

= {(a, b) ∣ a ∈ A and b ∈ B}.
Every element in a Cartesian product is an ordered pair. Thus the Cartesian product
A ×B is simply the set of ordered pairs (a, b) such that the first coordinate is in A and
the second coordinate is in B. The Cartesian product A ×A is denoted by A2.

The definition of ordered pairs is extended to tuples as follows.

Definition 1.7 A k-tuple is a set of k objects with an order. This means that a k-tuple
has k coordinates numbered {1, . . . , k}. For each coordinate i, there is an object in the ith
coordinate.

An ordered pair is a 2-tuple. A k-tuple is denoted by (x1, . . . , xk), where the element
in the ith coordinate is xi. Tuples are compared in each coordinate, thus, (x1, . . . , xk) =(x′1, . . . , x′k) if and only if xi = x′i for every i ∈ {1, . . . , n}.
We also extend the definition of Cartesian products to products of k sets as follows.

Definition 1.8 The Cartesian product of the sets A1,A2, . . . Ak is the set

A1 ×A2 ×⋯×Ak
△

= {(a1, . . . , ak) ∣ ai ∈ Ai for every 1 ≤ i ≤ k}.
The Cartesian product of k copies of A is denoted by Ak.

Examples

0∗. Russell’s Paradox. A formal axiomatic development of set theory is a branch of
logic called axiomatic set theory . This branch developed in response to paradoxes
in set theory. One of the most famous paradoxes is was discovered by Bertrand
Russell in 1901.

Suppose we do not restrict ourselves to subset of a universal set. Consider the set
Z defined by

Z
△

= {x ∣ x /∈ x}.

6 CHAPTER 1. SETS AND FUNCTIONS

Namely, an object x is in Z if and if only it does not contain itself as an element.

Russell’s Paradox is obtained as follows. Is Z ∈ Z? If Z ∈ Z, then since every
element x ∈ Z satisfies x /∈ x, we conclude that Z /∈ Z, a contradiction.

So we are left with the complementary option that Z /∈ Z. But if Z /∈ Z, then
Z satisfies the only condition for being a member of Z. Thus Z ∈ Z, again a
contradiction.

1. Examples of sets: (i) A
△

= {1,2,4,8}, the universal set is the set of numbers, (ii) B
△

={pencil,pen, eraser}, the universal set is the set of “the things that we have in our
pencil case”.

2. Examples of subsets of A
△

= {1,2,4,8} and B
△

= {pencil,pen, eraser}: (i) {1,2,4,8} ⊆
A, (ii) {1,2,8} ⊆ A, (iii) {1,2,4} ⊆ A, (iv) {1,2} ⊆ A, (v) {1} ⊆ A, (vi) ∅ ⊆ A,
(vii) {pen} ⊆ B.

3. Examples of equal sets. Let A
△

= {1,2,4,8} and B
△

= {pencil,pen, eraser}. (i) Or-
der and repetitions do not affect the set, e.g., {1,1,1} = {1} and {1,2} = {2,1}.
(ii) {2,4,8,1,1,2} = A, (iii) {1,2,44,8} ≠ A, (iv) A ≠ B.

4. We claim that ∅ ⊆X, for every set X. By Item 1 in Definition 1.1, we need to prove
that every element in ∅ is also in X. Since the empty set ∅ does not contain any
element (see Definition 1.2), then all the elements in ∅ are also in X, as required.

5. The empty set is denoted by ∅. The set {∅} contains a single element which is
the empty set. Therefore, ∅ ∈ {∅} but ∅ ≠ {∅}. Since ∅ ⊆ X for all set X (see
Example 4), then ∅ ∈ {∅} and ∅ ⊆ {∅}.

6. Examples of unions: (i) {1,2,4,8}∪{1,2,4} = A, (ii) {1,2}∪{4} ≠ A, (iii) A∪∅ = A,
(iv) A ∪B = {1,2,4,8,pencil,pen, eraser}.

7. Intersection of sets: (i) {1,2,4}∩A = {1,2,4}, (ii) {8,16,32}∩A = {8}, (iii) {16,32}∩
A = ∅, (iv) A ∩ ∅ = ∅, (v) A ∩B = ∅, (vi) For every two sets X and Y , X ∩ Y ⊆ X.

8. Suppose the universal set is the set of real numbers R. We can define the following
sets:

(a) The set of integers Z is the set of all reals that are multiples of 1. That is,

Z
△

= {x ∈ R ∣ x is a multiple of 1}
= {0,+1,−1,+2,−2, . . .}.

(b) The set of natural numbers N is the set of all nonnegative integers. That is,

N
△

= {x ∈ R ∣ x ∈ Z and x ≥ 0}
= {0,1,2,3, . . .}.

1.1. SETS 7

(c) The set of positive natural numbers N+ is the set of all positive integers. That
is,

N
+ △= {x ∈ R ∣ x ∈ Z and x > 0}
= {1,2,3, . . .}.

(d) The set of positive real numbers is denoted by R+, that is,

R
+ △= {x ∈ R ∣ x > 0} .

(e) The set of nonnegative real numbers is denoted by R≥, that is,

R
≥ △= {x ∈ R ∣ x ≥ 0} .

9. If A∩B = ∅, then we say that A and B are disjoint . We say that the sets A1, . . . ,Ak
are disjoint if A1∩⋯∩Ak = ∅. We say that the sets A1, . . . ,Ak are pairwise-disjoint
if for every i ≠ j, the sets Ai and Aj are disjoint.

10. Consider the three sets {1,2}, {2,3} and {1,3}. Their intersection is empty, there-
fore, they are disjoint. However, the intersection of every pair of sets is nonempty,
therefore, they are not pairwise disjoint.

11. When A and B are disjoint, i.e., A ∩ B = ∅, we denote their union by A ⊍ B.
(i) {1,2} ⊍ {4,8} = A, (ii) {1,2} ∪A = A.

12. Difference of sets: (i) {1,2}∖{2,4} = {1}, (ii) A∖∅ = A, (iii) A∖A = ∅, (iv) A∖B = A.

13. Formal specification of union, intersection and difference:

(a) A ∪B
△

= {x ∈ U ∣ x ∈ A or x ∈ B},
(b) A ∩B

△

= {x ∈ U ∣ x ∈ A and x ∈ B},
(c) A ∖B

△

= {x ∈ U ∣ x ∈ A and x /∈ B}.
14. We claim that Ā = {x ∈ U ∣ x /∈ A}. Indeed, x ∈ Ā is shorthand for x ∈ U ∖A, where

U is the universe. Hence, x=x ∈ Ā if and only if x ∈ U and x /∈ A, as required.

15. Contraposition. In this example we discuss a logical equivalence between two
statements called contraposition. A rigorous treatment of contraposition appears
in Chapter 6. Consider the following two statements (regarding sets A and B):� A ⊆ B, and� B̄ ⊆ Ā.

We show that these two statements are equivalent. Assume that A ⊆ B. By
definition this means that

∀x ∈ U ∶ x ∈ A⇒ x ∈ B . (1.1)

8 CHAPTER 1. SETS AND FUNCTIONS

BA

U

(a) Union: A ∪B

B

U

A

(b) Intersection: A ∩B

U

A B

(c) Difference: A ∖B

U

BA

(d) Complement: U ∖A = Ā

Figure 1.1: Venn diagrams over the sets A and B with respect to the universal set
U .

Now we wish to show that B̄ ⊆ Ā. For the sake of contradiction, assume that there
exists an element x for which x ∈ B̄ and x /∈ Ā. This means that x /∈ B and x ∈ A.
But this contradicts Eq. 1.1. Hence, B̄ ⊆ Ā, as required.

Assume that B̄ ⊆ Ā. By the proof above, it follows that ¯̄A ⊆ ¯̄B. Note that ¯̄A = A
and ¯̄B = B. Hence, A ⊆ B, as required.

In its general form, contraposition states that the statement P ⇒ Q is logically
equivalent to the statement not(Q) ⇒ not(P). The proof of this equivalence is
similar to the proof above.

16. Operations on sets defined in Definition 1.1 can be depicted using Venn diagrams.
The idea is to depict each set as a region defined by a closed curve in the plane.
For example, a set can be depicted by a disk. Elements in the set are represented
by points in the disk, and elements not in the set are represented by points outside
the disk. The intersections between regions partition the planes into “cells”, where
each cell represents an intersection of sets and complements of sets. In Figure 1.1,
we depict the union, intersection, difference and complement of two sets A and B

that are subsets of a universal set U .

17. We claim that A∖B = A∩B̄. To prove this we show containment in both directions:
(i) We prove that A∖B ⊆ A∩ B̄. Let x ∈ A∖B. By the definition of subtraction of
sets, this means that x ∈ A and x /∈ B. By the definition of complement, x ∈ B̄. By
the definition of intersection, x ∈ A∩B̄, as required. (ii) We prove that A∩B̄ ⊆ A∖B.

1.1. SETS 9

Let x ∈ A∩ B̄. By definition of intersection of sets, this means that x ∈ A and x ∈ B̄.
By the definition complement, x ∈ B̄ implies that x /∈ B. By the definition of
subtraction, x ∈ A ∖B, as required.

18. Let X denote a set with a finite number of elements. The size of a set X is the
number of elements in X. The size of a set is also called its cardinality . The size
of a set X is denoted by ∣X ∣: (i) ∣A∣ = 4, (ii) ∣B∣ = 3. (iii) ∣A ⊍B∣ = 7. (iv) If X and
Y are disjoint finite sets, then ∣X ⊍ Y ∣ = ∣X ∣ + ∣Y ∣.

19. The power set of A = {1,2,4,8} is the set of all subsets of A, namely,

P (A) = {∅,{1},{2},{4},{8},{1,2},{1,4},{1,8},{2,4},{2,8},{4,8},{1,2,4},{1,2,8},{2,4,8},{1,4,8},{1,2,4,8}}.
20. Every element of the power set P (A) is a subset of A, and every subset of A is an

element of P (A).
21. Recall that for every set X, the empty set ∅ is a subset of X (see Example 4). It

follows that ∅ ∈ P (X), for every set X. In particular, ∅ ∈ P (∅).
22. How many subsets does the set A have? By counting the list in Example 19, we

see that ∣P (A)∣ = 16. As we will see later in Problem 2.6, in general ∣P (A)∣ = 2∣A∣.
This justifies the notation of the power set by 2A.

23. Some examples with ordered pairs:

(i) Consider the set of first names P
△

= {Jacob,Moses,LittleRed,Frank}, and
the set of last names M

△

= {Jacob,RidingHood,Sinatra}. Then,

P ×M = {(Jacob, Jacob), (Jacob,RidingHood), (Jacob,Sinatra),(Moses, Jacob), (Moses,RidingHood), (Moses,Sinatra),(LittleRed,Jacob), (LittleRed,RidingHood), (LittleRed,Sinatra),(Frank,Jacob), (Frank,RidingHood), (Frank,Sinatra)} .
(ii) Equality of pairs is sensitive to order, namely,

(Jacob,RidingHood) ≠ (RidingHood,Jacob).
(iii) Obviously, (Jacob, Jacob) = (Jacob, Jacob).

24. For every set X, ∅×X = ∅.

25. For finite sets X and Y (regardless of their disjointness) ∣X × Y ∣ = ∣X ∣ ⋅ ∣Y ∣.

10 CHAPTER 1. SETS AND FUNCTIONS

A B

U

Figure 1.2: Venn diagram demonstrating the identity U ∖ (A ∪B) = Ā ∩ B̄.

26. The Euclidean plane is the Cartesian product R2. Every point in the plane has an
x-coordinate and a y-coordinate. Thus, a point p is a pair (px, py). For example,
the point p = (1,5) is the point whose x-coordinate equals 1 and whose y coordinate
equals 5.

27. A circle C of radius r centered at the origin is the set of ordered pairs defined by
C

△

= {(x, y) ∣ x2 + y2 = r2}.
28. The Cartesian product of n identical sets {0,1} is denoted by {0,1}n. Namely,

{0,1}n =
n times³¹¹·¹¹µ{0,1} × {0,1} ×⋯× {0,1} .

Every element in {0,1}n is an n-tuple (b1, . . . , bn), where bi ∈ {0,1}, for every 1 ≤
i ≤ n. We refer to bi ∈ {0,1} as a bit and to (b1, . . . , bn) as a binary string . We
write a string without separating the bits by commas, e.g., (i) 010 means (0,1,0),
(ii) {0,1}2 = {00,01,10,11}, (iii) {0,1}3 = {000,001,010,011,100,101,110,111}.

29. De-Morgan’s law states that U ∖ (A ∪B) = Ā ∩ B̄. In Fig. 1.2, a Venn diagram is
used to depict this equality. A formal proof requires using propositional logic, and
is presented in Section 6.8.

1.2 Relations and Functions

A set of ordered pairs is called a binary relation.

Definition 1.9 A subset R ⊆ A ×B is called a binary relation.

A function is a binary relation with an additional property.

Definition 1.10 A binary relation R ⊆ A×B is a function if for every a ∈ A there exists
a unique element b ∈ B such that (a, b) ∈ R.

Figure 1.3 depicts a diagram of a binary relation R ⊆ A ×B. The sets A and B are
depicted by the two oval shapes. The elements of these sets are depicted by black points.

1.2. RELATIONS AND FUNCTIONS 11

A B

c

d e
(d, e)

f(d, f)

(c, b)

a b
(a, b)

Figure 1.3: A diagram of a binary relation R ⊆ A × B. The relation R equals the set{(a, b), (c, b), (d, e), (d, f)}.
Pairs in the relation R are depicted by arcs joining the two elements in each pair . The
relation depicted in Figure 1.3 is not a function because there are two distinct pairs in
which the element d ∈ A is the first element.

A function R ⊆ A×B is usually denoted by R ∶ A→ B. The set A is called the domain
and the set B is called the range. Lowercase letters are usually used to denote functions,
e.g., f ∶ R→ R denotes a real function f(x).
One can define new functions from old functions by using composition.

Definition 1.11 Let f ∶ A → B and g ∶ B → C denote two functions. The composed
function g ○ f is the function h ∶ A → C defined by h(a) = g(f(a)), for every a ∈ A.

Note that two functions can be composed only if the range of the first function is contained
in the domain of the second function.

We can also define a function defined over a subset of a domain.

Lemma 1.1 Let f ∶ A→ B denote a function, and let A′ ⊆ A. The relation R defined by
R

△

= {(a, b) ∈ A′ ×B ∣ f(a) = b} is a function.

Proof: All we need to prove is that for every a ∈ A′, there exists a unique b ∈ B such that(a, b) is in the relation. Indeed, (a, f(a)) ∈ R, and this is the only pair in R whose first
coordinate equals a. Namely, if both (a, b) and (a, b′) are in the relation, then f(a) = b
and f(a) = b′, implying that b = b′, as required. 2

Lemma 1.1 justifies the following definition.

Definition 1.12 Let f ∶ A → B denote a function, and let A′ ⊆ A. The restriction of f
to the domain A′ is the function f ′ ∶ A′ → B defined by f ′(x) △= f(x), for every x ∈ A′.

12 CHAPTER 1. SETS AND FUNCTIONS

g

A B C

h

f

Figure 1.4: The functions f ∶ A → B and g ∶ B → C, and the composed function h ∶ A→ C

defined by g ○ f .

We denote strict containment , i.e., A ⊆ B and A ≠ B, by A ⊊ B. Given a function
f ∶ A → B, we may want to extend it to a function g ∶ A′ → B′, where A ⊊ A′. This means
that the relation f is a subset of the relation g.

Definition 1.13 A function g is an extension of a function f if f is a restriction of g.

Consider a function f ∶ A × B → C for finite sets A,B, and C. The multiplication
table of f is a table with one row per element of A and one column per element of B,
namely, a table with ∣A∣ rows and ∣B∣ columns. For every (a, b) ∈ A × B, the entry of
the table corresponding to (a, b) is filled with f(a, b). For example, consider the function
f ∶ {0,1,2}2 → {0,1, . . . ,4} defined by f(a, b) = a ⋅ b. The multiplication table of f
appears in Table 1.1. Note the term multiplication table is used also for functions that
have nothing to do with multiplication.

f 0 1 2

0 0 0 0
1 0 1 2
2 0 2 4

Table 1.1: The multiplication table of the function f ∶ {0,1,2}2 → {0,1, . . . ,4} defined by
f(a, b) = a ⋅ b.

Examples

1. Examples related to relations. Consider a league of n teams A = {1, . . . , n}. Each
match is between two teams; one team is the hosting team, and the other team is

1.2. RELATIONS AND FUNCTIONS 13

the guest team. Thus, a match can be represented by an ordered pair (a, b) in A2,
where a denotes the hosting team and b denotes the guest team. We can consider
the set R ⊆ A2 of all matches played in the league. Thus, R is the relation of “who
played against who” with an indication of the hosting team and the guest team.
Note that the matches (a, b) and (b, a) are different due to the different host/guest
teams. In addition, the relation R does not include pairs (a, a) since a team cannot
play against itself.

2. Let R ⊆ N × N denote the binary relation “smaller than and not equal” over the
natural number. That is, (a, b) ∈ R if and only if a < b.

R
△

= {(0,1), (0,2), . . . , (1,2), (1,3), . . .} .
3. Examples of relations that are functions and relations that are not functions. Let

us consider the following relations over {0,1,2} × {0,1,2}.
R1

△

= {(1,1)} ,
R2

△

= {(0,0), (1,1), (2,2)} ,
R3

△

= {(0,0), (0,1), (2,2)} ,
R4

△

= {(0,2), (1,2), (2,2)} .
The relation R1 is not a function since it is not defined for x ∈ {0,2}. The relation
R2 is a function since, for every x ∈ {0,1,2}, there exists a unique y ∈ {0,1,2} such
that (x, y) ∈ R2. In fact, R2 consists of pairs of the form (x,x). Such a function is
called the the identity function. The relation R3 is not a function since there are
two pairs with x = 0. The relation R4 is a function that consists of pairs of the form(x,2). Such a function R4 is called a constant function since the value y = f(x) of
the function does not depend on the argument x.

4. Examples of restriction of a functions. Let us consider the following functions.

f(x) = sin(x) ,
salary ∶ People → N .

The function f(x) is defined for every real number x ∈ R. The restriction of f(x)
to [0, π/2] ⊂ R is the function g ∶ [0, π/2] → [0,1] defined by g(x) = f(x), for every
x ∈ [0, π/2]. Similarly, let us restrict the salary function to the set of residents
of New-York City (which is obviously a subset of the set of people), that is, let
salary ′ ∶ Residents of New-York City → N be defined by salary ′(x) = salary(x).
This means that salary ′(x) is defined only if x is a resident of New-York City.

5. Examples of extensions of a functions. Let us consider the following functions.

f(x) = 1/x; for every x ∈ R ∖ {0} ,
g = {(0,1), (1,1), (2,0)} .

14 CHAPTER 1. SETS AND FUNCTIONS

Let us define the extension h ∶ R→ R ∪ {∞} of f as follows.

h(x)← ⎧⎪⎪⎨⎪⎪⎩
f(x) , if x ∈ R ∖ {0},
∞ , if x = 0 .

We extended f by adding the pair (0,∞), that is, the domain of h is R and the
range of h is R ∪ {∞}.
Let us define the extension w ∶ {0,1,2,3}→ {0,1,2} of g as follows.

w(x)← ⎧⎪⎪⎨⎪⎪⎩
g(x) , if x ∈ {0,1,2},
2 , if x = 3 .

We extended g by adding the pair (3,2). Note that in both cases we extended the
functions by extending both the domain and the range.

6. Let M denote a set of mothers. Let C denote a set of children. Let P ⊆ M × C

denote the “mother of” relation, namely, (m,c) ∈ P if and only if m is the mother
of c. Similarly, let Q ⊆ C ×M denote the “child of” relation, namely, (c,m) ∈ Q if
and only if c is a child of m. For example,

M
△

= {1,2,3} ,
C

△

= {4,5,6,7,8,9} ,
P

△

= {(1,4), (2,5), (2,6), (3,7), (3,8), (3,9)} ,
Q

△

= {(x, y) ∣ (y,x) ∈ P} ,
= {(4,1), (5,2), (6,2), (7,3), (8,3), (9,3)} .

Note that a mother may have many children while a child has a unique mother.
Hence, the relation Q is a function while P is not. Note that Q ∶ C → M is not
one-to-one since two children may share the same mother, e.g., Q(5) = Q(6).

7. Examples of compositions of functions. Let f(x) = 2x + 4 and let g(x) = x2, then

f(g(x)) = f(x2)
= 2(x2) + 4

= 2x2
+ 4 , and

g(f(x)) = g(2x + 4)
= (2x + 4)2
= (2x)2 + 2 ⋅ 2x ⋅ 4 + 42

= 4x2
+ 16x + 16.

1.3 Boolean Functions

In this section we focus on functions whose domain and range are binary strings.

1.3. BOOLEAN FUNCTIONS 15

Definition 1.14 A bit is an element in the set {0,1}. An n-bit binary string is an
element in the set {0,1}n.
Definition 1.15 A function B ∶ {0,1}n → {0,1}k is called a Boolean function.

1.3.1 Truth Tables

Bits are related to the logical “true” and “false”. According to the common convention,
a “true” is coded as a 1 and a “false” is coded as a 0. A list of the ordered pairs (x, f(x))
is called a truth table. This means that there are two columns in a truth table, one for the
domain and one for the range. In a truth table of a Boolean function B ∶ {0,1}n → {0,1}k,
the domain column is usually split; one column per bit.

Table 1.2 depicts the truth tables of four basic Boolean functions: (i) not ∶ {0,1} →{0,1}, (ii) and ∶ {0,1}2 → {0,1}, (iii) or ∶ {0,1}2 → {0,1}, and (iv) xor ∶ {0,1}2 → {0,1}
x not(x)
0 1
1 0

x y and(x, y)
0 0 0
1 0 0
0 1 0
1 1 1

x y or(x, y)
0 0 0
1 0 1
0 1 1
1 1 1

x y xor(x, y)
0 0 0
1 0 1
0 1 1
1 1 0

Table 1.2: Truth tables of four basic Boolean functions.

Table 1.3 depicts the multiplication tables of and, or and xor.

and 0 1

0 0 0
1 0 1

or 0 1

0 0 1
1 1 1

xor 0 1

0 0 1
1 1 0

Table 1.3: Multiplication tables of three basic Boolean functions.

Examples

1. The Boolean function I ∶ {0,1} → {0,1}, defined by I(x) = x, is called the identity
function. We reencounter the identity function in Chapter 6). Table 1.4 depicts the
truth table of the identity function.

x I(x)
0 0
1 1

Table 1.4: Truth table the identity function I ∶ {0,1} → {0,1}.

16 CHAPTER 1. SETS AND FUNCTIONS

2. Consider the Boolean function or{0,1}2 → {0,1}. Define the Boolean function
f ∶ {0,1} → {0,1} by f(y) = or(0, y). The function f is the restriction of or to
the domain {(0,0), (1,0)}. Note that f(y) = y, for every y ∈ {0,1}, thus, f is the
identity function.

3. The parity function p ∶ {0,1}n → {0,1} is defined as follows.

p(b1, . . . , bn) △

=

⎧⎪⎪⎨⎪⎪⎩
1 if ∑ni=1 bi is odd

0 if ∑ni=1 bi is even.

For example: (i) p(0,1,0,1,0) = 0, (ii) p(0,1,1,1,0) = 1, (iii) for n = 2, the parity
function is identical to the xor function.

4. The majority function m ∶ {0,1}n → {0,1} is defined as follows.

m(b1, . . . , bn) = 1 if and only if
n∑
i=1
bi >

n

2
.

For example: (i) m(0,1,0,1,0) = 0, (ii) m(0,1,1,1,0) = 1, (iii) for n = 2, the
majority function is identical to the and function.

5. The 3-bit carry function c ∶ {0,1}3 → {0,1} is defined as follows.

c(b1, b2, b3) = 1 if and only if b1 + b2 + b3 ≥ 2 .

For example: (i) c(0,1,0) = 0, (ii) c(0,1,1) = 1.

6. The truth table of the 3-bit carry function is listed in Table 1.5.

b1 b2 b3 c(b1, b2, b3)
0 0 0 0
1 0 0 0
0 1 0 0
1 1 0 1
0 0 1 0
1 0 1 1
0 1 1 1
1 1 1 1

Table 1.5: The truth table of the 3-bit carry function.

1.4 Commutative and Associative Binary Operations

A function whose domain equals the Cartesian product of the range is called a binary
operation, e.g., f ∶ A × A → A. Common examples of binary operations are arithmetic
operations such as: addition, subtraction, multiplication, and division. Usually, binary
operation is denoted by a special symbol (e.g., +,−, ⋅,÷). Instead of writing +(a, b), we
write a + b.

1.4. COMMUTATIVE AND ASSOCIATIVE BINARY OPERATIONS 17

Definition 1.16 A binary operation ∗ ∶ A×A→ A is commutative if, for every a, b ∈ A:

a ∗ b = b ∗ a.

Definition 1.17 A binary operation ∗ ∶ A ×A→ A is associative if, for every a, b, c ∈ A:

(a ∗ b) ∗ c = a ∗ (b ∗ c).
Consider an associative function f ∶ A×A → A. We can define an function fk ∶ Ak → A,

for any k ≥ 2 as follows. The function f2 is simply f . For k > 2 we define

fk(x1, . . . , xk) △= f(fk−1(x1, . . . , xk − 1), xk).
In Section 2.2 we refer to such a definition as a recursive definition.

We are so used to this definition that we do not even notice that we use it. For
example, (x1 + x2 + ⋯ + xk) is defined by (1) first add y = (x1 + ⋯ + xk−1) and then
(2) add y +xk. This manipulation is often referred to by “placing of parenthesis”. If f is
associative, then the parenthesis can be placed arbitrarily without changing the outcome.
We return to this issue in Chapter 12.

Examples

1. The addition operation + ∶ R2 → R is commutative and associative.

2. The subtraction operation − ∶ R2 → R is neither associative nor commutative. For
example: (i) 1 − 2 = −1 but 2 − 1 = 1, (ii) (5-3)-2=0 but 5-(3-2)=4.

3. The restriction of a binary operator is not always a binary operator. For example,
consider the addition operation + ∶ R2 → R. Addition is a binary operator over the
reals. Let A = {0,1,2}, and consider the restriction of addition to A×A. The range
of this restriction is the set {0,1, . . . ,4} which does not equals the set A.

4. The multiplication operation ⋅ ∶ R2 → R is commutative and associative.

5. The division operation ÷ ∶ (R ∖ {0})2 → (R ∖ {0}) is not associative and not com-
mutative. For example: (i) 1 ÷ 2 = 1

2
but 2 ÷ 1 = 2, hence the operation is not

commutative, (ii) Let a, b, c ∈ R ∖ {0} and c /∈ {−1,+1}, then (a ÷ b) ÷ c ≠ a ÷ (b ÷ c)
since:

(a ÷ b) ÷ c =
a/b
c

=
a

b ⋅ c
,

a ÷ (b ÷ c) =
a

b/c = a ⋅ cb .

Hence, division is not associative.

18 CHAPTER 1. SETS AND FUNCTIONS

6. Multiplication of real matrices is associative but not commutative as shown in the
following example. Consider the matrices:

A = (1 0
0 0
) , B = (0 1

0 0
) .

The products A ⋅B and B ⋅A are:

A ⋅B = (0 1
0 0
) , B ⋅A = (0 0

0 0
) .

Since A ⋅B ≠ B ⋅A, multiplication of real matrices is not commutative.

7. Prove that the Boolean function and is associative.

Proof: We prove that for every a, b, c ∈ {0,1}
and(and(a, b), c) = and(a,and(b, c)), (1.2)

by filling the truth values in the truth tables of both sized of Equation 1.2, i.e,
and(and(a, b), c) and and(a,and(b, c)) , as depicted in Table 1.6.

a b c and(a, b) and(b, c) and(and(a, b), c) and(a,and(b, c))
0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 1 0 1 0 0 0
0 0 1 0 0 0 0
1 0 1 0 0 0 0
0 1 1 0 1 0 0
1 1 1 1 1 1 1

Table 1.6: The truth tables of and(and(a, b), c) and and(a,and(b, c)).
Since the columns of both and(and(a, b), c) , and(a,and(b, c)) are identical, it
implies that the Boolean function and is associative. 2

8. We may extend the Boolean function and to any number of arguments. For exam-
ple,

and3(X,Y,Z) △= (X and Y) and Z.

Since the and function is associative we have

(X and Y) and Z =X and (Y and Z).
Thus, we often simply write (X and Y and Z), and refer to this as the and of the
three arguments. In a similar fashion, we extend the and function to any number
of arguments, just as we consider addition of multiple numbers.

1.4. COMMUTATIVE AND ASSOCIATIVE BINARY OPERATIONS 19

Problems

1.1 Prove that for every set A,B, A = B if and only if A ⊆ B and B ⊆ A.

1.2 Prove that for every set A,B, A ∖B = A ∩ B̄.

1.3 Write the truth table of the parity function for n = 4.

1.4 Recall the definition of the 3-bit carry function c ∶ {0,1}3 → {0,1}:
c(b1, b2, b3) = 1 if and only if b1 + b2 + b3 ≥ 2 .

The truth table of the 3-bit carry function is listed in Table 1.5.

1. Prove that
c(b1, b2, b3) = (b1 ∧ b2) ∨ (b2 ∧ b3) ∨ (b1 ∧ b3) ,

where b1, b2, b3 ∈ {0,1}.
2. Set b1 = 1. Prove that c(1, b2, b3) = b2 ∨ b3.
3. Set b1 = 0. Prove that c(0, b2, b3) = b2 ∧ b3.

1.5 Prove that (regular) addition is not a binary operation over A×A if A is finite and
contains more than one element.

1.6 Define two binary operators over the set {0,1,2}, one which is commutative and
one which is not. Can you state a simple property that a multiplication table of such a
function must satisfy so that the function is commutative. Is this property sufficient?

1.7 Define two binary operators over the set {0,1,2}, one which is associative and one
which is not.

1.8 Enumerate all the Boolean functions of arity two, i.e., all the Boolean function in
the set {f ∶ {0,1}2 → {0,1}}. Identify the Boolean functions we have seen so far (and,
or, xor, implication, equivalence, nand, nor).

1.9 Prove that xor is an associative Boolean function.

1.10 Prove that or is an associative Boolean function.

1.11 Prove that every binary operator over the set {0} is associative and commutative.

1.12 De-Morgan’s second law states that A ∩B = Ā∪ B̄. Use Venn diagrams to demon-
strate this law.

1.13 Recall Example 15 on page 7. Use Venn diagrams to demonstrate contraposition
on sets, that is, for every two sets A,B show that:

20 CHAPTER 1. SETS AND FUNCTIONS� A ⊆ B implies that B̄ ⊆ Ā, and� B̄ ⊆ Ā implies that A ⊆ B.

1.14 Recall that for sets A,B,

A = B if and only if A ⊆ B and B ⊆ A .

Also recall that a function g ∶ C → D is a binary relation g ⊆ C ×D, such that for every
c ∈ C there exists a unique element d ∈ D such that (c, d) ∈ g. Conclude that two functions
f, g ∶ C →D are equal if and only if

∀c ∈ C ∶ f(c) = g(c) .
1.15 Let f ∶ A→ B, g ∶ B → C denote two functions. Prove that the composition h = g○f

is a function.

1.16 Recall the parity function p ∶ {0,1}n → {0,1} from Example 3 on page 16. Prove
that for n = 2 the parity function is identical to the xor function.

1.17 Recall the majority function m ∶ {0,1}n → {0,1} from Example 4 on page 16. Prove
that for n = 2 the majority function is identical to the and function.

1.18 Let f ∶ A×A → A denote a binary operation. We say that a multiplication table of
f is symmetric if the entry in the ith row and jth column equals to the entry in the jth
row and the ith column, for every i, j.

1. Prove or refute: f is commutative if and only if the multiplication table of f is
symmetric.

2. Prove or refute: f is associative if and only if the multiplication table of f is
symmetric.

1.19 Let A denote a set of functions whose range and domain equals B. Recall the
definition of composition of functions (see Definition 1.11). Prove or refute each of the
following statements:

1. Composition ○ ∶ A ×A→ A is a binary operation.

2. Composition is commutative (hint: see Example 7 on page 14).

3. Composition is associative.

4. Multiplication of matrices is associative (hint: use your answer to the previous
item).

Chapter 2

Induction and Recursion

Contents
2.1 Induction . 22

2.2 Recursion . 25

2.3 Application: One-to-one and Onto Functions 27

This chapter presents two very powerful techniques for defining infinite sequences
(recursion) and proving properties of infinite sequences (induction). The sequences we
are interested in are not only sequences of numbers (e.g., even positive integers), but also
sequences of more elaborate objects (e.g., digital circuits).

Suppose we wish to define the even numbers. Typically, one could write: 0,2,4,
This informal description assumes that the reader can guess how the sequence continues
and how to generate the next number in the sequence. (The next number is 6!) A more
systematic way to describe a sequence x0, x1, x2, . . . is to build a “device” that when input
an element xn of the sequence, outputs the next element xn+1. In the case of the sequence
of even numbers, this device simply adds +2, i.e., xn+1 = xn + 2. Of course, we need to
define the first element x0 in the sequence to be zero. Once we have defined x0 and the
device for determining xn+1 based on xn, the sequence is well defined. This, in a nutshell,
is recursion. In this book we will use recursion to define sequences of circuits. In the
meantime, we establish the topic of recursion on sequences of numbers.

Suppose we wish to prove that each number in the sequence defined recursively by
x0 = 0 and xn+1 = xn+2 is divisible by two. Well, the elements in this sequence are divisible
by two simply because xn = 2n. Namely, we have a formula for xn that immediately
implies the desired property (i.e., each xn is divisible by two). But, how do we prove
that this formula is correct? Bear in mind that sequences defined recursively can be very
complicated. Is there a way to prove that a recursive definition and a formula define the
same sequence? The main tool for such proofs is induction.

21

22 CHAPTER 2. INDUCTION AND RECURSION

2.1 Induction

Suppose we wish to prove the formula for the sum of the first n positive integers. That
is, we are looking for a fast way to compute the sum 1+2+⋯+n. In Section 3.2 we refer
to this sum as an arithmetic series. We denote the sum by Sn, namely, Sn

△

= ∑ni=1 i.
Theorem 2.1

Sn =
n ⋅ (n + 1)

2
. (2.1)

Proof: One way to prove Eq. 2.1 is by induction. The proof proceeds as follows. First,
we check that Eq. 2.1 holds for n = 0. This is easy, since both sides of the equation equal
zero. This part of the proof is called the induction basis .

Now, we formulate the induction hypothesis . It simply states that Eq 2.1 holds for n.
Namely,

Sn = n ⋅ (n + 1)/2. (2.2)

The final step of the proof is called the induction step. Here, we need to prove that if
Eq. 2.1 holds for n, then it also holds for n + 1. Thus, we need to prove that

Sn+1 = (n + 1) ⋅ (n + 2)/2. (2.3)

Why is this any easier than proving Eq. 2.1? The key point is that we may rely on
the induction hypothesis (i.e., Eq. 2.2). Indeed, Sn+1 = Sn + (n + 1). By the induction
hypothesis, Sn = n ⋅ (n + 1)/2. Thus, Sn+1 = n ⋅ (n + 1)/2+ (n + 1). To complete the proof,
all we need to do is to prove that n ⋅ (n+1)/2+(n+1) = (n+1)(n+2)/2, a simple task. 2

A more abstract way of formulating the above proof by induction is to denote by P
the set of all natural numbers n that satisfy Eq. 2.1. Our goal is to prove that every n

satisfies Eq 2.1, namely, that P = N.

The proof consists of three steps:

1. Induction basis: prove that 0 ∈ P .

2. Induction hypothesis: assume that n ∈ P .

3. Induction step: prove that if the induction hypothesis holds, then n + 1 ∈ P .

The following theorem justifies the method of proof by induction. Note that as-
sumption (i) corresponds to the induction basis, and assumption (ii) corresponds to the
induction step.

Theorem 2.2 Let P ⊆ N. Assume that (i) 0 ∈ P and (ii) for every n ∈ N, n ∈ P implies
that (n + 1) ∈ P . Then, P = N.

2.1. INDUCTION 23

Proof: Assume, for the sake of contradiction, that P ⊊ N. Let n denote the smallest
element in N∖P . Since 0 ∈ P , it follows that n > 0. By the definition of n, it follows that(n − 1) ∈ P . However, assumption (ii) implies that in this case n ∈ P , a contradiction,
and the theorem follows. 2

We remark, that sometimes the induction hypothesis is that i ∈ P , for every i ≤ n.
This form of induction is often called complete induction, as formulated in the following
theorem.

Theorem 2.3 (Complete Induction) Let P ⊆ N. Assume that (i) 0 ∈ P and (ii) for
every n ∈ N, {0, . . . , n} ⊆ P implies that (n + 1) ∈ P . Then, P = N.

Note that sometimes the claims that we wish to prove are valid for n ≥ n0, where
n0 ∈ N. In this case we apply a variant of Theorem 2.2, as formulated in the following
theorem.

Theorem 2.4 Let P ⊆ N. Assume that (i) n0 ∈ P and (ii) n ∈ P implies that (n+1) ∈ P ,
for every n ∈ N ∖ {0, . . . , n0 − 1}. Then, N ∖ {0, . . . , n0 − 1} ⊆ P .

We often wish to prove theorems about structures other than natural numbers. For
example, we may want to prove a theorem about sets. Let us consider the following
theorem about duality in sets (this is a form of De-Morgan’s law over sets).

Theorem 2.5 For every n ≥ 2 sets A1, . . . ,An,

U ∖ (A1 ∪⋯∪An) = Ā1 ∩⋯∩ Ān. (2.4)

We now use induction to prove the theorem.

Proof: Although the theorem is not about natural numbers, we may use induction. Let
P denote the set of all natural numbers for which Eq. 2.4 holds. Since Eq. 2.4 is stated
only for n ≥ 2, we wish to prove that P = N ∖ {0,1}.

To prove the induction basis we need to show that 2 ∈ P . This is simply the statement
U ∖(A1 ∪A2) = Ā1∩ Ā2. This case is discussed in Example 29 on page 10. A formal proof
of this case is deferred to Section 6.8.

The induction hypothesis states that n ∈ P . Namely, that U ∖ (A1 ∪ ⋯ ∪ An) =
Ā1 ∩⋯∩ Ān.

Now we wish to prove the induction step, namely, that (n + 1) ∈ P . In other words,
we need to prove that U ∖ (A1 ∪⋯∪An ∪An+1) = Ā1 ∩⋯∩ Ān ∩ Ān+1.

Let B
△

= A1 ∪⋯∪An. We first prove that U ∖(B ∪An+1) = B̄ ∩ Ān+1. In fact, this holds
because 2 ∈ P . Now U ∖ (A1 ∪⋯∪An ∪An+1) = U ∖ (B ∪An+1). Since 2 ∈ P , we conclude
that U ∖ (B ∪An+1) = B̄ ∩ Ān+1. Since B̄ = U ∖ (A1 ∪⋯∪An), by the induction hypothesis
(i.e., n ∈ P), B̄ = Ā1 ∩⋯∩ Ān. We conclude that

U ∖ (A1 ∪⋯ ∪An ∪An+1) = U ∖ (B ∪An+1)
= B̄ ∩ Ān+1

= Ā1 ∩⋯∩ Ān ∩ Ān+1,

24 CHAPTER 2. INDUCTION AND RECURSION

and we completed the proof of the induction step.
The proof of the induction basis, induction hypothesis, and proof of the induction

step complete the proof of the theorem. 2

Induction is a very powerful tool for proving theorems. We will use it many times in
proofs.

Examples

1. Pólya’s proof that “all horses have the same color”. In this paradox, induc-
tion is (mis)-used to prove that all the horses are the same color. It is important to
verify that you identify the error in the proof (since we obviously know that there
are two horses with different colors, as depicted in Figure 2.1).

HorseHorse

Figure 2.1: A counter example to the claim that all the (spherical) horses have the
same color. To prove that a claim is not correct all we need is to supply a counter
example.

The proof is by induction on the number of horses, denoted by n. Thus, we wish
to prove that in every set of n horses, all the horses have the same color. The
induction basis, for n = 1, is trivial since in a set consisting of a single horse there
is only one color.

The induction hypothesis simply states that in every set of n horses, all horses have
the same color.

We now prove the induction step. Namely, we need to prove that if the claim holds
for n, then it also holds for n + 1.

Let us number the horses, i.e., {1, . . . , n + 1}. We consider two subsets of horses
A

△

= {1, . . . , n} and B
△

= {2, . . . , n + 1}. By the induction hypothesis the horses in
set A have the same color and the horses in set B also have the same color. Since
2 ∈ A ∩B, it follows that the horses in A ∪B have the same color. We have proved
the induction step, and the theorem follows.

What is wrong with this proof? Note that, in the induction step, A ∩B ≠ ∅ only
if n ≥ 2. However, the induction basis was proved only for n = 1. Thus, we did
not prove the induction step for a set of two horses! Obviously a set of two horses
may not satisfy the claim, as depicted in the counter-example in Figure 2.1. To

2.2. RECURSION 25

summarize, a correct proof would have to extend the basis to n = 2, an impossible
task.

The take home advice from this example is to make sure that the induction basis
is proved for all the cases. In particular, the induction basis is just as crucial as the
induction step.

2. We prove by induction that 3n > 2n for all n ∈ N+.

Proof: The proof is by induction on n. The induction hypothesis, for n = 1, is
easy since 31 > 2 ⋅ 1.

The induction hypothesis simply states that 3n > 2n.

We now prove the induction step. Namely, we need to prove that if the claim holds
for n, then it also holds for n + 1. Thus, we need to prove that

3n+1 > 2(n + 1).
Indeed,

3n+1 = 3 ⋅ 3n

> 3 ⋅ (2n)
> 2(n + 1) .

The second line follows from the induction hypothesis. The third line follows from
the fact that 6n > 2(n + 1) for n ≥ 1. 2

2.2 Recursion

Recursion is a method to define a function (or other structures) for large arguments from
small arguments. Two main reasons to define functions by recursion are simplicity and
amenability to proofs by induction. In this section we present two simple recursions: the
factorial function and the Fibonacci sequence.

A recursive definition of a function f ∶ N → N has two parts: (i) the base cases and
(ii) reduction rules. The base cases define the values of f(n) for small values of n. The
reduction rule is applied to values of n that are not small; these rules define f(n) by
values of f for smaller values. We now demonstrate two recursive definitions.

The factorial function. We define the function f ∶ N+ → N+ recursively as follows:

(i) Base case: f(1) = 1.

(ii) Reduction rule: f(n + 1) = f(n) ⋅ (n + 1).

26 CHAPTER 2. INDUCTION AND RECURSION

It is easy to prove by induction that, for n ≥ 1, f(n) = 1 ⋅ 2 ⋅ 3 ⋯ ⋅ n. Indeed, the
induction basis, for n = 1 is identical to the base case. The induction step is proved as
follows. The reduction rule states that f(n+1) = f(n) ⋅(n+1). The induction hypothesis
states that f(n) = 1 ⋅ 2 ⋅ 3⋯n. Thus f(n + 1) = 1 ⋅ 2 ⋅ 3⋯n ⋅ (n + 1), as required.

The function f defined above is known as the factorial function; one uses n! to denote
f(n). The factorial function has many applications in combinatorics. For example, n!
equals the number of different ways one can order n different books on a shelf.

The Fibonacci sequence We define the function g ∶ N→ N recursively as follows.

(i) Base case: g(0) = 0 and g(1) = 1.

(ii) Reduction rule: g(n + 2) = g(n + 1) + g(n).
Following the reduction rule we obtain:

g(2) = g(1) + g(0) = 1 + 0 = 1.

g(3) = g(2) + g(1) = 1 + 1 = 2.

g(4) = g(3) + g(2) = 2 + 1 = 3.

g(5) = g(4) + g(3) = 3 + 2 = 5.

Note that the self-reference to g in its definition does not lead to an infinite loop.
Indeed, the arguments (n + 1) and n in the right hand side of the reduction rule are
strictly smaller than the argument (n + 2) in the left hand side. Thus, the chain of
self-references eventually ends with a base case.

The Fibonacci sequence has many applications. For example, it is used to prove an
upper bound on the number of iterations in Euclid’s algorithm for computing the greatest
common divisor of two integers. The following lemma is proved using complete induction.

Denote the golden ratio by ϕ
△

= 1+
√

5
2

.

Lemma 2.6 Let {g(n)}∞n=0 is the Fibonacci sequence. Then, for every n ∈ N,

g(n) ≤ ϕn−1 . (2.5)

Proof: The proof is by complete induction on n. The induction hypothesis for n = 0

and n = 1 , is easy since for n = 0, 0 ≤ (1+
√

5
2
)−1 and for n = 1, 1 ≤ 1, respectively. The

induction hypothesis states that Eq. 2.5 holds for all k ≤ n. We now prove the induction
step. Namely, we need to prove that if Eq. 2.5 holds for all k ≤ n, then it also holds for
n + 1. Thus, we need to prove that

g(n + 1) ≤ ϕn .

2.3. APPLICATION: ONE-TO-ONE AND ONTO FUNCTIONS 27

Indeed,

g(n + 1) = g(n) + g(n − 1)
≤ ϕn−1 + ϕn−2

= ϕn−2 ⋅ (ϕ + 1)
= ϕn .

The first line follows from the definition of g(n+ 1). The second line follows from the
induction hypothesis for n and n−1. In the third line, we simply arranged the terms. The
fourth line follows from the fact that ϕ is a solution of the quadratic equation ϕ2 = ϕ+1.
We have proved the induction step, and the theorem follows. 2

2.3 Application: One-to-one and Onto Functions

Definition 2.1 Let f ∶ A→ B denote a function from A to B.

1. The function f is one-to-one if, for every a, a′ ∈ A, if a ≠ a′ then f(a) ≠ f(a′).
2. The function f is onto if, for every b ∈ B, there exists an a ∈ A such that f(a) = b.
3. The function f is a bijection if it is both onto and one-to-one.

A one-to-one function is sometimes called an injective function (or an injection). A
function that is onto is sometimes called a surjection.

The following two lemmas show how one-to-one and onto functions can be used to
compare cardinalities of sets.

Lemma 2.7 Let A and B denote two finite sets. If there exists a one-to-one function
f ∶ A → B, then ∣A∣ ≤ ∣B∣.
Proof: The proof is by induction on ∣A∣. The induction basis for ∣A∣ = 0 is trivial since
0 ≤ ∣B∣. (A function may have an empty domain! In this case it is simply an empty
relation.)

The induction hypothesis states that the lemma holds if ∣A∣ = n. We prove the
induction step for ∣A∣ = n + 1 as follows. Pick an element a ∈ A. Define,

A′
△

= A ∖ {a} B′
△

= B ∖ {f(a)}.
Let g ⊆ A′ × B′ denote the relation {(x, f(x)) ∣ x ∈ A′}. Since f is a function, so is g.
Moreover, since f is one-to-one, g is also one-to-one (see Lemma 2.11 on page 29.)

Since ∣A′∣ = n, by the induction hypothesis, ∣A′∣ ≤ ∣B′∣. But, ∣A∣ = ∣A′∣ + 1 and ∣B∣ =∣B′∣ + 1, hence ∣A∣ ≤ ∣B∣, as required. 2

Recall the contraposition form of a “logical statement” (see Example 15 on page 7).
The contrapositive form of Lemma 2.7 is as follows: if ∣A∣ > ∣B∣, then every function
f ∶ A → B is not one-to-one. This statement is known as Pigeonhole Principle formulated
in the following corollary.

28 CHAPTER 2. INDUCTION AND RECURSION

Corollary 2.8 (The Pigeonhole Principle) Let f ∶ A→ {1, . . . , n}, and ∣A∣ > n, then
f is not one-to-one, i.e., there are two distinct element a1, a2 ∈ A such that f(a1) = f(a2).
Lemma 2.9 Let A and B denote two finite sets. If there exists an onto function f ∶ A→
B, then ∣A∣ ≥ ∣B∣.
Proof: The proof is by complete induction on ∣B∣. The induction basis for ∣B∣ = 0 is
trivial since ∣A∣ ≥ 0. (A function may have an empty range! In this case it is simply an
empty relation.)

The induction hypothesis states that the lemma holds if ∣B∣ ≤ n. We prove the
induction step for ∣B∣ = n+1 as follows. Pick an element b ∈ B. Let f−1(b) denote the set{a ∈ A ∣ f(a) = b}. Since f is onto, the set f−1(b) is not empty. Define,

A′
△

= A ∖ f−1(b) B′
△

= B ∖ {b}.
Let g ⊆ A′ × B′ denote the relation {(x, f(x)) ∣ x ∈ A′}. Since f is a function, so is g.
Moreover, since f is onto, so is g (see Lemma 2.12 on page 29).

Since ∣B′∣ = ∣B∣ − 1, by the induction hypothesis, ∣A′∣ ≥ ∣B′∣. But, ∣A∣ = ∣A′∣ + ∣f−1(b)∣ ≥∣A′∣ + 1, hence

∣A∣ = ∣A′∣ + ∣f−1(b)∣ ≥ ∣A′∣ + 1 ≥ ∣B′∣ + 1 = ∣B∣,
as required. 2

Lemma 2.10 Assume that A and B are finite sets of equal cardinality (i.e., ∣A∣ = ∣B∣).
If f ∶ A→ B is onto, then f is also one-to-one.

Proof: For the sake of contradiction, assume that f is not one-to-one. Thus, there
exists two distinct elements a ≠ a′ in A such that f(a) = f(a′). Let b ∈ B be defined by
b
△

= f(a).
As in the proof of Lemma 2.9, define B′

△

= B ∖ {b}, f−1(b) △= {a ∈ A ∶ f(a) = b}, and
A′

△

= A ∖ f−1(b). Let g ⊆ A′ × B′ denote the relation {(x, f(x)) ∣ x ∈ A′}. Since f is a
function, so is g. By Lemma 2.12, g is onto, and by Lemma 2.9, ∣A′∣ ≥ ∣B′∣. Recall that∣f−1(b)∣ ≥ 2, and therefore, ∣A′∣ ≤ ∣A∣ − 2.

We now obtain a contradiction as follows:

∣B∣ = ∣B′∣ + 1

≤ ∣A′∣ + 1

≤ ∣A∣ − 2 + 1 < ∣A∣.
Hence, ∣B∣ < ∣A∣, contradicting the assumption that ∣A∣ = ∣B∣, and the lemma follows. 2

2.3. APPLICATION: ONE-TO-ONE AND ONTO FUNCTIONS 29

(a) y = 2x + 4 (b) y = x2 (c) y = sin(x) (d)
y = arctan(x)

Figure 2.2: Graphs of real functions.

Examples

1. The functions y = 2x + 4, y = x2, y = sin(x), and y = arctan(x) are depicted in
Figure 2.2.

2. The functions y = 2x+4 and y = arctan(x) are one-to-one, while y = x2 and y = sin(x)
are not. For example: 42 = (−4)2 = 16.

3. The functions y = 2x + 4 and y = x2 are onto, while y = sin(x) and y = arctan(x)are
not. For example: the function y = sin(x) does not attain values that are greater
than 1.

4. Prove the following lemma.

Lemma 2.11 Let f ∶ A → B denote a function. Let A′ ⊆ A and B′
△

= B ∖ {f(a′) ∈
B ∣ a′ ∈ A∖A′}. Let g ⊆ A′×B′ denote the relation {(x, f(x)) ∣ x ∈ A′}. The relation
g is a function. Moreover, if f is one-to-one, then g is also one-to-one.

Proof: We need to show that: (i) The relation g ⊆ A′ ×B′ is a function, and that
(ii) the function g ∶ A′ → B′ is one-to-one. The proof is as follows.

We show that, for every a′ ∈ A′, there exists a unique element b′ ∈ B′ such that(a′, b′) ∈ g. Indeed, (a′, b′) ∈ g implies that b′ = f(a′), hence b′ is unique, as required.

Now, we prove that the function g ∶ A′ → B′ is one-to-one. We show that, for every
a, a′ ∈ A′, if a ≠ a′, then g(a) ≠ g(a′). The proof is by contradiction. Let us assume
that there are a, a′ ∈ A′ such that g(a) = g(a′). Since g ∶ A′ → B′ is defined by
g(x) △= f(x), it implies that f(a) = f(a′), a contradiction to the assumption that f
is one-to-one. Hence, g is one-to-one function, as required. 2

5. Let f ∶ A → B denote a function. Let B′ ⊆ B. Let f−1(B′) denote the set {a ∈ A ∣
f(a) ∈ B′}. Prove the following lemma.

Lemma 2.12 Let f ∶ A→ B denote a function. Let B′ ⊆ B and A′
△

= A∖f−1(B∖B′).
Let g ⊆ A′×B′ denote the relation {(x, f(x)) ∣ x ∈ A′}. The relation g is a function.
Moreover, if f is onto, then g is also onto.

30 CHAPTER 2. INDUCTION AND RECURSION

Proof: We need to show that: (i) The relation g ⊆ A′ ×B′ is a function, and that
(ii) the function g ∶ A′ → B′ is onto. The proof is as follows.

We show that for every a′ ∈ A′ there exists a unique element b′ ∈ B′ such that(a′, b′) ∈ g. Indeed, b′ = f(a′), and b′ is unique, as required.

Now, we prove that the function g ∶ A′ → B′ is onto; namely, for every b′ ∈ B′,
there exists an a′ ∈ A′ such that f(a′) = b′. The proof is as follows. Let b′ ∈ B′.
Since B′ ⊆ B, then b′ ∈ B. Since f ∶ A → B is onto, there exists an a′ ∈ A such
that f(a′) = b′. To complete the proof, it suffices to show that a′ ∈ A′. Indeed,
a′ /∈ f−1(B ∖B′). It follows that a′ ∈ A′, and the lemma follows. 2

Problems

2.1 Prove Theorem 2.3.

2.2 Prove Theorem 2.4.

2.3 Prove the following theorem.

Theorem 2.13 For every n ≥ 2 sets A1, . . . ,An,

U ∖ (A1 ∩⋯∩An) = Ā1 ∪⋯∪ Ān.

2.4 Prove that for every finite set A,B, ∣A ×B∣ = ∣A∣ ⋅ ∣B∣.
Hint: Use induction on ∣A∣.
2.5 Prove that ∣{0,1}k∣ = 2k for every k ∈ N.

Hint: Question 2.4.

2.6 Prove that ∣P (A)∣ = 2∣A∣, for every finite set A.

2.7 Prove the following claim.

Claim 2.14 Let A,B be finite sets. Consider the set F
△

= {f ∣ f ∶ A → B} consisting of
all the functions whose domain is A and whose range is B. Then, ∣F ∣ = ∣B∣∣A∣.
2.8 Does Pólya’s proof that “all horses have the same color” hold for n ≥ 3? Which part

fails? The induction basis or the induction step?

2.9 Suppose we wish to prove that 3n > 2n, for every n ∈ N (including zero). Which part
of the proof in Example 2 on page 25 requires n > 0? How can you fix the proof so that
it applies also to n = 0.

2.10 (i) Write a recursive definition of the function 2n, for n ∈ N. (ii) Prove that your
definition is correct.

2.3. APPLICATION: ONE-TO-ONE AND ONTO FUNCTIONS 31

2.11 (i) Write a recursive definition of the function 2z, for z ∈ Z. (Hint: recurse over∣z∣ and separate the reduction step to two cases according to the sign of z.) (ii) Prove
that your definition is correct.

2.12 Let fk(n) = k ⋅ n!, where k ∈ N, i.e., fk(n) = k ⋅ 1 ⋅ 2 ⋅ . . . ⋅ n. Define fk(n) using a
recursive definition. Prove that your definition is correct.

2.13 Let ϕ denote the “golden ratio” 1+
√

5
2

. Let ϕ̂ denote 1−
√

5
2

.

1. Prove that, for every n ∈ N ∖ {0,1}
g(n) = 1√

5
⋅ (ϕn − ϕ̂n) ,

where {g(n)}∞n=0 is the Fibonacci sequence.

Hint: Note that ϕ̂ also satisfies (ϕ̂)2 = ϕ̂ + 1.

2. Prove or refute the following claim. For every n ∈ N ∖ {0,1},
g(n) ≤ (ϕ̂)n .

* 2.14 Consider the function f ∶ N2 → N defined by f(n,k) = (n
k
). Recall that the

binomial coefficient (n
k
) equals the number of subsets of cardinality k of a set of cardinality

n. Redefine f(n,k) using a recursive definition.

2.15 Prove the following lemma.

Lemma 2.15 Assume that A and B are finite sets of equal cardinality (i.e., ∣A∣ = ∣B∣).
If f ∶ A→ B is one-to-one, then f is also onto.

2.16 The Tower of Hanoi is a puzzle consisting of three rods and k disks of different
sizes. Initially, all the disks are stacked in descending order on the first rod (the largest
disk is at the bottom, the smallest on the top). The goal is to transfer the k disks to the
third rod using a sequence of moves subject to two rules:� In each move, we may move a disk at a top of a stack to the top of another stack.� A disk may not be added to a stack if it is larger than the disk currently at the top

of the stack.

Solving this puzzle with one or two disks is trivial. With three disks we need seven
moves. To promote the puzzle, a legend was invented about priests solving a puzzle with
k = 64 disks, with the danger that once solved, the world will end. Should we really worry
about the truthfulness of the legend?

Let fk denote the minimum number of moves required to solve the puzzle with k disks.
Formulate a closed formula for fk and prove it by induction.

32 CHAPTER 2. INDUCTION AND RECURSION

Chapter 3

Sequences and Series

Contents
3.1 Sequences . 33

3.2 Series . 35

In this chapter we consider three important types of sequences: arithmetic sequences,
geometric sequences, and the harmonic sequence. In an arithmetic sequence the difference
between consecutive elements is constant. In a geometric sequence the ratio between con-
secutive elements is constant. The Harmonic sequence is simply the sequence (1, 1

2
, 1

3
, . . .).

Given a sequence (x0, x1, . . .), we may wish to define a new sequence that consists of
the partial sums

y0 = x0,

y1 = x0 + x1,

y2 = x0 + x1 + x2, . . .

The sequence (y0, y1, . . .) of partial sums is a series. We consider three types of series:
arithmetic series, geometric series, and the harmonic series. Our goal is to find explicit
formulas for the elements of these series.

3.1 Sequences

Definition 3.1 An infinite sequence is a function f whose domain is N or N+.

Note that we do not specify the range of a sequence. Any set R may serve as the range of
a sequence. Instead of denoting a sequences by a function f ∶ N → R, one usually writes{f(n)}∞n=0 or {fn}∞n=0. Sometimes sequences are only defined for n ≥ 1.

A prefix of N is a set {i ∈ N ∣ i ≤ n}, for some n ∈ N. One could similarly consider
prefixes of N+.

Definition 3.2 A finite sequence is a function f whose domain is a prefix of N or N+.

33

34 CHAPTER 3. SEQUENCES AND SERIES

Note that if the domain of a sequence f is {i ∈ N ∣ i < n} or {i ∈ N+ ∣ i ≤ n}, then f is
simply an n-tuple.

We already saw examples of sequences. For example, the Fibonacci sequence. The
factorial function defines the sequence fn

△

= n!.
We now define three important sequences in Mathematics:

1. Arithmetic sequences. The simplest sequence is the sequence (0,1, . . .) defined by
f(n) △= n, for every n ∈ N. In general, an arithmetic sequence is specified by two
parameters: a0 - the first element in the sequence and d- the difference between
successive elements.

Definition 3.3 The arithmetic sequence {an}∞n=0 specified by the parameters a0 and
d is defined by

an
△

= a0 + n ⋅ d.

One can also define the arithmetic sequence {an}∞n∈N by recursion. The first element
is simply a0. The reduction rule is an+1 = an + d. Claim 3.4 states the equivalence
of the two definitions of an arithmetic sequence (see page 41).

2. Geometric sequences. The simplest example of a geometric sequence is the sequence
of powers of 2: (1,2,4,8, . . .). In general, a geometric sequence is specified by two
parameters: b0 - the first element and q - the ratio or quotient between successive
elements.

Definition 3.4 The geometric sequence {bn}∞n=0 specified by the parameters b0 and
q is defined by

bn
△

= b0 ⋅ q
n.

One can also define the geometric sequence {bn}∞n∈N by recursion. The first element
is simply b0. The recursion rule is bn+1 = q ⋅ bn. Claim 3.5 states the equivalence of
these two definitions of a geometric sequence (see page 41).

3. Harmonic sequence.

Definition 3.5 The harmonic sequence {cn}∞n=1 is defined by cn
△

= 1
n
, for n ≥ 1.

Note that the first index in the harmonic sequence is n = 1. The harmonic sequence
is simply the sequence (1, 1

2
, 1

3
, . . .).

Examples

1. The digits of π define a sequence {dn}∞n=0 where dn is the nth digit of π ≈ 3.1415926.
Namely, d0 = 3, d1 = 1, d2 = 4, etc.

3.2. SERIES 35

2. The sequence of even numbers {en}∞n=0 is defined by

en
△

= 2n .

The sequence {en}∞n=0 is an arithmetic sequence since en+1−en = 2, thus the difference
between consecutive elements is constant, as required.

3. The sequence of odd numbers {ωn}∞n=0 is defined by

ωn
△

= 2n + 1 .

The sequence {ωn}∞n=0 is also an arithmetic sequence since ω(n + 1) − ω(n) = 2.

4. If {an}∞n=0 is an arithmetic sequence with a difference d, then {bn}∞n=0 defined by
bn = a2n is also an arithmetic sequence. Indeed, bn+1 − bn = a2n+2 − a2n = 2d.

5. The sequence of powers of 3, {tn}∞n=0, is defined by

tn
△

= 3n .

The sequence {tn}∞n=0 is a geometric sequence since tn+1/tn = 3, for every n ≥ 0.

6. If {cn}∞n=0 is a geometric sequence with a ratio q, then {dn}∞n=0 defined by dn = a2n

is also a geometric sequence. Indeed, dn+1/dn = c2n+2/c2n = q2.

7. If q = 1 then the sequence {bn}∞n=0 defined by bn = a0 ⋅ qn is constant. Note that the
constant series is both an arithmetic sequence and a geometric sequence.

3.2 Series

The sum of a sequence is called a series. We are interested in the sum of the first n
elements of sequences.

Arithmetic Series. In Sec. 2.1, we considered the series ∑ni=1 i. We also proved a
formula for this sum. We now consider general arithmetic sequences. Note that the
following theorem indeed generalizes Eq. 2.1 since a0 = 0 and d = 1 in the sequence an = n.

Theorem 3.1 Let

an
△

= a0 + n ⋅ d,

Sn
△

=
n∑
i=0
ai.

Then,

Sn = a0 ⋅ (n + 1) + d ⋅ n ⋅ (n + 1)
2

. (3.1)

36 CHAPTER 3. SEQUENCES AND SERIES

Proof: The proof is by induction on n. The induction hypothesis, for n = 0, is easy
since S0 = a0.

The induction hypothesis simply states that Eq 3.1 holds for n.
We now prove the induction step. Namely, we need to prove that if Eq. 3.1 holds for

n, then it also holds for n + 1. Thus, we need to prove that

Sn+1 = a0 ⋅ (n + 2) + d ⋅ (n + 1) ⋅ (n + 2)
2

. (3.2)

Indeed,

Sn+1
△

= Sn + an+1

= (a0 ⋅ (n + 1) + d ⋅ n ⋅ (n + 1)
2

) + (a0 + (n + 1) ⋅ d)
= a0 ⋅ (n + 2) + d ⋅ (n ⋅ (n + 1)

2
+ (n + 1))

= a0 ⋅ (n + 2) + d ⋅ (n + 1) ⋅ (n + 2)
2

.

The first line follows from the definition of Sn+1. The second line follows from the in-
duction hypothesis and the definition of an+1. In the third and fourth lines we simply
arranged the terms. We have proved the induction step, and the theorem follows. 2

Geometric Series. We now consider the sum of the first n elements in a geometric
sequence.

Theorem 3.2 Assume that q ≠ 1. Let

bn
△

= b0 ⋅ q
n,

Sn
△

=
n∑
i=0
bi.

Then,

Sn = b0 ⋅
1 − qn+1

1 − q
. (3.3)

Proof: The proof is by induction on n. The induction hypothesis, for n = 0, is easy
since S0 = b0.

The induction hypothesis simply states that Eq 3.3 holds for n.
We now prove the induction step. Namely, we need to prove that if Eq. 3.3 holds for

n, then it also holds for n + 1. Thus, we need to prove that

Sn+1 = b0 ⋅
1 − qn+2

1 − q
. (3.4)

3.2. SERIES 37

Indeed,

Sn+1
△

= Sn + bn+1

= (b0 ⋅ 1 − qn+1
1 − q

) + (b0 ⋅ qn+1)
= b0 ⋅ (1 − qn+1

1 − q
+ qn+1)

= b0 ⋅ (1 − qn+1 + (1 − q) ⋅ qn+1
1 − q

)
= b0 ⋅

1 − qn+2

1 − q
.

The first line follows from the definition of Sn+1. The second line follows from the in-
duction hypothesis and the definition of bn+1. In the third and fourth lines we simply
arranged the terms. We have proved the induction step, and the theorem follows. 2

Harmonic Series. We now consider the sum of the first n elements in the harmonic
sequence. Unfortunately, this sum does not have a nice closed formula. Instead we will
prove a simple lower and upper bound.

Theorem 3.3 Let

cn
△

=
1

n
, for n ≥ 1, and

Hn
△

=
n∑
i=1
ci.

Then, for every k ∈ N

1 +
k

2
≤ H2k ≤ k + 1. (3.5)

The theorem is useful because it tells us that Hn grows logarithmically in n (see Exam-
ple 2). In particular, Hn tends to infinity as n grows.

Proof: The proof is by induction on k. The induction basis, for k = 0, holds because
2k = 1, and H1 = 1. Thus, Eq. 3.5 for k = 0 simply says that 1 ≤ 1 ≤ 1.

The induction hypothesis states that Eq. 3.5 holds for k. In the induction step we
prove that it holds for k + 1 as follows.

We first prove the upper bound: Since each of the last 2k elements in H2k+1 is less
than 1/2k,

H2k+1 ≤ H2k + 2k ⋅
1

2k

≤ (k + 1) + 1.

38 CHAPTER 3. SEQUENCES AND SERIES

The second line follows from the induction hypothesis. Thus, the induction step for the
upper bound is completed.

We now prove the lower bound: Since each of the last 2k elements in H2k+1 is greater
than 1/2k+1,

H2k+1 > H2k + 2k ⋅
1

2k+1

≥ (k
2
+ 1) + 1

2
=
k + 1

2
+ 1.

The second line follows from the induction hypothesis. Thus, the induction step for the
lower bound is completed. 2

Examples

1. Prove that ∑n−1i=0 2i = 2n − 1.

Proof: Let b0 = 1, q = 2, and Sn−1 =∑n−1i=0 2i. Theorem 3.2 states that

Sn−1 = b0 ⋅
1 − qn

1 − q
= 1 ⋅

1 − 2n

1 − 2
= 2n − 1 ,

as required. 2

2. This example bounds the harmonic series for every n ∈ N+. For every n ∈ N+

1 +
(log2 n) − 1

2
<Hn < (log2 n) + 2 . (3.6)

Proof: Observe that for every n ∈ N+ there exists k ∈ N such that,

2k ≤ n < 2k+1 . (3.7)

We first prove the upper bound of Eq. 3.6.

Hn <H2k+1

≤ (k + 1) + 1

≤ (log2 n) + 2 .

The first line follows since Hn is monotone increasing with n. The second line
follows from Eq. 3.5. The last line follows Eq. 3.7 that implies that k ≤ log2 n.

We now prove the lower bound of Eq. 3.6.

Hn ≥ H2k

≥ 1 +
k

2

> 1 +
log2(n/2)

2

= 1 +
(log2 n) − 1

2
.

3.2. SERIES 39

The first line follows sinceHn is monotone increasing with n. The second line follows
from Eq. 3.5. The third line follows Eq. 3.7 that implies that n < 2k+1⇔ n

2
< 2k⇔

log2(n/2) < k. The last line follows from the fact that log2(n/2) = log2(n)−log2(2) =
log2(n) − 1. 2

3. The Worm Paradox (*). This paradox is also called the “worm on the rubber
band paradox”. The scenario of the paradox is as follows. Consider a worm that
crawls along a 1 meter rubber band, i.e., 100 cm. The velocity of the worm is 1 cm

min
.

After every minute, the rubber band is stretched instantaneously by an additional 1
meter. Note that since the worm holds the rubber band with its “feet” its location
is also changed during this instantaneous stretch. Will the worm reach to the end
of the rubber band? Intuitively it seems that the “slow” worm will not make it -
we show that the worm reaches the end of the rubber band in the following series
of questions (although we should wish it a long life to reach this goal).

Let x(t) denote the position of the worm in centimeters as a function of the time
t ∈ [0,∞) in minutes. Let ℓ(t) denote the length of the rubber band in centimeters
at time t. Let us sample x(t) and ℓ(t) at the time instances n ∈ N “just before” the
stretching occurs.

(a) Express x(n + 1) recursively, i.e., by using x(n), ℓ(n + 1), ℓ(n), and additional
constants.

(b) Express ℓ(n + 1) recursively, i.e., by using ℓ(n) and additional constants.

(c) What is x(n+1)
ℓ(n+1) ?

(d) Find an n0 ∈ N such that, for all n ≥ n0, the value that Hn attains is greater
than 100, i.e., Hn ≥ 100. What does it imply?

The answers to these sub-questions are as follows.

(a) The position of the worm x(n + 1) is expressed recursively as follows.

x(n + 1) = x(n) ⋅ ℓ(n + 1)
ℓ(n) + 1 . (3.8)

(b) The length of the rubber band ℓ(n + 1) is expressed recursively as follows.

ℓ(n + 1) = ℓ(n) + 100 . (3.9)

(c) Plugging in Equations 3.8, 3.9 we get

x(n + 1)
ℓ(n + 1) =

x(n) ⋅ ℓ(n+1)
ℓ(n) + 1

ℓ(n + 1)
=
x(n)
ℓ(n) + 1

ℓ(n + 1) .

40 CHAPTER 3. SEQUENCES AND SERIES

Let an+1
△

= x(n+1)
ℓ(n+1) , then we have managed to show that,

an+1 =an +
1

ℓ(n + 1) . (3.10)

Let us “work” some more on this recursive formula:

an+1 =an +
1

ℓ(n + 1)
=(an−1 + 1

ℓ(n)) + 1

ℓ(n + 1)
=(an−2 + 1

ℓ(n − 1)) + 1

ℓ(n) + 1

ℓ(n + 1)
= . . . = an−k +

k∑
i=0

1

ℓ(n + 1 − i)
=a0 +

n∑
i=0

1

ℓ(n + 1 − i) =
n∑
i=0

1

ℓ(n + 1 − i) .
The first line follows from Eq. 3.10. The second and the third line follow by
reapplying Eq. 3.10 on an and an−1, respectively. After realizing the general
form of the equation in line four, the fifth line follows by plugging k = n and
by the fact that a0 =

x(0)
l(0) =

0
100

.

The substitution j = n − k gives

n∑
i=0

1

ℓ(n + 1 − i) =
n∑
j=0

1

ℓ(j + 1) . (3.11)

Since ℓ(k + 1) = 100 ⋅ (k + 1), Eq. 3.11 implies that,

an+1 =
n∑
i=0

1

ℓ(i + 1)
=

n∑
i=0

1

100 ⋅ (i + 1)
=

1

100
⋅

n+1∑
i=1

1

i
=

1

100
⋅Hn+1 (3.12)

Observe that an →∞ as n →∞. Since the worm reaches the end of the rubber
band when an ≥ 1, we conclude that the worm reaches the end. How long does
it take?

(d) We use Example 2 in order to find such an n0. Equation 3.6 implies that

Hn > 1+ (log2 n)−1
2

. To find such an n0 we require that Hn0
> 1+ (log2 n0)−1

2
≥ 100.

3.2. SERIES 41

Let us solve this formula:

1 +
(log2 n0) − 1

2
≥100⇔

(log2 n0) − 1

2
≥99⇔

(log2 n0) − 1 ≥198⇔(log2 n0) ≥199⇔
n0 ≥2

199 .

We found out the for n0 ≥ 2199, the values that Hn attains is greater than 100.

Equation 3.6 also implies that Hn < (log2 n) + 2. It follows that Hn < 100 if
n < 298. Hence the worm does not reach the end of the rubber band before 298

minutes have passed.

A more careful inspection (using software tools) implies that for n0 = 2144,
Hn0

= 100.3904

This, amazingly, implies that our beloved worm will, eventually, arrive to the
end of the rubber band - after 2144 minutes (which is infinity for all practical
purposes).

Problems

3.1 Consider the following recursive definition of an arithmetic sequence {an}∞n=0:� The first element is simply a0.� The reduction rule: an+1 = an + d.

Prove that the recursive definition is equivalent to Definition 3.3, i.e., prove the following
claim.

Claim 3.4 {an}∞n=0 is an arithmetic sequence iff ∃d∀n ∶ an+1 − an = d.

3.2 Consider the following recursive definition of a geometric sequence {bn}∞n=0:� The first element is simply b0.� The reduction rule: bn+1 = q ⋅ bn.

Prove that the recursive definition is equivalent to Definition 3.4, i.e., prove the following
claim.

Claim 3.5 {bn}∞n=0 is a geometric sequence iff ∃q∀n ∶ an+1/an = q.
3.3 Prove or refute the following claim.

Claim 3.6 If {bn}∞n=0 is a geometric sequence with a quotient q and bn > 0, then the

sequence {an}∞n=0 defined by an
△

= log bn is an arithmetic sequence.

42 CHAPTER 3. SEQUENCES AND SERIES

Does your answer depend on the basis of the logarithm?

3.4 Consider the following sequences. For each sequence, prove/refute if it is (i) arith-
metic, (ii) geometric, (iii) harmonic, or (iv) none of the above.

1. an
△

= 5n.

2. bn
△

= n2.

3. cn
△

= 2n − 1.

4. dn
△

= 1.

5. en
△

= 7.

6. fn
△

= gn + hn, where {gn}n and {hn}n are arithmetic sequences.

7. pn
△

= qn ⋅ rn, where {qn}n and {rn}n are geometric sequences.

3.5 Prove that ∑ni=1 2−i = 1 − 2−n.

3.6 Prove or refute: if a sequence {an}n∈N is both an arithmetic sequence and a geometric
sequence, then it is a constant sequence. Namely, there exists a constant c such that an = c,
for every n ∈ N.

Chapter 4

Directed Graphs

Contents
4.1 Definitions . 44

4.2 Topological Ordering . 47

4.3 Longest path in a DAG . 49

4.4 Rooted Trees . 53

A directed graph is simply an abstraction of a network of one-way roads between a
set of cities. When one travels in such a network, one may return to the starting point.
In this chapter we are interested in special networks that exclude the possibility of ever
returning to the starting point or to any city we have already visited. We refer to a
network as acyclic.

Suppose we are traveling in an acyclic network of one-way roads. By definition, in
each travel, we may visit each city at most once. A very natural question that arises is:
what is the maximum number of cities we can visit? In this chapter we present a simple
and efficient algorithm that finds the longest sequence of cities we can visit in the special
case of acyclic networks of one-way roads.

Acyclic directed graphs are also an abstraction of assembly instructions of an airplane
model. The vertices in this case are not cities but assembly tasks (e.g., glue two parts
together, paint a part, etc.). An edge from task u to task v is not a one-way road but
a dependence indicating that before task v is started, one must complete task u. Given
such assembly instructions, we would like to find an ordering of the tasks that obeys
the dependencies. A single worker can then assemble the airplane model by completing
one task at a time according to this ordering. Such an ordering is a called a topological
ordering . We present a simple an efficient algorithm for topological ordering.

Finally, we consider a special subclass of acyclic directed graphs called rooted trees.
Rooted trees play an important role in defining parse trees of Boolean formulas in Chap-
ter 6.

Why are we so interested in directed graphs? Our main motivation for studying
directed graphs is that they can be used to model circuits. Instead of one-way roads and

43

44 CHAPTER 4. DIRECTED GRAPHS

e10

v0

v1

v3
v2

v4

e3

e2

e0
v5

e5

e6

e7

e8

e9

e1

e4

v7 v6

Figure 4.1: A directed graph G = (V,E). The graph has 8 vertices, i.e. ∣V ∣ = 8. The
graph has 11 arcs, i.e., ∣E∣ = 11.

assembly instructions, think of wires that connect basic units (gates and flip-flops).

4.1 Definitions

Definition 4.1 (directed graph) Let V denote a finite set and E ⊆ V × V . The pair(V,E) is called a directed graph and is denoted by G = (V,E). An element v ∈ V is called
a vertex or a node. An element (u, v) ∈ E is called an arc or a directed edge.

Figure 4.1 depicts a directed graph. The black circles represent the vertices. The
arrows represent the arcs. Indeed, an arc is between two nodes. One can think of a
directed graph as a road map between cities in which the cities are the nodes, and every
one-way road is an arc between two cities.

Definition 4.2 (path) A path or a walk of length ℓ in a directed graph G = (V,E) is a
sequence (v0, e0, v1, e1, . . . , vℓ−1, eℓ−1, vℓ) such that: (i) vi ∈ V , for every 0 ≤ i ≤ ℓ, (ii) ei ∈ E,
for every 0 ≤ i < ℓ, and (iii) ei = (vi, vi+1), for every 0 ≤ i < ℓ.

We denote an arc e = (u, v) by u
eÐ→ v or simply u Ð→ v. A path of length ℓ is often

denoted by

v0

e0Ð→ v1

e1Ð→ v2⋯vℓ−1
eℓ−1Ð→ vℓ.

Definition 4.3 (closed/simple path) The following definitions capture special prop-
erties of paths.

4.1. DEFINITIONS 45

1. A path is closed if the first and last vertices are equal.

2. A path is open if the first and last vertices are distinct.

3. An open path is simple if every vertex in the path appears only once in the path.

4. A closed path is simple if every interior vertex appears only once in the path. (A
vertex is an interior vertex if it is not the first or last vertex.)

5. A self-loop is a closed path of length 1, e.g., v
eÐ→ v.

To simplify terminology, we refer to a closed path as a cycle, and to a simple closed path
as a simple cycle.

Consider the following paths in the directed graph depicted in Figure 4.1.

1. The path v0

e7Ð→ v5

e8Ð→ v0 is closed.

2. The path v2

e3Ð→ v3

e4Ð→ v2

e3Ð→ v3

e5Ð→ v4 is open.

3. The path v7

e10Ð→ v6 is simple.

4. The path v0

e0Ð→ v1

e1Ð→ v1

e2Ð→ v2 is not simple, since v1 appears more the once.

5. The path v7

e10Ð→ v6

e9Ð→ v7 is a simple closed path - the interior vertex in this path
is v6.

6. The path v1

e1Ð→ v1 is a self-loop.

Note that v0 Ð→ v2 is not a path.
The special case of directed graphs that lack cycles is used for defining combinational
circuits.

Definition 4.4 (DAG) A directed acyclic graph (DAG) is directed graph that does not
contain any cycles.

Figure 4.2 depicts a DAG. One can check that there are no cycles in the graph depicted
in Figure 4.2. Moreover, the graph is depicted in such a way that arcs always “go right”.
Since there is only one copy of each vertex, we conclude that this graph is a DAG.

We say that an arc u
eÐ→ v enters v and emanates (or exits) from u.

Definition 4.5 (indegree/outdegree) The in-degree and out-degree of a vertex v are
denoted by degin(v) and degout(v), respectively, and defined by:

degin(v) △= ∣{e ∈ E ∣ e enters v}∣,
degout(v) △= ∣{e ∈ E ∣ e emanates from v}∣.

Definition 4.6 (source/sink) A vertex is a source if degin(v) = 0. A vertex is a sink
if degout(v) = 0.

46 CHAPTER 4. DIRECTED GRAPHS

e12

v0

e1

v2

v6
v4

v9

v7

e7

e6

e8

e2

e3
e5

e4

e9

e0

v1

v3
v5

v10

v8

e10

e11

e13

Figure 4.2: A DAG. The in-degree of vertex v0 is 0, i.e., deg in(v0) = 0. Hence, v0 is a
source. On the other hand, degout(v0) = 3. The in-degree of v9 and v10 is 2 while their
out-degree is 0, i.e., degout(v9) = degout(v10) = 0. Hence, vertices v9 and v10 are sinks. The
in-degree of v6 is deg in(v6) = 2. The out-degree of v5 is degout(v5) = 2.

In circuits, sources correspond to inputs and sinks correspond to outputs.
The following lemma claims that every DAG has at least one sink. The proof idea is

to to walk in the graph as follows. Let us assume by contradiction that there are no sinks.
Pick an arbitrary node as a starting point. Since it is not a sink, it is not a dead-end,
and there is an arc that emanates from it to another node. We move to the end of this
arc, and continue our walk from this node. After visiting ∣V ∣ + 1 nodes we apply the
Pigeonhole Principle (See Corollary 2.8), and conclude that there is a node that we have
traversed twice, i.e., we have revealed a cycle, which contradicts the assumption that the
graph is a DAG.

Lemma 4.1 Every DAG has at least one sink.

Proof: Consider a DAG G = (V,E), and assume for the sake of contradiction that no
vertex in V is a sink. This means that degout(v) > 0, for every v ∈ V . Pick an arbitrary
vertex, and denote it by v0. Since v0 is not a sink, there an edge emanating from v0.
Let vertex v1 be a vertex such that (v0, v1) ∈ E. Since G is a DAG, v1 ≠ v0; otherwise
we have revealed a cycle in G. We continue to extend the simple path as follows. Let
v0 Ð→ v1 Ð→ ⋯ Ð→ vn denote the simple path we have obtained so far. Since vn is
not a sink, there an edge emanating from vn. Let vertex vn+1 be a vertex such that(vn, vn+1) ∈ E. Clearly, vn+1 ∉ {v0, . . . , vn}; otherwise, we have revealed a cycle. Indeed, if
vn+1 = vi, then vi Ð→ vi+1 Ð→ ⋯vn Ð→ vn+1 = vi is a cycle, contradicting the assumption
that G is acyclic.

4.2. TOPOLOGICAL ORDERING 47

Can we really continue this process of extending the path forever? In fact, after
building such a path of length ∣V ∣, we have visited ∣V ∣ + 1 distinct nodes v0, . . . , v∣V ∣. A
contradiction, since G has only ∣V ∣ distinct nodes. 2

We prove the following corollary by a reduction it to Lemma 4.1.

Corollary 4.2 Every DAG has at least one source.

Proof: Given a DAG G = (V,E), consider the reversed DAG G′ = (V,E′), defined by

E′
△

= {(v, u) ∈ V × V ∣ (u, v) ∈ E}.
Indeed, a cycle v1 Ð→ v2⋯ Ð→ vn = v1 in G′ implies the cycle vn Ð→ vn−1⋯ Ð→ v1 = vn in
G, thus G′ is acyclic.

Moreover, a node v is a sink in G′ if and only if it is a source in G. By Lemma 4.1,
there is a sink v in G′. Hence, the vertex v is a source in G, and the corollary follows. 2

4.2 Topological Ordering

In this section we show how one can order the vertices of a DAG so that if u precedes v,
then (v, u) is not an arc. This means that if we list the vertices according to this order
from left to right, then no arc will point to the left. Our main application of topological
ordering is for simulating digital circuits.

Definition 4.7 (topological ordering) Let G = (V,E) denote a DAG with ∣V ∣ = n.
A bijection π ∶ V → {0, . . . , n − 1} is a topological ordering if (u, v) ∈ E implies that
π(u) < π(v).
Note that by contraposition, π(v) < π(u) implies that (u, v) /∈ E.

A bijection π ∶ V → {0, . . . , n − 1} can be represented by an n-tuple (v0, . . . , vn−1) in
which each vertex appears exactly once. Such an n-tuple is called a permutation of the
vertices.

Algorithm 4.1 lists a recursive algorithm for sorting the vertices of DAG G = (V,E) in
a topological ordering. The algorithm outputs a list of the evaluations of the topological
ordering. Namely, π(u) = 1, π(v) = 2, etc. The algorithm uses the following notation:

Ev
△

= {e ∣ e enters v or emanates from v}.
Algorithm 4.1 and its correctness proof are an example of “recursion-induction duo”.

The algorithm is recursive, and its proof uses induction. In fact, the base case of the
recursive algorithm is exactly the induction basis. The reduction rule of the recursive
algorithm is used in proof of the induction step.

Theorem 4.3 Algorithm TS(V,E) computes a topological ordering of a DAG G = (V,E).

48 CHAPTER 4. DIRECTED GRAPHS

Algorithm 4.1 TS(V,E) - An algorithm for sorting the vertices of a DAG G = (V,E)
in topological ordering.

1. Base Case: If ∣V ∣ = 1, then let v ∈ V and return (π(v) = 0).
2. Reduction Rule:

(a) Let v ∈ V denote a sink.

(b) return (TS(V ∖ {v},E ∖Ev) extended by (π(v) = ∣V ∣ − 1))

Proof: The proof is by induction on the number of vertices. The induction basis for∣V ∣ = 1 holds since the algorithm outputs π(v) = 0, as required.

The induction hypothesis states that the if ∣V ∣ = n, then π is a topological ordering.

We now prove the induction step. Assume ∣V ∣ = n + 1. By Lemma 4.1, there is a sink
in G. Thus the reduction step succeeds in finding a sink v ∈ V . The directed graph G′ =(V ∖{v},E∖Ev) is acyclic and has n vertices. By the induction hypothesis, the recursive
call TS(V ∖{v},E∖Ev) computes a topological ordering π ∶ V ∖{v}→ {0, . . . , n−1} of G′.
This topological ordering is extended by π(v) = n. Clearly, even after the extension, π is
a bijection. To prove that it is a topological ordering we need to show that π(u′) < π(v′)
implies that (v′, u′) ∉ E. Indeed, if π(v′) < n, then both u′ and v′ are not the selected
sink v. Thus, (v′, u′) ∉ E by the induction hypothesis. If π(v′) = n, then v′ = v is a sink,
and no edge emanates from v′, and the theorem follows. 2

One can think of a DAG as assembly instructions (e.g., how to assemble a couch?).
That is, nodes represent actions and arcs between two actions represent dependence
between these actions. Namely, an arc (u, v) signifies that the action represented by
node v cannot begin before the action represented by node u is completed. An example
of such an arc in the assembly instructions of a couch is an arc between the action of
putting the skeleton together and the action of putting the pillows on the couch. Now, if
a single person would like to assemble the couch she will need to compute a schedule, that
is a “legal” ordering of the actions. By legal we mean that she cannot put the pillows
of the couch before she has constructed the skeleton of the couch. Such a schedule is
a topological sorting of the assembly instructions. In this case the “time” it will take
her to build the couch is, roughly, the number of actions. In Chapter 11, we show how
to compute a shortest schedule if the number of workers is large. Hopefully, the more
workers, the shorter the schedule becomes.

Examples

1. Two topological orderings of the vertices of the DAG depicted in Figure 4.2 are:

(v0, v2, v4, v7, v10, v1, v3, v6, v5, v8, v9),(v0, v1, v3, v8, v9, v2, v4, v5, v6, v7, v10).

4.3. LONGEST PATH IN A DAG 49

Note that v6 appears after v3, since e4 = (v3, v6). One the other hand, in one ordering
v5 precedes v6, and in the other ordering v6 precedes v5. This is fine because neither
v5 Ð→ v6 nor v6 Ð→ v5 are edges.

2. Let us execute Algorithm TS(V,E) on the DAG depicted in Figure 4.2. Since the
graph has more than a single node, the algorithm proceeds to the reduction rule.

The algorithm picks arbitrarily a sink, i.e., v9. The algorithm removes the edges
that enter v9, that is e13 and e9. The algorithm sets π(v9) = ∣V ∣ = 11 and makes a
recursive call with the DAG (V ∖ {v9},E ∖ {e13, e9}).
This process continues recursively until the last recursive call, that is TS({v0},∅).
Since in this case there is only one node, v0, the algorithm applies the base case
and sets π(v0) = 0.

The following is a possible output of the TS(V,E) on the DAG depicted in Fig-
ure 4.2. (v0, v2, v1, v4, v3, v6, v5, v7, v8, v10, v9) .

4.3 Longest path in a DAG

In this section we show how to compute a longest path in a DAG. Longest paths in
DAGs are used to compute the delay of combinational circuits as well as the shortest
clock periods of synchronous circuits.

Figure 4.2 depicts a DAG. Note that there might be more than one longest path in a
DAG. Indeed, in Figure 4.2 There are 4 longest paths of length 5. The longest paths are
as follows:

1. v0

e0Ð→ v2

e3Ð→ v4

e5Ð→ v5

e11Ð→ v8

e13Ð→ v9.

2. v0

e0Ð→ v2

e3Ð→ v4

e6Ð→ v6

e10Ð→ v7

e12Ð→ v10.

3. v0

e1Ð→ v1

e2Ð→ v3

e4Ð→ v6

e10Ð→ v7

e12Ð→ v10.

4. v0

e1Ð→ v1

e2Ð→ v3

e8Ð→ v5

e11Ð→ v8

e13Ð→ v9.

Note that a longest path in a DAG begins in a source and ends in a sink. We denote
the length of a path Γ by ∣Γ∣.
Definition 4.8 A path Γ that ends in vertex v is a longest path ending in v if ∣Γ′∣ ≤ ∣Γ∣,
for every path Γ′ that ends in v.

Definition 4.9 A path Γ is a longest path if ∣Γ′∣ ≤ ∣Γ∣, for every path Γ′.

If a directed graph has a cycle, then there does not exist a longest path. Indeed, one
could walk around the cycle forever. However, longest paths do exist in DAGs.

Lemma 4.4 If G = (V,E) is a DAG, then there exists a longest path that ends in v, for
every v. In addition, there exists a longest path in G.

50 CHAPTER 4. DIRECTED GRAPHS

Proof: A path with more than ∣V ∣ vertices must visit at least one vertex more than
once, and therefore, cannot be simple. A path that is not simple reveals a cycle in G, a
contradiction since G is acyclic. Thus, the length of every path in G is bounded by ∣V ∣.

Since there are a finite number of paths of length at most ∣V ∣ that end in v, it follows
that there exists a longest path that ends in v. A similar argument implies that there
exists a longest path in G. 2

Lemma 4.4 states that longest paths exist. Our goal in this section is to compute,
for every v in a DAG, a longest path that ends in v. We begin with the simpler task of
computing the length of a longest path.

The requirements from an algorithm for computing the length of a longest path in a
DAG are as follows.

Specification 4.1 Algorithm longest-path is specified as follows.

input: A DAG G = (V,E).
output: A delay function d ∶ V → N.

functionality: For every vertex v ∈ V , the length of a longest path ending in v equals
d(v).

Note that if a vertex v is a source, then the longest path ending in v has length zero.
Indeed, the specification requires in this case that d(v) = 0.

The term delay function is justified by an application for bounding the delay of a
combinational circuit. We later model circuits by DAGs, and show that the delay of the
output of a gate in the circuit equals d(v) (if all gates have unit delays).

An algorithm for computing lengths of longest paths in listed as Algorithm 4.2. The
algorithm uses topological sorting as a subroutine. One could “combine” the two to
obtain a “single pass” algorithm; however, the proof of the two-pass algorithm is shorter.

Algorithm 4.2 longest-path-lengths(V,E) - An algorithm for computing the lengths of
longest paths in a DAG. Returns a delay function d(v).

1. topological sort: (v0, . . . , vn−1)← TS(V,E).
2. For j = 0 to (n − 1) do

(a) If vj is a source then d(vj)← 0.

(b) Else

d(vj) = 1 +max{d(vi) ∣ i < j and (vi, vj) ∈ E}.

We now prove the correctness of Algorithm 4.2.

Theorem 4.5 Algorithm longest-path-lengths(V,E) satisfies Specification 4.1.

4.3. LONGEST PATH IN A DAG 51

Proof: The proof is by complete induction on the index j of a vertex in the topological
ordering. The induction basis for j = 0 holds since v0 is a source. Thus, d(v0) = 0, as
required.

The induction hypothesis states that, for every i ≤ j, d(vi) equals the length of the
longest path that ends in vi.

We now prove the induction step. If vj+1 happens to be a source, then d(vj+1) = 0,
as required. Thus, we need to prove the induction step for the case that vj+1 is not a
source. Consider a longest path Γ that ends in vj+1. Let ℓ denote the length of the path
Γ. Clearly, ℓ ≥ 1. Denote the vertices and edges in Γ by

u0

e0Ð→ u1

e1Ð→ u2⋯uℓ−1
eℓ−1Ð→ uℓ = vj+1.

We need to prove that the algorithm assigns d(vj+1) = ℓ.
The proof is based on two observations:

Observation 4.1 If vi
eÐ→ vj+1 is an arc in E, then i ≤ j and d(vi) ≤ ℓ − 1.

Proof of Observation 4.1: If vi
eÐ→ vj+1 is an arc in E, then the fact that the vertices

are in topological ordering implies that i ≤ j. To prove the second part, recall that the
induction hypothesis says that d(vi) equals the length of the longest path that ends in vi.
For the sake of contradiction, assume that there exists a path ∆ that ends in vi whose
length is longer than ℓ−1. Then, Γ is not a longest path ending in vj+1. Indeed, consider

the path Γ′ that begins with ∆ and continues with the arc vi
eÐ→ vj+1. The path Γ′ is

longer than Γ, a contradiction. 2

Observation 4.2 The path Γ∖{eℓ−1, uℓ} is a longest path that ends in uℓ−1. In particular,
d(uℓ−1) = ℓ − 1.

Proof of Observation 4.2: Let i denote the index of uℓ−1 in the topological ordering,
i.e., uℓ−1 = vi. By Observation 4.1, i < j and d(uℓ−1) ≤ ℓ− 1. By the induction hypothesis,
d(vi) equals the length of the longest path that ends in vi = uℓ−1. Since Γ ∖ {eℓ−1, uℓ}
is a path of length ℓ − 1 that ends in vi = uℓ−1, it follows that d(uℓ−1) ≥ ℓ − 1, and the
observation follows. 2

The algorithm considers the vertex uℓ−1 in Line 2b. Thus, d(vj+1) ≥ 1 + d(uℓ−1). By
Observation 4.2, it follows that d(vj+1) ≥ ℓ. On the other hand, by Observation 4.1, every
arc that enters vj+1 emanates from a vertex vi with an index i < j and d(vi) ≤ ℓ−1. Thus,
d(vj+1) ≤ ℓ. It follows that d(vj+1) = ℓ, and the theorem follows. 2

Examples

1. A zero length path that starts at the vertex v is simply the vertex v.

2. An example of a delay function of DAG. Let us consider the DAG G = (V,E)
depicted in Figure 4.2. Recall that a delay function d ∶ V → N satisfies that for
every vertex v ∈ V , the length of a longest path ending in v equals d(v). Hence, if
we are interested in computing d ∶ V → N, we first should find a longest path that
ends in v for every v ∈ V , as follows.

52 CHAPTER 4. DIRECTED GRAPHS

(a) v0: v0.

(b) v1: v0

e1Ð→ v1.

(c) v2: v0

e0Ð→ v2.

(d) v3: v0

e1Ð→ v1

e2Ð→ v3.

(e) v4: v0

e0Ð→ v2

e3Ð→ v4.

(f) v5: v0

e0Ð→ v2

e3Ð→ v4

e5Ð→ v5.

(g) v6: v0

e1Ð→ v1

e2Ð→ v3

e4Ð→ v6.

(h) v7: v0

e1Ð→ v1

e2Ð→ v3

e4Ð→ v6

e10Ð→ v7.

(i) v8: v0

e0Ð→ v2

e3Ð→ v4

e5Ð→ v5

e11Ð→ v8.

(j) v9: v0

e0Ð→ v2

e3Ð→ v4

e5Ð→ v5

e11Ð→ v8

e13Ð→ v9.

(k) v10: v0

e1Ð→ v1

e2Ð→ v3

e4Ð→ v6

e10Ð→ v7

e12Ð→ v10.

Hence, the following is the delay function d ∶ V → N of the DAG depicted in
Figure 4.2.� v0 = 0.� d(v1) = 1.� d(v2) = 1.� d(v3) = 2.� d(v4) = 2.� d(v5) = 3.� d(v6) = 3.� d(v7) = 4.� d(v8) = 4.� d(v9) = 5.� d(v10) = 5.

Note that although there might many longest paths, the delay function d ∶ V → N

is unique.

3. We now execute Algorithm longest-path-lengths(V,E) listed in Algorithm 4.2. The
input is the DAG G = (V,E) depicted in Figure 4.2.

The first step in the algorithm is computing a topological sort of the vertices of
G = (V,E) by invoking TS(V,E) algorithm. Recall that in Example 2, on page 49,
we have already executed TS(V,E) on the same input. The output of TS(V,E) is:

(u0, . . . , u10) = (v0, v2, v1, v4, v3, v6, v5, v7, v8, v10, v9) .

4.4. ROOTED TREES 53

The second step of the algorithm is to assign a value to d(uj) for every j ∈ {0, . . . , n−
1}, in an ordered manner, e.g., first we deal with d(v0) followed by d(v2), etc.

Hence, we first consider d(v0). Since d(v0) is a source we assign it with the value
0, i.e., d(v0)← 0.

We now consider vertex u1 = v2, i.e., we compute d(v2). The vertex v2 is not a
source, hence we need to calculate

d(v2) = 1 +max{d(ui) ∣ i < 1 and (ui, u1) ∈ E}
= 1 + d(0) = 1 .

We then consider v1, v4, v3, the calculation of their delay is similar to that of v2.

We now consider vertex u5 = v6, i.e., we compute d(v6). The vertex v6 is not a
source, hence we need to calculate

d(v6) = 1 +max{d(ui) ∣ i < 5 and (ui, u5) ∈ E}
= 1 +max{d(v3), d(v4)}
= 1 + 2 = 3 .

The rest of the delays are calculated similarly.

4.4 Rooted Trees

In the following definition we consider a directed acyclic graph G = (V,E) with a single
sink called the root.

Definition 4.10 A DAG G = (V,E) is a rooted tree if it satisfies the following condi-
tions:

1. There is a single sink in G.

2. For every vertex in V that is not a sink, the out-degree equals one.

The single sink in rooted tree G is called the root, and we denote the root of G by r(G).
Theorem 4.6 In a rooted tree there is a unique path from every vertex to the root.

Proof: Consider a rooted tree G = (V,E) with a root r = r(G). Assume for the sake of
contradiction that there exists a vertex v ∈ V and two different paths p and q from v to
r. First, consider the case that v ≠ r. Let p∗ denote the common prefix of p and q. This
means that p∗ ends in a vertex u such that p and q exit u via different arcs. Thus, the
out-degree of u is greater than one, a contradiction. If v = r, then one of these path from
r to r has positive length. This contradicts the fact that r is a sink. Thus, we proved
that there is at most one path from every vertex to r.

54 CHAPTER 4. DIRECTED GRAPHS

To complete the proof, we show that there exists at least one path. (The proof is
similar to the proof of Lemma 4.1.) Clearly the zero length path is a path from r to
itself. If v ≠ r, then follow the arc that exits from v, and continue in this fashion until a
sink is reached. Since G is acyclic, a sink is reached after at most ∣V ∣ − 1 arcs. Since the
sink is unique, the path reaches the root, as required. 2

Note that the proof of Theorem 4.6 is constructive, that is, we show how to find the
path from every vertex to the root.

The following claim states that every rooted tree G can be decomposed into rooted trees
that are connected to r(G).
Claim 4.7 Let G = (V,E) denote a rooted tree. Let {ri eiÐ→ r}ki=1 denote the set of arcs
that enter the root r = r(G). Define the sets Vi and Ei by

Vi
△

= {v ∈ V ∶ there exists a path from v to ri in G}.
Ei

△

= {e ∈ E ∶ the arc e emanates from a vertex in Vi ∖ {ri}}.
Then,

1. The sets V1, . . . Vk are pairwise disjoint and V = V1 ∪⋯∪ Vk ∪ {r}.
2. The graph Gi

△

= (Vi,Ei) is a rooted tree with r(Gi) = ri, for every 1 ≤ i ≤ k.

Proof: To prove the first part, we need to show that every vertex in v ∈ V ∖{r} belongs
to exactly one Vi. Fix a vertex v ∈ V ∖ {r}. By Theorem 4.6, there is a unique path p

from v to r. Let i denote the index such that the path p enters v via the arc ri Ð→ r.
Hence, v ∈ Vi, and v belongs to at least one of the sets V1, . . . , Vk.

Assume for the sake of contradiction that v belongs to more than one set, namely,
v ∈ Vi ∩ Vj for i ≠ j. Hence there is a path pi from v to r via ri and a path pj from v to r
via rj . The paths pi and pj differ in the last arc, and are thus different. This contradicts
Theorem 4.6. We conclude that every vertex v ∈ V ∖ {r} belongs to exactly one Vi, as
required.

To prove the second part, consider a graph Gi
△

= (Vi,Ei). Since Ei ⊆ E, the graph Gi

is acyclic. Moreover, the out-degree of every vertex in Vi (with respect to Gi) is at most
one. Since from every vertex in Vi there is a path to ri, it follows that the out-degree
of vertex in Vi ∖ {ri} is at least one. Finally, ri is a sink in Gi since Ei does not include
edges emanating from ri. We proved that Gi is a DAG with a single sink, and all the
other vertices have an out-degree that equals one. Hence, each Gi is a rooted tree, as
required. 2

Note that, in the decomposition we always have ri ∈ Vi. Indeed, the path with a single
node ri is a zero length path from ri to ri. In addition r ∉ Vi. Otherwise, we would have
a cycle through r and ri. Thus, for every i, 1 ≤ ∣Vi∣ ≤ ∣V ∣ − 1.

We refer to the graphs Gi as subtrees hanging from the root . In general, a subtree H
rooted at v of rooted tree G = (V,E) consists of all the vertices u such that there exists
a path in G from u to v. Note that a subtree hanging from the root is simply a subtree

4.4. ROOTED TREES 55

G1 G2

r(G1) r(G2)

r(G)r

r1 r2

Figure 4.3: A decomposition of a rooted tree G in to two rooted trees G1 and G2.

that is rooted at a child of the root. We often abbreviate and refer to rooted subtrees
simply as subtrees.

The decomposition in Claim 4.7 enables us to design recursive algorithms on rooted
trees. Moreover, we can prove the correctness of such a recursive algorithm by induction
on the number of vertices in the rooted subtree. Note that the number of vertices in
every subtree hanging from the root is strictly smaller than ∣V ∣.

Figure 4.3 depicts a decomposition in which a rooted tree G is decomposed in to two
rooted trees G1 and G2.

We can also obtained larger rooted trees by connecting disjoint rooted trees to a new
root.

Claim 4.8 If Gi = (Vi,Ei) are disjoint rooted trees, for 1 ≤ i ≤ k, then the directed graph
G = (V,E) defined below is a rooted tree.

V
△

= V1 ⊍⋯⊍ Vk ∪ {r}, where ∀i ∶ r /∈ Vi. (4.1)

E
△

= E1 ⊍⋯⊍Ek ∪ {r(Gi)Ð→ r}ki=1. (4.2)

Proof: The out-degree of r is zero, and the out-degree of each ri is one. Finally, the
out-degree of each vertex v ∈ Vi ∖ {ri} equals its out-degree in Gi. Thus, G is a rooted
tree, as required. 2

Terminology. Given a rooted tree G = (V,E) that contains more than one vertex, we
refer to the rooted trees Gi = (Vi,Ei) in Claim 4.7 as the rooted trees hanging from r(G).
We often refer to sources in a rooted tree as leaves . Vertices that are not leaves are called
interior vertices. The arc that emanates from a vertex in V ∖ {r}, points to its parent .
We usually consider rooted trees in which the maximum in-degree equals two.

The rooted trees hanging from r(G) are ordered. This ordering plays an important
role when we use rooted trees as parse trees.

56 CHAPTER 4. DIRECTED GRAPHS

Note that we orient the arcs of a rooted tree from the leaves towards the root. The
justification for this orientation is that we use rooted trees for modeling circuits in which
the leaves serve as inputs the root outputs the outcome of the circuit.

Examples

1. Recall that Theorem 4.6 states that if G = (V,E) is a rooted tree then there is a
unique path from every vertex v ∈ V to the root r(G).
Hence, the following terms are well defined. Let G = (V,E) denote a rooted tree.
The depth of a vertex v ∈ V is the length of the path from v to the root. The height
of a rooted tree G = (V,E) is maximum depth of a vertex in V .

Note that a single isolated vertex is a rooted tree. Its height is zero.

2. Consider the special case of computing the longest path in a rooted tree. Clearly,
Algorithm 4.2 solves this problem. We present a simpler algorithm for rooted
trees. One justification for considering this special case are the circuits described
in Chapter 12 that have the topology of a tree.

A recursive algorithm for computing tree-height(V,E) is listed in Algorithm 4.3.

Algorithm 4.3 tree height(V,E) - An algorithm for computing the height of a
rooted tree.

(a) Base case: if ∣V ∣ = 1, then return 0.

(b) Reduction Rule:

i. Let k denote the number of subtrees hanging from the root r(G).
ii. For i = 1 to k do

d(r(Gi)) = tree-height(Vi,Ei)
iii. return d(r(G)) computed as follows:

d(r(G)) = 1 +max{d(r(Gi)) ∣ i ∈ {1, . . . , k}}.

The correctness of Algorithm 4.3 is formalized in the following claim.

Claim 4.9 Algorithm tree-height(V,E) computes the height of the rooted tree G =(V,E), i.e., the length of the longest path ending in r(G).
Proof: The proof is by complete induction on the number of vertices. The induc-
tion basis for ∣V ∣ = 1 holds since the algorithm outputs 0, as required.

The induction hypothesis states that the if ∣V ∣ ≤ n, then the output of tree-
height(V,E) is the height of the tree G = (V,E). Note that a longest path must

4.4. ROOTED TREES 57

end at a sink. Since G is a rooted tree, the only sink is the root r. Hence, a longest
path ends at the root.

We now prove the induction step. Assume ∣V ∣ = n + 1. By Lemma 4.7, there are
k subtrees hanging from the root r(G) denoted by Gi, for 1 ≤ i ≤ k. Moreover,
Lemma 4.7 implies that ∣Vi∣ < n + 1, for 1 ≤ i ≤ k. Hence, the induction hypothesis
implies that d(r(Gi)), for 1 ≤ i ≤ k, equals to the height of the tree Gi, for 1 ≤ i ≤
k. A longest path ends with an arc (r(Gi), r(G)), hence the height of G equals
1 +max{d(r(Gi))}i. 2

3. A topological sorting TREE-TS(V,E) of a rooted tree G = (V,E) can be computed
recursively as follows. Sort the vertices in each subtree hanging from the root, and
order the root last. (This is a simple depth-first search in the tree.)

Problems

4.1 The output of Algorithm TS(V,E) when input the DAG depicted in Figure 4.2 is
listed in Example 2 on page 49.
Give another permutation that is a valid output of the algorithm on the same input.

4.2 Prove Corollary 4.2 directly without reducing it to Lemma 4.1.

4.3 Consider a graph G = (V,E) and a subset of vetrices U ⊆ V . Let Ev
△

= {e ∣
e enters v or emanates from v}. The induced subgraph G[U] is the graph G′ = (U,E′),
where the edge set E′ is defined by

E′
△

= E ∖ (⋃
v∈V ∖V ′

Ev) .
Prove the following claim.

Claim 4.10 If a graph G = (V,E) is a DAG, then the induced graph G[U] is also a
DAG.

4.4 Consider a DAG G = (V,E). Recall the reversed DAG G′ = (V,E′) mentioned in
Corollary 4.2, that is, given a DAG G = (V,E), the reversed DAG G′ = (V,E′), is defined
by

E′
△

= {(v, u) ∈ V × V ∣ (u, v) ∈ E}.
Prove the following claim.

Claim 4.11 A graph G = (V,E) is a DAG if and only if the graph G′ = (V,E′) is a
DAG.

4.5 Design a algorithm for topological sorting that recurses by removing a source rather
than sink. Prove the correctness of your algorithm.

58 CHAPTER 4. DIRECTED GRAPHS

4.6 Consider the algorithm described in Example 3.

1. Write a detailed recursive algorithm TS-TREE(V,E) that computes a topological
sorting of a rooted tree G = (V,E).

2. Execute your algorithm on the rooted tree depicted in Figure 6.1 on page 79.

3. Prove the correctness of your algorithm by induction.

4.7 Modify Algorithm longest-path-lengths(V,E) so that it outputs a longest path for
each v (rather than its length). Prove the correctness of your algorithm.

4.8 Let G = (V,E) denote a DAG. Let Γv denote a path that ends in v ∈ V . Let ℓ denote
the length of the path Γv. Denote the vertices and edges in Γv by

u0

e0Ð→ u1

e1Ð→ u2⋯uℓ−1
eℓ−1Ð→ uℓ = v .

Let Γv(i) denote the prefix of Γv of length i, namely,

u0

e0Ð→ ⋯
ei−1Ð→ ui .

Prove the following claim.

Claim 4.12 If Γv is a longest path ending in v, then length of a longest path ending in
ui is i.

Try to use Claim 4.12 for a different proof of Theorem 4.5.

4.9 Design an algorithm that satisfies the following specification. Prove the correctness
of your algorithm.

Input: A rooted tree G = (V,E), and a vertex v ∈ V .

Output: A path from v to the root of G.

Hint: see the proof of Theorem 4.6

Chapter 5

Binary Representation

Contents
5.1 Division and Modulo . 59

5.2 Bits and Strings . 60

5.3 Bit Ordering . 61

5.4 Binary Representation . 62

5.5 Computing a Binary Representation 65

5.6 More on Unique Binary Representation∗ 73

Perhaps the most natural use of computers is to perform arithmetic operations. Even
a simple calculator can add, subtract, multiply, and divide numbers. This leads to the
following question: how are numbers stored in a calculator?

You have probably heard the claim that “computers only manipulate zeros and ones”.
In particular, this claim implies that computers use only zeros and ones to represent num-
bers. In other words, numbers (as well as everything else) are represented by sequences
of zeros and ones.

In this chapter we show how natural numbers (i.e., nonnegative integers) can be
represented by sequences of zeros and ones. The representation we use is called binary
representation. Our main goal in this chapter is to compute the binary representation of
a given natural number.

5.1 Division and Modulo

In this section we consider the outcome of dividing a natural number a by a positive
natural number b. If a is divisible by b, then we obtain a quotient q that is a natural
number. Namely, a = q ⋅ b, with q ∈ N.

However, we also want to consider the case that a is not divisible by b. In this case,
division is defined as follows. Consider the two consecutive integer multiples of b that

59

60 CHAPTER 5. BINARY REPRESENTATION

satisfy

q ⋅ b ≤ a < (q + 1) ⋅ b.
The quotient is defined to be q. The remainder is defined to be r

△

= a − q ⋅ b. Clearly,
0 ≤ r < b. Note that the quotient q simply equals ⌊a

b
⌋.

Notation. Let (a mod b) denote the remainder obtained by dividing a by b.

Examples

1. 3 mod 5 = 3 and 5 mod 3 = 2.

2. 999 mod 10 = 9 and 123 mod 10 = 3.

3. a mod 2 equals 1 if a is odd, and 0 if a is even. Indeed, if a is even, then a = 2x,
and then a − 2 ⋅ ⌊a

2
⌋ = a − 2 ⋅ ⌊2x

2
⌋ = a − 2x = 0.

If a is odd, then a = 2x+1, and then a−2 ⋅⌊a
2
⌋ = a−2 ⋅⌊2x+1

2
⌋ = a−2 ⌊x + 1

2
⌋ = a−2x = 1.

4. a mod b ≥ 0. Indeed, b ⋅ ⌊a
b
⌋ ≤ b ⋅ a

b
= a. Therefore, a − b ⋅ ⌊a

b
⌋ ≥ a − a = 0.

5. a mod b ≤ b − 1. Let q = ⌊a
b
⌋. This means that b ⋅ q ≤ a < b ⋅ q + b. Hence,

a − b ⋅ ⌊a
b
⌋ = a − b ⋅ q < a − (a − b) = b, which implies that a mod b < b. Since a mod b

is an integer, we conclude that a mod b ≤ b − 1.

5.2 Bits and Strings

In decimal numbers, the basic unit of information is a digit , i.e., a number in the set{0,1, . . . ,9}. In digital computers, the basic unit of information is a bit .

Definition 5.1 A bit is an element in the set {0,1}.
Since bits are the basic unit of information, we need to represent numbers using

bits. How is this done? Numbers are represented in many ways in computers: binary
representation, BCD, floating-point, two’s complement, sign-magnitude, etc.. The most
basic representation is binary representation. To define binary representation, we first
need to define binary strings.

Definition 5.2 A binary string is a finite sequence of bits.

There are many ways to denote strings: as a sequence {Ai}n−1i=0 , as a vector A[0 ∶ n − 1],
or simply by A⃗ if the indexes are known. We often use A[i] to denote Ai.

5.3. BIT ORDERING 61

A basic operation that is applied to strings is called concatenation. Given two strings
A[0 ∶ n − 1] and B[0 ∶m − 1], the concatenated string is a string C[0 ∶ n +m − 1] defined
by

C[i] △= ⎧⎪⎪⎨⎪⎪⎩
A[i] if 0 ≤ i < n,

B[i − n] if n ≤ i ≤ n +m − 1.

We denote the operation of concatenating string by ○, e.g., C⃗ = A⃗ ○ B⃗.

Examples

1. Let us consider the string {Ai}3i=0, where A0 = 1, A1 = 1, A2 = 0, A3 = 0. We often
wish to abbreviate and write A[0 ∶ 3] = 1100. This means that when we read the
string 1100, we assign the indexes 0 to 3 to this string from left to right.

2. Consider the string A[0 ∶ 5] = 100101. The string A⃗ has 6 bits, hence n = 6. The
notation A[0 ∶ 5] is zero based , i.e., the first bit in A⃗ is A[0]. Therefore, the third
bit of A⃗ is A[2] (which equals 0).

3. We can define strings with arbitrary first and last indexes. For example, A[3 ∶ 5] =
110, means that A⃗ is a 3-bit string A3A4A5, where A3 = 1, A4 = 1, and A5 = 0.

4. We can use a formula for the ith bit of a string. For example, let Bi equal 1 if i is
odd, and 0 if i is even. This means that B[0 ∶ 4] = 01010.

5. Examples of concatenation of strings. Let A[0 ∶ 2] = 111, B[0 ∶ 1] = 01, C[0 ∶ 1] = 10,
then:

A⃗ ○ B⃗ = 111 ○ 01 = 11101 ,

A⃗ ○ C⃗ = 111 ○ 10 = 11110 ,

B⃗ ○ C⃗ = 01 ○ 10 = 0110 ,

B⃗ ○ B⃗ = 01 ○ 01 = 0101 .

5.3 Bit Ordering

So far, we have used the convention that the indexes of the bits of string increase from
left to right. For example, we wrote A[0 ∶ 3], meaning the sequence (A0,A1,A2,A3). In
particular, the first bit A0 appears to the left of the second bit A1, etc. This convention
is natural for text that is written left-to-right. When we write a number, we place the
less significant digit to the right. For example, in the number 123, the digit 3 is less
significant than the digit 2 which is less significant than the digit 1. It seems natural to
assign the index zero to the units digits. Therefore, If we index the digits so that the
index of the units digit is zero, then natural numbers are written in descending index
order, e.g., (A3,A2,A1,A0). In this text we continue with habit of using both ascending

62 CHAPTER 5. BINARY REPRESENTATION

indexes and descending indexes. Indeed, bit ordering can be a very confusing issue; in
Chapter 8 we discuss further examples of the problems caused by different bit orderings.

Let i ≤ j. Since we allow bidirectionality, both A[i ∶ j] and A[j ∶ i] denote the same
sequence {Ak}jk=i. However, when we write A[i ∶ j] as a string, the leftmost bit is A[i]
and the rightmost bit is A[j]. On the other hand, when we write A[j ∶ i] as a string, the
leftmost bit is A[j] and the rightmost bit is A[i].
We now define the least significant bit and the most significant bit of a string.

Definition 5.3 The least significant bit of the string A[i ∶ j] is the bit A[k], where
k

△

= min{i, j}. The most significant bit of the string A[i ∶ j] is the bit A[ℓ], where
ℓ
△

= max{i, j}.
The abbreviations LSB and MSB are used to abbreviate the least significant bit and the
most significant bit, respectively.

Examples

1. The string A[3 ∶ 0] and the string A[0 ∶ 3] denote the same 4-bit string. However,
when we write A[3 ∶ 0] = 1100 it means that A[3] = A[2] = 1 and A[1] = A[0] = 0.
When we write A[0 ∶ 3] = 1100 it means that A[3] = A[2] = 0 and A[1] = A[0] = 1.

2. The least significant bit (LSB) of A[0 ∶ 3] = 1100 is A[0] = 1. The most significant
bit (MSB) of A⃗ is A[3] = 0.

3. The LSB of A[3 ∶ 0] = 1100 is A[0] = 0. The MSB of A⃗ is A[3] = 1.

4. The least significant and most significant bits are determined by the indexes. In
our convention, it is not the case that the LSB is always the leftmost bit. Namely,
LSB in A[i ∶ j] is the leftmost bit, whereas in A[j ∶ i], the leftmost bit is the MSB.

5.4 Binary Representation

We are now ready to define the natural number represented by a binary string A[n−1 ∶ 0].
Definition 5.4 The natural number, a, represented in binary representation by the bi-
nary string A[n − 1 ∶ 0] is defined by

a
△

=
n−1∑
i=0
A[i] ⋅ 2i.

In binary representation, each bit has a weight associated with it. The weight of the
bit A[i] is 2i.

5.4. BINARY REPRESENTATION 63

Notation. Consider a binary string A[n − 1 ∶ 0]. We introduce the following notation:

⟨A[n − 1 ∶ 0]⟩ △= n−1∑
i=0
A[i] ⋅ 2i.

To simplify notation, we often denote strings by capital letters (e.g., A, B, S) and we
denote the number represented by a string by a lowercase letter (e.g., a, b, and s).

Leading Zeros. Consider a binary string A[n − 1 ∶ 0]. Extending A⃗ by leading zeros
means concatenating zeros in indexes higher than n−1. Namely, (i) extending the length
of A[n−1 ∶ 0] to A[m−1 ∶ 0], for m > n, and (ii) defining A[i] = 0, for every i ∈ [m−1 ∶ n].

The following lemma states that extending a binary string by leading zeros does not
change the number it represents in binary representation.

Lemma 5.1 Let m > n. If A[m − 1 ∶ n] is all zeros, then ⟨A[m − 1 ∶ 0]⟩ = ⟨A[n − 1 ∶ 0]⟩.
Proof: We simply follow the definition of ⟨A[m − 1 ∶ 0]⟩ and the fact that A[m − 1 ∶ n]
is all zeros to obtain:

⟨A[m − 1 ∶ 0]⟩ △= m−1∑
i=0

A[i] ⋅ 2i
=
n−1∑
i=0
A[i] ⋅ 2i + m−1∑

i=n
A[i] ⋅ 2i

= ⟨A[n − 1 ∶ 0]⟩ + 0.

2

Representable Ranges. The following lemma bounds the value of a number repre-
sented by a k-bit binary string.

Lemma 5.2 Let A[k−1 ∶ 0] denote a k-bit binary string. Then, 0 ≤ ⟨A[k − 1 ∶ 0]⟩ ≤ 2k−1.

Proof: Since 0 ≤ A[i] ≤ 1 for 0 ≤ i ≤ k − 1 and since ∑k−1i=0 2i = 2k − 1, then

0 ≤ ⟨A[k − 1 ∶ 0]⟩ = k−1∑
i=0
A[i] ⋅ 2i ≤ k−1∑

i=0
2i = 2k − 1,

as required. 2

Examples

1. Consider the strings: A[2 ∶ 0] △= 000,B[3 ∶ 0] △= 0001, and C[3 ∶ 0] △= 1000. The
natural numbers represented by the binary strings A,B and C are as follows.

⟨A[2 ∶ 0]⟩ = A[0] ⋅ 20
+A[1] ⋅ 21

+A[2] ⋅ 22 = 0 ⋅ 20
+ 0 ⋅ 21

+ 0 ⋅ 22 = 0 ,

⟨B[3 ∶ 0]⟩ = B[0] ⋅ 20
+B[1] ⋅ 21

+B[2] ⋅ 22
+B[3] ⋅ 23 = 1 ⋅ 20

+ 0 ⋅ 21
+ 0 ⋅ 22

+ 0 ⋅ 23 = 1 ,

⟨C[3 ∶ 0]⟩ = C[0] ⋅ 20
+C[1] ⋅ 21

+C[2] ⋅ 22
+C[3] ⋅ 23 = 0 ⋅ 20

+ 0 ⋅ 21
+ 0 ⋅ 22

+ 1 ⋅ 23 = 8 .

64 CHAPTER 5. BINARY REPRESENTATION

2. For A[5 ∶ 0] = 101001, ⟨A[5 ∶ 0]⟩ = 1 ⋅ 25 + 0 ⋅ 24 + 1 ⋅ 23 + 0 ⋅ 22 + 0 ⋅ 21 + 1 ⋅ 20 = 41.
Note that the rightmost bit has the “lightest” weight and the leftmost bit is the
“heaviest” among the six bits of A. Indeed, the rightmost bit is the LSB, and the
leftmost bit the MSB.

3. For B[4 ∶ 0] = 11100, ⟨B[4 ∶ 0]⟩ = 0 ⋅ 20 + 0 ⋅ 21 + 1 ⋅ 22 + 1 ⋅ 23 + 1 ⋅ 24 = 28. Note that if
the LSB is 1, then the corresponding natural number is odd, and if the LSB is 0,
then the corresponding natural number is even.

4. Divisibility by powers of 2. Recall that the natural number represented by the
binary string A[n − 1 ∶ 0] is:

⟨A[n − 1 ∶ 0]⟩ △= n−1∑
i=0
A[i] ⋅ 2i.

We already noticed that if the LSB of A is ‘0’ then ⟨A[n − 1 ∶ 0]⟩ is even, furthermore,
if both A[0] and A[1] equal ‘0’ then the number ⟨A[n − 1 ∶ 0]⟩ is divisible by 4 = 22,
e.g. 100 represents the number 4, 1100 represents the number 12. We generalize
this property in the following lemma.

Lemma 5.3 Let A[n− 1 ∶ 0] be a binary string, and let a
△

= ⟨A[n − 1 ∶ 0]⟩, then a is
divisible by 2k if A[i] = 0 for all 0 ≤ i ≤ k − 1.

Proof: The proof is as follows

a

2k
=
∑n−1i=0 A[i] ⋅ 2i

2k

=
∑n−1i=k A[i] ⋅ 2i

2k

=
∑n−1−ki=0 A[i + k] ⋅ 2i+k

2k

=
2k ⋅∑n−1−ki=0 A[i + k] ⋅ 2i

2k

=
n−1−k∑
i=0

A[i + k] ⋅ 2i .
Where the first line follows Definition 5.4. The second line follows from the as-
sumption that A[i] = 0 for all 0 ≤ i ≤ k−1. The third line follows from changing the
indices of the summation. The fourth line follows simply by moving the 2k term
out of the summation.

The lemma follows since summing natural numbers result in a natural number. 2

5. What is the largest number representable by the following number of bits: (i) 8
bits, (ii) 10 bits, (iii) 16 bits, (iv) 32 bits, and (v) 64 bits?

Let A[k − 1 ∶ 0] denote a k bit string. Let ak
△

= ⟨A[k − 1 ∶ 0]⟩ then Lemma 5.2 states
that, 0 ≤ ak ≤ 2k − 1. Hence,

5.5. COMPUTING A BINARY REPRESENTATION 65

(i) 0 ≤ a8 ≤ 28 − 1 = 255.

(ii) 0 ≤ a10 ≤ 210 − 1 = 1023.

(iii) 0 ≤ a16 ≤ 216 − 1 = 65535.

(iv) 0 ≤ a32 ≤ 232 − 1 = 4294967295.

(v) 0 ≤ a64 ≤ 264 − 1 = 18446744073709551615.

6. Now we can discuss a matter that is close to our hearts, that is the relation between
word length and memory size in a computer. A central processing unit (CPU)
addresses its memory modules by a fixed size bit string which is called a word.
Nowadays it is typical that the CPU’s word is 32 and 64 bits.

Let us define some units of measurement in this context: A byte (B) is 8 bit length
word. A kilo-bit (Kb) is 210 bits. Hence, a kilo-byte (KB) is 8 ⋅ 210 bits. A mega-bit
(Mb) is 210 ⋅ 210 = 220 bits. Analogously, A mega-byte (MB) is 8 ⋅ 220 bits. A giga-bit
(Gb) is 210 ⋅220 = 230 bits. Analogously, A giga-byte (GB) is 8⋅230 bits. If we consider
words of ω bits, then a giga-word (GW) is ω ⋅ 230 bits.

What is the size of single memory module in GW if the CPU’s word length is 32
bits?

Since a32 attains values in {0, . . . ,232 − 1} it implies that the CPU can address
232 different values, i.e. to address 232 words. That means that if your personal
computer (PC) has a 32-bit CPU, then there is no need to purchase more than 4 GW
of memory. Note that one should check whether the basic data-item accessible by
the CPU is a word or a byte. Here we assume that the memory is word addressable.
In Part IV we consider the design of such a CPU.

7. Consider C[6 ∶ 0] = 0001100 and D[3 ∶ 0] = 1100. Note that ⟨C⟩ = ⟨D⟩ = 12. Since
the leading zeros do not affect the value represented by a string, a natural number
has infinitely many binary representations.

8. Consider the string A[3 ∶ 0] = 0111. The extension of A[3 ∶ 0] by two leading zeros
results with the string A[5 ∶ 0] = 000111.

5.5 Computing a Binary Representation

Our goal in this section is to show how to compute a binary representation of a natural
number. In addition, we prove that every natural number has a unique binary represen-
tation.

An algorithm for computing a binary representation is listed as Algorithm 5.1. The
algorithm, called BR(x, k), is specified as follows:

Inputs: x ∈ N and k ∈ N+, where x is a natural number for which a binary representation
is sought, and k is the length of the binary string that the algorithm should output.

Output: The algorithm outputs “fail” or a k-bit binary string A[k − 1 ∶ 0].

66 CHAPTER 5. BINARY REPRESENTATION

Functionality: The relation between the inputs and the output is as follows:

1. If 0 ≤ x < 2k, then the algorithm outputs a k-bit string A[k−1 ∶ 0] that satisfies
x = ⟨A[k − 1 ∶ 0]⟩.

2. If x ≥ 2k, then the algorithm outputs “fail”.

The algorithm is recursive. This means that it is described using base cases and
reduction rules. The base cases deal with two cases: (i) x is too large, in which case a
“fail” is returned, and (ii) k = 1, in which case x ∈ {0,1}, and the binary representation
of x is simply the bit x.

The reduction rules first compute the most-significant bit (MSB) of the binary repre-
sentation. Next, the algorithm recursively computes the remaining k−1 bits. The output
is the MSB concatenated with the remaining k − 1 bits.

Algorithm 5.1 BR(x, k) - An algorithm for computing a binary representation of a
natural number a using k bits.

1. Base Cases:

(a) If x ≥ 2k then return (fail).

(b) If k = 1 then return (x).
2. Reduction Rule:

(a) If x ≥ 2k−1 then return (1 ○BR(x − 2k−1, k − 1)).
(b) If x ≤ 2k−1 − 1 then return (0 ○BR(x, k − 1)).

The correctness of algorithm BR(x, k) is summarized in the following theorem.

Theorem 5.4 If x ∈ N, k ∈ N+, and x < 2k, then algorithm BR(x, k) returns a k-bit
binary string A[k − 1 ∶ 0] such that ⟨A[k − 1 ∶ 0]⟩ = x.
Proof: The proof is by induction on k. The induction basis, for k = 1 holds since x < 21

implies that x ∈ {0,1}. Hence x is represented by the 1-bit string A[0] = x.
The induction hypothesis states that for every x < 2k, algorithm BR(x, k) outputs a

k-bit binary string A[k − 1 ∶ 0] that ⟨A[k − 1 ∶ 0]⟩ = x.
We now prove the induction step for k + 1. Consider a number x such that x < 2k+1.

We consider the two cases of the reduction rules:

1. Assume x ≥ 2k. In this case, the reduction rule returns A[k] = 1 and A[k − 1 ∶ 0] is
the output of BR(x − 2k, k). Since x < 2k+1, it follows that x − 2k < 2k. Hence the
induction hypothesis when applied to BR(x − 2k, k) implies that

⟨A[k − 1 ∶ 0]⟩ = x − 2k. (5.1)

5.5. COMPUTING A BINARY REPRESENTATION 67

Hence,

x = 2k + (x − 2k)
= A[k] ⋅ 2k + ⟨A[k − 1 ∶ 0]⟩
= ⟨A[k ∶ 0]⟩,

where the second line follows from A[k] = 1 and Eq. 5.1. The third line follows by
the definition of binary representation, and the induction step follows for this case.

2. Assume x ≤ 2k−1. In this case, the reduction rule returns A[k] = 0 and A[k−1 ∶ 0] is
the output of BR(x, k). Again, by applying the induction hypothesis to BR(x, k).

⟨A[k − 1 ∶ 0]⟩ = x.
Hence,

x = A[k] ⋅ 2k + ⟨A[k − 1 ∶ 0]⟩
= ⟨A[k ∶ 0]⟩,

and the induction step follows for this case.

This completes the induction step, and the theorem follows. 2

One may ask the following question: How can we know for sure that none of the
recursive calls returns a “fail”? Is it possible to have x < 2k in the initial call of BR(x, k),
but to have x′ ≥ 2k

′

in one of the recursive calls? The proof of Theorem 5.4 indirectly
shows that such an “overflow” cannot happen. We can directly prove that such an
“overflow” cannot happen by induction on k. The induction basis, for k = 1 is trivial
since there are no recursive calls. The induction step is proven as follows. Assume that
x < 2k. In the recursive call, if x is “large”, then we subtract 2k−1 from x to make sure
that x − 2k−1 < 2k−1 in the recursive call. By the induction hypothesis, all recursive calls
do not “overflow”. If x < 2k−1, then by the induction hypothesis, the recursive calls do
not overflow.

The following corollary states that every positive integer has a binary representation
of logarithmic length.

Corollary 5.5 Every positive integer a has a binary representation by a k-bit binary
string if k ≥ ⌊log2(a)⌋ + 1.

Proof: By Theorem 5.4, if a < 2k, then a can be represented by a k-bit binary string.
To complete the proof it suffices to prove that

k ≥ ⌊log2(a)⌋ + 1 ⇒ a < 2k.

Indeed, let k′
△

= ⌊log2(a)⌋. Then,

2k
′

≤ a < 2k
′+1.

By the assumption on k, we have k ≥ k′ + 1, and therefore, a < 2k
′+1 < 2k, as required. 2

68 CHAPTER 5. BINARY REPRESENTATION

Theorem 5.6 The binary representation function ⟨⟩k ∶ {0,1}k → {0, . . . ,2k − 1} defined
by

⟨A[k − 1 ∶ 0]⟩k △= k−1∑
i=0
A[i] ⋅ 2i

is a bijection (i.e., one-to-one and onto) from {0,1}k to {0, . . . ,2k − 1}.
Proof: Lemma 5.2 states that every k-bit string represents a number in {0, . . . ,2k −1},
thus the range of ⟨⟩k is indeed in {0, . . . ,2k − 1}. Corollary 5.5 states that every number
in the set {0, . . . ,2k−1} can be represented by a k-bit string. This implies that the binary
representation function ⟨⟩k ∶ {0,1}k → {0, . . . ,2k − 1} is onto.

The cardinality of the domain and the range of the function ⟨⟩k is 2k. By Lemma 2.10,
the function ⟨⟩k is also one-to-one, as required. 2

Corollary 5.7 (unique binary representation) Every number in {0, . . . ,2k − 1} has
a unique binary representation by a k-bit string.

Proof: Theorem 5.6 states that ⟨⟩k is one-to-one and onto. Since ⟨⟩k is onto, then every
x ∈ {0, . . . ,2k − 1} has at least one binary representation. Since ⟨⟩k is one-to-one, then
every x ∈ {0, . . . ,2k − 1} has at most one binary representation. The corollary follows. 2

Examples

1. Computing a binary representation. Compute a binary representation by applying
Algorithm 5.1 on the following inputs: (i) (2,1) , and (ii) (7,3).
(a) Since 2 ≥ 21 the algorithm outputs “fail”.

(b) The full execution of the algorithm is as follows.

i. The input(7,3) does not match any of the bases, so we proceed to the
reduction rules.

ii. Since 7 ≥ 23−1 = 4 we apply the first reduction rule, i.e.,

return (1 ○BR(7 − 23−1 = 3,2)) .
A. The input (3,2) does not match any of the bases, so we proceed to

the reduction rules.

B. Since 3 ≥ 22−1 = 2 we apply the 1st reduction rule, i.e.,

return (1 ○BR(3 − 22−1 = 1,1)) .� The input (1,1) matches the second base case, hence we return ‘1’.

C. The recursive call returns ‘11’.

iii. The last recursive call returns ‘111’.

5.5. COMPUTING A BINARY REPRESENTATION 69

Indeed, ⟨111⟩ = 7, as required.

2. We claim that when a natural number is multiplied by two, its binary representation
is “shifted left” while a single zero bit is padded from the right. That property is
summarized in the following lemma.

Lemma 5.8 Let a ∈ N. Let A[k−1 ∶ 0] be a k-bit string such that a = ⟨A[k − 1 ∶ 0]⟩.
Let B[k ∶ 0] △= A[k − 1 ∶ 0] ○ 0, then

2 ⋅ a = ⟨B[k ∶ 0]⟩.
Proof:

⟨B[k ∶ 0]⟩ =
k∑
i=0
B[i] ⋅ 2i

=
k∑
i=1
B[i] ⋅ 2i

=
k−1∑
i=0
B[i + 1] ⋅ 2i+1

= 2 ⋅
k−1∑
i=0
B[i + 1] ⋅ 2i

= 2 ⋅
k−1∑
i=0
A[i] ⋅ 2i

= 2 ⋅ ⟨A[k − 1 ∶ 0]⟩
= 2 ⋅ a .

The first line follows from Definition 5.4 and by the definition of the concatenation
operation. The second line follows since the LSB of the k + 1-bit string B[k ∶ 0]
is ‘0’. The third line follows by index manipulation. The fourth line follows from
the definition of B⃗. The fifth line follows from, again, Definition 5.4. The last line
follows from the assumption that a = ⟨A[k − 1 ∶ 0]⟩. The lemma follows. 2

3. We consider an additional algorithm BR′(x, k) for computing a binary represen-
tation. The algorithm is listed as Algorithm 5.2. The algorithm’s specification is
identical to the BR(x, k) algorithm.

The base cases of this algorithm are identical to the base cases of the BR(x, k)
algorithm. The reduction rules of the BR′(x, k) algorithm first compute the LSB of
the binary representation. Next the algorithm recursively computes the remaining
k − 1 bits. The output is the LSB concatenated with the remaining k − 1 bits.

The correctness of algorithm BR′(x, k) is summarized in the following theorem.

Theorem 5.9 If x ∈ N, k ∈ N+, and x < 2k, then algorithm BR′(x, k) returns a
k-bit binary string A[k − 1 ∶ 0] such that ⟨A[k − 1 ∶ 0]⟩ = x.

70 CHAPTER 5. BINARY REPRESENTATION

Algorithm 5.2 BR′(x, k) - An LSB-to-MSB algorithm for computing a binary
representation of a natural number a using k bits.

(a) Base Cases:

i. If x ≥ 2k then return (fail).

ii. If k = 1 then return (x).
(b) Reduction Rule:

i. If x is even then return (BR′(x/2, k − 1) ○ 0).
ii. If x is odd then return (BR′((x − 1)/2, k − 1) ○ 1).
Proof: The proof is by induction on k. The induction basis, for k = 1 holds since
x < 21 implies that x ∈ {0,1}. Hence x is represented by the 1-bit string A[0] = x.
The induction hypothesis states that for every x < 2k, algorithm BR′(x, k) outputs
a k-bit binary string A[k − 1 ∶ 0] that ⟨A[k − 1 ∶ 0]⟩ = x.
We now prove the induction step for k+1. Consider a number x such that x < 2k+1.
We consider the two cases of the reduction rules:

(a) Assume x is even. In this case, the reduction rule returns A[0] = 0 and A[k ∶ 1]
is the output of BR′(x/2, k). Since x is even, it follows that x/2 ∈ N. Since
x < 2k+1, it follows that x/2 < 2k. Hence the induction hypothesis when applied
to BR′(x/2, (k + 1) − 1) implies that

k−1∑
i=0
A[i + 1] ⋅ 2i = x/2. (5.2)

Hence,

x = 2 ⋅ (x/2)
= 2 ⋅

k−1∑
i=0
A[i + 1] ⋅ 2i

= ⟨A[k ∶ 0]⟩,
where the second line follows from Eq. 5.2. The third line follows from
Lemma 5.8 and since A[0] = 0. The induction step follows for this case.

(b) Assume x is odd. In this case, the reduction rule returns A[0] = 1 and A[k ∶ 1]
is the output of BR′((x−1)/2, k). Since x is odd, it follows that (x−1)/2 ∈ N.
Since x < 2k+1, it follows that (x − 1)/2 < 2k.Hence the induction hypothesis
when applied to BR′((x − 1)/2, (k + 1) − 1) implies that

k−1∑
i=0
A[i + 1] ⋅ 2i = (x − 1)/2. (5.3)

5.5. COMPUTING A BINARY REPRESENTATION 71

Hence,

x − 1 = 2 ⋅ ((x − 1)/2)
= 2 ⋅

k−1∑
i=0
A[i + 1] ⋅ 2i

= ⟨A[k ∶ 1] ○ 0⟩ .
Where the second line follows from Eq. 5.3. The third line follows from
Lemma 5.8. This implies that x = ⟨A[k ∶ 1] ○ 1⟩. The induction step follows
for this case.

This completes the induction step, and the theorem follows. 2

4. Hexadecimal Representation. In binary representation the set of digits is{0,1}. In decimal representation the set of digits is {0,1, . . . ,9}. We now present
a representation, called hexadecimal representation, in which the set of digits is{0,1, . . . ,15}. Accordingly, the radix is 16. This means that the weight of the ith
digit is 16i.

In hexadecimal representation, a number is represented by a string of digits over
the set {0,1, . . . ,15}. One technicality, is that the digits above 9 require two letters.
This inconvenience is mitigated by using the letters A,B, . . . , F with the following
meaning: A = 10, B = 11, C = 12, D = 13, E = 14, and F = 15.

A hexadecimal digit is an element in {0,1, . . . ,9,A,B, . . . , F}. A hexadecimal string
is a finite sequence of hexadecimal digits.

Definition 5.5 The natural number, h, represented in hexadecimal representation
by the hexadecimal string H[n − 1 ∶ 0] is defined by

h
△

=
n−1∑
i=0
H[i] ⋅ 16i .

Consider the following examples of hexadecimal representation.

(a) H[2 ∶ 0] = A02.

h =H[0] ⋅160
+H[1] ⋅161

+H[2] ⋅162 = 2 ⋅160
+0 ⋅161

+10 ⋅162 = 2+0+2560 = 2562.

(b) H = FFF .

h =H[0]⋅160
+H[1]⋅161

+H[2]⋅162 = 15⋅160
+15⋅161

+15⋅162 = 15+240+3840 = 4095.

(c) H = ABC.

h =H[0]⋅160
+H[1]⋅161

+H[2]⋅162 = 12⋅160
+11⋅161

+10⋅162 = 12+176+2560 = 2748.

72 CHAPTER 5. BINARY REPRESENTATION

5. Computing a Hexadecimal Representation. Our goal in this example is to
show how to compute a hexadecimal representation of a natural number. Recall
that in Section 5.5 and in Example 3 we showed how to compute the binary repre-
sentation of a given natural number. One could adapt these algorithms to compute
the hexadecimal representation. Instead, we show how to “convert” a binary string
to a hexadecimal string such that both strings represent the same natural number.
The conversion in the other direction is done similarly and is left as an exercise.

The conversion is as follows. Let X[n − 1 ∶ 0] denote an n-bit binary string. For
simplicity assume that n = 4k for some k ∈ N (if n is not divisible by 4, simply add
leading zeros). Partition X[n− 1 ∶ 0] into k disjoint blocks of 4 bits: X[3 ∶ 0],X[7 ∶
4], etc. Let HX[k−1 ∶ 0] denote a k-digit hexadecimal string in which HX[i] equals
the number represented by the ith 4-bit block of X[n − 1 ∶ 0]. Formally

HX[i] = ⟨X[4i + 3 ∶ 4i]⟩ ,
for every 0 ≤ i ≤ k − 1.

For example:

(a)

X[7 ∶ 0] = 0010 1010 ,

HX[1 ∶ 0] = 2 A .

Note that the hexadecimal digit ‘2’ corresponds to the binary string ‘0010’,
and that the hexadecimal digit ‘A’ corresponds to the binary string ‘1010’.

(b)

X[15 ∶ 0] =116 ,

HX[3 ∶ 0] =FFFF .
Indeed, the natural number represented by the binary string X is 216 − 1, and
the natural number represented by HX is 164 − 1 = 216 − 1.

We claim that this conversion has the following property.

Lemma 5.10 The number represented by HX[k − 1 ∶ 0] is ⟨X[n − 1 ∶ 0]⟩.

5.6. MORE ON UNIQUE BINARY REPRESENTATION∗ 73

Proof: Let h denote the number represented by HX[k − 1 ∶ 0], then:

h =
k−1∑
i=0
HX[i] ⋅ 16i

=
k−1∑
i=0
⟨X[4i + 3 ∶ 4i]⟩ ⋅ 16i

=
k−1∑
i=0
(4i+3∑
ℓ=4i

X[ℓ] ⋅ 2ℓ−4i) ⋅ 16i

=
k−1∑
i=0
(4i+3∑
ℓ=4i

X[ℓ] ⋅ 2ℓ ⋅ 2−4i) ⋅ 24i

=
n−1∑
i=0
X[i] ⋅ 2i = ⟨X[n − 1 ∶ 0]⟩

where the first equality follows from Definition 5.5. The second equality follows
from the definition of HX . The third equality follows from Definition 5.4. The
fifth equality follows from the definition of HX . The last equality follows from
Definition 5.4, as required. 2

5.6 More on Unique Binary Representation∗

In the following theorem we present an alternative proof to Theorem 5.6 that every
number has a unique binary representation. This is, of course, false since we can add
leading zeros to a string without changing the number it represents. There are two ways
to fix this problem. First, we claim that if 0 ≤ a < 2k, then a has a unique binary
representation by a k-bit string. Second, we could claim that if two strings represent the
same number, then one string is an extension of the other by leading zeros.

We first prove two lemmas.

Lemma 5.11 If ai ∈ {−1,0,1} for every 0 ≤ i < n, then

−(2n − 1) ≤ n−1∑
i=0
ai ⋅ 2

i ≤ 2n − 1.

Proof: The upper bound follows from ai ≤ 1 and by bounding the sum of the geometric
series ∑n−1i=1 2i. The lower bound follows from ai ≥ −1. Thus,

n−1∑
i=0
ai ⋅ 2

i ≥ −
n−2∑
i=0

2i

= −(2n − 1).
2

74 CHAPTER 5. BINARY REPRESENTATION

Lemma 5.12 If ai ∈ {−1,0,1} for every 0 ≤ i < n, then

n−1∑
i=0
ai ⋅ 2

i = 0 ⇐⇒ a0 = ⋯ = an−1 = 0.

Proof: If a0 = ⋯ = an−1 = 0, then clearly ∑n−1i=0 ai ⋅2
i = 0. To prove the converse direction,

assume that there exists an i such that ai ≠ 0. Let

i∗
△

= max{i ∣ ai ≠ 0}.
Note that i∗ is well defined since there the set {i ∣ ai ≠ 0} is not empty.

Note that since ai = 0, for every i ≥ i∗, it follows that

n−1∑
i=0
ai ⋅ 2

i =
i∗∑
i=0
ai ⋅ 2

i

= ai∗ ⋅ 2
i∗
+

i∗−1∑
i=0

ai ⋅ 2
i.

By Lemma 5.11,

−(2i∗ − 1) ≤ i∗−1∑
i=0

ai ⋅ 2
i ≤ 2i

∗

− 1.

Now consider two cases:

1. If ai∗ = 1, then

n−1∑
i=0
ai ⋅ 2

i = 2i
∗

+

i∗−1∑
i=0

ai ⋅ 2
i

≥ 2i
∗

− (2i∗ − 1) > 0.

2. If ai∗ = −1, then

n−1∑
i=0
ai ⋅ 2

i = −2i
∗

+

i∗−1∑
i=0

ai ⋅ 2
i

≤ −2i
∗

+ (2i∗ − 1) < 0.

In both cases, ∑n−1i=0 ai ⋅ 2
i ≠ 0, as required, and the lemma follows. 2

Theorem 5.13 Consider two binary strings A[n − 1 ∶ 0] and B[m − 1 ∶ 0], where m ≥ n.
If ⟨A⃗⟩ = ⟨B⃗⟩, then A[n − 1 ∶ 0] = B[n − 1 ∶ 0] and B[m − 1 ∶ n] is all zeros.

5.6. MORE ON UNIQUE BINARY REPRESENTATION∗ 75

Proof: The proof is by contradiction. Assume that ⟨A⃗⟩ = ⟨B⃗⟩, then

0 = ⟨A⃗⟩ − ⟨B⃗⟩ (5.4)

= (n−1∑
i=0
Ai ⋅ 2

i) − (m−1∑
i=0

Bi ⋅ 2
i)

= (n−1∑
i=0
(Ai −Bi) ⋅ 2i) + (m−1∑

i=n
(−Bi) ⋅ 2i) .

Since (Ai −Bi) ∈ {−1,0,1}, and (−Bi) ∈ {−1,0}, by Lemma 5.12, (1) Ai −Bi = 0 for every
0 ≤ i < n, and (2) Bi = 0 for every n ≤ i <m, and the theorem follows. 2

Problems

5.1 Let a, c ∈ N and let b, d ∈ N+. Prove the following inequalities:

1. ⌈a
b
⌉ ≤ ⌊a

b
⌋ + 1.

2. b ⋅ ⌈a
b
⌉ ≥ a. Equality holds if and only of a is divisible by b.

3. ⌈a
b
+
c
d
⌉ ≤ ⌈a

b
⌉ + ⌈ c

d
⌉.

4. ⌈a⋅c
b
⌉ ≤ ⌈a

b
⌉ ⋅ c. Hint: prove by induction on c and use item 3.

5.2 What are the numbers represented by the following binary strings:

A[1 ∶ 0] = 10 ,

B[2 ∶ 0] = 110 ,

C[3 ∶ 0] = 1001 ,

D[3 ∶ 0] = 1110 .

5.3 Compute the binary representation by applying Algorithm 5.1 and 5.2 on the fol-
lowing natural numbers: (i) 3, (ii) 8, and (ii) 15. Show a full execution of the Algorithm,
including the input you have chosen for every number, e.g., (3,2).

5.4 Generalize Lemma 5.8 as follows.

Lemma 5.14 Let a ∈ N. Let A[k − 1 ∶ 0] be a k-bit string such that a = ⟨A[k − 1 ∶ 0]⟩.
Let B[k + ℓ − 1 ∶ 0] △= A[k − 1 ∶ 0] ○

ℓ zeros¬
0⋯0 , then

2ℓ ⋅ a = ⟨B[k + ℓ − 1 ∶ 0]⟩.
5.5 Prove the other direction of Lemma 5.3, formulated as follows.

Lemma 5.15 Let A[n − 1 ∶ 0] be a binary string, and let a
△

= ⟨A[n − 1 ∶ 0]⟩, then a is
divisible by 2k if and only if A[i] = 0 for all 0 ≤ i ≤ k − 1.

76 CHAPTER 5. BINARY REPRESENTATION

5.6 This question deals with the conversion of a hexadecimal string to a binary string
such that both strings represent the same natural number. Let H[k−1 ∶ 0] denote a k-digit
hexadecimal string. Let XH[n−1 ∶ 0] denote an n-bit binary string. Answer the following
questions:

1. Define the conversion, i.e., define the binary string XH as a function of the hex-
adecimal string H.

2. Let h denote the number represented by the hexadecimal string H. Prove that

⟨XH⟩ = h .

Chapter 6

Propositional Logic

Contents
6.1 Boolean Formulas . 77

6.2 Truth Assignments . 83

6.3 Satisfiability and Logical Equivalence 86

6.4 Interpreting a Boolean Formula as a Function 87

6.5 Substitution . 91

6.6 Complete Sets of Connectives . 94

6.7 Important Tautologies . 98

6.8 De Morgan’s Laws . 100

6.8.1 Negation Normal Form . 101

In this chapter we turn to a topic in mathematical logic called propositional logic.
Propositional logic is a key tool in logical reasoning and is used to understand and even
generate precise proofs. Our attraction to propositional logic is ignited by the ability
to represent Boolean functions by Boolean formulas . Some Boolean functions can be
represented by short Boolean formulas, thus offering a concise and precise way to describe
Boolean functions.

6.1 Boolean Formulas

Building blocks. The building blocks of a Boolean formula are constants, variables,
and connectives.

1. A constant is either 0 or 1. As in the case of bits, we interpret a 1 as “true” and
a 0 as a “false”. The terms constant and bit are synonyms; the term bit is used
in Boolean functions and in circuits while the term constants is used in Boolean
formulas.

77

78 CHAPTER 6. PROPOSITIONAL LOGIC

2. A variable is an element in a set of variables. We denote the set of variables by U .
The set U does not contain constants. Variables are usually denoted by upper case
letters.

3. Connectives are used to build longer formulas from shorter ones. We denote the set
of connectives by C. We consider unary, binary, and higher arity connectives.

(a) There is only one unary connective called negation. Negation of a variable A
is denoted by not(A), ¬A, or Ā.

(b) There are several binary connectives, the most common are and (denoted also
by ∧ or ⋅) and or (denoted also by ∨ or +). A binary connective is applied
to two formulas. We later show the relation between binary connectives and
Boolean functions B ∶ {0,1}2 → {0,1}.

(c) A connective has arity j if it is applied to j formulas. The arity of negation is
1, the arity of and is 2, etc.

To summarize we use the following notation:

U - the set of variables,C - the set of connectives.

Parse trees. We use parse trees to define Boolean formulas.

Definition 6.1 A parse tree is a pair (G,π), where G = (V,E) is a rooted tree and
π ∶ V → {0,1} ∪U ∪ C is a labeling function that satisfies:

1. A leaf is labeled by a constant or a variable. Formally, if v ∈ V is a leaf, then
π(v) ∈ {0,1} ∪U .

2. An interior vertex v is labeled by a connective whose arity equals the in-degree of
v. Formally, if v ∈ V is an interior vertex, then π(v) ∈ C is a connective with arity
degin(v).

We usually use only unary and binary connectives. Thus, unless stated otherwise, a parse
tree has an in-degree of at most two.

In Figure 6.1 a parse tree of a Boolean formula is depicted. The labels of the vertices
are written inside the vertices.

Boolean formulas. A Boolean formula is a string containing constants, variables, con-
nectives, and parenthesis. Every parse tree defines a Boolean formula. This definition
is constructive and the Boolean formula is obtained by an inorder traversal of the parse
tree.

A listing of an inorder traversal that outputs the Boolean formula corresponding to a
parse tree is listed as Algorithm 6.1. The algorithm returns a string. In case the parse tree
contains a single node v, then the formula is simply π(v) (i.e., a constant or a variable).

6.1. BOOLEAN FORMULAS 79

and

X Y0

¬or

Figure 6.1: A parse tree that corresponds to the Boolean formula ((X or 0) and (¬Y)).
The rooted trees that are hanging from the root of the parse tree (the and connective)
are bordered by dashed rectangles.

Otherwise, the formula is obtained by a applying a reduction rule. There are two cases
depending on the indegree of the root of the parse tree. (i) If the indegree of the root is
one, then the root must be labeled by a negation. In this case the output is the string(¬α), where α is the outcome of a recursive call on the rooted subtree hanging from the
root. Note that the parenthesis are part of the output. Namely, in line 1 the algorithm
returns a constant or a variable not delimited by parenthesis. However, in lines 2(a)iv
and 2(b)v, the output is delimited by parenthesis. (ii) If the indegree of the root is two,
then the root is labeled by a binary connective. The output in this case is the string(α c β), where the root is labeled by the connective c, and α,β are the outcomes of the
recursive calls on the rooted trees hanging from the root.

Notation. Let BF(U,C) denote the set of Boolean formulas over the set of variables U
and the set of connectives C. To simplify notation, we abbreviate BF(U,C) by BF when
the sets of variables and connectives are known.

Consider a Boolean formula ϕ defined by a parse tree (G,π), where G = (V,E) is a
rooted tree.

Definition 6.2 A subformula α of a Boolean formula ϕ induced by a vertex v ∈ V is the
Boolean formula defined by (G′, π′) where: (i) G′ is the subtree of G rooted at v, and
(ii) π′ is the restriction of π to the vertices of G′.

Examples

1. Let us consider the parse treeG = (V,E) in Figure 6.1 and its corresponding Boolean
formula:

ϕ = ((X or 0) and (¬Y)) .
In this example we list the subformulas of ϕ.

First, we give “names” to the vertices in V , as follows: (i) The vertex labeled by
‘X’ is v1, (ii) the vertex labeled by ‘0’ is v2, (iii) the vertex labeled by ‘or’ is v3,

80 CHAPTER 6. PROPOSITIONAL LOGIC

Algorithm 6.1 INORDER(G,π) - An algorithm for generating the Boolean formula
corresponding to a parse tree (G,π), where G = (V,E) is a rooted tree with in-degree at
most 2 and π ∶ V → {0,1} ∪U ∪ C is a labeling function.

1. Base Case: If ∣V ∣ = 1 then Return π(v) (where v ∈ V is the only node in V)

2. Reduction Rule:

(a) If deg in(r(G)) = 1, then

i. Let G1 = (V1,E1) denote the rooted tree hanging from r(G).
ii. Let π1 denote the restriction of π to V1.

iii. α ← INORDER(G1, π1).
iv. Return (¬α).

(b) If deg in(r(G)) = 2, then

i. Let G1 = (V1,E1) and G2 = (V2,E2) denote the rooted subtrees hanging
from r(G).

ii. Let πi denote the restriction of π to Vi.

iii. α ← INORDER(G1, π1).
iv. β ← INORDER(G2, π2).
v. Return (α π(r(G)) β).

6.1. BOOLEAN FORMULAS 81

(iv) the vertex labeled by ‘Y ’ is v4, (v) the vertex labeled by ‘¬’ is v5, and (vi) the
vertex labeled by ‘and’ is v6.

Now, the subformula αi of ϕ induced by vi are:

α1 = X, α2 = 0, α3 = (X or 0),
α4 = Y, α5 = (¬Y),
α6 = ϕ .

Note that every Boolean formula is a subformula of itself.

2. Inductive Definition of BF . We defined the set of Boolean formulas BF con-
structively using parse trees. We now define the set of formulas inductively. We
prove that these two definitions are equivalent.

For the sake of simplicity, we focus on the case that the set of connectives is C ={¬,+, ⋅}.
We define a closure property of a set of strings F under the set of connectives C as
follows.

Definition 6.3 A set of strings F is closed under the set of connectives C if it
satisfies the following condition:
If p, q ∈ F , then

(a) (¬p) ∈ F ,

(b) (p ⋅ q) ∈ F , and

(c) (p + q) ∈ F .

Definition 6.4 A set of strings F contains the atoms if {0,1} ⊆ F and U ⊆ F .

Let CF denote the set of all sets F that contain the atoms and are closed under
the set C. We define the set BF ′(U,C) of formulas as follows.

Definition 6.5 BF ′(U,C) △= ⋂
F∈CF

F .
The following lemma states that both definitions are equivalent.

Lemma 6.1 BF = BF ′ .

82 CHAPTER 6. PROPOSITIONAL LOGIC

Proof: We show that (i) BF ⊆ BF ′, and (ii) BF ⊇ BF ′ and conclude the proof.
The proof is as follows.

(i) We show that

∀F ∈ CF ∶ BF ⊆ F . (6.1)

That will conclude part (i) of the proof since Equation 6.1 implies that BF ⊆⋂F∈CF F = BF ′, as required.

Let F be a set of strings in CF . Let f ∈ BF be a formula, and let (G,π) be
its parse tree. The proof is by complete induction on the number of vertices
n in the rooted tree G. The basis follows since for n = 1, the rooted tree
corresponds to a constant or a variable and since F contains the atoms, i.e.,
f ∈ {0,1} ∪U ⊆ F .

Now we prove the induction step, namely, that if a formula f has a parse tree of
n+1 vertices, then f ∈ F . We observe that the rooted trees G1, . . . ,Gk hanging
from the root r(G) correspond to subformulas f1, . . . , fk of f , furthermore the
number of vertices ni of Gi satisfies ni < n + 1 . For simplicity let us consider
the case of k = 2, the case of k = 1 is similar. By the induction hypothesis
f1, f2 ∈ F . Since F is closed under the set of connectives C, in particular
the connective π(r(G)), then the formula f = (f1 π(r(G)) f2) ∈ F , which
concludes the induction step.

(ii) The proof is by contradiction. We assume by contradiction that

BF ′ ∖ BF ≠ ∅ , (6.2)

i.e., there is a formula f ∈ BF ′∖BF . Let f be the shortest formula in BF ′∖BF .

Since {0,1} ∪ U ⊆ BF , then {0,1} ∪ U /⊆ BF ′ ∖ BF , i.e., The formula f is not
a constant or a variable.

Hence, we consider the following four cases:

i. f = (¬g),
ii. f = (g1 + g2),
iii. f = (g1 ⋅ g2),
iv. The formula f is none of the above, i.e., f /∈ {(¬g), (g1 + g2), (g1 ⋅ g2)}.
We consider Case i (Cases ii and iii are proven similarly). We consider two
subcases:

i. If g /∈ BF ′, then the set F ′ △= BF ′ ∖ {f} is in CF ,i.e., the closure property
holds. Since BF ′ = ⋂F∈CF F , it implies that f /∈ BF ′ - a contradiction to
the assumption that f ∈ BF ′ ∖ BF .

ii. Otherwise, if g ∈ BF ′, then g ∈ BF (since otherwise we have a contradic-
tion to the assumption that f is the shortest formula in BF ′∖BF). Hence,
f = (¬g) ∈ BF , a contradiction to the assumption that f ∈ BF ′ ∖ BF .

6.2. TRUTH ASSIGNMENTS 83

We consider case iv and conclude. If f /∈ {(¬g), (g1+g2), (g1 ⋅g2)}, then the setF ′ △= BF ′∖{f} is in CF ,i.e., the closure property holds. Since BF ′ = ⋂F∈CF F ,
it implies that f /∈ BF ′, a contradiction to the assumption that f ∈ BF ′ ∖BF .

In all cases and subcases we arrived at a contradiction, hence BF ′ ∖ BF = ∅,
i.e., BF ′ ⊆ BF , and the lemma follows.

2

3. The binary connective xor is also denoted by ⊕.

4. Some of the connectives have several notations. The following formulas are the
same, i.e. string equality.

(A +B) = (A ∨B) = (A or B) ,
(A ⋅B) = (A ∧B) = (A and B) ,
(¬B) = (not(B)) = (B̄) ,

(A xor B) = (A⊕B) ,
((A ∨C) ∧ (¬B)) = ((A +C) ⋅ (B̄)) .

We sometimes omit parentheses from formulas if their parse tree is obvious. When
parenthesis are omitted, one should use precedence rules as in arithmetic, e.g.,
a ⋅ b + c ⋅ d = ((a ⋅ b) + (c ⋅ d)).

6.2 Truth Assignments

We associate a Boolean function Bc ∶ {0,1}k → {0,1} with each connective c ∈ C of arity
k. In this section we show how each Boolean formula p over a set U of variables defines
a Boolean function Bp ∶ {0,1}∣U ∣ → {0,1}.

To simplify notation we usually use the same notation for a connective and the Boolean
function associated with it. For example, Band is the Boolean function that corresponds
to and, however, we denote the function Band simply by and. The same holds for
the other connectives. The Boolean function associated with negation is not. We also
address the case of constants and variables . The function BX associated with a variable
X is the identity function I ∶ {0,1} → {0,1} defined by I(b) = b. The function Bσ

associated with a constant σ ∈ {0,1} is the constant function whose value is always σ.
Consider a Boolean formula p generated by a parse tree (G,π). We now show how to

evaluate the truth value of p. First, we need to assign truth values to the variables.

Definition 6.6 An assignment is a function τ ∶ U → {0,1}, where U is the set of vari-
ables.

Our goal is to extend every assignment τ ∶ U → {0,1} to a function that assigns truth
values to every Boolean formula over the variables in U .

The extension τ̂ ∶ BF → {0,1} of an assignment τ ∶ U → {0,1} is defined as follows.

84 CHAPTER 6. PROPOSITIONAL LOGIC

Definition 6.7 Let p ∈ BF be a Boolean formula generated by a parse tree (G,π). Then,

τ̂(p) △= EVAL(G,π, τ),
where EVAL is listed as Algorithm 6.2.

Algorithm 6.2 EVAL(G,π, τ) - An algorithm for evaluating the truth value of the
Boolean formula generated by the parse tree (G,π), where (i) G = (V,E) is a rooted
tree with in-degree at most 2, (ii) π ∶ V → {0,1} ∪ U ∪ C, and (iii) τ ∶ U → {0,1} is an
assignment.

1. Base Case: If ∣V ∣ = 1 then

(a) Let v ∈ V be the only node in V .

(b) π(v) is a constant: If π(v) ∈ {0,1} then return (π(v)).
(c) π(v) is a variable: If π(v) ∈ U then return (τ(π(v)).

2. Reduction Rule:

(a) If deg in(r(G)) = 1, then (in this case π(r(G)) = not)

i. Let G1 = (V1,E1) denote the rooted tree hanging from r(G).
ii. Let π1 denote the restriction of π to V1.

iii. σ ← EVAL(G1, π1, τ).
iv. Return (not(σ)).

(b) If deg in(r(G)) = 2, then

i. Let G1 = (V1,E1) and G2 = (V2,E2) denote the rooted subtrees hanging
from r(G).

ii. Let πi denote the restriction of π to Vi.

iii. σ1 ← EVAL(G1, π1, τ).
iv. σ2 ← EVAL(G2, π2, τ).
v. Return (Bπ(r(G))(σ1, σ2)).

Examples

Recall the that we defined BF inductively in Definition 6.5. We rewrite the EVAL
algorithm while considering this inductive definition. The inductive version of the EVAL
algorithm with respect to the set of connectives C △= {+, ⋅,¬} is listed as Algorithm 6.3.

6.2. TRUTH ASSIGNMENTS 85

Algorithm 6.3 EVAL(ϕ, τ) - An algorithm for evaluating the truth value of the Boolean
formula ϕ ∈ BF(U,{+, ⋅,¬}), where τ ∶ U → {0,1} is an assignment.

1. Base Cases:

(a) If ϕ = 0, then return 0.

(b) If ϕ = 1, then return 1.

(c) If ϕ = (X), where X ∈ U then, return τ(X).
2. Reduction Rules:

(a) If ϕ = (¬ψ), where ψ ∈ BF , then

i. σ ← EVAL(ψ, τ).
ii. Return (not(σ)).

(b) If ϕ = (ψ1 +ψ2), where ψi ∈ BF , then

i. σ1 ← EVAL(ψ1, τ).
ii. σ2 ← EVAL(ψ2, τ).
iii. Return (or(σ1, σ2)).

(c) If ϕ = (ψ1 ⋅ ψ2), where ψi ∈ BF , then

i. σ1 ← EVAL(ψ1, τ).
ii. σ2 ← EVAL(ψ2, τ).
iii. Return (and(σ1, σ2)).

86 CHAPTER 6. PROPOSITIONAL LOGIC

6.3 Satisfiability and Logical Equivalence

In the previous section, we fixed a set of variables U and an assignment τ ∶ U → {0,1}. We
then extended τ to every Boolean formula p ∈ BF over the variables U . In this section, we
look at things differently. Namely, we fix a Boolean formula p over a set U of variables,
and consider all possible assignments τ ∶ U → {0,1}.
Definition 6.8 Let p denote a Boolean formula.

1. p is satisfiable if there exists an assignment τ such that τ̂(p) = 1.

2. p is a tautology if τ̂(p) = 1 for every assignment τ .

Definition 6.9 Two formulas p and q are logically equivalent if τ̂(p) = τ̂(q) for every
assignment τ .

Examples

1. Let ϕ
△

= (X ⊕ Y). Show that ϕ is a satisfiable.

Let τ(X) = 1 and τ(Y) = 0, then τ̂(ϕ) = 1. We have shown an assignment τ such
that τ̂(p) = 1, hence ϕ is satisfiable.

2. Let ϕ
△

= (X ∨ ¬X). Show that ϕ is a tautology.

We show that τ̂(ϕ) = 1 for every assignment τ . We do that by enumerating all the
2∣U ∣ assignments and verifying that τ̂(ϕ) = 1 in every one of them. This enumeration
is depicted in Table 6.1. We later interpret Boolean formulas as Boolean functions,
hence Table 6.1 is the, already well known, truth table of that function.

τ(X) not(τ(X)) τ̂(X ∨ ¬X)
0 1 1
1 0 1

Table 6.1: There is one variable, hence the enumeration consists of two assignments.
The first assignment is τ(X) = 0 and the second one is τ(X) = 0. In both rows
τ̂(ϕ) = 1, hence ϕ is a tautology.

3. Let ϕ
△

= (X ⊕ Y), and let ψ
△

= (X̄ ⋅ Y +X ⋅ Ȳ). Show that ϕ and ψ are logically
equivalent.

We show that τ̂(ϕ) = τ̂(ψ) for every assignment τ . We do that by enumerating all
the 2∣U ∣ assignments and verifying that τ̂(ϕ) = τ̂(ψ), in every one of them. This
enumeration is depicted in Table 6.2.

4. We claim that a Boolean formula ϕ is satisfiable if and only if the formula (¬ϕ) is
not a tautology. This claim is summarized in the following lemma.

6.4. INTERPRETING A BOOLEAN FORMULA AS A FUNCTION 87

τ(X) τ(Y) not(τ(X)) not(τ(Y)) and(not(τ(X)), τ(Y)) and(τ(X),not(τ(Y))) τ̂(ϕ) τ̂(ψ)
0 0 1 1 0 0 0 0
1 0 0 1 0 1 1 1
0 1 1 0 1 0 1 1
1 1 0 0 0 0 0 0

Table 6.2: There are two variables, hence the enumeration consists of 22 = 4 assign-
ments. The columns that correspond to τ̂(ϕ) and τ̂(ψ) are identical, hence ϕ and
ψ are equivalent.

Lemma 6.2 Let ϕ ∈ BF , then

ϕ is satisfiable⇔ (¬ϕ) is not a tautology .

Proof: The proof is as follows.

ϕ is satisfiable ⇔ ∃τ ∶ τ̂(ϕ) = 1

⇔ ∃τ ∶ not(τ̂(ϕ)) = 0

⇔ ∃τ ∶ τ̂(¬(ϕ)) = 0

⇔ (¬ϕ) is not a tautology .

The first line follows from Definition 6.8. Note that the ‘∃’ symbol replaces the words
“there exists”. The second line follows from the definition of the not Boolean
function. The third line follows from the definition of the EVAL algorithm (see
Item 2(a)ii in Algorithm 6.3). The last line follows, again, by Definition 6.8 2

6.4 Interpreting a Boolean Formula as a Function

As in the previous section, fix a Boolean formula p over a set U of variables. Assume
that U = {X1, . . . ,Xn}.
Definition 6.10 Given a binary vector v = (v1, . . . , vn) ∈ {0,1}n, the assignment τv ∶{X1, . . . ,Xn} → {0,1} is defined by τv(Xi) △= vi.

The following definition attaches a Boolean function Bϕ to each Boolean formula ϕ.
The input to Bϕ(v) is an assignment represented by a binary vector v. The output of
Bϕ is the truth value of ϕ under the assignment τv.

Definition 6.11 A Boolean formula p over the variables U = {X1, . . . ,Xn} defines the
Boolean function Bp ∶ {0,1}n → {0,1} by

Bp(v1, . . . vn) △= τ̂v(p).
Lemma 6.3 If ϕ = α1 ○ α2 for a binary connective ○, then

∀v ∈ {0,1}n ∶ Bϕ(v) = B○(Bα1
(v),Bα2

(v)).

88 CHAPTER 6. PROPOSITIONAL LOGIC

Proof: The justifications of all the following lines are by the definition of evaluation:

Bϕ(v) = τ̂v(ϕ)
= B○(τ̂v(α1), τ̂v(α2))
= B○(Bα1

(v),Bα2
(v)),

and the lemma follows. 2

Examples

1. Prove that a Boolean formula p is a tautology if and only if the Boolean function
Bp is identically one, i.e., Bp(v) = 1, for every v ∈ {0,1}n.
Proof: The proof is as follows.

p is a tautology ⇔ ∀ τ ∶ τ̂(p) = 1

⇔ ∀ v ∈ {0,1}n ∶ τ̂v(p) = 1

⇔ ∀ v ∈ {0,1}n ∶ Bp(v) = 1 .

Where the first line follows by Definition 6.8. The second line follows by Defini-
tion 6.10. The last line follows by Definition 6.11, as required. 2

2. Prove that a Boolean formula p is satisfiable if and only if the Boolean function Bp

is not identically zero, i.e., there exists a vector v ∈ {0,1}n such that Bp(v) = 1.

Proof: The proof is as follows.

p is a satisfiable ⇔ ∃ τ ∶ τ̂(p) = 1

⇔ ∃ v ∈ {0,1}n ∶ τ̂v(p) = 1

⇔ ∃ v ∈ {0,1}n ∶ Bp(v) = 1 .

Where the first line follows by Definition 6.8. The second line follows by Defini-
tion 6.10. The last line follows by Definition 6.11, as required. 2

3. Prove that two Boolean formulas p and q are logically equivalent if and only if the
Boolean functions Bp and Bq are identical, i.e., Bp(v) = Bq(v), for every v ∈ {0,1}n.
Proof: The proof is as follows.

p and q are logically equivalent ⇔ ∀ τ ∶ τ̂(p) = τ̂(q)
⇔ ∀ v ∈ {0,1}n ∶ τ̂v(p) = τ̂v(q)
⇔ ∀ v ∈ {0,1}n ∶ Bp(v) = Bq(v) .

Where the first line follows by Definition 6.9. The second line follows by Defini-
tion 6.10. The last line follows by Definition 6.11, as required. 2

6.4. INTERPRETING A BOOLEAN FORMULA AS A FUNCTION 89

X Y X → Y

0 0 1
1 0 0
0 1 1
1 1 1

→ 0 1

0 1 1
1 0 1

Table 6.3: The truth table representation and the multiplication table of the implication
connective.

4. The implication connective. The implication connective is denoted by →. The
truth table and multiplication table of B→ ∶ {0,1}2 → {0,1} is depicted in Table 6.3.
To simplify notation, we denote the Boolean function B→ by the connective itself.
Namely, B→(X,Y) is denoted by X → Y . The implication connective is not com-
mutative, namely, (0 → 1) ≠ (1 → 0). This connective is called implication since it
models the natural language templates “Y if X” and “if X then Y ”. For example,
let us consider the sentence “if it is raining, then there are clouds”. This sentence
guarantees clouds if it is raining. If it is not raining, then the sentence trivially
holds (regardless of whether there are clouds or not). This explains why X → Y is
always 1 if X = 0.

5. The connectives nand and nor. The connective nand can be considered as an
abbreviation of not-and. Namely, (p nand q) means (not(p and q)).
Similarly the nor connective is an abbreviation of not-or. Namely, (p nor q)
means (not(p or q)).
The Boolean functions that correspond to these functions are defined as follows.

Bnand(A,B) △

= not(Band(A,B)) ,
Bnor(A,B) △

= not(Bor(A,B)) .
To simplify notation, we denote a Boolean function Bc by its connective c. Thus,

nand(A,B) △

= not(and(A,B)) ,
nor(A,B) △

= not(or(A,B)) .
The truth tables and multiplication tables of Bnand ∶ {0,1}2 → {0,1} and Bnor ∶{0,1}2 → {0,1} are depicted in Table 6.4.

6. The equivalence connective. The equivalence connective is denoted by ↔. The
equivalence connective can be considered as an abbreviation of two implications,
namely,

(p↔ q) abbreviates ((p → q) and (q → p)).
The Boolean function that corresponds to equivalence is defined as follows:

B↔(A,B) △= (A → B) and (B → A) .

90 CHAPTER 6. PROPOSITIONAL LOGIC

X Y X nand Y

0 0 1
1 0 1
0 1 1
1 1 0

X Y X nor Y

0 0 1
1 0 0
0 1 0
1 1 0

nand 0 1

0 1 1
1 1 0

nor 0 1

0 1 0
1 0 0

Table 6.4: The truth table representation and the multiplication table of the nand and
nor connectives.

X Y X ↔ Y

0 0 1
1 0 0
0 1 0
1 1 1

↔ 0 1

0 1 0
1 0 1

Table 6.5: The truth table representation and the multiplication table of the equivalence
connective.

As before we denote B↔(A,B) by (A↔ B).
The truth table and multiplication table of B↔ ∶ {0,1}2 → {0,1} are depicted in
Table 6.5.

Note that,

(A↔ B) = ⎧⎪⎪⎨⎪⎪⎩
1 if A = B

0 if A ≠ B.

7. Prove that two Boolean formulas p and q are logically equivalent if and only if the
formula (p↔ q) is a tautology.

Proof: The proof is as follows.

p and q are logically equivalent ⇔ ∀ τ ∶ τ̂(p) = τ̂(q)
⇔ ∀ v ∈ {0,1}n ∶ τ̂v(p) = τ̂v(q)
⇔ ∀ v ∈ {0,1}n ∶ Bp(v) = Bq(v)
⇔ ∀ v ∈ {0,1}n ∶ B↔(Bp(v),Bq(v)) = 1

⇔ ∀ v ∈ {0,1}n ∶ Bp↔q(v) = 1

⇔ ∀ v ∈ {0,1}n ∶ τ̂v(p↔ q) = 1

⇔ ∀ τ ∶ τ̂(p↔ q) = 1

⇔ (p↔ q) is a tautology .

Where the first line follows by Definition 6.9. The second line follows by Defini-
tion 6.10. The third line follows by Definition 6.11, as required. The fourth line

6.5. SUBSTITUTION 91

or

X Y0

→

not

Figure 6.2: A parse tree that corresponds to the Boolean formula ((X or 0) →(¬Y)). The root is labeled by an implication connective. The rooted trees hanging
from the root are encapsulated by dashed rectangles.

follows by the definition of the Boolean function that corresponds to the equivalence
connective (see Example 6). The fifth line follows from Lemma 6.3. The last line
follows from Example 1. 2

8. Since not all connectives are commutative, the order of the hanging rooted trees is
important, i.e., first subtree and second subtree. Let us set the convention that the
hanging trees are ordered from left to right. The arcs that enter a node in a rooted
tree are ordered. This order must be kept in the inorder traversal of the parse tree.
For example, consider the parse tree depicted in Figure 6.2 and the Boolean formula
that corresponds to it. Set τ(X) = τ(Y) = 0. Hence, evaluating the parse tree from
right to left will output a ’0’, while the opposite order will output a ’1’.

9. A literal is a variable or its negation. For example, in the Boolean formula (X ⋅(Y + X̄)) there are three literals: X,X̄ , and Y .

6.5 Substitution

In this section we use substitution to compose large formulas from smaller ones. For
simplicity, we deal with substitution in formulas over two variables; the generalization
to formulas over any number of variables is straightforward. We consider the following
setting.

Throughout this section, let

1. ϕ ∈ BF({X1,X2},C),
2. α1, α2 ∈ BF(U,C).
3. (Gϕ, πϕ) (respectively (Gαi

, παi
)) denotes the parse tree of ϕ (respectively αi).

Definition 6.12 Substitution of αi in ϕ yields the Boolean formula ϕ(α1, α2) ∈ BF(U,C)
that is generated by the parse tree (G,π) defined as follows. For each leaf of v ∈ Gϕ that
is labeled by a variable Xi, replace the leaf v by a new copy of (Gαi

, παi
).

92 CHAPTER 6. PROPOSITIONAL LOGIC

X2

+

X1

(a) ϕ

0

·

X

(b) α1

Y

not

(c) α2

not

Y0

·

+

X

(d) ϕ(α1, α2)

Figure 6.3: A substitution of α1, α2 ∈ BF({X,Y },{⋅,¬}) in ϕ ∈ BF({X1,X2},{+}) yields
the Boolean formula ϕ(α1, α2) ∈ BF({X,Y },{⋅,+,¬}). The parse trees of ϕ,α1, α2 are
presented in Figures 6.3a, 6.3b, and 6.3c respectively. The parse tree of ϕ(α1, α2) is
depicted in Figures 6.3d. Note that α1, α2 are encapsulated by dashed rectangles in this
“final” parse tree.

Figure 6.3 depicts a formula obtained by substitution.
Substitution can be obtain by applying a simple “find-and-replace”, where each in-

stance of variable Xi is replaced by a copy of the formula αi, for i ∈ {1,2}. One can easily
generalize substitution to formulas ϕ ∈ BF({X1, . . . ,Xk},C) for any k > 2. In this case,
ϕ(α1, . . . , αk) is obtained by replacing every instance of Xi by αi.

The following lemma allows us to treat a formula ϕ as a Boolean function Bϕ. This
enables us to evaluate the truth value after substitution (i.e., τ̂(ϕ(α1, α2))) using Bϕ and
the truth values τ̂(αi).
Lemma 6.4 For every assignment τ ∶ U → {0,1},

τ̂(ϕ(α1, α2)) = Bϕ(τ̂(α1), τ̂(α2)). (6.3)

Proof: The proof is by complete induction on the size of the parse tree (Gϕ, πϕ) of ϕ.
We begin with the induction basis: if Gϕ contains a single node, then it is labeled by a
constant σ ∈ {0,1} or by a variable Xi.

1. If the root vertex is labeled by constant σ, then ϕ(α1, α2) = ϕ = σ. Since τ̂(σ) = σ,
it follows that τ̂(ϕ(α1, α2)) = σ.

On the other hand, the Boolean function Bϕ is the constant function whose value
is always σ. Thus, both sides of Eq. 6.3 are equal in this case.

6.5. SUBSTITUTION 93

2. If the root vertex is labeled by variable Xi, then ϕ(α1, α2) = αi. Hence, the left
hand side equals τ̂(ϕ(α1, α2)) = τ̂(αi). The Boolean function Bϕ(v1, v2) in this case
outputs vi and ignores the other argument. This implies that Bϕ(τ̂(α1), τ̂(α2)) =
τ̂(αi), as required.

We now prove the induction step. Assume that ϕ = ϕ1 ○ ϕ2, where ○ is a binary
connective. (The case that the root of Gϕ is labeled by a negation connective is similar.)
By the induction hypothesis, for i ∈ {1,2},

τ̂(ϕi(α1, α2)) = Bϕi
(τ̂(α1), τ̂(α2)).

Thus we obtain,

τ̂(ϕ(α1, α2)) = B○(τ̂(ϕ1(α1, α2)), τ̂(ϕ2(α1, α2))) (by Alg 6.2)

= B○(Bϕ1
(τ̂(α1), τ̂(α2)),Bϕ2

(τ̂(α1), τ̂(α2))) (induction hypothesis)

= Bϕ(τ̂(α1), τ̂(α2)) (by Lemma 6.3),

and the lemma follows. 2

The next corollary shows that substitution preserves logical equivalence. Let ϕ ∈BF({X1,X2},C), α1, α2 ∈ BF(U,C), and let ϕ̃ ∈ BF({X1,X2}, C̃), and α̃1, α̃2 ∈ BF(U, C̃).
Corollary 6.5 If αi and α̃i are logically equivalent, and ϕ and ϕ̃ are logically equivalent,
then ϕ(α1, α2) and ϕ̃(α̃1, α̃2) are logically equivalent.

Proof: To prove the corollary, we need to prove that, for every vector v ∈ {0,1}∣U ∣, the
following equality holds:

τ̂v(ϕ(α1, α2)) = τ̂v(ϕ̃(α̃1, α̃2)).
Indeed,

τ̂v(ϕ(α1, α2)) = Bϕ(τ̂v(α1), τ̂v(α2)) (by Lemma 6.4)

= Bϕ(τ̂v(α̃1), τ̂v(α̃2)) (since αi and α̃i are logically equivalent)

= Bϕ̃(τ̂v(α̃1), τ̂v(α̃2)) (by Example 3 on page 88)

= τ̂v(ϕ̃(α̃1, α̃2)) (by Lemma 6.4),

and the corollary follows. 2

Examples

1. Recall that in Figure 6.3 substitution was made using parse trees. Substitution can
be applied directly without using a parse tree. Let us consider the Boolean formulas
in Figure 6.3.

ϕ = (X1 +X2) ,
α1 = (X ⋅ 0) ,
α2 = (¬Y) .

94 CHAPTER 6. PROPOSITIONAL LOGIC

We substitute α1 for X1, and α2 for X2, as follows. We apply a simple “find and
replace” procedure, i.e., we replace every symbol X1 in the string ϕ with the string(X ⋅ 0), and every symbol X2 in the string ϕ with the string (¬Y), as follows:

(a) The original formula: ϕ = (X1 +X2).
(b) Replacing X1 with α1 results with the formula: ((X ⋅ 0) +X2).
(c) Replacing X2 with α2 results with the formula: ((X ⋅ 0) + (¬Y)).

Indeed, the parse tree of the formula in the last item is the tree depicted in Fig-
ure 6.3d.

2. Prove that the following Boolean formulas are logically equivalent:� β1
△

= (A → B) → C, and� β2
△

= (Ā +B) → C.

Proof: Let

ϕ
△

=X1 →X2 ,

α1
△

= A → B ,

α2
△

= C ,

α̃1
△

= Ā +B, .

We claim that α1 and α̃1 are logically equivalent(exercise).

Note that,

ϕ(α1, α2) = β1, and

ϕ(α̃1, α2) = β2 .

Corollary 6.5 implies that ϕ(α1, α2) and ϕ(α̃1, α2) are logically equivalent, as re-
quired. 2

6.6 Complete Sets of Connectives

Every Boolean formula can be interpreted as Boolean function. In this section we deal
with the following question: Which sets of connectives enable us to express every Boolean
function?

Definition 6.13 A Boolean function B ∶ {0,1}n → {0,1} is expressible by BF({X1, . . . ,Xn},C)
if there exists a formula p ∈ BF({X1, . . . ,Xn},C) such that B = Bp.

Definition 6.14 A set C of connectives is complete if every Boolean function B ∶ {0,1}n →{0,1} is expressible by BF({X1, . . . ,Xn},C).

6.6. COMPLETE SETS OF CONNECTIVES 95

The proof of the following theorem is by induction on n, the arity of the Boolean
function B ∶ {0,1}n → {0,1}. One of the main observations in the proof is as follows.
Fixing one or more of the inputs of a Boolean function B ∶ {0,1}n → {0,1} defines a
restricted Boolean function. In particular,

B(v1, . . . , vn−1, vn) =
⎧⎪⎪⎨⎪⎪⎩
B(v1, . . . , vn−1,0), if vn = 0,

B(v1, . . . , vn−1,1), if vn = 1.

The induction hypothesis can be used thanks to the ability to split a function over n bits
to two functions over n − 1 bits.

Theorem 6.6 The set C = {¬,and,or} is a complete set of connectives.

Proof: Consider a Boolean function B ∶ {0,1}n → {0,1}. We prove by induction on n

that there exists a Boolean formula p ∈ BF({X1, . . . ,Xn},C) such that Bp = B.
The induction basis, for n = 1 is proved as follows. There are four Boolean functions

with the domain {0,1}. The functions are B(x) = 0, B(x) = 1, the identity function
B(X) = x, and negation B(X) = not(x). The only connective we needed so far is
negation, which is in C.

The induction step for n > 1 is proved as follows. Define the functions g,h ∶ {0,1}n−1 →{0,1} as follows:

g(v1, . . . , vn−1) △= B(v1, . . . , vn−1,0),
h(v1, . . . , vn−1) △= B(v1, . . . , vn−1,1).

By the induction hypothesis, there are formulas q, r ∈ BF({X1, . . . ,Xn−1},C) such
that Bq = g and Br = h.

Define the formula p by

p
△

= (q ⋅ X̄n) + (r ⋅Xn)
The formula p is obtained from the formulas q and r and the connectives not,and,or

that all belong to C. Thus, p ∈ BF({X1, . . . ,Xn},C). To complete the proof we need to
show that Bp = B.

Recall that τv(Xn) = vn. We consider the following two cases.

1. If vn = 1. We first evaluate the subformula (q ⋅ X̄n) as follows:

τ̂v(q ⋅ X̄n) = τ̂v(q) ⋅ τ̂v(X̄n)
= τ̂v(q) ⋅ τ̂v(Xn)
= τ̂v(q) ⋅ 1̄
= τ̂v(q) ⋅ 0
= 0.

96 CHAPTER 6. PROPOSITIONAL LOGIC

We now evaluate the subformula (r ⋅Xn) as follows:

τ̂v(r ⋅Xn) = τ̂v(r) ⋅ τv(Xn)
= τ̂v(r) ⋅ 1
= τ̂v(r).

It follows that the evaluation of p is

τ̂v(p) = τ̂v(q ⋅ X̄n) + τ̂v(r ⋅Xn)
= 0 + τ̂v(r)
= τ̂v(r). (6.4)

Since Br = h and Br is the function induced by r, it follows that

h(v1, . . . , vn−1) = Br(v1, . . . , vn−1) = τ̂v(r).
It follows that

Bp(v1, . . . , vn−1,1) = τ̂v(p) (by definition)

= τ̂v(r) (By Eq.6.4)

= Br(v1, . . . , vn−1) (by definition)

= h(v1, . . . , vn−1) (since Br = h)

= B(v1, . . . , vn−1,1) (by definition).

2. If vn = 0. The evaluation of p gives

τ̂v(p) = τ̂v(q ⋅ X̄n) + τ̂v(r ⋅Xn)
= τ̂v(q). (6.5)

Since Bq = g and Bq is the function induced by q, it follows that

g(v1, . . . , vn−1) = Bq(v1, . . . , vn−1) = τ̂v(q).
It follows that

Bp(v1, . . . , vn−1,0) = τ̂v(p) (by definition)

= τ̂v(q) (By Eq.6.5)

= Bq(v1, . . . , vn−1) (by definition)

= g(v1, . . . , vn−1) (since Bq = g)

= B(v1, . . . , vn−1,0) (by definition).

In both cases we proved that Bp = B, and the theorem follows. 2

See Example 2 for an example of the following theorem.

Theorem 6.7 If the Boolean functions in {not,and,or} are expressible by formulas inBF({X1,X2}, C̃), then C̃ is a complete set of connectives.

6.6. COMPLETE SETS OF CONNECTIVES 97

Proof: By Theorem 6.6, every Boolean function B ∶ {0,1}n → {0,1} is expressible by a
Boolean formula β ∈ BF({X1, . . . ,Xn},C), where C = {not,and,or}. This means that
it suffices to prove that, for every Boolean formula β ∈ BF({X1, . . . ,Xn},C), there exists
a logically equivalent formula β̃ ∈ BF({X1, . . . ,Xn}, C̃).

We prove this statement by induction on the size of the parse tree (Gβ , πβ) that
generates β. The induction basis in case β is constant or a variable is trivial by setting
β̃ = β.

We now prove the induction step for Gβ that contains more than one vertex. Let
○ ∈ C denote the label of the root of Gβ. Since ○ is expressible by BF({X1,X2}, C̃), let
ϕ̃(X1,X2) denote a formula in BF({X1,X2}, C̃) that is logically equivalent to (X1 ○X2).

Let α1 and α2 denote the two subformulas of β, namely, β = (α1 ○ α2). By the
induction hypothesis, there exist formulas α̃1, α̃2 ∈ BF({X1, . . . ,Xn}, C̃) such that αi and
α̃i are logically equivalent.

By Coro. 6.5, the formulas (α1 ○ α2) and ϕ̃(α̃1, α̃2) are logically equivalent. Set β̃ =
ϕ̃(α̃1, α̃2). Since β̃ ∈ BF({X1, . . . ,Xn}, C̃), the theorem follows. 2

Examples

1. In this example we clarify some of the notations given in this chapter, in particular
τ(ϕ), τ̂(ϕ), τv(ϕ), τ̂v(ϕ). A formula ϕ ∈ BF(U,C) is a string, i.e., a sequence of
characters. The way we give it a “meaning”, i.e., semantics, is as follows. First, we
consider a truth assignment τ ∶ U → {0,1} to the variables of the formula ϕ. Since
we are interested in the meaning of the formula, we extended the assignment τ to
τ̂ ∶ BF → {0,1}. The extension is based on the EVAL algorithm (see Algorithm 6.2).
Note that τ̂(Xi) = τ(Xi) for every Xi ∈ U (otherwise it would not be a valid
extension).

Every assignment τ can be specified by a binary vector v. We define the assignment
τv, defined as follows. Given a binary vector v ∈ {0,1}n, define τv(Xi) △= vi. The ex-
tension of τv to Boolean formulas BF is done, as before, using the EVAL algorithm.
Again, given a vector v we can evaluate the truth value of ϕ. Note that there is a
one-to-one and onto mapping between the set of assignments over n variables and
the set {0,1}n.

2. Let C = {and,xor}. We wish to find a formula β̃ ∈ BF({X,Y,Z},C) that is
logically equivalent to the formula

β
△

= (X ⋅ Y) +Z.
First, we find a formula ϕ̃ ∈ BF({X1,X2},C) that is logically equivalent to (X1+X2).
It is easy to verify that ϕ̃ defined as follows is logically equivalent to (X1 +X2).

ϕ̃
△

=X1 ⊕X2 ⊕ (X1 ⋅X2).
We parse the formula β so that β = α1 +α2, where

α1
△

= (X ⋅ Y) α2
△

= Z.

98 CHAPTER 6. PROPOSITIONAL LOGIC

Note that in this example, αi ∈ BF({X,Y,Z},C), thus we need not “translate”
these subformulas.

We apply substitution to define β̃
△

= ϕ̃(α1, α2), thus

β̃
△

= ϕ̃(α1, α2)
= α1 ⊕ α2 ⊕ (α1 ⋅ α2)
= (X ⋅ Y)⊕Z ⊕ ((X ⋅ Y) ⋅Z)

It is left to verify that indeed, ϕ̃(α1, α2) is logically equivalent to β.

3. The formulas (X + 0), and (X ⋅ 1) are logically equivalent to the formula X.

6.7 Important Tautologies

In this section we present a short list of important tautologies. Each of these tautologies
can be validated by exhaustive testing of all possible assignments. We leave the proofs
as an exercise.

Theorem 6.8 The following Boolean formulas are tautologies.

1. law of excluded middle: X + X̄

2. double negation: X ↔ (¬¬X)
3. modus ponens: (((X → Y) ⋅X) → Y)
4. contrapositive: (X → Y) ↔ (Ȳ → X̄)
5. material implication: (X → Y) ↔ (X̄ + Y).
6. distribution: X ⋅ (Y +Z) ↔ (X ⋅ Y +X ⋅Z).
The following lemma enables us to create a “new” tautology from an “old” one. Let

ϕ ∈ BF({X1,X2},C) and α1, α2 ∈ BF(U,C).
Lemma 6.9 If a Boolean formula ϕ is a tautology, then ϕ(α1, α2) is a tautology.

Proof: To prove that ϕ(α1, α2) is a tautology, all we need to prove is that, for every
assignment τ ∶ U → {0,1}, the following equality holds:

τ̂(ϕ(α1, α2)) = 1 .

Indeed,

τ̂(ϕ(α1, α2)) = Bϕ(τ̂(α1), τ̂(α2)) (by Lemma 6.4)

= 1 (since ϕ is a tautology, and Example 1 on page 88) ,

and the lemma follows. 2

6.7. IMPORTANT TAUTOLOGIES 99

v1 v2 τ̂v(X + Y) τ̂v(ϕ1)
0 0 0 1
1 0 1 1
0 1 1 1
1 1 1 1

v1 v2 τ̂v(X ⋅ Y) τ̂v(ϕ2)
0 0 0 1
1 0 0 1
0 1 0 1
1 1 1 1

Table 6.6: The truth tables of the addition and the simplification tautologies.

v1 τ̂v(¬X → 0) τ̂v(ϕ3)
0 0 1
1 1 1

Table 6.7: The truth table of the “proof by contradiction” tautology.

Examples

1. Prove that the following formulas are tautologies: (i) addition: ϕ1
△

= (X → (X+Y)),
and (ii) simplification: ϕ2

△

= ((X ⋅ Y) → X).
Proof: We prove this claim by truth tables. Table 6.6 depicts the tables of both
formulas. Note that the column that represents τ̂v(ϕi) is all ones.

2

2. Proof by contradiction. Prove that the following formula is a tautology:

ϕ3
△

= ((¬X → 0) → X) .
Proof: We prove this claim by truth tables. Table 6.7 depicts the table of the
formula. Note that the column that represents τ̂v(ϕ3) is all ones.

2

3. Prove that the following formula is a tautology:

ϕ4
△

= (((A ∧ ¬B) → 0) → (A→ B)) .
Proof: As in the two previous examples, one can prove that ϕ4 is a tautology
using truth tables. Instead, we prove that ϕ4 is a tautology by using substitution,
as follows.

Let

ψ
△

= ((X1 → 0) → X2) ,
α1

△

= ¬(A → B) ,
α2

△

= A→ B ,

α̃1
△

= A ∧ ¬B .

100 CHAPTER 6. PROPOSITIONAL LOGIC

The formulas α1 and α̃1 are logically equivalent. Corollary 6.5 implies that ψ(α1, α2)
is logically equivalent to ψ(α̃1, α2). Note that ϕ4 = ψ(α̃1, α2), hence it suffices to
prove that ψ(α1, α2) is a tautology. Note that

ψ(α1, α2) = ((¬(A → B) → 0) → (A → B))
= ϕ3(A → B) ,

Indeed, Example 2 and Lemma 6.9 imply that ϕ3(A→ B) = ψ(α1, α2) is a tautology,
as required. 2

We have already applied this tautology, while proving by contradiction that “A
implies B”. The proof scheme is as follows: (1) Add the assumption ¬B, (2) derive
a contradiction , i.e., 0, (3) hence, by tautology ϕ4, the statement “A implies B” is
correct.

4. Suppose we are given a (very) long Boolean formula ϕ with “lots” of variables.
Sometimes, if we are very lucky, we can decide if it is a tautology without working
hard. Lemma 6.9 implies that all we need is to recognize whether the formula ϕ

is obtained by a substitution of subformulas instead of the variables in a tautology
ψ. This means that a tautology (and formulas in general) can be regarded as
“template” waiting for substitution. In this case ψ is the template, and ϕ is an
“instance” obtained by applying substitution.

6.8 De Morgan’s Laws

In this section we show how to simplify a Boolean formula so that negations are only
applied to variables. This technique is based on two tautologies called De Morgan’s Laws.

Theorem 6.10 (De Morgan’s Laws) The following two Boolean formulas are tautolo-
gies:

1. (¬(X + Y)) ↔ (X̄ ⋅ Ȳ).
2. (¬(X ⋅ Y)) ↔ (X̄ + Ȳ).
We use De Morgan’s laws to compute the dual of Boolean formula. In Algorithm 6.4

a listing of DM(ϕ) is presented. The algorithm is recursive and uses the inductive
definition of a Boolean formula (see Definition 6.5).

The idea of a De Morgan dual is that, given a Boolean formula ϕ ∈ BF(U,{¬,∨,∧}),
the De Morgan dual is obtained by the following simultaneous replacements: replace each
instance of a ∧ by a ∨, each instance of a ∨ by a ∧, a 0 by a 1, a 1 by a 0, a X̄i by Xi,
and an Xi by a X̄i. Note that these replacements can be either applied to the labels in
the parse tree of ϕ or directly to the “characters” of the string ϕ.

The following theorem states that the De Morgan dual formula is logically equivalent
to the negated formula.

Theorem 6.11 For every Boolean formula ϕ, DM(ϕ) is logically equivalent to (¬ϕ).

6.8. DE MORGAN’S LAWS 101

Algorithm 6.4 DM(ϕ) - An algorithm for evaluating the De Morgan dual of a Boolean
formula ϕ ∈ BF({X1, . . . ,Xn},{¬,or,and}).

1. Base Cases: (parse tree of size 1 or 2)

(a) If ϕ = 0, then return 1.

(b) If ϕ = 1, then return 0.

(c) If ϕ =Xi, then return (¬Xi).
(d) If ϕ = (¬0), then return 0.

(e) If ϕ = (¬1), then return 1.

(f) If ϕ = (¬Xi), then return Xi.

2. Reduction Rules: (parse tree of size at least 3)

(a) If ϕ = (¬ϕ1), then return (¬DM(ϕ1)).
(b) If ϕ = (ϕ1 ⋅ ϕ2), then return (DM(ϕ1) +DM(ϕ2)).
(c) If ϕ = (ϕ1 + ϕ2), then return (DM(ϕ1) ⋅DM(ϕ2)).

Proof: The proof is by complete induction on the length of ϕ (i.e., number of vertices
in the parse tree of ϕ). The induction basis, for a parse tree consisting of a single node or
two nodes is immediate because of the base cases. We now proceed to prove the induction
step. We consider three cases:

1. ϕ = (¬ϕ1). In this case, DM(ϕ) = (¬DM(ϕ1)). By the induction hypothesis,
DM(ϕ1) is logically equivalent to ¬ϕ1. By substitution (i.e., Coro. 6.5), DM(ϕ) is
logically equivalent to (¬(¬ϕ1)). Thus, DM(ϕ) is logically equivalent to (¬ϕ), as
required.

2. ϕ = ϕ1⋅ϕ2. In this case, DM(ϕ) = (DM(ϕ1)+DM(ϕ2)). By the induction hypothesis,
DM(ϕi) is logically equivalent to ¬ϕi. By substitution (i.e., Coro. 6.5), DM(ϕ) is
logically equivalent to ((¬ϕ1) + (¬ϕ2)). By De Morgan’s Law, Lemma 6.9 and
Example 7 on page 90, ((¬ϕ1)+ (¬ϕ2)) is logically equivalent to (¬ϕ), as required.

3. ϕ = ϕ1 +ϕ2. The proof of this case is similar to the previous case.

2

Corollary 6.12 For every Boolean formula ϕ, DM(DM(ϕ)) is logically equivalent to
ϕ.

6.8.1 Negation Normal Form

A formula is in negation normal form if negation is applied only directly to variables.

102 CHAPTER 6. PROPOSITIONAL LOGIC

Definition 6.15 A Boolean formula ϕ ∈ BF({X1, . . . ,Xn},{¬,or,and}) is in negation
normal form if the parse tree (G,π) of ϕ satisfies the following condition. If a vertex in
G is labeled by negation (i.e., π(v) = ¬), then v is a parent of a leaf labeled by a variable.

For example, the formula (¬X) ⋅ (¬Y) is in negation normal form. However, the
formulas (¬0), ¬(A ⋅B), not(not(X)) are not in negation normal form.

Lemma 6.13 If ϕ is in negation normal form, then so is DM(ϕ).
Proof: The proof is by induction on the length of ϕ. The base cases deal with parse
trees with one or two vertices. In the induction step, note that the case ϕ = ¬ϕ1 cannot
occur. Indeed, ϕ = ¬ϕ1 where the length of ϕ is at least 3, implies that ϕ is not in
negation normal form, a contradiction. Thus, we are left only with the two cases in
which ϕ = ϕ1 ⋅ ϕ2 and ϕ = ϕ1 + ϕ2, the proof of which is straightforward. 2

In this section we present an algorithm that transforms a Boolean formula into a
logically equivalent formula in negation normal form. The algorithm NNF (ϕ) is listed
as Algorithm 6.5.

Algorithm 6.5 NNF(ϕ) - An algorithm for computing the negation normal form of a
Boolean formula ϕ ∈ BF({X1, . . . ,Xn},{¬,or,and}).

1. Base Cases: (parse tree of size 1 or 2)

(a) If ϕ ∈ {0,1,Xi, (¬Xi)}, then return ϕ.

(b) If ϕ = (¬0), then return 1.

(c) If ϕ = (¬1), then return 0.

2. Reduction Rules: (parse tree of size at least 3)

(a) If ϕ = (¬ϕ1), then return DM(NNF(ϕ1)).
(b) If ϕ = (ϕ1 ⋅ ϕ2), then return (NNF(ϕ1) ⋅NNF(ϕ2)).
(c) If ϕ = (ϕ1 + ϕ2), then return (NNF(ϕ1) +NNF(ϕ2)).

Theorem 6.14 Let ϕ ∈ BF({X1, . . . ,Xn},{¬,or,and}). Then, NNF (ϕ) is logically
equivalent to ϕ and in negation normal form.

Proof: The proof is by induction on the length of ϕ. The base cases deal with parse
trees with one or two vertices. We proceed to prove the induction step. The cases
that the root of the parse tree of ϕ is in {⋅,+} is standard. We focus on the case that
ϕ = (¬ϕ1). Since ϕ1 is shorter than ϕ, the induction hypothesis implies that ψ

△

= NNF(ϕ1)
is logically equivalent to ϕ1 and in negation normal form. Hence, by Lemma 6.13, DM(ψ)
is in negation normal form. By Theorem 6.11, DM(ψ) is logically equivalent to ¬ψ. This
implies that DM(ψ) is logically equivalent to ϕ, as required. 2

6.8. DE MORGAN’S LAWS 103

Examples

1. We show an execution of the DM(ϕ) algorithm on the input ϕ = (X ⋅ Y). The
execution is as follows.

(a) Since ϕ is not one of the base cases, we proceed to the reduction rules.

(b) Since ϕ is of the form (ϕ1 ⋅ϕ2), we apply the first reduction rule, i.e., ϕ1 = X,
ϕ2 = Y , and DM(ϕ) returns (DM(X) +DM(Y)).

i. Since X (and Y) matches the third base case, both recursive calls return(¬X), and (¬Y) respectively.

(c) Thus, DM(ϕ) returns ((¬X) + (¬Y)).
2. Prove that DM(ϕ) ∈ BF .

Proof: We prove that the string DM(ϕ) is defined by a parse tree (F,π).
The proof is by complete induction on the size of the parse tree (G,π) of the Boolean
formula ϕ.

The induction basis for a parse tree G consisting of a one or two nodes is immediate
because of the four base cases. We now proceed to prove the induction step. We
consider three cases:

(a) ϕ = (¬ϕ1). In this case, DM(ϕ) = (¬DM(ϕ1)). By the induction hypothesis,
DM(ϕ1) ∈ BF . Hence, F is simply the parse tree of DM(ϕ1) hanging from a
new root labeled by the not connective.

(b) ϕ = ϕ1 ⋅ ϕ2. In this case, DM(ϕ) = (DM(ϕ1) + DM(ϕ2)). By the induction
hypothesis, DM(ϕi) ∈ BF . Hence, F is simply constructed by the parse trees
of DM(ϕi) hanging from a new root labeled by the or connective.

(c) ϕ = ϕ1 + ϕ2. The proof of this case is similar to the previous case.

2

3. Recall that the De-Morgan’s law states that for sets A,B,

U ∖ (A ∪B) = Ā ∩ B̄ .

We depicted this law using Venn diagrams in Example 29 on page 10. We now
prove this law, formally, using propositional logic.

Proof: We need to show: (a) U ∖ (A ∪B) ⊆ Ā ∩ B̄, and (b) Ā ∩ B̄ ⊆ U ∖ (A ∪B).
(a) To prove U ∖ (A∪B) ⊆ Ā∩ B̄ we need to show that every x ∈ U ∖ (A∪B) is also

104 CHAPTER 6. PROPOSITIONAL LOGIC

x ∈ Ā ∩ B̄.

x ∈ U ∖ (A ∪B) ⇒ x ∈ U and x /∈ (A ∪B)
⇒ x ∈ U and not(x ∈ A or x ∈ B)
⇒ x ∈ U and (x /∈ A and x /∈ B)
⇒ x ∈ U and (x ∈ Ā and x ∈ B̄)
⇒ x ∈ U and x ∈ (Ā ∩ B̄)
⇒ x ∈ Ā ∩ B̄ .

Where the first line follows from the definition of the difference of sets A and B.
The second line follows from the definition of the union of sets A and B. Let X = 1
iff x ∈ A, and let Y = 1 iff x ∈ B, then the third line follows from De-Morgan’s law
applied on the formula (¬(X +Y)). The fifth line follows from the definition of the
intersection of sets Ā and B̄. The last line follows since Ā ∩ B̄ ⊆ U .
(b) Ā ∩ B̄ ⊆ U ∖ (A ∪ B): i.e., we need to show that every x ∈ Ā ∩ B̄ is also
x ∈ U ∖ (A ∪ B). The same proof holds since each implication holds also in the
reverse direction. 2

4. Prove that the following Boolean formulas are logically equivalent:� β2
△

= (Ā +B) → C, and� β3
△

= (A ⋅ B̄) +C.

Proof: Let

ϕ
△

=X1 →X2 ,

ϕ̃
△

= ¬X1 +X2 ,

α1
△

= Ā +B ,

α2
△

= C ,

α̃1
△

= ¬(A ⋅ B̄) .
Theorem 6.8 and Example 7 on page 90 imply that ϕ and ϕ̃ are logically equivalent.
We claim that α1 and α̃1 are logically equivalent (exercise).

Note that,

ϕ(α1, α2) = β2 ,

ϕ̃(α̃1, α2) = ¬¬(A ⋅ B̄) +C, and

NNF (ϕ̃(α̃1, α2)) = NNF (¬¬(A ⋅ B̄)) +C = β3 .

Corollary 6.5 implies that ϕ(α1, α2) and ϕ̃(α̃1, α2) are logically equivalent. Theo-
rem 6.14 implies that NNF (ϕ̃(α̃1, α2)) is logically equivalent to ϕ̃(α̃1, α2), hence
ϕ(α1, α2) is logically equivalent to NNF (ϕ̃(α̃1, α2)), as required. 2

6.8. DE MORGAN’S LAWS 105

Problems

6.1 Recall the closure property of a set of strings as formalized in Definition 6.3
on page 81. Also recall that a set of strings F contains the atoms if {0,1} ⊆ F and
U ⊆ F (see Definition 6.4 on page 81). Give an example of a set F that is closed
under the set of connectives C, includes the atoms but, it is not BF(U,C).
6.2 Let ϕ be a formula in BF and let (G,π) be its parse tree. Let G1, . . . ,Gk be

the rooted trees hanging from the root r(G). Assume that π(r(G)) is an associative
connective (but not commutative). Show that G1, . . . ,Gk are parse trees of formulas
ϕ1, . . . , ϕk ∈ BF , such that

(ϕ1 π(r(G)) ϕ2 π(r(G)) ⋯ π(r(G)) ϕk) = ϕ .
6.3 Show that the set of Boolean formulas BF({X,Y },{+, ⋅,¬}) satisfies the clo-

sure property defined in Definition 6.3, i.e., show that the set BF is closed under the
set of connectives {+, ⋅,¬}. Your proof should not rely on the fact that BF ′ = BF .

6.4 Prove that (A→ B) ↔ ((¬A) or B) is a tautology in two ways: (i) show that
the truth table of the Boolean function corresponding to the formula is the truth
table of the constant function, that is ∀A,B ∈ {0,1} ∶ f(A,B) = 1, (ii) show that
the truth tables of (A→ B) and ((¬A) or B) are the same.

6.5 Let ϕ
△

= (X + Y ⋅X). Show that ϕ is a satisfiable.

6.6 Let ϕ
△

= (¬X ∧X). Show that ϕ is a tautology.

6.7 Let ϕ and α be any Boolean formulas.

(a) Consider the Boolean formula ψ
△

= ϕ + not(ϕ). Prove or refute that ψ is a
tautology.

(b) Consider the Boolean formula ψ
△

= (ϕ → α) ↔ (not(ϕ) + α). Prove or refute
that ψ is a tautology.

6.8 Let C = {and,or}. Prove that C is not a complete set of connectives.

6.9 Prove Theorem 6.8.

6.10 Let ϕ
△

= (X ⋅ (Y + Z)), and let ψ
△

= (X ⋅ Y +X ⋅ Z). Prove that ϕ and ψ are
logically equivalent.

6.11 Let p, q, r ∈ BF . Prove that if p is logically equivalent to q, and q is logically
equivalent to r, then p is logically equivalent to r.

106 CHAPTER 6. PROPOSITIONAL LOGIC

6.12 Definition 6.16 Let ϕ ∈ BF , then ϕ is a contradiction if τ̂(ϕ) = 0 for
every assignment τ .

Prove the following claim.

Lemma 6.15

ϕ is a contradiction⇔ (¬ϕ) is a tautology .

6.13 Let L′(ϕ) denote the number of vertices in the parse tree of ϕ that are not
labeled by negation.

Example: L′(A +B + ¬C) = 5.

Prove that L′(DM(ϕ)) = L′(ϕ), for every Boolean formula ϕ ∈ BF(U,{¬,∨,∧}).
6.14 Prove Theorem 6.10.

6.15 Let C = {¬,∨,∧,xor,nxor}. Add the following two reduction rules to Algo-
rithm DM(ϕ):� If ϕ = (ϕ1 xor ϕ2), then return (DM(ϕ1) nxor DM(ϕ2)).� If ϕ = (ϕ1 nxor ϕ2), then return (DM(ϕ1) xor DM(ϕ2)).
Prove that, even after this modification, DM(ϕ) ↔ ¬ϕ is a tautology.

6.16 Let

ϕk
△

=

k times³¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
¬¬ . . .¬X.

That is, in ϕk, the variable X is negated k times.

Run algorithm NNF (ϕk). What is the outcome? Prove your result.

Hint: distinguish between an even k and an odd k.

6.17 Let ϕ
△

= Ā+B, and let ψ
△

= ¬(A⋅B̄). Prove that ϕ and ψ are logically equivalent
in two ways: (i) by using truth tables, (ii) without using truth tables. Hint: apply
the NNF algorithm.

6.18 Let ϕ
△

= (A → B) → C, and let ψ
△

= (A ⋅ B̄) + C. Prove that ϕ and ψ are
logically equivalent in two ways: (i) by using truth tables, (ii) without using truth
tables. Hint: apply the NNF algorithm.

Chapter 7

Asymptotics

Contents
7.1 Order of Growth Rates . 107

7.2 Recurrence Equations . 111

In this chapter we study the rate of growth of positive sequences. We introduce a
formal definition that enables us to say that one sequence does not grow faster than
another sequence. Suppose we have two sequences {xi}∞i=1 and {yi}∞i=1. We could say that
xi does not grow faster than yi if xi ≤ yi, for every i. However, such a restricted definition
is rather limited, as suggested by the following examples:

1. The sequence xi is constant: xi = 1000, for every i, while the sequence yi is defined
by yi = i. Clearly, we would like to say that yi grows faster than xi even though
y100 < x100.

2. The sequences satisfy xi = yi +5 or xi = 2 ⋅ yi, for every i. In this case, we would like
to say that the two sequences grow at the same rate even though xi > yi.

Thus, we are looking for a definition that is insensitive to the values of finite prefixes
of the sequence. In addition, we are looking for a definition that is insensitive to addition
or multiplication by constants. This definition is called the asymptotic behavior of a
sequence.

7.1 Order of Growth Rates

Consider the Fibonacci sequence {g(n)}∞n=0 defined on page 26. The exact value of g(n),
or an analytic equation for g(n) is interesting, but sometimes, all we need to know is how
“fast” does g(n) grow? Does it grow faster than f(n) = n, f(n) = n2, f(n) = 2n? The
following definition captures the notion of “g(n) does not grow faster than f(n)”.

Recall that the set of nonnegative real numbers is denoted by R≥ (see Section 1.1 on
page 7).

107

108 CHAPTER 7. ASYMPTOTICS

Definition 7.1 Let f, g ∶ N→ R≥ denote two functions.

1. We say that g(n) = O(f(n)), if there exist constants c1, c2 ∈ R≥ such that, for every
n ∈ N,

g(n) ≤ c1 ⋅ f(n) + c2.
2. We say that g(n) = Ω(f(n)), if there exist constants c3 ∈ R+, c4 ∈ R≥ such that, for

every n ∈ N,
g(n) ≥ c3 ⋅ f(n) + c4.

3. We say that g(n) = Θ(f(n)), if g(n) = O(f(n)) and g(n) = Ω(f(n)).
These definitions should be interpreted as follows.� If g(n) = O(f(n)), then g(n) does not grow faster than f(n).� If g(n) = Ω(f(n)), then g(n) grows as least as fast as f(n).� If g(n) = Θ(f(n)), then g(n) grows as fast as f(n).
We read:� g(n) = O(f(n)) as “g(n) is big-O of f(n)”,� g(n) = Ω(f(n)) as “g(n) is big-Omega of f(n)”,� g(n) = Θ(f(n)) as “g(n) is big-Theta of f(n)”.

Examples

1. f(n) = O(g(n)) does not imply that g(n) = O(f(n)).
2. The notation f(n) = O(1) means that ∃ c ∀ n ∶ f(n) ≤ c.
3. Let g(n) △= 2 ⋅ n. We claim that g(n) = Θ(n).

Proof: First we show that 2⋅n = O(n). We need to show that there exist constants
c1, c2 ∈ R≥ such that, for every n ∈ N,

2 ⋅ n ≤ c1 ⋅ n + c2 . (7.1)

That is accomplished by setting c1 ← 2 and c2 ← 0.

Now we show that 2 ⋅ n = Ω(n). We need to show that there exist constants c3 ∈
R+, c4 ∈ R≥ such that, for every n ∈ N,

2 ⋅ n ≥ c3 ⋅ n + c4 . (7.2)

That is accomplished, again, by setting c3 ← 2 and c4 ← 0.

We have shown that 2 ⋅n = O(n) and 2 ⋅n = Ω(n), hence 2 ⋅n = Θ(n), and the claim
follows. 2

4. Let g(n) △= n2 + n + 1. We claim that g(n) = O(n2).

7.1. ORDER OF GROWTH RATES 109

Proof: We need to prove that there exist constants c1, c2 ∈ R≥ such that, for every
n ∈ N,

n2
+ n + 1 ≤ c1 ⋅ n

2
+ c2 . (7.3)

Let us find such constant c1 and c2. Since n2 ≥ n for every n ∈ N, then

n2
+ n + 1 ≤ n2

+ n2
+ 1

= 2 ⋅ n2
+ 1 .

Hence, c1 = 2 and c2 = 1. The claim follows since, we found c1, c2 ∈ R such that
Eq. 7.3 holds. 2

5. Let g(n) △= nlog
2
c. We claim that g(n) = Θ(clog2

n).
Proof: We prove the following stronger claim.

nlog2 c = clog2 n . (7.4)

That will conclude the proof, since for every two functions f, g ∶ N → R≥, if f = g
then f(n) = Θ(g(n)) and g(n) = Θ(f(n)) (see Exercise 7.6).

Let us apply the log2 function on the left-hand side and the right-hand side of
Eq. 7.4. We get

log2(nlog2 c) ?
= log2(clog2 n) ⇔

log2 c ⋅ log2 n = log2 n ⋅ log2 c , (7.5)

where the second line follows from the fact that log(ab) = b ⋅ log(a). Since Eq. 7.5
holds with equality, and since the log function is one-to-one, then their arguments
are equal as well, i.e., nlog

2
c = clog2

n, as required. 2

6. Let g(n) △= log3 n. We claim that g(n) = Θ(log2 n)
Proof: Recall that for every a, b, c ∈ R, a, c ≠ 1,

loga b =
logc b

logc a
. (7.6)

Hence, log3 n = log2 n

log2 3
. Since, 3/2 < log2 3 < 8/5 is a constant, then c1 = 2/3, c2 =

0, c3 = 5/8, c4 = 0 satisfy the conditions in Definition 7.1. 2

7. Example 6 shows that when considering the order of growth of log functions with
a constant base, that is logc n and logd n where c, d are constants, we may omit the
base and simply refer the order of growth of these functions as O(logn), Ω(logn)
and Θ(logn).

8. Prove that (i) n = O(n), (ii) n2 ≠ O(n).

110 CHAPTER 7. ASYMPTOTICS

Proof: The first item is trivial, since n ≤ 1 ⋅ n2 + 0, for every n ∈ N.

To prove that g(n) ≠ O(f(n)) we need to show that

∀c1, c2 ∈ R
≥

∃n ∈ N ∶ g(n) > c1 ⋅ f(n) + c2 .
Hence, to prove Item (ii) we set g(n) = n2 and f(n) = n. Let c1, c2 ∈ R≥, it suffices
to find an n ∈ N such that

n2 > max{c1,1} ⋅ n + c2. (7.7)

Indeed, n = ⌈max{c1,1} + c2⌉ satisfies the above inequality. 2

9. Let us consider the following alternative definition of order of growth.

Definition 7.2 Let f, g ∶ N→ R≥ denote two functions.

(a) We say that g(n) = O(f(n)), if there exist constants c ∈ R≥ and N ∈ N, such
that, n ∈ N,

∀n > N ∶ g(n) ≤ c ⋅ f(n) .
(b) We say that g(n) = Ω(f(n)), if there exist constants d ∈ R≥ and N ∈ N, such

that,
∀n > N ∶ g(n) ≥ d ⋅ f(n) .

(c) We say that g(n) = Θ(f(n)), if g(n) = O(f(n)) and g(n) = Ω(f(n)).
Prove that Definitions 7.1 and 7.2 are equivalent if f(n) ≥ 1, g(n) ≥ 1 for every n.

Proof: We show equivalence with respect to Item (a). A similar proof shows the
equivalence of Item (b) of both definitions. Item (c) is the same in both definitions.

We need to show that for every f, g ∶ N→ R≥: (i) if g(n) = O(f(n)) by Definition 7.1,
then g(n) = O(f(n)) by Definition 7.2, and (ii) if g(n) = O(f(n)) by Definition 7.2,
then g(n) = O(f(n)) by Definition 7.1.

Let f, g ∶ N → R≥ such that g(n) = O(f(n)) by Definition 7.1 Hence, there exist
constants c1, c2 ∈ R≥ such that, for every n ∈ N,

g(n) ≤ c1 ⋅ f(n) + c2.
Since f(n) ≥ 1, then

g(n) ≤ c1 ⋅ f(n) + c2 ⋅ f(n)
= (c1 + c2) ⋅ f(n) .

Hence, g(n) = O(f(n)) by Definition 7.2 with c
△

= (c1 + c2) and N
△

= 0.

7.2. RECURRENCE EQUATIONS 111

We now prove the second direction, let f, g ∶ N → R≥ such that g(n) = O(f(n)) by
Definition 7.2. Hence, there exist constants c ∈ R≥ and N ∈ N, such that,

∀n > N ∶ g(n) ≤ c ⋅ f(n) .
Let c1

△

= c and c2
△

= max0≤n≤N{g(n)}, then

∀n ∈ N ∶ g(n) ≤ c1 ⋅ f(n) + c2 .
We showed that both directions hold, as required. 2

10. Consider two functions f, g ∶ N → R≥. Let

h(n) △= ⎧⎪⎪⎨⎪⎪⎩
g(n) if n ≤ n1

f(n) if n > n1

Prove that h(n) = Θ(f(n)).
Proof: The lemma follows from Definition 7.2, by plugging c

△

= 1, d
△

= 1, and
N

△

= n1. 2

11. Exercise 10 implies that we can consider the order of growth of functions whose
domain is N∖ {n0, n0 + 1, . . . , n1}. We simply extend the function arbitrarily in the
range {n0, n0 + 1, . . . , n1}, and apply Definition 7.2.

12. Prove that log2 n + log2(log2 n) = Θ(logn).
Proof: We prove that log2 n + log2(log2 n) = O(logn) using Definition 7.2. The
other direction is similar. Since, log2 n + log2(log2 n) ≤ 2 ⋅ log2 n for every n > 2, it
follows that log2 n + log2(log2 n) = O(logn), as required. 2

13. Recall that in Lemma 2.6 we proved that the Fibonacci sequence g(n) is bounded
by ϕn−1. This implies that g(n) = O(ϕn).

7.2 Recurrence Equations

In this section we deal with the problem of solving or bounding the rate of growth of
functions f ∶ N+ → R that are defined recursively. We consider the typical cases that we
will encounter later.

Recurrence 1. Consider the recurrence

f(n) △= ⎧⎪⎪⎨⎪⎪⎩
1 if n = 1

n + f (⌊n
2
⌋) if n > 1.

(7.8)

Lemma 7.1 The rate of growth of the function f(n) defined in Eq. 7.8 is Θ(n).

112 CHAPTER 7. ASYMPTOTICS

Proof: Clearly, f(n) > 0, for every n, therefore, by the definition of f(n) we obtain

f(n) = n + f (⌊n
2
⌋) > n.

Thus we proved that f(n) = Ω(n).
The proof that f(n) = O(n) is divided into two parts. First, we deal with powers of

2 to get an intuition of the constant we need. In the second part, we use this intuition
to prove the bounds.

We claim that f(2k) = 2k+1 − 1. The proof is by induction on k ∈ N. The induction
basis for k = 0 holds by the definition of f(1). The induction step is proved as follows:

f(2k+1) = 2k+1 + f(2k) (by definition)

= 2k+1 + 2k+1 − 1 (induction hypothesis)

= 2k+2 − 1.

This part gives us the intuition that f(n) < 2n.

We now claim that f(n) < 2n. The proof is by complete induction on n. The induction
basis for n = 1 is immediate. The induction step is proved as follows:

f(n) = n + f (⌊n
2
⌋)

< n + 2 ⋅ (n
2
) = 2n.

2

In the following lemma we show that, under reasonable conditions, it suffices to con-
sider powers of two when bounding the rate of growth.

Lemma 7.2 Assume that:

1. The functions f(n) and g(n) are both monotonically nondecreasing.

2. The constant ρ satisfies, for every k ∈ N,

ρ ≥
g(2k+1)
g(2k) .

If f(2k) = O(g(2k)), then f(n) = O(g(n)).
Proof: Since f(2k) = O(g(2k)) Let c denote a constant such that for every k > K it
holds that f(2k) ≤ c ⋅ g(2k). We claim that, for every n > 2K ,

f(n) ≤ ρ ⋅ c ⋅ g(n).

7.2. RECURRENCE EQUATIONS 113

Indeed, let 2k ≤ n < 2k+1. Then,

f(n) ≤ f(2k+1) (since f is monotone)

≤ c ⋅ g(2k+1)
=
g(2k+1)
g(2k) ⋅ c ⋅ g(2k)

≤ ρ ⋅ c ⋅ g(n). (by definition of ρ and since g is monotone)

Thus we obtain that f(n) = O(g(n)), as required. 2

An analogous lemma that states that f(n) = Ω(g(n)) can be proved if g(2k+1)
g(2k) ≥ ρ, for

a constant ρ The lemma is as follows.

Lemma 7.3 Assume that:

1. The functions f(n) and g(n) are both monotonically nondecreasing.

2. The constant ρ satisfies, for every k ∈ N,

ρ ≤
g(2k+1)
g(2k) .

If f(2k) = Ω(g(2k)), then f(n) = Ω(g(n)).
We leave the proof of Lemma 7.3 as an exercise.

Recurrence 2. Consider the recurrence

f(n) △= ⎧⎪⎪⎨⎪⎪⎩
1 if n = 1

n + 2 ⋅ f(⌊n
2
⌋) if n > 1.

(7.9)

Lemma 7.4 The rate of growth of the function f(n) defined in Eq. 7.9 is Θ(n logn).
Proof: The proof proceeds as follows. We deal with powers of 2 and then apply
Lemma 7.2 and Lemma 7.3.

We claim that f(2k) = 2k ⋅ (k + 1). The proof is by induction on k ∈ N. The induction
basis for k = 0 holds by the definition of f(1). The induction step is proved as follows:

f(2k+1) = 2k+1 + 2 ⋅ f(2k) (by definition)

= 2k+1 + 2 ⋅ 2k ⋅ (k + 1) (induction hypothesis)

= 2k+1 ⋅ (k + 2).
We have proved that for n = 2k, where k ∈ N, recurrence 7.9 satisfies that f(n) = n ⋅(log(n) + 1) = Θ(n logn).

114 CHAPTER 7. ASYMPTOTICS

To complete the proof we need to apply Lemma 7.2 and Lemma 7.3. First, the
functions, f(n) and g(n) = n ⋅(log(n)+1) are both monotonically nondecreasing. Second,

in order to apply Lemma 7.2 and Lemma 7.3, we also need to prove that ρ1 ≤
2k+1

⋅(k+2)
2k ⋅(k+1) ≤ ρ2,

such that ρ1, ρ2 = O(1) for every k ∈ N. Indeed,

2k+1 ⋅ (k + 2)
2k ⋅ (k + 1) =

2 ⋅ (k + 2)(k + 1)
=

2 ⋅ (k + 1) + 2(k + 1)
= 2 +

2(k + 1) ≤ 4, for every k ∈ N .

Obviously, 2 + 2
(k+1) ≥ 2, for every k ∈ N. The lemma follows. 2

Recurrence 3. Consider the recurrence

f(n) △= ⎧⎪⎪⎨⎪⎪⎩
1 if n = 1

n + 3 ⋅ f(⌊n
2
⌋) if n > 1.

(7.10)

Lemma 7.5 The rate of growth of the function f(n) defined in Eq. 7.10 is Θ(nlog2 3).
Proof: The proceeds as follows. We deal with powers of 2 and then apply Lemma 7.2
and Lemma 7.3.

We claim that f(2k) = 3 ⋅3k−2 ⋅2k. The proof is by induction on k ∈ N. The induction
basis for k = 0 holds by the definition of f(1). The induction step is proved as follows:

f(2k+1) = 2k+1 + 3 ⋅ f(2k) (by definition)

= 2k+1 + 3 ⋅ (3 ⋅ 3k − 2 ⋅ 2k) (induction hypothesis)

= 3 ⋅ 3k+1 − 2 ⋅ 2k+1.

We have proved that for n = 2k, where k ∈ N, recurrence 7.10 satisfies f(n) = 3⋅3log2 n−2⋅n =
Θ(nlog2 3).

To complete the proof we need to apply Lemma 7.2 and Lemma 7.3. First, the
functions, f(n) and g(n) = nlog2 3 are both monotonically nondecreasing. Second, in
order to apply Lemmas 7.2 and Lemma 7.3, we also need to find constants ρ1, ρ2 such

that ρ1 ≤
g(2k+1)
g(2k) ≤ ρ2, for every k ∈ N. Indeed,

2(k+1)⋅log2 3

2k⋅log2 3
=

3k+1

3k

= 3 .

The lemma follows. 2

7.2. RECURRENCE EQUATIONS 115

Examples

1. Consider the recurrence

f(n) △= ⎧⎪⎪⎨⎪⎪⎩
c if n = 1

a ⋅ n + b + f(⌊n
2
⌋) if n > 1,

(7.11)

where a, b, c are constants.

Lemma 7.6 The rate of growth of the function f(n) defined in Eq. 7.11 is Θ(n).
Proof: The proceeds as follows. We deal with powers of 2 and then apply
Lemma 7.2 and Lemma 7.3.

We claim that f(2k) = 2a ⋅ 2k + b ⋅ k + c − 2a. The proof is by induction on k ∈ N.
The induction basis for k = 0 holds by the definition of f(1). The induction step is
proved as follows:

f(2k+1) = a ⋅ 2k+1 + b + f(2k) (by definition)

= a ⋅ 2k+1 + b + (2a ⋅ 2k + b ⋅ k + c − 2a) (induction hypothesis)

= 2a ⋅ 2k+1 + b ⋅ (k + 1) + c − 2a.

We have proved that for n = 2k, where k ∈ N, recurrence 7.11 satisfies f(n) =
2a ⋅ n + b ⋅ log2 n + c − 2a = Θ(n).
To complete the proof we need to apply Lemma 7.2 and Lemma 7.3. First, the
functions, f(n) and g(n) = n are both monotonically nondecreasing. Second, in
order to apply Lemma 7.2 and Lemma 7.3, we also need to prove that there exist

constants ρ1, ρ2 such that ρ1 ≤
g(2k+1)
g(2k) ≤ ρ2, for every k ∈ N. Indeed,

2(k+1)

2k
=

2k+1

2k

= 2 .

The lemma follows. 2

2. Consider the recurrence

f(n) △= ⎧⎪⎪⎨⎪⎪⎩
c if n = 1

a ⋅ n + b + 2 ⋅ f(⌊n
2
⌋) if n > 1,

(7.12)

where a, b, c = O(1).
Lemma 7.7 The rate of growth of the function f(n) defined in Eq. 7.12 is Θ(n logn).

116 CHAPTER 7. ASYMPTOTICS

Proof: The proceeds as follows. We deal with powers of 2 and then apply
Lemma 7.2 and Lemma 7.3.

We claim that f(2k) = a ⋅ k2k + (b + c) ⋅ 2k − b. The proof is by induction on k ∈ N.
The induction basis for k = 0 holds by the definition of f(1). The induction step is
proved as follows:

f(2k+1) = a ⋅ 2k+1 + b + 2 ⋅ f(2k) (by definition)

= a ⋅ 2k+1 + b + 2 ⋅ (a ⋅ k2k + (b + c) ⋅ 2k − b) (induction hypothesis)

= a ⋅ (k + 1)2k+1 + (b + c) ⋅ 2k+1 − b.
We have proved that for n = 2k, where k ∈ N, recurrence 7.11 satisfies that f(n) =
a ⋅ n log2 n + (b + c) ⋅ n − b = Θ(n ⋅ [log(n) + 1])) = Θ(n logn).
To complete the proof we need to apply Lemma 7.2 and Lemma 7.3. First, the
functions, f(n) and g(n) = n ⋅ (log(n) + 1) are both monotonically nondecreasing.
Second, in order to apply Lemma 7.2 and Lemma 7.3, we also need to prove that

there exist constants ρ1, ρ2 such thatρ1 ≤
g(2k+1)
g(2k) ≤ ρ2, for every k ∈ N. Indeed,

2k+1 ⋅ (k + 2)
2k ⋅ (k + 1) =

2 ⋅ (k + 2)(k + 1)
=

2 ⋅ (k + 1) + 2(k + 1)
= 2 +

2(k + 1) ≤ 4, for every k ∈ N .

Obviously, 2 + 2
(k+1) ≥ 2, for every k ∈ N. The lemma follows. 2

3. Consider the recurrence

F (k) △= ⎧⎪⎪⎨⎪⎪⎩
1 if k = 0

2k + 2 ⋅F (k − 1) if k > 0,
(7.13)

Lemma 7.8 F (k) = (k + 1) ⋅ 2k.
Proof: One may repeat the same technique as in the last examples. Instead, we
reduce the recurrence to one that we already solved. Define f(n) △= F (⌈log2 n⌉).
Observe that f(2x) △= F (x). The function f satisfies the recurrence

f(2k) = 2k + 2 ⋅ f(2k/2).
Hence, for powers of two, the function f satisfies the recurrence in Eq. 7.9. In
Lemma 7.4 we proved that f(2k) = (k+1) ⋅2k. Therefore, F (k) = f(2k) = (k+1) ⋅2k,
and the lemma follows. 2

7.2. RECURRENCE EQUATIONS 117

Problems

7.1 Prove that n3 + 2 ⋅ n2 = O(n3).
7.2 Recall the harmonic series Hn

△

= ∑ni=1 1
i
. Prove that Hn = Θ(logn).

7.3 Prove that the Fibonacci sequence g(n) is Θ(ϕn).
Hint: Recall Question 2.13 on page 31.

7.4 Prove that Definitions 7.1 and 7.2 are equivalent definitions for g(n) = Ω(f(n)) if
f(n) ≥ 1.

7.5 Consider the following alternative definition of g(n) = Θ(f(n)).
Definition 7.3 Let f, g ∶ N → R denote two functions. We say that g(n) = Θ(f(n)), if
there exist constants c1, c2, c4 ∈ R≥,c3 ∈ R+ such that, for every n ∈ N,

c3 ⋅ f(n) + c4 ≤ g(n) ≤ c1 ⋅ f(n) + c2 .
Prove that this definition and Item 3 in Definition 7.1 are equivalent.

7.6 Prove that for every two functions f, g ∶ N → R, if f = g then f(n) = Θ(g(n)) and
g(n) = Θ(f(n)).
7.7 Prove that logn + log logn = Ω(logn).
7.8 Prove Lemma 7.3.

7.9 Solve the following recurrences.

1.

f(n) △= ⎧⎪⎪⎨⎪⎪⎩
1 if n = 1

log2 n + f(⌊n2 ⌋) if n > 1.

2. (*)

f(n) △= ⎧⎪⎪⎨⎪⎪⎩
d if n = 1

an + b + c ⋅ f(⌊n
c
⌋) if n > 1,

where a, b, c, d = O(1), and c > 2.

3.

f(n) △= ⎧⎪⎪⎨⎪⎪⎩
1 if n = 1

1 + f(⌊n
2
⌋) if n > 1,

4.

f(n) △= ⎧⎪⎪⎨⎪⎪⎩
1 if n = 1

n + f(⌊n
2
⌋) + f(⌈n

2
⌉) if n > 1,

118 CHAPTER 7. ASYMPTOTICS

Chapter 8

Computer Stories: Big Endian vs.
Little Endian∗ 1

A long standing source of confusion is the order of bits in binary strings. This issue is
very important when strings of bits are serially communicated or stored in memories.
Consider the following two scenarios.

In the first setting Alice wishes to send to Bob a binary string a[n−1 ∶ 0]. The channel
that Alice and Bob use for communication is a serial channel. This means that Alice can
only send one bit at a time. Now Alice has two “natural” choices:� She can send a[n−1] first and a[0] last. Namely, she can send the bits in descending

index order. This order is often referred to as most significant bit first or just MSB
first.� She can send a[0] first and a[n−1] last. Namely, she can send the bits in ascending
index order. This order is often referred to as least significant bit first or just LSB
first.

In the second setting computer words are stored in memory. A memory is a vector
of storage places. We denote this vector by M[0],M[1], Suppose that each storage
place is capable of storing a byte (i.e., 8 bits). The typical word size in modern computers
is 32 bits (and even 64 bits). This means that a word is stored in 4 memory slots. The
question is how do we store a word a[31 ∶ 0] in 4 memory slots?

Obviously, it is a good idea to store the word in 4 consecutive slots, say M[i ∶ i + 3].
There are two “natural” options. In the first option storage is as follows:

M[i] ← a[31 ∶ 24]
M[i + 1]← a[23 ∶ 16]
M[i + 2]← a[15 ∶ 8]
M[i + 3]← a[7 ∶ 0].

1 Danny Cohen coined the terms Big Endian and Little Endian in the treatise “On holy wars and a
plea for peace” [1].

119

120 CHAPTER 8. COMPUTER STORIES: BIG ENDIAN VS. LITTLE ENDIAN∗

This option is referred to as Big Endian.
In the second option storage is as follows:

M[i] ← a[0 ∶ 7]
M[i + 1]← a[8 ∶ 15]
M[i + 2]← a[16 ∶ 23]
M[i + 3]← a[24 ∶ 31].

This option is referred to as Little Endian. Note that, for the sake of aesthetics, we used
increasing bit indexes in the second option.

Each of these options has certain advantages and disadvantages. For example, if
an architecture supports multiple word lengths, then it is convenient to have the most
significant bit (MSB) stored in a fixed position relative to the address of the word (in
our example we can see that in Big Endian the MSB is stored in M[i] regardless of the
number of bytes in a⃗.) On the other hand, if multiple word lengths are supported and we
wish to add a half word (i.e., two-byte string) with a word (i.e., four-byte string), then
Little Endian may simplify the task of aligning the two words (i.e., making sure that bits
of the same weight are placed in identical offsets).

It is of no surprise that both conventions are used in commercial products. Archi-
tectures from the X86 family (such as Intel processors) use Little Endian byte ordering,
while Motorola 68000 CPUs follow the Big Endian convention. Interestingly, the Power-
PC supports both! Nevertheless, operating systems also follow different conventions:
Microsoft operating systems follow Little Endian and Apple operating systems follow Big
Endian. So a MAC with a Power-PC CPU that runs an Apple operating system runs in
Big Endian mode.

This confusion spreads beyond hardware to software (e.g., Java uses Big Endian) and
to file formats (e.g., GIFF uses Little Endian and JPEG uses Big Endian).

What does this story have to do with us? You might have noticed that we use both
ascending indexes and descending indexes (e.g. a[n − 1 ∶ 0] vs. a[0 ∶ n− 1]) to denote the
same string. These two conventions are simply an instance of the Big Endian vs. Little
Endian controversy.

Following Jonathan Swift (at the risk of not obeying Danny Cohen’s plea), we use
both ascending and descending bit orders according to the task we are considering. When
considering strings that represent integers in binary representation, descending indexes
are used (i.e., leftmost bit is the MSB). However in many parts of this chapter ascending
indexes are used; the reason is to simplify handling of indexes in the text. We can only
hope that this simplification does not lead to confusion.

Part II

Combinational Circuits

121

Chapter 9

Representations of Boolean
Functions by Formulas

Contents
9.1 Sum of Products . 124

9.2 Product of Sums . 128

9.3 The Finite Field GF (2) . 131

9.3.1 Polynomials over GF (2) . 134

9.4 Satisfiability . 135

9.5 Relation to P vs. NP . 135

9.6 Minimization Heuristics∗ . 136

9.6.1 Basic Terminology and Properties 137

9.6.2 The Implicants’ Graph . 138

9.6.3 Essential Prime Implicants . 139

9.6.4 Optimality Conditions . 140

9.6.5 The Quine-McCluskey Heuristic 142

9.6.6 Karnaugh Maps . 145

123

124 CHAPTER 9. REPRESENTATION BY FORMULAS

In Chapter 6, we used Boolean formulas to represent Boolean functions. The idea
was to write a Boolean formula over a set of n variables, and then assign 0-1 values to
each variable. This assignment induces a truth value to the formula, and thus we have
a Boolean function over n bits. In fact, any Boolean function can be represented by a
Boolean formula if the the set of connectives is complete. In Section 6.6 we proved that
the set {¬,and,or} is a complete set of connectives.

In this chapter we consider special representations of functions that are often called
normal forms. Boolean formulas in a normal form are restricted forms of formulas.

Given a Boolean function, one may want to find a shortest representation of the
function by a Boolean formula. This question is not well defined because one needs to
specify how a Boolean function is represented. Suppose the function is described by its
truth table. In this case, the truth table has 2n entries, where n denotes the number of
bits in the domain of the function. Obviously, we can only read or write truth tables for
rather small values of n. If n ≥ 100, then all the atoms in the universe would not suffice!

Nevertheless, we present a method by Quine and McCluskey to find a shortest repre-
sentation of a function by a Boolean formula in a normal form called sum of products.
This method is input the truth table of the function and outputs a shortest Boolean
formula in sum of products form. We describe this algorithm using a graph defined over
the implicants.

9.1 Sum of Products

The first normal form we consider is called disjunctive normal form (DNF) or sum of
products (SOP).

We recall the definition of a literal.

Definition 9.1 A variable or a negation of a variable is called a literal.

Recall that the and connective is associative. Thus we may apply it to multiple
arguments without writing parenthesis. To simplify notation, we use the ⋅ notation for
the and connective so that

X ⋅ Y ⋅Z (9.1)

simply means (X and Y and Z). We often refer to such an and as a product.

Definition 9.2 A formula that is the and of literals is called a product term.

We say that a variable X appears in a product term p if either X or X̄ is an argument
of the and in p. Of course, a variable might appear more than once in a term. For
example, X appears three times in the product term (X ⋅Y ⋅ X̄ ⋅X). Recall that X ⋅ X̄ is
always false and that X ⋅X is equivalent to X. Similarly, X̄ ⋅ X̄ is equivalent to X̄. Thus,
any product in which a variable appears more than once can be simplified either to the
constant zero or to a product term in which every variable appears at most once.

Definition 9.3 A product term p is simple if every variable appears at most once in p.

9.1. SUM OF PRODUCTS 125

Notation. With each product term p, we associate the set of variables that appear in
p. The set of variables that appear in p is denoted by vars(p). Let vars+(p) denote the
set of variables that appear in p that appear without negation. Let vars−(p) denote the
set of variables that appear in p that with negation. Let literals(p) denote the set of
literals that appear in p.

For example, let p = X1 ⋅ X̄2 ⋅X3, then vars(p) = {X1,X2,X3}, vars+(p) = {X1,X3}
and vars−(p) = {X2}, and literals(p) = {X1, X̄2,X3}.
Definition 9.4 A simple product term p is a minterm with respect to a set U of variables
if vars(p) = U .

A minterm is a simple product term, and therefore, every variable in U appears exactly
once in p.

Lemma 9.1 A minterm p attains the truth value 1 for exactly one truth assignment.

Proof: Consider the assignment τ ∶ U → {0,1} defined by

τ(Xi) △= ⎧⎪⎪⎨⎪⎪⎩
1 if Xi ∈ vars+(p)
0 if Xi ∈ vars−(p).

By definition, for every literal ℓ in p, we have τ̂(ℓ) = 1. Therefore, τ̂(p) = 1.
To complete the proof we need to show that this is the only assignment that satisfies

the minterm p. Namely, if an assignment γ satisfies γ̂(p) = 1, then γ = τ .
Suppose that γ̂(p) = 1. This implies that γ̂(ℓ) = 1, for every literal ℓ in p. If ℓ = Xi,

then this implies that γ(Xi) = 1. If ℓ = X̄i, then this implies that γ(Xi) = 0. Therefore,
Xi ∈ vars+(p) implies γ(Xi) = 1. Similarly, Xi ∈ vars−(p) implies γ(Xi) = 0. We conclude
that γ = τ , as required. 2

Recall that the or connective is also associative. We use the + to denote the or

connective. The or of multiple arguments is written as a “sum”. For example,

X + Y +Z (9.2)

simply means (X or Y or Z). We often refer to such an or as a sum. Substitution
allows us to replace each occurrence of a variable by a product. This leads us to the
terminology sum-of-products.

Definition 9.5 For a v ∈ {0,1}n, define the minterm pv to be pv
△

= (ℓv1 ⋅ ℓv2⋯ℓvn), where:

ℓvi
△

=

⎧⎪⎪⎨⎪⎪⎩
Xi if vi = 1

X̄i if vi = 0.

Definition 9.6 Let f−1(1) denote the set

f−1(1) △= {v ∈ {0,1}n ∣ f(v) = 1}.
Definition 9.7 The set of minterms of f is defined by

M(f) △= {pv ∣ v ∈ f−1(1)}.
Theorem 9.2 Every Boolean function f ∶ {0,1}n → {0,1} that is not a constant zero is
represented by the sum of the minterms in M(f).

126 CHAPTER 9. REPRESENTATION BY FORMULAS

Proof: Every minterm p ∈M(f) equals pv for a vector v ∈ f−1(1). We associate the ith
argument vi of f(v) with the Boolean variable Xi. Let f−1(1) = {v1, . . . , vk}. We claim
the the formula

ϕ
△

= pv1 + pv2 +⋯+ pvk

represents the function f , namely, Bϕ = f .

To prove that Bϕ = f , we consider two cases:

1. If f(v) = 1, then v = vi for some 1 ≤ i ≤ k. The minterm pvi is satisfied by
the assignment τv, namely, τ̂v(pvi) = 1. This implies that τ̂v(ϕ) = 1. Therefore,
Bϕ(v) = 1.

2. If f(v) = 0, then every minterm pvi is not satisfied by τv, namely, τ̂v(pvi) = 0, for
every 1 ≤ i ≤ k. This implies that τ̂v(ϕ) = 0, and therefore, Bϕ(v) = 0.

We proved that f(v) = Bϕ(v), for every v ∈ {0,1}n, and the theorem follows. 2

Definition 9.8 A Boolean formula is called a sum-of-products (SOP) if it is a constant
or an or of product terms.

Consider the constant Boolean function f ∶ {0,1}n → {0,1} that is defined by f(v) = 1,
for every v. The sum-of-minterms that represents f is the sum of all the possible minterms
over n variables. This sum contains 2n minterms. On the other hand, f can be represented
by the constant 1. The question of finding the shortest sum-of-products that represents
a given Boolean formula is discussed in more detail later in this chapter.

Examples

1. The following formulas are product terms.

(a) p1 =X ⋅ Y ,

(b) p2 = Ā and B and C,

(c) p3 = L,

(d) p4 = G ∧ (¬H) ∧G.

The variables A,B and C appear in p2. The product term in p4 is not simple, since
the the variable G appears twice. On the other hand, the product term in p1 is
simple, since both X and Y appear once. Moreover,� vars(p1) = {X,Y },� vars(p2) = {A,B,C},� vars(p3) = {L},� vars(p4) = {G,H},

9.1. SUM OF PRODUCTS 127

a b max{a, b}
0 0 0
1 0 1
0 1 1
1 1 1

Table 9.1: The truth table of the max Boolean function.� vars+(p1) = {X,Y },� vars+(p2) = {B,C},� vars+(p3) = {L},� vars+(p4) = {G},� vars−(p1) = ∅,� vars−(p2) = {A},� vars−(p3) = ∅,� vars−(p4) = {H}.
2. The following formulas are not product terms.

(a) X + Y ,

(b) A or B and C.

3. Each of the following formulas is a sum-of-products.

(a) ϕ1 =X ⋅ Y +X ⋅ Y ,

(b) ϕ2 = (Ā and B and C) or (A and B̄ and C) or D̄,

(c) ϕ3 = L.

4. Each of the following formulas is not a sum-of-products.

(a) (X + Y) ⋅Z,

(b) (A or B) and (C or D).
5. Represent the following Boolean functions as an SOP formula: (i)f(a, b) = max{a, b},

(ii) g(a, b) = min{a, b}.
Recall Theorem 9.2. The proof of Theorem 9.2 is constructive, i.e., it algorithmically
builds the sum of minterms.

(i) First, we need to find f−1(1). Let us write down the truth table of f , depicted
in Table 9.1. Now, the task of finding f−1(1) is quite easy, all we need to
do is to look for the rows in which f attains the value ‘1’. Hence, f−1(1) ={(0,1), (1,0), (1,1)}.

128 CHAPTER 9. REPRESENTATION BY FORMULAS

Finally, we construct the sum of minterms formula ϕf . The minterm that
corresponds to the vector v1 = (0,1) is pv1 = X̄1 ⋅ X2. The minterm that
corresponds to the vector v2 = (1,0) is pv2 = X1 ⋅ X̄2. The minterm that
corresponds to the vector v3 = (1,1) is pv2 = X1 ⋅X2. Hence,

ϕf = (X̄1 ⋅X2) + (X1 ⋅ X̄2) + (X1 ⋅X2) .
We observe that the truth table of ϕf is equivalent to the or Boolean function,
i.e., this method of constructing a sum of minterms not necessarily produces
the “shortest” representation.

(ii) The set g−1(1) contains only one ordered pair, i.e., (1,1). Hence the SOP
formula for g is ϕg =X1 ⋅X2, and g is simply the and function.

9.2 Product of Sums

The second normal form we consider is called conjunctive normal form (CNF) or product
of sums (POS) .

Definition 9.9 A formula that is the or of literals is called a sum term.

As in the case of product terms, we say that a variable X appears in a sum term p if
X or X̄ is one of the arguments of the or in p. A sum term is simple if every variables
appears at most once in it.

We use the notation vars(p) also for a sum term p. As in the case of a product term,
it means the set of variables that appear in p. The notation vars+(p) and vars−(p) is
used as well.

Definition 9.10 A simple sum term p is a maxterm with respect to a set U of variables
if vars(p) = U .

As in the case of a minterm, each variable appears at most once in a maxterm since it is
a simple sum term.

Recall that DM(ϕ) is the De Morgan dual of the formula ϕ.

Observation 9.1 (1) If p is a minterm, then the formula DM(p) is a maxterm. (2) If
p is a maxterm, then the formula DM(p) is a minterm.

Proof: An and becomes an or, An or becomes an and, and the De Morgan dual of
a literal is a literal. 2

Lemma 9.3 A maxterm p attains the truth value 0 for exactly one truth assignment.

9.2. PRODUCT OF SUMS 129

Proof: Consider a maxterm p. Let q = DM(p). By Observation 9.1, q is a minterm.
By Lemma 9.1, τ̂(q) = 1 for exactly one assignment τ . By Theorem 6.11, q is logically
equivalent to ¬p. This implies that τ̂(q) ≠ τ̂(p), for every assignment τ . Hence, τ̂(p) = 0
for exactly one assignment τ , and the lemma follows. 2

Theorem 9.4 Every Boolean function f ∶ {0,1}n → {0,1} that is not a constant one can
be represented by a product of maxterms.

Proof: Define g(v) △= not(f(v)). Since f is not constant one, the function g is not
constant zero. By Theorem 9.2, g can be represented by a sum-of-minterms p. Since
f(v) = not(g(v)), it follows that f is represented byDM(p). By Example 5i on Page 130,
DM(p) is a product-of-sums formula.

To complete the proof, we need to show that each sum in DM(p) is a maxterm.
Indeed, each sum inDM(p) is the De Morgan dual of a minterm in p. By Observation 9.1,
it follows that each sum in DM(p) is a maxterm, as required. 2

Definition 9.11 A Boolean formula is called a product-of-sums (POS) if it is a constant
or an and of sum terms.

The following observation extends Observation 9.1

Observation 9.2 (1) If p is a sum-of-products, then the formula DM(p) is a product-
of-sums. (2) If p is a product-of-sums, then the formula DM(p) is a sum-of-products.

Examples

1. The following formulas are sum terms.

(a) p1 =X + Y ,

(b) p2 = Ā or B or C,

(c) p3 = L,

(d) p4 = G ∨ (¬H) ∨G.

The variables A,B and C appear in p2. The sum term in p4 is not simple, since
the the variable G appears twice. On the other hand, the sum term in p1 is simple,
since both X and Y appear once. Moreover,� vars(p1) = {X,Y },� vars(p2) = {A,B,C},� vars(p3) = {L},� vars(p4) = {G,H},� vars+(p1) = {X,Y },� vars+(p2) = {B,C},

130 CHAPTER 9. REPRESENTATION BY FORMULAS

a b not(min{a, b})
0 0 1
1 0 1
0 1 1
1 1 0

Table 9.2: The truth table of the not(max) Boolean function.� vars+(p3) = {L},� vars+(p4) = {G},� vars−(p1) = ∅,� vars−(p2) = {A},� vars−(p3) = ∅,� vars−(p4) = {H}.
2. The following formulas are not sum terms.

(a) X ⋅ Y ,

(b) A and B or C.

3. Each of the following formulas is a product-of-sums.

(a) ϕ1 = (X + Y) ⋅ (X + Y),
(b) ϕ2 = (Ā or B or C) and (A or B̄ or C) and D̄,

(c) ϕ3 = L.

4. Each of the following formulas is not a product-of-sums.

(a) (X ⋅ Y) +Z,

(b) (A and B) or (C and D).
5. Represent the following Boolean functions as an POS formula: (i) f(a, b) = min{a, b},

(ii) h(a, b) = max{a, b}.
Recall Theorem 9.4. The proof of Theorem 9.4 is, also, constructive, i.e., it algo-
rithmically builds the product of maxterms. Note that the proof of Theorem 9.4
“uses” Theorem 9.2 as a subroutine.

(i) First, let f denote the negation of the Boolean formula g, that is f(v) =
not(g(v)).
Second, we need to find f−1(1). Let us write down the truth table of f ,
depicted in Table 9.2. Now, the task of finding f−1(1) is quite easy, all we
need to do is to look for the rows in which f attains the value ‘1’. Hence,
f−1(1) = {(0,0), (0,1), (1,0)}.

9.3. THE FINITE FIELD GF (2) 131

Third, we construct the sum of minterms formula ϕf . The minterm that
corresponds to the vector v1 = (0,0) is pv1 = X̄1 ⋅ X̄2. The minterm that
corresponds to the vector v1 = (0,1) is pv1 = X̄1 ⋅ X2. The minterm that
corresponds to the vector v2 = (1,0) is pv2 = X1 ⋅ X̄2. Hence,

ϕf = (X̄1 ⋅ X̄2) + (X̄1 ⋅X2) + (X1 ⋅ X̄2) .
Finally, the required POS ψf formula is ψf =DM(ϕf), that is

ψg = (X1 +X2) ⋅ (X1 + X̄2) ⋅ (X̄1 +X2) .
We observe that the truth table of ψf is equivalent to the and Boolean func-
tion, i.e., this method of constructing a sum of maxterms not necessarily
produces the “shortest” representation.

(ii) Let f denote the negation of the Boolean formula h, that is f(v) = not(h(v)).
The set f−1(1) contains only one ordered pair, i.e., (0,0). Hence the POS
formula for g is ϕg =X1 +X2, and H is simply the or function.

9.3 The Finite Field GF (2)
In this section we consider the set {0,1} with the Boolean functions xor,and. We regard
this triple as a special structure called the Galois Field of two elements. This structure
is often denoted by GF (2).
Definition 9.12 The Galois Field GF (2) is defined as follows.

1. Elements: the elements of GF (2) are {0,1}. The zero is called the additive unity
and one is called the multiplicative unity.

2. Operations:

(a) addition which is simply the xor function, and

(b) multiplication which is simply the and function.

In the context of GF (2) we denote multiplication by ⋅ and addition by ⊕.
We are used to infinite fields like the rationals (or reals) with regular addition and

multiplication. In these fields, 1 + 1 ≠ 0. However, in GF (2), 1⊕ 1 = 0.

Observation 9.3 X ⊕X = 0, for every X ∈ {0,1}.
A minus sign in a field means the additive inverse.

Definition 9.13 The element −X stands for the element Y such that X ⊕ Y = 0.

Observation 9.4 In GF (2), the additive inverse of X is X itself, namely −X = X, for
every X ∈ {0,1}.

132 CHAPTER 9. REPRESENTATION BY FORMULAS

Thus, we need not write minus signs, and adding an X is equivalent to subtracting an
X.

The distributive law holds in GF (2), namely:

Observation 9.5 (X ⊕ Y) ⋅Z =X ⋅Z ⊕ Y ⋅Z, for every X,Y,Z ∈ {0,1}.
Proof: Consider two cases: 1. If Z = 0, then both sides equal zero. 2. If Z = 1, then(X ⊕ Y) ⋅Z =X ⊕ Y , and X ⋅Z ⊕ Y ⋅Z =X ⊕ Y , as required. 2

Let Xk denote the product

Xk △=

k times³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
X ⋅ ⋯ ⋅X .

We define X0 = 1, for every X ∈ {0,1}. The following observation proves that multiplica-
tion is idempotent .

Observation 9.6 Xk =X, for every k ∈ N+ and X ∈ {0,1}.
Proof: By induction on k. The induction basis for k = 1 is immediate. The induction
basis is proved as follows:

Xk+1 =Xk
⋅X

=X ⋅X

=X.

The first line follows by associativity, the second line by the induction hypothesis, and
the last line holds since XandX = X. 2

The structure of a field allows us to solve systems of equations. In fact, Gauss elimi-
nation works over any field. The definition of a vector space over GF (2) is just like the
definition of vector spaces over the reals. Definitions such as linear dependence, dimension
of vector spaces, and even determinants apply also to vector spaces over GF (2).
Examples

1. Consider the equation

X1 ⊕X2 = 0. (9.3)

If we add X2 to both sides of Eq. 9.3, we obtain

X1 ⊕X2 ⊕X2 = X2.

But X2 ⊕X2 = 0. Thus we conclude that

X1 ⊕X2 = 0 ⇔ X1 = X2.

9.3. THE FINITE FIELD GF (2) 133

2. On the other hand, if we add (−X2) to both sides of Eq. 9.3, we obtain

X1 ⊕X2 ⊕ (−X2) = −X2.

Since X2 ⊕ (−X2) = 0. We obtain,

X1 = −X2.

Finally, since −X2 =X2, we conclude that

X1 ⊕X2 = 0 ⇔ X1 = X2.

3. We show how to solve a simple systems of equalities over GF (2) using Gauss elim-
ination. Consider the following system of equations

X1 ⊕ X2 ⊕ X3 = 0 ,
X1 ⊕ X3 = 0 ,

X2 ⊕ X3 = 1 .

This system of equations corresponds to following matrix, where columns 1-3 cor-
respond to X1-X3, and column 4 corresponds to their sum.

A =
⎛⎜⎝
1 1 1 0
1 0 1 0
0 1 1 1

⎞⎟⎠
Let ri denote the ith row. We now apply a sequence of row operations as follows.
The first operation r1 ← r1 ⊕ r2 results with matrix A1, as follows.

A1 =
⎛⎜⎝
0 1 0 0
1 0 1 0
0 1 1 1

⎞⎟⎠
The second operation r3 ← r1 ⊕ r3 results with matrix A2, as follows.

A2 =
⎛⎜⎝
0 1 0 0
1 0 1 0
0 0 1 1

⎞⎟⎠
The third operation r2 ← r2 ⊕ r3 results with matrix A3, as follows.

A3 =
⎛⎜⎝
0 1 0 0
1 0 0 1
0 0 1 1

⎞⎟⎠
Every row of A3 has a single nonzero entry in the columns corresponding to vari-
ables. Hence, A3 corresponds to the following system of equations.

X2 = 0 ,

X1 = 1 ,

X3 = 1 .

134 CHAPTER 9. REPRESENTATION BY FORMULAS

Note that the solution of this system over reals R with the well known addition ‘+’
and multiplication ‘×’, is quite different, e.g.,

X1 = −1 ,

X2 = 0 ,

X3 = 1 .

9.3.1 Polynomials over GF (2)
Definition 9.14 A monomial in GF (2) over the variables in the set U is a finite product
of the elements in U ∪ {0,1}.
For example, X1, X1 ⋅X3, X1 ⋅X2 ⋅X3 ⋅ X1, are all monomials in GF (2). If a variable
appears more than once in a product, then by commutativity we may write an exponent
to signify the number of times the variables appears in the product. Thus, the products
X1 ⋅X2 ⋅X3 ⋅X1 and X2

1 ⋅X2 ⋅X3 are equal.

By Observation 9.6, positive exponents can be reduced to one. For example, X2
1 ⋅X2⋅X3

equals X1 ⋅X2 ⋅X3. Moreover, if the constant ‘1’ appears in a product, then we may remove
it (since X ⋅ 1 = X). If the constant ‘0’ appears in a product, then we may remove the
product entirely (since X ⋅ 0 = 0 and since x ⊕ 0 = x). We conclude with following
observation.

Observation 9.7 Every monomial p in GF (2) over the variables in U can be reduced
to a product of variables in p.

Definition 9.15 A polynomial in GF (2) over the variables in the set U is a finite sum
of monomials.

We denote the set of all polynomials in GF (2) over the variables in U by GF (2)[U].
Just as multivariate polynomials over the reals can be added and multiplied, so can
polynomials in GF (2)[U].

Clearly, every polynomial p ∈ GF (2)[U] is a Boolean function fp ∶ {0,1}∣U ∣ → {0,1}.
The converse is also true.

Theorem 9.5 Every Boolean function f ∶ {0,1}n → {0,1} can be represented by a poly-
nomial in GF (2)[U], where U = {X1, . . . ,Xn}.
Proof: With out loss of generality, f is not a constant zero (if it is then the polynomial
‘0’ represents it).

We associate the ith argument vi of f(v) with the variable Xi ∈ U . Consider the set

f−1(1) △= {v ∈ {0,1}n ∣ f(v) = 1}.

9.4. SATISFIABILITY 135

Since f is not constant zero, the set f−1(1) is not empty. For each v ∈ f−1(1), we define
the product pv

△

= (ℓv1 ⋅ ℓv2⋯ℓvn) as follows:

ℓvi
△

=

⎧⎪⎪⎨⎪⎪⎩
Xi if vi = 1(1⊕Xi) if vi = 0.

Denote the elements of f−1(1) by {v1, . . . , vk}.
The polynomial p ∈ GF (2)[U] is defined as follows.

p
△

= pv1 ⊕ pv2 ⊕⋯⊕ pvk

We claim the the polynomial p represents the function f , namely, p = f .

To prove that p = f , we consider two cases:

1. If f(v) = 1, then v = vi for some 1 ≤ i ≤ k. The product pvi(vi) = 1, and ∀j ≠ i ∶
pvj(vi) = 0. This implies that p(vi) = 1.

2. If f(v) = 0, then ∀i ∶ pvi = 0. This implies that p(v) = 0.

We proved that f(v) = p(v), for every v ∈ {0,1}n, moreover p is a polynomial in
GF (2)[U]. Indeed, by the distributive law (see Observation 9.5) p is a finite sum of
monomials in U , and the theorem follows. 2

Corollary 9.6 The set of connectives {xor,and} is complete.

9.4 Satisfiability

The problem of satisfiability of Boolean formulas is defined as follows.

Input: A Boolean formula ϕ.

Output: The output should equal “yes” if ϕ is satisfiable. If ϕ is not satisfiable, then
the output should equal “no”.

Note that the problem of satisfiability is quite different if the input is a truth table
of a Boolean function. In this case, we simply need to check if there is an entry in which
the function attains the value 1.

9.5 Relation to P vs. NP

The main open problem in Computer Science since 1971 is whether P = NP . We will not
define the classes P and NP , but we will phrase an equivalent question in this section.

Consider a Boolean formula ϕ. Given a truth assignment τ , it is easy to check if
τ̂(ϕ) = 1. We showed how this can be done in Algorithm EVAL on page 85. In fact, the
running time of the EVAL algorithm is linear in the length of ϕ.

On the other hand, can we find a satisfying truth assignment by ourselves (rather than
check if τ is a satisfying assignment)? Clearly, we could try all possible truth assignments.
However, if n variables appear in ϕ, then the number of truth assignments is 2n.

We are ready to formulate a question that is equivalent to the question P = NP .

136 CHAPTER 9. REPRESENTATION BY FORMULAS

Satisfiability in polynomial time. Does there exist a constant c > 0 and an algorithm
Alg such that:

1. Given a Boolean formula ϕ, algorithm Alg decides correctly whether ϕ is satisfiable.

2. The running time of Alg is O(∣ϕ∣c), where ∣ϕ∣ denotes the length of ϕ.

Note, that the naive algorithm that tries all possible truth assignments has a running
time that is at least 2n, where n is the number of variables in ϕ. By a simple reduction
that introduces new variables without changing the satisfiability, it can be assumed that∣ϕ∣ < 5n. But 2n grows faster than any polynomial in n, namely, for every constant c,
2n = Ω(nc+1). Therefore, the naive algorithm does not meet the requirement of deciding
satisfiability in polynomial time.

This seemingly simple question turns out to be a very deep problem about what can
be easily computed versus what can be easily proved. It is related to the question whether
there is a real gap between checking that a proof is correct and finding a proof.

9.6 Minimization Heuristics∗

In this section we consider the problem of finding a shortest representation of a Boolean
function. This problem captures also the problem of satisfiability, hence do not expect us
to present an algorithm whose running time is polynomial in the number of variables. We
refer to an algorithm with an exponential running time as a heuristic to make sure that
the reader understands that such an algorithm cannot be used in practice for functions
with many variables.

We consider the following minimization problem.

Input: A truth table of a Boolean function f ∶ {0,1}n → {0,1}.
Output: An SOP Boolean formula ψ such that the Boolean function Bψ defined by ψ

satisfies: f = Bψ.

Goal: Find a shortest SOP ψ such that Bψ = f .

If f is a constant function, then the minimization problem is easy. So we assume
that f is not a constant function. By Theorem 9.2, f can be represented as a sum of
minterms. Let ϕf denote the sum of minterms that represents f . Thus, our goal is to
find a shortest SOP formula ψ that is logically equivalent to ϕf .

We remark that there might be more than one shortest SOP formula that is logically
equivalent to ϕf . For example, let f ∶ {0,1}3 → {0,1}, defined by the truth table depicted
in Table 9.3. In this case,

ϕf = X̄ ⋅ Ȳ ⋅ Z̄ + X̄ ⋅ Y ⋅ Z̄ +X ⋅ Ȳ ⋅Z + X̄ ⋅ Y ⋅Z +X ⋅ Y ⋅Z .

There are two shortest SOP formulas ϕ1, ϕ2 that are logically equivalent to ϕf , as follows.

ϕ1 = X̄ ⋅ Z̄ +X ⋅Z + X̄ ⋅ Y ,

ϕ2 = X̄ ⋅ Z̄ +X ⋅Z + Y ⋅Z .

9.6. MINIMIZATION HEURISTICS∗ 137

X Y Z f(X,Y,Z)
0 0 0 1
1 0 0 0
0 1 0 1
1 1 0 0
0 0 1 0
1 0 1 1
0 1 1 1
1 1 1 1

Table 9.3: The truth table of f ∶ {0,1}3 → {0,1}.
9.6.1 Basic Terminology and Properties

Throughout this section, f denotes a Boolean function and ϕf is a Boolean formula that
represents f (i.e., ϕf is the sum of the minterms of f). We assume that the Boolean
function f is not a constant function. Therefore, ϕf is satisfiable and not a tautology.

Definition 9.16 A satisfiable product term p is an implicant of f if (p → ϕf) is a
tautology.

We denote the set of implicants of f by I(f). Note that an implicant must be satisfiable,
and hence an implicant cannot contain both a variable and its negation as literals.

Claim 9.7 Every minterm pv ∈M(f) is a implicant of f , hence M(f) ⊆ I(f).
Proof: We need to prove that, for every assignment τ , if τ̂(pv) = 1, then τ̂(ϕf) = 1. By
Lemma 9.1, the minterm pv is satisfied by a unique assignment. In fact, this satisfying
assignment is τv (i.e., τv(Xi) △= vi). By definition, v ∈ f−1(1), therefore f(v) = 1, and
τ̂(ϕf) = 1, as required. 2

Claim 9.8 The sum (or) of the implicants of f is logically equivalent to ϕf .

Proof: Let σ(f) denote the sum of implicants of f . We need to prove that σ(f)↔ ϕf
is a tautology. We first prove that ϕf → σ(f) is a tautology. By Claim 9.7, M(f) ⊆ I(f).
This implies that ϕf → σ(f) is a tautology, as required.

We now prove that σ(f) → ϕf is a tautology. Let τ be an assignment such that
τ̂(σ(f)) = 1, then there exists an implicant p ∈ I(f) such that τ̂(p) = 1. Therefore(p→ ϕf) is a tautology. Hence, τ̂(ϕf) = 1, as required. 2

The following claim shows that I(f) is closed under “subsets” in the sense that
removing part of the literals from an implicant keeps it an implicant.

Claim 9.9 Let p ∈ I(f). If q is a satisfiable product and literals(p) ⊆ literals(q), then
q ∈ I(f).

138 CHAPTER 9. REPRESENTATION BY FORMULAS

Proof: We show that (q → ϕf) is a tautology. Let τ be an assignment such that
τ̂(q) = 1. We need to show that τ̂(ϕf) = 1. Since τ̂(q) = 1, then τ̂(p) = 1. Since p is an
implicant, then by Definition 9.16 it follows that τ̂(ϕf) = 1, as required. 2

Claim 9.10 For every two satisfiable products p, q, the following holds:

(p→ q) is a tautology ⇔ (literals(q) ⊆ literals(p)).
Proof: We prove the following two directions:

1. (p→ q) is a tautology ⇒ (literals(q) ⊆ literals(p)),
2. (literals(q) ⊆ literals(p))⇒ (p → q) is a tautology .

The first direction. We assume that (p → q) is a tautology. Assume, for the sake
of contradiction, that (literals(q) /⊆ literals(p)), that is there exists a literal ℓ such that
ℓ ∈ literals(q) and ℓ /∈ literals(p). Let τ be an assignment that satisfies:

τ̂(b) = ⎧⎪⎪⎨⎪⎪⎩
0, if b = ℓ,

1, if b ∈ (literals(p) ∪ literals(q)) ∖ {ℓ} .
Since both τ̂(p) = 1 and τ̂(q) = 0, it follows that τ̂(p → q) = 0. A contradiction to the
assumption that (p → q) is a tautology. Hence, literals(q) ⊆ literals(p).

The second direction. We assume that literals(q) ⊆ literals(p). Let τ be an assign-
ment, such that τ̂(p) = 1. Since literals(q) ⊆ literals(p), it follows that τ̂(q) = 1. Hence,(q → p) is a tautology, as required. 2

A prime implicant is an implicant that is minimal with respect to containment.

Definition 9.17 An implicant p ∈ I(f) is a prime implicant of f if the following holds:

∀q ∈ I(f) ∶ literals(q) ⊆ literals(p)⇒ (literals(q) = literals(p)).
We denote the set of prime implicants of f by I ′(f).
Definition 9.18 Let p, q ∈ I(f). We say that p is an immediate predecessor of q if:
(i) literals(q) ⊆ literals(p), and (ii) literals(p) ∖ literals(q) contains a single literal.

9.6.2 The Implicants’ Graph

One usually defines a partial order over the implicants of a Boolean function by contain-
ment of the set of literals. We represent this partial order by a directed graph which we
call the implicants’ graph.

Definition 9.19 The implicants’ graph Gf = (V,E) of a Boolean function f is a directed
graph defined as follows.

1. V
△

= I(f).
2. E

△

= {(p, q) ∈ V × V ∣ p is an immediate predecessor of q}.
Claim 9.11 The implicants’ graph is a acyclic.

9.6. MINIMIZATION HEURISTICS∗ 139

Proof: If (p, q) ∈ E, then ∣literals(p)∣ − ∣literals(q)∣ = 1. Therefore, if p belongs to a
cycle, then ∣literals(p)∣ < ∣literals(p)∣, a contradiction. 2

Lemma 9.12 An implicant p ∈ I(f) is a prime implicant iff it is a sink in Gf .

Proof: Assume, for the sake of contradiction, that p ∈ I ′(f) is not a sink. Let (p, r)
denote an arc emanating from p in Gf . Since r is an implicant such that literals(r) is a
proper subset of literals(p), it follows that p is not a prime implicant, a contradiction.

If p ∈ I(f) is a not prime implicant, then there exists an implicant q ∈ I(f) such that
literals(q) is a proper subset of literals(p). Let r denote a product obtained from p by
removing one of the literals in literals(p) ∖ literals(q). By Claim 9.9, Since literals(q) ⊆
literals(r), it follows that r is an implicant in I(f). By Definition, p is an immediate
predecessor of r, therefore, (p, r) ∈ E, and p is not a sink, as required. 2

Claim 9.13 If p ∈ I(f)∖I ′(f), then the following two statements hold: (i) There exists
an implicant q ∈ I(f) such that p is an immediate predecessor of q. (ii) There exists a
prime implicant q ∈ I ′(f) such that literals(q) ⊂ literals(p).
Proof: Proof of Item (i). Lemma 9.12 implies that p is not a sink in Gf . Hence, there
exists a q ∈ V such that (p, q) ∈ E, i.e., there exists an implicant q ∈ I(f) such that p is
an immediate predecessor of q, as required.

Proof of Item (ii). Since p is not a sink in Gf , and since Gf is acyclic, it follows that
there is a path that emanates from p that reaches a sink q:

p = a0 Ð→ a1 Ð→ . . . Ð→ ak = q.

Definition 9.19 implies that

literals(p) ⊃ literals(a1) ⊃ . . . ⊃ literals(q).
Lemma 9.12 implies that q is a prime implicant. Therefore, there exists a prime implicant
q ∈ I ′(f) such that literals(q) ⊂ literals(p), as required. 2

9.6.3 Essential Prime Implicants

We now define a covering relation between minterms and prime implicants. Recall that
M(f) denotes the set of minterms of f , and I ′(f) denotes the set of prime implicants of
f .

Definition 9.20 The covering relation Cf ⊆M(f) × I ′(f) is the set

Cf
△

= {(r, p) ∈M(f) × I ′(f) ∣ r → p is a tautology}.
Observation 9.8 Let (r, p) ∈M(f)×I ′(f). Then, (r, p) ∈ Cf iff there exists a path from
r to p in the implicants’ graph Gf .

140 CHAPTER 9. REPRESENTATION BY FORMULAS

Proof: By Claim 9.10, r → p is a tautology iff literals(p) ⊆ literals(r), and this equiva-
lent to the existence of path from r to p in Gf . 2

We say that a prime implicant p covers r if (r, p) ∈ Cf .
Definition 9.21 A prime implicant p ∈ I ′(f) is an essential prime implicant if there
exists minterm r such that p is the only prime implicant that covers r.

We denote the set of essential prime implicants of f by Ie(f).
Observation 9.9 A prime implicant p ∈ I ′(f) is an essential prime implicant iff there
exists a minterm r such that every path in Gf from r to a prime implicant ends in p.

Proof: If a product p is an essential prime implicant, then there exists a minterm r

that is covered only by p. By Observation 9.8, any path from r to a prime implicant ends
in a prime implicant that covers r. Since p is the only prime implicant that covers r, we
conclude that every maximal path from r ends in p.

If every maximal path that begins in r ends in p, then by Observation 9.8, p is the
only prime implicant that covers r. This implies that p is an essential prime implicant.2

Claim 9.14 A prime implicant p ∈ I ′(f) is an essential prime implicant iff there exists
a truth assignment τ such that (i) τ̂(p) = 1, and (ii) τ̂(q) = 0, for every q ∈ I ′(f) ∖ {p}.
Proof: We assume that p ∈ Ie(f), we need to find an assignment that satisfies the two
conditions. Let r be a minterm that is covered only by p. By Lemma 9.1, there exists a
unique assignment that satisfies r. Denote this assignment by τ . Clearly, τ̂(p) = 1.

Consider a prime implicant q ≠ p. Since q does not cover r, it follows that r → q is
not a tautology. Since τ is the only assignment that satisfies r, it follows that τ̂(q) = 0.

To prove the other direction, we need to find a minterm that is covered only by p.
Suppose the assignment τ satisfies the two conditions. Let r denote the minterm that is
satisfied by τ . We prove the following: (i) r ∈ M(f), (ii) (r, p) ∈ Cf , and (iii) for every
q ∈ I ′(f) ∖ {p}, (r, q) ∉ Cf .

Proof of (i). Let v denote the binary vector defined by vi = τ(Xi). Since τ̂(p) = 1,
it follows that f(v) = 1. The minterm r corresponds to v (i.e., r = pv), and therefore,
r ∈M(f).

Proof of (ii). Since r is a minterm, it is satisfied only by τ . Since τ̂(p) = 1, it follows
that r → p is a tautology, hence (r, p) ∈ Cf .

Proof of (iii). Since τ̂(q) = 0, it follows that r → q is not a tautology, as required. 2

9.6.4 Optimality Conditions

The following claim provides an SOP representation of f using only prime implicants.
This is the first step towards finding a shortest SOP representation.

Claim 9.15 The sum (i.e., or) of the prime implicants of f is logically equivalent to
ϕf .

9.6. MINIMIZATION HEURISTICS∗ 141

Proof: Let us denote the sum of implicants of f by σ(f). Let us denote the sum of
prime implicants of f by σ′(f). Claim 9.8 states that σ(f) is logically equivalent to ϕf .
Thus, we need to prove that σ(f)↔ σ′(f) is a tautology.

First we show that σ′(f) → σ(f) is a tautology. Let τ be an assignment such that
τ̂(σ′(f)) = 1. Since I ′(f) ⊆ I(f), it follows that τ̂(σ(f)) = 1.

Now we show that σ(f) → σ′(f) is a tautology. Let τ be an assignment such that
τ̂(σ(f)) = 1, then there exists an implicant p such that τ̂(p) = 1. If p ∈ I ′(f), then we are
done. If p ∈ I(f) ∖ I ′(f), then by Claim 9.13 there exists a prime implicant q such that
literals(q) is a proper subset of literals(p). Claim 9.10 implies that the Boolean formula(p→ q) is a tautology, hence τ̂(q) = 1. It follows that τ̂(σ′(f)) = 1, as required. 2

Suppose that f is represented by an SOP that contains an implicant that is not prime.
Can this SOP be shortened? The following claim shows that we can substituting a non-
prime implicant by a prime implicant (that covers the non-prime implicant) to make the
SOP shorter.

Claim 9.16 Let p ∈ I(f) ∖ I ′(f). Let ϕ ∈ BF , such that (ϕ ∨ p) is equivalent to ϕf .
Then, there exists q ∈ I ′(f) such that: (i) literals(q) is a proper subset of literals(p), and
(ii) (ϕ ∨ q) is equivalent to ϕf .

Proof: By Claim 9.13 there exists a prime implicant q such that literals(q) is a proper
subset of literals(p). We claim that (ϕ ∨ p) and (ϕ ∨ q) are logically equivalent.

Let τ be an assignment such that τ̂(ϕ ∨ p) = 1. We need to show that τ̂(ϕ∨ q) = 1. If
τ̂(ϕ) = 1 then clearly τ̂(ϕ∨ q) = 1. If τ̂(p) = 1 then, by Claim 9.10 (p → q) is a tautology,
hence τ̂(q) = 1. Therefore, τ̂(ϕ ∨ q) = 1, as required.

Let τ be an assignment such that τ̂(ϕ ∨ q) = 1. We need to show that τ̂(ϕ ∨ p) = 1.
If τ̂(ϕ) = 1, then τ̂(ϕ ∨ p) = 1. Otherwise, τ̂(ϕ) = 0 and τ̂(q) = 1. Since q ∈ I(f), the
Boolean formula (q → ϕf) is a tautology. Since ϕf and (ϕ ∨ p) are equivalent, it follows
that τ̂(p) = 1, as required. 2

Corollary 9.17 If ψ is a shortest SOP formula that is logically equivalent to ϕf , then
every product term in ψ is a prime implicant of f .

Proof: Let us assume in contrary that there exists a product term p ∈ I(f) ∖ I ′(f) in
ψ. Since ψ is a SOP formula, then ψ = (ϕ ∨ p) for some ϕ ∈ BF . Claim 9.16 implies that
there exists a shorter q ∈ I ′(f), such that (ϕ ∨ q) is equivalent to ϕf . This contradicts
the assumption that ψ is a shortest SOP formula that is equivalent to ϕf . Hence every
product term in ψ is a prime implicant of f , as required. 2

Claim 9.18 Suppose that (i) ψ is the sum of a subset of the prime implicants of f ,
and (ii) ψ is logically equivalent to ϕf . Then, every essential prime implicant p ∈ I ′(f)
appears as a product term in ψ.

142 CHAPTER 9. REPRESENTATION BY FORMULAS

Proof: Let E ⊆ I ′(f) denote the subset of the prime implicants of f , such that ψ is the
sum of products in E . Assume, for the sake of contradiction, that p ∈ Ie(f) ∖ E .

Claim 9.14 implies that there is a truth assignment τ such that τ̂(p) = 1, and τ̂(q) = 0,
for every q ∈ I ′(f) ∖ {p}.

Since E ⊆ I ′(f) ∖ {p}, it follows that τ̂(ψ) = 0. On the other hand, τ̂(ϕf) = 1, since p
is an implicant of f . Thus, ϕf and ψ are not logically equivalent, a contradiction. 2

We remark that there exist Boolean functions f such that f is not logically equivalent
to the sum of the essential prime implicants of f . For example, consider the function f

represented by the Boolean formula ϕf(X,Y,Z) = X̄ ⋅ Z + Y ⋅ Z +X ⋅ Y +X ⋅ Z̄ + Ȳ ⋅ Z̄.
Since Ie(f) = ∅, it follows that f is not logically equivalent to the sum of its essential
prime implicants, as required.

Claim 9.18 suggests the following heuristic for finding a shortest SOP ψ that represents
f .

1. Compute I ′(f) and Ie(f).
2. Add every product in Ie(f) to ψ.

3. Find a shortest subset A ⊆ I ′(f) ∖ Ie(f) such that adding the products in A to ψ
makes ψ logically equivalent to ϕf .

In the sequel, we discuss how to compute I ′(f) and Ie(f). For Boolean functions
with very small domains, the last task of finding A is done by exhaustive search.

9.6.5 The Quine-McCluskey Heuristic

In this section we present an algorithm for computing the prime implicants and the
essential prime implicants of formula ϕ. The algorithm simply constructs the implicants’
graph of f . The specification of the algorithm is as follows.

Input: A truth table Tf of a nonconstant Boolean function f ∶ {0,1}n → {0,1}.
Output: The sets I ′(f) and Ie(f) where I ′(f) and Ie(f) are the sets of prime implicants

and essential prime implicants of f , respectively.

The algorithm uses the following terminology.

Definition 9.22 The symmetric difference of two sets A,B is the set (A∖B)∪ (B ∖A).
We denote the symmetric difference by A△B.

Definition 9.23 Let p and q denote two satisfiable product terms.

1. The product term p ∩ q is the product of the literals in literals(p) ∩ literals(q).

9.6. MINIMIZATION HEURISTICS∗ 143

2. If vars(p) = vars(q), then the distance between p and q is defined by

dist(p, q) △= ∣{i ∶ {Xi, X̄i} ⊆ literals(p)△ literals(q)}∣ .
If vars(p) ≠ vars(q), then define dist(p, q) △=∞.

The Quine-McCluskey algorithm for computing the prime implicants of a Boolean
function is listed as Algorithm 9.1. The input is a truth table Tf of Boolean function
f ∶ {0,1}n → {0,1}. The algorithm constructs a layered directed graph G whose vertex
set is the set of implicants of f . The graph has n layers, where layer Ik consists of the
implicants that contain k literals. Layer In consists of all the minterms of f . There are
arcs from layer Ik to layer Ik−1. Once Ik is constructed, the algorithm constructs layer
Ik−1 and the arcs from Ik to Ik−1 as follows. For each pair of implicants p, q ∈ Ik such that
dist(p, q) = 1, the algorithm adds the implicant p ∩ q to Ik−1. Note that the product p ∩ q
may have been already added to Ik−1. In this case the union operator does not modify
Ik−1. It also adds arcs from p and q to the new implicant p∩ q, as depicted in Figure 9.1.
Finally, the algorithm returns the set of sinks in the graph G.

Algorithm 9.1 QM(Tf) - An algorithm for computing the prime implicants of f ∶{0,1}n → {0,1} given its truth table Tf .

1. Construct the implicants’ graph Gf over implicants of f as follows:

(a) In ← {p ∣ p is a minterm of f}.
(b) For k = n downto 2 do:

i. Ik−1 ← ∅.

ii. For each pair of implicants p, q ∈ Ik such that dist(p, q) = 1 do

A. Ik−1 ← Ik−1 ∪ {p ∩ q}
B. add the arcs: pÐ→ (p ∩ q) and q Ð→ (p ∩ q) to G.

2. Return {p ∣ p is a sink in G}.
The following claim justifies the addition of p ∩ q to Ik−1 in Line (1(b)iiA) of the

algorithm.

Claim 9.19 If p, q ∈ I(f) and dist(p, q) = 1, then p ∩ q ∈ I(f).
Proof: Let r denote p ∩ q. Then, without loss of generality, p = r ⋅Xi and q = r ⋅ X̄i.
By the tautologies of distribution and the law of excluded middle (see Theorem 6.8 on
page 98), it follows that r is logically equivalent to (p + q). Since p, q ∈ I(f), it follows
that r ∈ I(f), as required. 2

The correctness of Algorithm 9.1 follows from the following theorem.

Theorem 9.20 Each set Ik constructed by algorithm QM(Tf) equals the set of implicants
of f that contain k literals.

144 CHAPTER 9. REPRESENTATION BY FORMULAS

q

In In−1 I1

p ∩ qp

Figure 9.1: The implicants’ graph.

9.6. MINIMIZATION HEURISTICS∗ 145

Proof: The proof is by induction on n−k (so that, in fact, we are doing induction from
k = n down to k = 1). The induction basis, for n − k = 0, holds because In is the set of
minterms. Assume the theorem holds for n−k, we need to prove it for n−k+1 = n−(k−1).
Namely, we assume that Ik equals the set of implicants of f that contain k literals, and
we need to prove that Ik−1 equals the set of implicants of f that contain (k − 1) literals.

We first show that Ik−1 ⊆ I(f). A product term r is added to Ik−1 only if there exist
two product terms p, q ∈ Ik such that dist(p, q) = 1 and r = p∩q. By Claim 9.19, it follows
that r ∈ I(f), and therefore, Ik−1 ⊆ I(f). By construction each r ∈ Ik−1 contains k − 1
literals.

Consider an implicant r ∈ I(f) that contains k − 1 literals. We need to show that
r ∈ Ik−1. Since k < n, there exists a variable Xi such that Xi ∉ vars(r). Consider the
products p

△

= r ⋅Xi and q
△

= r ⋅ X̄i. By Claim 9.10, p → r and q → r are tautologies. By
transitivity (see Example 1 on page 146), p → ϕf and q → ϕf are tautologies. Therefore,
both p and q are implicants of f .

Since p and q contain k literals, the induction hypothesis implies that p, q ∈ Ik. Since
dist(p, q) = 1, it follows that p ∩ q ∈ Ik−1. However, r = p ∩ q, and therefore, r ∈ Ik−1, as
required. This completes the proof of the induction step, and the theorem follows. 2

We now prove that the algorithm computes the arcs of the implicants’ graph.

Claim 9.21 Algorithm QM(Tf) constructs the implicants’ graph Gf .

Proof: By Theorem 9.20, Algorithm QM(Tf) constructs all the implicants, so we only
need to prove that all the arcs are computed as well. If the arc (p, p ∩ q) is computed by
the algorithm, then (p, p ∩ q) ∈ E. Indeed, by Theorem 9.20, p and p ∩ q are implicants
and p is an immediate predecessor of p ∩ q.

On the other hand, if (p, r) ∈ E, then p = r ⋅Xi or p = r ⋅X̄i. Assume that p = r ⋅Xi (the
other case is proved similarly). Let p′

△

= r ⋅ X̄i. Since r is an implicant, by Claim 9.9, p′

is also an implicant. Since p and p′ belong to the same layer, the algorithm will consider
the pair p, p′, add the vertex r = p ∩ p′ and add the arcs (p, r) and (p′, r), as required. 2

Algorithm QM(Tf) computes the implicants’ graph. By Observation 9.9, the essential
prime implicants can be computed as follows.

1. For each minterm r, compute the set of sinks in Gf that are reachable from r.

2. If this set contains a single sink p, then add p to Ie(f).
3. After all minterms have been scanned, return Ie(f).

9.6.6 Karnaugh Maps

A tabular method to obtain the prime implicants and the essential prime implicants
is called Karnaugh Maps. This method works reasonably well for Boolean functions
f ∶ {0,1}n → {0,1} where n ≤ 4. The idea is as follows:

146 CHAPTER 9. REPRESENTATION BY FORMULAS

1. Write the multiplication table of f . It useful to order the columns and rows in a
Gray code order.

2. Identify a × b “generalized” maximal rectangles of all-ones in the table where both
a and b are powers of 2.

3. Each such maximal rectangle corresponds to a prime implicant.

4. If a “1” is covered only by one such rectangle, then this rectangle corresponds to
an essential prime implicant.

See Example 3 for a demonstration of this method.

Examples

1. Prove the following lemma.

Lemma 9.22 Let τ be an assignment. Let ϕ1
△

= (x → y), ϕ2
△

= (y → z), and
ϕ3

△

= (x→ z), then

(τ̂(ϕ1) = 1) and (τ̂(ϕ2) = 1)⇒ (τ̂(ϕ3) = 1) ,
where x, y, z are Boolean formulas over the same set of variables and connectives.

Proof: Let us assume in contrary that τ̂(ϕ3) = 0. It follows, that τ̂(x) = 1 and
τ̂(z) = 0. Since τ̂(ϕ2) = 1, then τ̂(y) = 0. Since τ̂(x) = 1 and τ̂(y) = 0, it follows
that τ̂(ϕ1) = 0, a contradiction to the assumption that τ̂(ϕ1) = 0. 2

Note that Lemma 9.22 implies that

((x → y)∧ (y → z))→ z

is a tautology.

2. Quine-McCluskey Heuristic example. Let f1 ∶ {0,1}3 → {0,1}, defined by the truth
table depicted in Table 9.4.

In this case, f1 can be represented as a SOP of minterms as follows.

ϕf1 = X̄ ⋅ Ȳ ⋅ Z̄ +X ⋅ Ȳ ⋅ Z̄ +X ⋅ Y ⋅ Z̄ + X̄ ⋅ Ȳ ⋅Z + X̄ ⋅ Y ⋅Z +X ⋅ Y ⋅Z .

Figure 9.2 depicts the implicants’ graph Gf1 that the Quine-McCluskey heuristic
calculates during its execution. Since all minterms are covered by more than one
sink, then Ie(f) = ∅.

Now, we should find a shortest subset A ⊆ I ′(f) such that adding the products in
A to ψ makes ψ logically equivalent to ϕf .

9.6. MINIMIZATION HEURISTICS∗ 147

X Y Z f1(X,Y,Z)
0 0 0 1
1 0 0 1
0 1 0 0
1 1 0 1
0 0 1 1
1 0 1 0
0 1 1 1
1 1 1 1

Table 9.4: The truth table of f1 ∶ {0,1}3 → {0,1}.

X · Y · Z̄

I3 I2

X̄ · Ȳ · Z

X̄ · Y · Z

X · Y · Z Y · Z

X̄ · Z

X̄ · Ȳ

X · Y

X · Z̄

Ȳ · Z̄

X · Ȳ · Z̄

X̄ · Ȳ · Z̄

Figure 9.2: The implicants’ graph Gf1 .

For example:

ψf1(X,Y,Z) =X ⋅ Z̄ + X̄ ⋅ Ȳ + Y ⋅Z .

Note that since Ie(f) = ∅, then the Boolean functions f1 is not logically equivalent
to the sum of its essential prime implicants.

3. Karnaugh Maps example. In the following example, we demonstrate the method

148 CHAPTER 9. REPRESENTATION BY FORMULAS

as well as the terms: Gray code order, generalized maximal rectangles, and the
correspondence between a rectangle and an implicant.

Let f2 ∶ {0,1}3 → {0,1}, defined by the truth table depicted in Table 9.5. In this

X Y Z f2(X,Y,Z)
0 0 0 1
1 0 0 1
0 1 0 1
1 1 0 1
0 0 1 0
1 0 1 1
0 1 1 1
1 1 1 0

Table 9.5: The truth table of f2 ∶ {0,1}3 → {0,1}.
case, f2 can be represented as a SOP of minterms as follows.

ϕf2 = X̄ ⋅ Ȳ ⋅ Z̄ +X ⋅ Ȳ ⋅ Z̄ + X̄ ⋅ Y ⋅ Z̄ +X ⋅ Y ⋅ Z̄ +X ⋅ Ȳ ⋅Z + X̄ ⋅ Y ⋅Z .

The Karnaugh Map of f2 is depicted in Table 9.6. The columns correspond to the
variable Y and Z. The rows correspond to the variable X.

Y Z
X

00 01 11 10

0 1 0 1 1
1 1 1 0 1

Table 9.6: The Karnaugh Map of f2 ∶ {0,1}3 → {0,1}.
Note that the columns’ labels are ordered by a Gray code, that is two consecutive
labels differ by a single bit (if n = 4, then the rows’ labels are coded in the same
way).

We now identify the prime implicants of f2. There are 3 prime implicants. These
implicants are depicted in Table 9.7. The implicants are depicted as a maximal
generalized gray rectangles. Note that the dimensions of these rectangles are powers
of two, furthermore they are maximal, i.e., one cannot extend the rectangle in a
way that its dimensions are powers of two and that it covers only values of ‘1’.

The minimized SOP formula ψf2 is as follows.

ψf2 = Z̄ + X̄ ⋅ Ȳ +X ⋅ Ȳ .

9.6. MINIMIZATION HEURISTICS∗ 149

Y Z
X

00 01 11 10

0 1 0 1 1
1 1 1 0 1

Y Z
X

00 01 11 10

0 1 0 1 1
1 1 1 0 1

Y Z
X

00 01 11 10

0 1 0 1 1
1 1 1 0 1

Table 9.7: The prime implicants of f2. Note that the leftmost implicant is, in fact, a 2×2
rectangle. In this case all prime implicants are essential.

Problems

9.1 Prove that every nonconstant Boolean function has a unique representation as a
sum of (distinct) minterms.

9.2 Represent the following Boolean functions as SOP: (i) The parity function p ∶{0,1}3 → {0,1} (see Example 3 on page 16), (ii) The majority function m ∶ {0,1}3 →{0,1} (see Example 4 on page 16).

9.3 Represent the following Boolean functions as POS: (i) The parity function p ∶{0,1}3 → {0,1} (see Example 3 on page 16), (ii) The majority function m ∶ {0,1}3 →{0,1} (see Example 4 on page 16).

9.4 Represent the following Boolean functions as polynomials in GF (2)[{X,Y,Z}]:
(i) The parity function p ∶ {0,1}3 → {0,1} (see Example 3 on page 16), (ii) The ma-
jority function m ∶ {0,1}3 → {0,1} (see Example 4 on page 16).

9.5 Let p ∈ I ′(f). Let τ be an assignment, such that τ̂(p) = 1. Prove that there exists a
minterm r such that τ̂(r) = 1.

9.6 Minimize the following Boolean formulas using (i) the Quine-McCluskey heuristic,
(ii) Karnaugh Maps, and (iii) a software tool.

1. ϕ1 = X̄ ⋅ Ȳ ⋅ Z̄ + X̄ ⋅ Y ⋅Z + X̄ ⋅ Y ⋅ Z̄ +X ⋅ Ȳ ⋅ Z̄ +X ⋅ Ȳ ⋅Z +X ⋅ Y ⋅ Z̄.

2. ϕ2 = X̄ ⋅ Ȳ ⋅ Z̄ + X̄ ⋅ Ȳ ⋅Z +X ⋅ Ȳ ⋅Z +X ⋅ Y ⋅ Z̄.

In (i) draw the implicants’ graph and mark the essential implicants vertices in it.

9.7 What is the maximum height of a parse tree of a CNF or DNF formula?

9.8 Let (G,π) denote the parse tree of a Boolean formula ϕ. Define sufficient and
necessary conditions for T so that ϕ is a DNF formula. Repeat this task for a CNF
formula.

150 CHAPTER 9. REPRESENTATION BY FORMULAS

Chapter 10

The Digital Abstraction∗
Contents

10.1 Transistors . 152

10.2 A CMOS inverter . 154

10.3 From analog signals to digital signals 155

10.4 Transfer functions of gates . 157

10.5 The bounded-noise model . 159

10.6 The digital abstraction in presence of noise 160

10.6.1 Input and output signals . 160

10.6.2 Redefining the digital interpretation of analog signals 160

10.7 Stable signals . 162

10.8 Summary . 163

151

152 CHAPTER 10. THE DIGITAL ABSTRACTION∗

The term a digital circuit refers to a device that works in a binary world. In the
binary world, the only values are zeros and ones. In other words, the inputs of a digital
circuit are zeros and ones, and the outputs of a digital circuit are zeros and ones. Digital
circuits are usually implemented by electronic devices and operate in the real world. In
the real world, there are no zeros and ones; instead, what matters is the voltages of
inputs and outputs. Since voltages refer to energy, they are continuous (unless Quantum
Physics is used). So we have a gap between the continuous real world and the two-valued
binary world. One should not regard this gap as an absurd. Digital circuits are only an
abstraction of electronic devices. In this chapter we explain this abstraction, called the
digital abstraction.

In the digital abstraction one interprets voltage values as binary values. The advan-
tages of the digital model cannot be overstated; this model enables one to focus on the
digital behavior of a circuit, to ignore analog and transient phenomena, and to easily
build larger more complex circuits out of small circuits. The digital model together with
a simple set of rules, called design rules, enable logic designers to design complex digital
circuits consisting of millions of gates that operate as expected.

10.1 Transistors

The basic building blocks of digital electronic circuits are transistors. The hierarchy
starts with transistors, from which gates are built. Gates are then used for building
bigger circuits. The most common technology used in digital electronics these days is
called CMOS. In CMOS there are only two types of transistors: N-type and P-type.
From these two types of transistors all digital designs can be built!

Each transistor has three connections to the outer world, called the gate, source, and
drain. Figure 10.1 depicts diagrams describing these transistors. Although inaccurate,

gate gate

N−transistor

drain

drainsource

P−transistor

source

Figure 10.1: Schematic symbols of an N-transistor and a P-transistor

we will refer, for the sake of simplicity, to the gate and source as inputs and to the drain
as an output. An overly simple specification of an N-type transistor in CMOS technology
is as follows.

Notation. Let Vg denote the voltage of the gate of a transistor. Let Rsd denote the
resistance between the source and a drain of a transistor. We use RN

sd(Vg) to denote the
resistance Rsd in an N-type transistor as a function of the voltage Vg. Similarly, RP

sd(Vg)
denotes the resistance Rsd in a P-type transistor as a function of Vg. Let Vlow < Vhigh

denote two threshold voltages (the values of Vlow and Vhigh depend on the technology).

10.1. TRANSISTORS 153

The resistance Rsd behaves in an ideal setting as follows:

RN
sd(Vg) △= ⎧⎪⎪⎨⎪⎪⎩

∞ if Vg < Vlow

0 if Vg > Vhigh

RP
sd(Vg) △= ⎧⎪⎪⎨⎪⎪⎩

0 if Vg < Vlow

∞ if Vg > Vhigh

In reality, zero resistance means a very small resistance, and infinite resistance means a
very high resistance.

The voltages in an electronic circuit change when the circuit is engaged in some
computation. Nevertheless, we distinguish between the changes (or transitions) that are
supposed to be very fast, and the periods between transitions that are called the steady
state. For example, consider two players X and Y passing a ball to each other. We regard
the travel from one player to the other as a transition. We regard the state of the ball
as steady if the ball is held by one of the players. Thus, we say that the ball alternates
between the states X and Y .

Let us focus on the steady state of an N-type transistor. If the voltage of the gate
is high (Vg > Vhigh), then there is no resistance between the source and the drain. Such
a small resistance causes the voltage of the drain to equal the voltage of the source. If
the voltage of the gate is low (Vg < Vlow), then there is a very high resistance between
the source and the drain. Such a high resistance means that the voltage of the drain is
unchanged by the transistor. It could be changed by another transistor, if the drains of
the two transistors are connected. A P-type transistor behaves in a dual manner: the
resistance between drain and the source is low if the gate voltage is below Vlow. If the
voltage of the gate is above Vhigh, then the source-to-drain resistance is very high.

Note that this description of transistor behavior implies that transistors are highly
non-linear. (Recall that a linear function f(x) satisfies f(a ⋅ x) = a ⋅ f(x).) See Fig 10.2
for a graph of Rsd as a function of Vg in N- and P-type transistors.

Specifically, Rsd(Vg) is not a linear function of Vg. Namely,

Vg > Vhigh⇒ RN
sd(1.1 ⋅ Vg) ≈ Rsd(Vg) ≈ 0.

Vg < Vlow ⇒ RP
sd(0.9 ⋅ Vg) ≈ Rsd(Vg) ≈ 0.

However, for V = 0.5 ⋅ (Vlow + Vhigh), we have

Vg > V ⇒ RP
sd(1.1 ⋅ V)
RP
sd(V) ≫ 1.1, and

Vg < V ⇒ RN
sd
(1.1 ⋅ V)
RN
sd(V) ≪ 1/1.1.

The absolute value of the derivative ∂Rsd/∂Vg for Vg ≈ V is often referred to as the gain
of a transistor.

154 CHAPTER 10. THE DIGITAL ABSTRACTION∗

Figure 10.2: A qualitative graph of Rsd as a function of Vg in N- and P-type transistors.
The y-axis is the resistance between the source and the drain Rsd. The x-axis is the
voltage of the gate Vg. The dashed line depicts RN

sd(vg). The solid line depicts RP
sd(vg).

10.2 A CMOS inverter

Figure 10.3 depicts a CMOS inverter. If the input voltage is above Vhigh, then the source-
to-drain resistance in the P-transistor is very high and the source-to-drain resistance in
the N-transistor is very low. Since the source of the N-transistor is connected to low
voltage (i.e., ground), the output of the inverter is low.

If the input voltage is below Vlow, then the source-to-drain resistance in the N-
transistor is very high and the source-to-drain resistance in the P-transistor is very low.
Since the source of the P-transistor is connected to high voltage, the output of the inverter
is high.

We conclude that the voltage of the output is low when the input is high, and vice-
versa, and the device is indeed an inverter.

OUTIN

0 volts

5 volts

N−transistor

P−transistor

Figure 10.3: A CMOS inverter

The qualitative description of a CMOS inverter hopefully conveys some intuition about
how gates are built from transistors. A quantitative analysis of such an inverter requires

10.3. FROM ANALOG SIGNALS TO DIGITAL SIGNALS 155

precise modeling of the functionality of the transistors in order to derive the input-
output voltage relation. One usually performs such an analysis by computer programs
(e.g. SPICE). Quantitative analysis is relatively complex and inadequate for designing
large systems like computers. (This would be like having to deal with the chemistry of
ink when using a pen.)

10.3 From analog signals to digital signals

An analog signal is a real function f ∶ R → R that describes the voltage of a given point
in a circuit as a function of the time. We ignore the resistance and capacities of wires.
Moreover, we assume that signals propagate through wires immediately1. Under these
assumptions, it follows that, in every moment, the voltages measured along different
points of a wire are identical. Since a signal describes the voltage (i.e., derivative of
energy as a function of electric charge), we also assume that a signal is a continuous
function.

A digital signal is a function g ∶ R → {0,1,non-logical}. The value of a digital signal
describes the logical value carried along a wire as a function of time. To be precise there
are two logical values: zero and one. The non-logical value simply means that the signal
is neither zero or one.

How does one interpret an analog signal as a digital signal? The simplest interpreta-
tion is to set a threshold V ′. Given an analog signal f(t), the digital signal dig(f(t)) can
be defined as follows.

dig(f(t)) △= ⎧⎪⎪⎨⎪⎪⎩
0 if f(t) < V ′
1 if f(t) > V ′ (10.1)

According to this definition, a digital interpretation of an analog signal is always 0 or 1,
and the digital interpretation is never non-logical.

There are several problems with the definition in Equation 10.1. One problem with
this definition is that all the components should comply with exactly the same threshold
V ′. In reality, devices are not completely identical; the actual thresholds of different
devices vary according to a tolerance specified by the manufacturer. This means that
instead of a fixed threshold, we should consider a range of thresholds.

Another problem with the definition in Equation 10.1 is caused by perturbations of
f(t) around the threshold t. Such perturbations can be caused by noise or oscillations
of f(t) before it stabilizes. We will elaborate more on noise later, and now explain why
oscillations can occur. Consider a spring connected to the ceiling with a weight w hanging
from it. We expect the spring to reach a length ℓ that is proportional to the weight w.
Assume that all we wish to know is whether the length ℓ is greater than a threshold ℓt.
Sounds simple! But what if ℓ is rather close to ℓt? In practice, the length only tends to
the length ℓ as time progresses; the actual length of the spring oscillates around ℓ with
a diminishing amplitude. Hence, the length of the spring fluctuates below and above ℓt
many times before we can decide. This effect may force us to wait for a long time before

1This is a reasonable assumption if wires are short.

156 CHAPTER 10. THE DIGITAL ABSTRACTION∗

we can decide if ℓ < ℓt. If we return to the definition of dig(f(t)), it may well happen that
f(t) oscillates around the threshold V ′. This renders the digital interpretation defined in
Eq. 10.1 useless.

Returning to the example of weighing weights, assume that we have two types of
objects: light and heavy. The weight of a light (resp., heavy) object is at most (resp., at
least) w0 (resp., w1). The bigger the gap w1 −w0, the easier it becomes to determine if
an object is light or heavy (especially in the presence of noise or oscillations).

Now we have two reasons to introduce two threshold values instead of one, namely,
different threshold values for different devices and the desire to have a gap between
values interpreted as logical zero and logical one. We denote these thresholds by Vlow and
Vhigh, and require that Vlow < Vhigh. An interpretation of an analog signal is depicted in
Figure 10.4. Consider an analog signal f(t). The digital signal dig(f(t)) is defined as
follows.

dig(f(t)) △=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if f(t) < Vlow

1 if f(t) > Vhigh

non-logical otherwise.

(10.2)

Vhigh

logical zero

f(t)

Vlow

logical one

t

Figure 10.4: A digital interpretation of an analog signal in the zero-noise model.

We often refer to the logical value of an analog signal f . This is simply a shorthand
way of referring to the value of the digital signal dig(f).

It is important to note that fluctuations of f(t) are still possible around the threshold
values. However, if the two thresholds are sufficiently far away from each other, fluc-
tuations of f do not cause fluctuations of dig(f(t)) between 0 and 1. Instead, we will
have at worst fluctuations of dig(f(t)) between a non-logical value and a logical value
(i.e., 0 or 1). A fluctuation between a logical value and a non-logical value is much more
favorable than a fluctuation between 0 and 1. The reason is that a non-logical value is

10.4. TRANSFER FUNCTIONS OF GATES 157

an indication that the circuit is still in a transient state and a “decision” has not been
reached yet.

Assume that we design an inverter so that its output tends to a voltage that is bounded
away from the thresholds Vlow and Vhigh. Let us return to the example of the spring with
weight w hanging from it. Additional fluctuations in the length of the spring might be
caused by wind. This means that we need to consider additional effects so that our model
will be useful. In the case of the digital abstraction, we need to take noise into account.
Before we consider the effect of noise, we formulate the static functionality of a gate,
namely, the values of its output as a function of its stable inputs.

Example: analog specification of an inverter

Can we define an inverter in terms of the voltage of the output as a function of the voltage
of the input. Let Vin and Vout denote the input and output voltages of an inverter. Then,

Vout =

⎧⎪⎪⎨⎪⎪⎩
< Vlow if Vin > Vhigh

> Vhigh if Vin < Vlow.
(10.3)

What should Vout be if Vlow < Vin < Vhigh? Formally, such an input voltage is not “legal” in
the steady state, so we should not be worried about it. However, to avoid a wrong digital
interpretation of Vout, it could help if dig(Vout) is non-logical if dig(Vin) is non-logical.

10.4 Transfer functions of gates

The voltage at an output of a gate depends on the voltages of the inputs of the gate. This
dependence is called the transfer function (or the voltage-transfer characteristic - VTC)
Consider, for example an inverter with an input x and an output y. To make things
complicated, the value of the signal y(t) at time t is not only a function of the signal x
at time t since y(t) depends on the history. Namely, y(t0) is a function of x(t) over the
interval (−∞, t0].

Partial differential equations are used to model gates, and the solution of these equa-
tions is unfortunately a rather complicated task. A good approximation of transfer func-
tions is obtained by solving differential equations, still a complicated task that can be
computed quickly only for a few transistors. So how are chips that contain millions of
chips designed if the models are too complex to be solved?

The way this very intricate problem is handled is by restricting designs. In particular,
only a small set of building blocks is used. The building blocks are analyzed intensively,
their properties are summarized, and designers rely on these properties for their designs.

One of the most important steps in characterizing the behavior of a gate is computing
its static transfer function. Returning to the example of the inverter, a “proper” inverter
has a unique output value for each input value. Namely, if the input x(t) is stable for a
sufficiently long period of time and equals x0, then the output y(t) stabilizes on a value
y0 that is a function of x0.

158 CHAPTER 10. THE DIGITAL ABSTRACTION∗

Before we define what a static transfer function is, we point out that there are devices
that do not have static transfer functions. We need to distinguish between two cases:
(a) Stability is not reached: this case occurs, for example, with devices called oscillators.
Note that oscillating devices must consume energy even when the input is stable. We
point out that in CMOS technology it is easy to design circuits that do not consume
energy if the input is logical, so such oscillations are avoided. (b) Stability is reached:
in this case, if there is more than one stable output value, it means that the device
has more than one equilibrium point. Such a device can be used to store information
about the “history”. It is important to note that devices with multiple equilibriums are
very useful as storage devices (i.e., they can “remember” a small amount of information).
Nevertheless, devices with multiple equilibriums are not “good” candidates for gates, and
it is easy to avoid such devices in CMOS technology.

Example. A device with many equilibriums. Consider a pot that is initially filled with
water. At time t, the pot is held in angle x(t). A zero angle means that the pot is held
upright. An angle of 180○ means that the pot is upside down. Now, we are told that
x(t) = 0○ for t ≥ 100. Can we say how much water is contained in the pot at time t = 200?
The answer, of course, depends on the history during the interval t ∈ [0,100), namely,
whether the pot was tilted.

We formalize the definition of a static transfer function of a gate G with one input x
and one output y in the following definition. We begin with a naive definition.

Definition 10.1 Consider a device G with one input x and one output y. The device G
is a gate if its functionality is specified by a function f ∶ R → R as follows: there exists
a ∆ > 0, such that, for every x0 and every t0, if x(t) = x0 for every t ∈ [t0 −∆, t0], then
y(t0) = f(x0).
Such a function f(x) is called the static transfer function of G.

Since circuits operate over a bounded range of voltages, static transfer functions are
usually only defined over bounded domains and ranges (say, [0,5] volts).

To make the definition useful, one should allow perturbations of x(t) during the
interval [t0 − ∆, t0]. Static transfer functions model physical devices, and hence, are
continuous. This implies the following definition.

Definition 10.2 A function f(x) is the static transfer function of a gate G if the fol-
lowing holds. For every ǫ > 0, there exists a δ > 0 and a ∆ > 0, such that

∀t ∈ [t1, t2] ∶ ∣x(t) − x0∣ ≤ δ ⇒ ∀t ∈ [t1 +∆, t2] ∶ ∣y(t) − f(x0)∣ ≤ ǫ.
Note that in the above definition ∆ does not depend on x0 (although it may depend on
ǫ). Typically, we are interested on the values of ∆ only for logical values of x(t) (i.e.,
x(t) ≤ Vlow and x(t) ≥ Vhigh). Once the value of ǫ is fixed, this constant ∆ is called the
propagation delay of the gate G and is one of the most important characteristics of a gate.

10.5. THE BOUNDED-NOISE MODEL 159

It is easy to extend Definition 10.2 to gates with n inputs and m outputs. Thus, the
input is a vector x(t) ∈ Rn and the output is a vector y(t) ∈ Rm. First, the static transfer
function should be a function f ∶ Rn → Rm. For a vector z ∈ Rk, let

∣∣z∣∣ △=√z2
1 +⋯+ z2

k.

Now, require, for every ǫ > 0, there exists a δ > 0 and a ∆ > 0, such that

∀t ∈ [t1, t2] ∶ ∣∣x(t) − x0∣∣ ≤ δ ⇒ ∀t ∈ [t1 +∆, t2] ∶ ∣∣y(t) − f(x0)∣∣ ≤ ǫ.
Finally, we can now define an inverter in the zero-noise model. Observe that according

to this definition a device is an inverter if its static transfer function satisfies a certain
property. We already stated this property in Eq. 10.3.

Definition 10.3 (inverter in zero-noise model) A gate G with a single input x and
a single output y is an inverter if its static transfer function f(z) satisfies the following
the following two conditions:

1. If z < Vlow, then f(z) > Vhigh.

2. If z > Vhigh, then f(z) < Vlow.

The implication of this definition is that if the logical value of the input x is zero (resp.,
one) during an interval [t1, t2] of length at least ∆, then the logical value of the output
y is one (resp., zero) during the interval [t1 +∆, t2].

We are now ready to strengthen the digital abstraction so that it will be useful also
in the presence of bounded noise.

10.5 The bounded-noise model

Consider a wire from point A to point B. Let A(t) denote the analog signal measured at
point A. Similarly, let B(t) denote the analog signal measured at point B. We would like
to assume that wires have zero resistance, zero capacitance, and that signals propagate
through a wire with zero delay. This assumption means that the signals A(t) and B(t)
should be equal at all times. Unfortunately, this is not the case; the main reason for this
discrepancy is noise.

There are many sources of noise. The main source of noise is heat that causes electrons
to move randomly. These random movements do not cancel out perfectly, and random
currents are created. These random currents create perturbations in the voltage. The
difference between the signals B(t) and A(t) is a noise signal.

Consider, for example, the setting of additive noise: A is an output of an inverter and
B is an input of another inverter. We consider the signal A(t) to be a reference signal.
The signal B(t) is the sum A(t) + nB(t), where nB(t) is the noise signal.

The bounded-noise model assumes that the noise signal along every wire has a bounded
absolute value. We will use a slightly simplified model in which there is a constant ǫ > 0

160 CHAPTER 10. THE DIGITAL ABSTRACTION∗

such that the absolute value of all noise signals is bounded by ǫ. We refer to this model as
the uniformly bounded noise model. The justification for assuming that noise is bounded
is probabilistic. Noise is a random variable whose distribution has a rapidly diminishing
tail. This means that if the bound is sufficiently large, then the probability of the noise
exceeding this bound during the lifetime of a circuit is negligibly small.

10.6 The digital abstraction in presence of noise

Consider two inverters connected in series. Namely, the output of one gate feeds the
input of the second gate (see Figure 10.5).

Assume that the input x has a value that satisfies: (a) x > Vhigh, so the logical value
of x is one, and (b) y = Vlow − ǫ′, for a very small ǫ′ > 0. This might not be possible
with every inverter, but Definition 10.3 does not rule out such an inverter. (Consider a
transfer function with f(Vhigh) = Vlow, and x slightly higher than Vhigh.) Since the logical
value of y is zero, it follows that the second inverter, if not faulty, should output a value
z that is greater than Vhigh. In other words, we expect the logical value of z to be 1. At
this point we consider the effect of adding noise.

Let us denote the noise added to the wire y by ny. This means that the input of
the second inverter equals y(t) + ny(t). Now, if ny(t) > ǫ′, then the second inverter is
fed a non-logical value! This means that we can no longer deduce that the logical value
of z is one. We conclude that we must use a more resilient model; in particular, the
functionality of circuits should not be affected by noise. Of course, we can only hope to
be able to cope with bounded noise, namely noise whose absolute value does not exceed
a certain value ǫ.

z
y

x

Figure 10.5: Two inverters connected in series.

10.6.1 Input and output signals

Definition 10.4 An input signal is a signal that is fed to a circuit or to a gate. An
output signal is a signal that is output by a gate or a circuit.

For example, in Figure 10.5 the signal y is both the output signal of the left inverter
and an input signal of the right inverter. If noise is not present and there is no delay, then
the signal output by the left inverter always equals the signal input to the right inverter.

10.6.2 Redefining the digital interpretation of analog signals

The way we deal with noise is that we interpret input signals and output signals differently.
An input signal is a signal measured at an input of a gate. Similarly, an output signal is

10.6. THE DIGITAL ABSTRACTION IN PRESENCE OF NOISE 161

a signal measured at an output of a gate. Instead of two thresholds, Vlow and Vhigh, we
define the following four thresholds:� Vin,low - an upper bound on a voltage of an input signal interpreted as a logical zero.� Vout,low - an upper bound on a voltage of an output signal interpreted as a logical

zero.� Vin,high - a lower bound on a voltage of an input signal interpreted as a logical one.� Vout,high - a lower bound on a voltage of an output signal interpreted as a logical
one.

These four thresholds satisfy the following equation:

Vout,low < Vin,low < Vin,high < Vout,high. (10.4)

Figure 10.6 depicts these four thresholds. Note that the interpretation of input signals
is less strict than the interpretation of output signals. The actual values of these four
thresholds depend on the transfer functions of the devices we wish to use.

Vout,high

Vout,low

logical zero - output

Vin,high

Vin,low

logical zero - input

logical one - output

logical one - input

t

f(t)

Figure 10.6: A digital interpretation of an input and output signals.

Consider an input signal f(t). The digital signal digin(f(t)) is defined as follows.

digin(f(t)) △=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if f(t) < Vin,low

1 if f(t) > Vin,high

non-logical otherwise.

(10.5)

162 CHAPTER 10. THE DIGITAL ABSTRACTION∗

Consider an output signal g(t). The digital signal digout(g(t)) is defined analogously.

digout(g(t)) △=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if g(t) < Vout,low

1 if g(t) > Vout,high

non-logical otherwise.

(10.6)

Definition 10.5 The differences Vin,low − Vout,low and Vout,high − Vin,high are called noise
margins.

Consider the following setting. The signal g(t) is the output of gate G1. On its way
to an input of G2, the signal g(t) accumulates noise so that the input signal to G2 is the
signal f(t) △= g(t)+n(t). Our goal is to show that if the absolute value of the noise is less
than the noise margins, then the noise does not corrupt the signal.

Claim 10.1 Assume that f(t) = g(t) + n(t). Assume that ∣n(t)∣ is less than the noise
margins. If digout(g)(t) ∈ {0,1}, then digin(f)(t) = digout(g)(t).
Proof: Assume that digout(g)(t) = 0. Therefore, g(t) < Vout,low. Hence,

f(t) = g(t) + n(t)
< Vout,low + (Vin,low − Vout,low) = Vin,low.

Therefore, digin(f)(t) = 0, as required. The proof of the case digout(g)(t) = 1 is analogous.
2

We can now fix the definition of an inverter so that bounded noise added to outputs, does
not affect the logical interpretation of signals.

Definition 10.6 (inverter in the bounded-noise model) A gate G with a single in-
put x and a single output y is an inverter if its static transfer function f(z) satisfies the
following the following two conditions:

1. If z < Vin,low, then f(z) > Vout,high.

2. If z > Vin,high, then f(z) < Vout,low.

10.7 Stable signals

In this section we define terminology that will be used later. To simplify notation we
define these terms in the zero-noise model. We leave it to the curious reader to extend
the definitions and notation below to the bounded-noise model.

An analog signal f(t) is said to be logical at time t if dig(f(t)) ∈ {0,1}. An analog
signal f(t) is said to be stable during the interval [t1, t2] if f(t) is logical for every
t ∈ [t1, t2]. Continuity of f(t) and the fact that Vlow < Vhigh imply the following claim.

10.8. SUMMARY 163

Claim 10.2 If an analog signal f(t) is stable during the interval [t1, t2], then one of the
following holds:

1. dig(f(t)) = 0, for every t ∈ [t1, t2], or

2. dig(f(t)) = 1, for every t ∈ [t1, t2].
From this point we will deal with digital signals and use the same terminology.

Namely, a digital signal x(t) is logical at time t if x(t) ∈ {0,1}. A digital signal is
stable during an interval [t1, t2] if x(t) is logical for every t ∈ [t1, t2].
10.8 Summary

In this chapter we presented the digital abstraction of analog devices. For this purpose we
defined analog signals and their digital counterpart, called digital signals. In the digital
abstraction, analog signals are interpreted either as zero, one, or non-logical.

We discussed noise and showed that to make the model useful, one should set stricter
requirements from output signals than from input signals. Our discussion is based on the
bounded-noise model in which there is an upper bound on the absolute value of noise.

We defined gates using transfer functions and static transfer functions. This functions
describe the analog behavior of devices. We also defined the propagation delay of a device
as the amount of time that input signals must be stable to guarantee stability of the
output of a gate.

Problems

10.1 Define the static transfer function of a nand-gate and a nor-gate in the zero noise
model.

10.2 Define the static transfer function of a nand-gate and a nor-gate in the bounded
noise model.

10.3 Consider the following piecewise linear function:

f(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
5 if x ≤ 5

3

0 if x ≥ 10
3

−3x + 10 if 5
3
< x < 10

3
.

Show that if f(x) is the transfer function of a device C, then one can define threshold
values Vout,low < Vin,low < Vin,high < Vout,high so that C is an inverter according to Defini-
tion 10.6.

10.4 Consider the function f(x) = 1 − x over the interval [0,1]. Suppose that f(x) is
a the transfer function of a device C. Can you define threshold values Vout,low < Vin,low <
Vin,high < Vout,high so that C is an inverter according to Definition 10.6?

164 CHAPTER 10. THE DIGITAL ABSTRACTION∗

Hint: Prove that Vout,high ≤ 1−Vin,low and that Vout,low ≥ 1−Vin,high. Derive a contradiction
from these two inequalities.

10.5 Can you justify or explain the saying that “computers use only zeros and ones”?

10.6 Can you explain the following anomaly? The design of an adder is a simple task.
However, the design and analysis of a single electronic device (e.g., a single gate) is a
complex task.

Chapter 11

Foundations of combinational
circuits

Contents
11.1 Combinational gates - an analog approach 166

11.2 Back to the digital world . 168

11.2.1 Example . 169

11.3 Combinational gates . 170

11.4 Wires and Nets . 171

11.5 Combinational circuits . 173

11.6 Properties of Combinational Circuits 176

11.7 Simulation and Delay Analysis . 178

11.8 Completeness . 182

11.9 Cost and propagation delay . 186

11.10Example: relative gate costs and delay 187

11.11Semantics and Syntax . 187

11.12Summary . 188

165

166 CHAPTER 11. FOUNDATIONS OF COMBINATIONAL CIRCUITS

In this chapter we define and study combinational circuits. The underlying graph of
a combinational circuit is more general than the underlying graph of a Boolean formula.
In a formula the underlying graph is a rooted tree. However, in a combinational circuit
the underlying graph is a directed acyclic graph.

We focus on the representation of Boolean functions by combinational circuits, a rep-
resentation that is different from tables and formulas. Our goal is to prove two theorems:
(i) Every Boolean function can be implemented by a combinational circuit, and (ii) every
combinational circuit implements a Boolean function.

We introduce an efficient algorithm for simulating a combinational circuit. Simulation
means that we can determine the value of the outputs if we are given the values of the
inputs. In addition, we analyze the time that elapses till the outputs of a combinational
circuit stabilize.

We measure the quality of a combinational circuit using two criteria: cost and delay.
Cost refers to the number of gates in a circuit. Delay refers to the speed of the circuit.
Obviously, we prefer cheap and fast circuit over costly and slow circuits.

11.1 Combinational gates - an analog approach

By Definition 10.1, a gate is a device whose static functionality is specified by a static
transfer function. This means that the output is a function of the inputs, provided that
the input values do not change for a sufficiently long amount of time.

Our goal now is to define combinational gates. According to Definition 10.1, a gate
is a deterministic memoryless device. A combinational gate must satisfy an additional
property. Namely, if the inputs are logically stable, then the output is logical. Hence,
not only is the output a function of the present value of the inputs - the output is logical
if the inputs are stable. We now formalize the definition of a combinational gate.

First, we extend the definition of the digital interpretation of an analog signal to real
vectors. Let y⃗ ∈ Rn, where y⃗ = (y1, y2,⋯, yn). The function dign ∶ R

n → {0,1,non-logical}n
is defined by

dign(y1, y2,⋯, yn) △= (dig(y1),dig(y2),⋯,dig((yn))).
To simplify notation, we denote dign simply by dig when the length n of the vector is
clear.

We now define a combinational gate. Consider a gate g with n inputs (denoted by x⃗)
and k outputs (denoted by y⃗). When we write dig(x⃗(t)) ∈ {0,1}n, we mean that every
component of x⃗(t) is logical.

Definition 11.1 The gate g is a combinational gate if there exists a ∆ > 0, such that,
for all x⃗(t) ∈ Rn,

∀t ∈ [t1, t2] ∶ digin(x⃗(t)) ∈ {0,1}n ⇒ ∀t ∈ [t1 +∆, t2] ∶ digout(y⃗(t)) ∈ {0,1}k. (11.1)

The above definition says that in a combinational gates, a stable input during [t1, t2]
leads to a stable output during [t1 + ∆, t2]. Note that this definition is stricter than

11.1. COMBINATIONAL GATES - AN ANALOG APPROACH 167

the definition of a gate in two ways. First, we require that the static transfer function
f ∶ Rn → Rk satisfy

∀x⃗ ∶ digin(x⃗) ∈ {0,1}n⇒ digout(f(x⃗)) ∈ {0,1}k. (11.2)

Second, we allow the input x⃗(t) to fluctuate as much as it wishes, as long as it is logically
stable (i.e., each component must have the same logical value during the interval [t1, t2],
but its analog value may fluctuate within the intervals [0, Vin,low] and [Vin,high,+∞]).

Consider a combinational gate g and let f ∶ Rn → Rk denote its static transfer function.
The function f induces a Boolean function Bf ∶ {0,1}n → {0,1}k as follows. Given a
Boolean vector (b1,⋯, bn) ∈ {0,1}n, define xi as follows:

xi
△

=

⎧⎪⎪⎨⎪⎪⎩
Vlow − ε if bi = 0

Vhigh + ε if bi = 1.

The Boolean function Bf is defined by

Bf(b⃗) △= digout(f(x⃗)).
Since g is a combinational gate, it follows that every component of digout(f(x⃗)) is logical,
and hence Bf is a Boolean function, as required.

After defining the Boolean function Bf , we can rephrase Equation 11.2 as follows
(note that this formulation ignores timing):

dig(x⃗) ∈ {0,1}n⇒ dig(f(x⃗)) = Bf(dig(x⃗)).
Claim 11.1 In a combinational gate, the relation between the logical values of the inputs
and the logical values of the outputs is specified by a Boolean function.

Proof: Since digout(f(x⃗)) ∈ {0,1}k if diginx⃗ ∈ {0,1}n, we conclude that digout(f(x⃗))
does not depend of the real values of x⃗ but only on their digital interpretation. Moreover,
digout(f(x⃗)) must be stable. This means that transitions from 0 to 1 (or vice versa)
are not possible. Indeed, during each such transition the digital interpretation must be
non-logical. 2

Recall that the propagation delay is an upper bound on the amount of time that
elapses from the moment that the inputs (nearly) stop changing till the moment that the
output (nearly) equals the value of the static transfer function. Hence, one must allow
some time till the logical values of the outputs of a combinational gate properly reflect
the value of the Boolean function. We say that a combinational gate is consistent if this
relation holds.

Consider a combinational gate g with inputs x⃗(t) and outputs y⃗(t). Let f denote the
static transfer function of g.

Definition 11.2 Gate g is consistent at time t if dig(x⃗(t)) ∈ {0,1}n and dig(y⃗(t)) =
Bf(dig(x⃗(t))).

168 CHAPTER 11. FOUNDATIONS OF COMBINATIONAL CIRCUITS

11.2 Back to the digital world

In the previous section we defined combinational gates using analog signals and their
digital interpretation. This approach is useful when one wishes to determine if an analog
device can be used as a digital combinational gate. Here simplify matters and deal only
with digital signals.

To simplify notation, we consider a combinational gate g with 2 inputs, denoted by
x1, x2, and a single output, denoted by y. Instead of using analog signals, we refer only to
digital signals. Namely, we denote the digital signal at terminal x1 by x1(t). The same
notation is used for the other terminals.

Our goals are to: (i) specify the functionality of combinational gate g by a Boolean
function, (ii) define when a combinational gate g is consistent, and (iii) define the prop-
agation delay of g.

We use a looser definition of the propagation delay. Recall that we decided to refer
only to digital signals. Hence, we are not sensitive to the analog value of the signals.
This means that a (logically) stable signal is considered to have a fixed value, and the
analog values of inputs may change as long as they remain with the same logical value.

In the looser definition of propagation delay we only ask about the time that elapses
from the moment the inputs are stable till the gate is consistent.

Definition 11.3 A combinational gate g is consistent with a Boolean function B at time
t if the input values are logical at time t and

y(t) = B(x1(t), x2(t)).
Note that y(t) must be also logical since x1(t), x2(t) ∈ {0,1} and B is a Boolean function.

Let B ∶ {0,1}2 → {0,1} denote the Boolean function induced by the static transfer func-
tion of the combinational gate g. The following definition defines propagation delay tpd
of a combinational gate.

Definition 11.4 The propagation delay of a combinational gate g is tpd if the following
holds. If the inputs are stable during the interval [t1, t2], then the gate is consistent with
the function B during the interval [t1 + tpd, t2].
Note that the definition is interesting only if t2 > t1 + tpd. In practice, this means that
the periods of steady state must be longer than the propagation delays. Otherwise, the
combinational gate may not reach consistency.

The propagation delay is an upper bound on the amount of time that elapses till a
combinational gate becomes consistent (provided that its inputs are stable). The actual
amount of time that passes till a combinational gate is consistent is very hard to compute,
and in fact it is random. It depends on x(t) during the interval (−∞, t) (i.e., how fast
does the input change?), noise, and manufacturing variance. This is why upper bounds
are used for propagation delays rather than the actual times.

Suppose that a combinational gate g implements a Boolean function B ∶ {0,1}n →{0,1} with propagation delay tpd. Assume that t′ ≥ tpd. Then g also implements the

11.2. BACK TO THE DIGITAL WORLD 169

Boolean function B(x) with propagation delay t′. It is legitimate to use upper bounds
on the actual propagation delay, and pessimistic assumptions should not render a circuit
incorrect. Timing analysis of circuits composed of many gates depends on the upper
bounds we use; the tighter the bounds, the more accurate the timing analysis is.

Assume that the combinational gate g is consistent at time t2, and that at least one
input is not stable in the interval (t2, t3). We can not assume that the output of g remains
stable after t2. However, in practice, an output may remain stable for a short while after
an input becomes instable. We formalize this as follows.

Definition 11.5 The contamination delay of a combinational device is a lower bound
on the amount of time that the output of a consistent gate remains stable after its inputs
stop being stable.

Throughout this course, unless stated otherwise, we will make the most “pessimistic”
assumption about the contamination delay. Namely, we do not rely on an output remain-
ing stable after an input becomes instable. Formally, we will assume that the contami-
nation delay is zero.

Figure 11.1 depicts the propagation delay and the contamination delay. The outputs
become stable at most tpd time units after the inputs become stable. The outputs remain
stable at least tcont time units after the inputs become instable.

inputs

tpd
outputs

tcont

Figure 11.1: The propagation delay and contamination delay of a combinational gate.
The x-axis corresponds to time. The dark (or red) segments signify that the signal is not
guaranteed to be logical; the light (or green) segments signify that the signal is guaranteed
to be stable.

11.2.1 Example

In this example we discuss timing analysis and inferring output values based on partial
inputs. Consider an and-gate with inputs x1(t) and x2(t) and an output y(t). Suppose
that the propagation delay of the gate is tpd = 2 seconds. (All time units are in seconds
in this example, so units will not be mentioned anymore in this example).� Assume that the inputs equal 1 during the interval [100,109] . Since tpd = 2, it

follows that y(t) = 1 during the interval [102,109]. It may very well happen that
y(t) = 1 before t = 102, however, we are not certain that this happens. During the

170 CHAPTER 11. FOUNDATIONS OF COMBINATIONAL CIRCUITS

interval [100,102), we are uncertain about the value of y(t); it may be 0, 1, or
non-logical, and it may fluctuate arbitrarily between these values.� Assume that x1(t) = 1 during the interval (109,115], x2(t) = non-logical during the
interval (109,110), and x2(t) = 0 during the interval [110,115].
During the interval (109,110) we know nothing about the value of the output y(t)
since x2(t) is non-logical. The inputs are stable again starting t = 110. Since tpd = 2,
we are only sure about the value of y(t) during the interval [112,115] (during the
interval [112,115], y(t) = 0). We are uncertain about the value of y(t) during the
interval (109,112).� Assume that x2(t) remains stable during the interval [110,120], x1(t) becomes non-
logical during the interval (115,116), and x1(t) equals 1 again during the interval[116,120].
Since x2(t) is stable during the interval [110,120], we conclude that it equals 0
during this interval. The truth-table of an and-gate implies that if one input is
zero, then the output is zero. Can we conclude that that y(t) = 0 during the interval[110,120]?
There are some technologies in which we could draw such a conclusion. However,
our formalism does not imply this at all! As soon as x1(t) becomes non-logical
(after t = 115), we cannot conclude anything about the value of y(t). We remain
uncertain for two seconds after both inputs stabilize. Both inputs stabilize at
t = 116. Therefore, we can only conclude that y(t) = 0 during the interval [118,120].
The inability to determine the value of y(t) during the interval (115,118) is a short-
coming of our formalism. For example, in a CMOS nand-gate, one can determine
that the output is zero if one of the outputs is one (even if the other input is non-
logical). The problem with using such deductions is that timing depends on the
values of the signals. On one hand, this improves the estimates computed by timing
analysis. One the other hand, timing analysis becomes a very hard computational
problem. In particular, instead of a task that can be computed in linear time, it
becomes an NP-hard task (i.e., a task that is unlikely to be solvable in polynomial
time).

11.3 Combinational gates

A combinational gate, as defined in Definition 11.4 is a device that implements a Boolean
function. From this point on, we refer to a combinational gate, in short, as a gate.

The inputs and outputs of a gate are often referred to as terminals, ports, or even
pins. The fan-in of a gate g is the number of input terminals of g (i.e., the number of bits
in the domain of the Boolean function that specifies the functionality of g). The fan-in
of the basic gates that we will be using as building blocks for combinational circuits is
constant (i.e., we usually consider at most two input ports). The basic gates that we
consider are: inverter (not-gate), or-gate, nor-gate, and-gate, nand-gate, xor-gate,

11.4. WIRES AND NETS 171

nxor-gate, multiplexer (mux). All this gates have a single output. To avoid confusion,
note that the fan-out of a gate is not the number of output ports. (The definition of
fan-out appears below.)

Given a gate g, we denote the fan-in (i.e., number of input ports) of g by in(g) and
the number of output ports of g by out(g). The input ports of a gate g are denoted by

the set {in(g)i}in(g)i=1 . The output ports of a gate g are denoted by the set {out(g)i}out(g)
i=1 .

Let

terminals(g) △= {in(g)i}in(g)i=1 ∪ {out(g)i}out(g)
i=1 .

We introduce two special gates used for external inputs and outputs.

Definition 11.6 (input and output gates) An input gate is a gate with zero inputs
and a single output. An output gate is a gate with one input and zero outputs.

Output GateInput Gate

Figure 11.2: An input gate and an output gate

Figure 11.2 depicts an input gate and an output gate. Inputs from the “external
world” are fed to a circuit via input gates. Similarly, outputs to the “external world” are
fed by the circuit via output gates. The second coordinate xi of an input-gate (in, xi) is
simply the name of the signal along the wire that emanates from it. Similarly, the second
coordinate yi of an output-gate (out, yi) is simply the name of the signal along the wire
that enters it. We usually name the inputs xi and the outputs yj, but they could be
assigned arbitrary names. (Of course, it is a good practice to use meaningful names.)

11.4 Wires and Nets

A wire is a connection between two terminals (e.g., an output of one gate and an input
of another gate). In the zero-noise model, the signals at both ends of a wire are identical.

Very often we need to connect several terminals (i.e., inputs and outputs of gates)
together. We could, of course, use any set of edges (i.e., wires) that connects these
terminals together. Instead of specifying how the terminals are physically connected
together, we use nets.

Definition 11.7 A net is a subset of terminals that are connected by wires. The fan-out
of a net N is the number of input terminals that are contained in N .

For example, let us consider the leftmost drawing in Figure 11.3. All the gates in this
drawing are inverters, i.e., not-gates. A not-gate has a single input port and a single
output port, i.e., in(not) = out(not) = 1. There is a single net in this drawing. This
net consists of 5 terminals: a single output port, and four input ports. Hence, the fan
out of this net is 4.

172 CHAPTER 11. FOUNDATIONS OF COMBINATIONAL CIRCUITS

How to draw multi-terminal nets? We say that a net is multi-terminal if it contains
more than two terminals. The issue of drawing a multi-terminal net is a bit confusing.
Figure 11.3 depicts three different drawings of the same net. All three nets contain an
output terminal of an inverter and 4 input terminals of inverters. However, the nets are
drawn differently. Recall that the definition of a net is simply a subset of terminals. We
may draw a net in any way that we find convenient or aesthetic. The interpretation of
the drawing is that terminals that are connected by lines or curves constitute a net.

Figure 11.3: Three equivalent nets.

The digital signal in a net. Consider a net N . We would like to define the digital
signal N(t) for the whole net. The problem is that due to noise (and other reasons)
the analog signals at different terminals of the net might not equal each other. This
might cause the digital interpretations of analog signals at different terminals of the net
to be different, too. We solve this problem by defining N(t) as logical only if there is a
consensus among all the digital interpretations of the analog signals at all the terminals
of the net. Namely, N(t) is zero (respectively, one) if the digital values of all the analog
signals in the net are zero (respectively, one). If there is no consensus, then N(t) is
non-logical. Recall that, in the bounded-noise model, different thresholds are used to
interpret the digital values of the analog signals measured in input and output terminals.

Direction in Nets. We “direct” a net from the output terminals to the input terminals
as follows. We say that a net N feeds an input terminal t if the input terminal t is in N .
We say that a net N is fed by an output terminal t if t is in N . Figure 11.4 depicts an
output terminal that feeds a net and an input terminal that is fed by a net. The notion of
feeding and being fed implies a direction according to which information “flows”; namely,
information is “supplied” by output terminals and is “consumed” by input terminals.

From an physical point of view, direction of signals along nets is obtained in “pure”
CMOS gates as follows. Output terminals are connected (via low resistance) to the ground
or to the power (but not both!). Input terminals, on the other hand, are connected only to
capacitors. To avoid conflicts between output terminals we use only simple nets, defined
next.

Simple Nets. The following definition captures the type of nets we would like to use.
We call these nets simple.

11.5. COMBINATIONAL CIRCUITS 173

G

a net fed by G
a net that feeds G

Figure 11.4: A terminal that is fed by a net and a terminal that feeds a net.

Definition 11.8 A net N is simple if (i) N is fed by exactly one output terminal, and
(ii) N feeds at least one input terminal.

A simple net N that is fed by the output terminal t and feeds the input terminals {ti}i∈I
can be modeled by the wires {wi}i∈I , where each wire wi connects t and ti. In fact,
since information flows in one direction, we may regard each wire wi as a directed edge
t → ti. Hence, we may model a simple net by a “star” of directed edges emanating from
a common output terminal and entering input terminals.

11.5 Combinational circuits

Let Γ denote a library of combinational gates that contains standard combinational gates
such as an inverter, or-gate, and-gate, et cetera. The library Γ contains a sub-library IO
that contains two special types of gates: input-gates (in, xi) and output-gates (out, yj).
Terminals in a Circuit. Suppose we want to design a circuit that contains two and

gates, three inputs, x1, x2, x3, and two outputs y1, y2, where y1 = and(x1, x2) and y2 =
and(x2, x3). One way to describe the circuit is to draw a schematic as depicted in
Figure 11.5. We would like to describe the circuit formally (a schematic is perhaps easy
to “read”, but hard to argue about).

(in, x3)

(in, x1)

(in, x2)

(out, y1)

(out, y2)

and

and

Figure 11.5: A combinational circuit.

174 CHAPTER 11. FOUNDATIONS OF COMBINATIONAL CIRCUITS

First, we count the number of gates. We have, in total, 2 + 3 + 2 = 7 gates (including
the input and output gates). We define a set V

△

= {vi}7i=1 of nodes. Now, we need to assign
a gate type to each node. We do this by defining a function π ∶ V → Γ. The function π

is simply

π(v1) = (in, x1), π(v2) = (in, x2), π(v3) = (in, x3),
π(v4) = π(v5) = and, (11.3)

π(v6) = (out, y1), π(v7) = (out, y2).
Both v4 and v5 are assigned and-gates. An and-gate has two input ports, called

in(and)1 and in(and)2, and one output terminal called out(and). How can we distin-
guish between the input ports of v4 and the input ports of v5? We do this by giving “fam-
ily” names to terminals. For example, the first input port of v4 is called (v4, in(and)1).
This is a bit cumbersome but unambiguous.

In the case of input and output gates, we abbreviate, and write (in, xi), instead of,
out((in, xi)). Similarly, we write (out, yj), instead of, in((out, yj)).

We now generalize this example. consider a set of nodes V and a function π ∶ V → Γ
assigns a gate type to each node.

Definition 11.9 The set of terminals of V with respect to π is defined as follows

terminals(V,π) △= {(v, t) ∶ v ∈ V, t ∈ terminals(π(v))}.
Netlist. A netlist is a way to describe how gates are connected to each other.

Definition 11.10 A netlist is a tuple H = (V,N,π), where V is a set of nodes, π ∶ V → Γ
assigns a gate type to each node, and N is a set of nets over terminals(V,π). We require
that the nets in N are pairwise disjoint.

We continue with the foregoing example. The netlist in this example is as follows.
The set of nodes is V

△

= {vi}7i=1, and the function π is defined in Equation 11.3. The set
N of nets consists of the following nets.

{(v1, (in, x1)), (v4, in(and)1)} ,{(v2, (in, x2)), (v4, in(and)2), (v5, in(and)1)} ,{(v3, (in, x3)), (v5, in(and)2)} ,{(v4, out(and)), (v6, (out, y1))} ,{(v5, out(and)), (v7, (out, y2))} .
The requirement that the nets are disjoint implies that each terminal may belong to

at most net in N . We often use the term circuit for a netlist. In fact, a netlist is a formal
way to describe a circuit.

In our foregoing example, the netlist “tells” us how to construct the circuit depicted
in Figure 11.5. First, “place” 7 gates according to the set V and the labeling function

11.5. COMBINATIONAL CIRCUITS 175

π. Now, all that remains is to do is to to solder the wires between the gates. Indeed, the
soldering rules are dictated by the nets in N . We connect a wire between the input gate(in, x1) and the first input port of the and-gate that corresponds to v4, etc.

A netlist with multi-terminal nets is also called a hypergraph. We prefer to work with
directed graphs. Indeed, this can be done if all nets are simple, as follows.

Graph Representation of a Netlist with Simple Nets. A netlist H = (V,N,π)
in which all nets are simple can be represented by a directed graph DG(H) = (V, Ñ).
Consider a net n = {t, t1, . . . , tk} in N with an output terminal t and input terminals
t1, . . . , tk. Suppose that t is a terminal of node v, and ti is a terminal of node vi. This
net n is represented in Ñ by the set of directed edges {(v, vi)}ki=1.
Note that in our foregoing example all the nets are simple. Hence, the set Ñ in this
example is as follows:

Ñ = {(v1, v4), (v2, v4), (v2, v5), (v3, v5), (v4, v6), (v5, v7)} .
Note that the directed graph DG(H) may have directed edges of the form (v, v); such

edges are called self-loops . In addition, the directed graph DG(H) may have parallel
edges , that is, more than one edge may emanate from a node u and enter the same node
v. For example, let us consider two combinational gates with multiple inputs and outputs.
Connecting the outputs of one to the inputs of the other, by using simple nets, yields a
directed graph with parallel edges between the corresponding nodes. Self-loops can be
obtained by gates that their output is connected to their input. Such a circuit is not a
combinational circuit, defined as follows.

Definition of Combinational Circuits.

Definition 11.11 A netlist H = (V,N,π) is a combinational circuit if it satisfies the
following conditions.

1. Every net in N is simple.

2. Every terminal in terminals(V,π) belongs to exactly one net in N .

3. The directed graph DG(H) is acyclic.

One can easily check if a netlist H = (V,N,π) is a combinational circuit. We need
to check that the nets are simple, pairwise disjoint, and contain all the terminals exactly
once. In addition, we need to check that DG(H) is acyclic. To check that the graph G

is acyclic, one can try to sort the vertices in topological order. This procedure succeeds
if and only if the graph is acyclic.

In many cases, a gate implements a commutative Boolean function (e.g., an and-
gate). In such cases, we may connect to either input terminals without modifying the
functionality.

In a depiction of a combinational circuit one often omits the orientation of the directed
edges. The reason is that the orientation is implied - an edge emanates from an output

176 CHAPTER 11. FOUNDATIONS OF COMBINATIONAL CIRCUITS

terminal and enters an input terminal. In addition, one uses special symbols for different
gate types. Thus, instead of writing the label π(v) in the vertex v, one sometimes depicts
the vertex by a symbol that represents π(v). Figure 11.6 depicts the symbols used to
depict common gates. In Fig. 11.6, the input ports are on the left side and the output
terminal is on the right side.

XOR−gate OR−gate NOR−gate

inverter AND−gate NAND−gate

Figure 11.6: Symbols of common gates. Inputs are on the left side, outputs are on the
right side.

Example. In Figure 11.7, a combinational circuit C = (V,N,π) is depicted. This circuit
is called a Half-Adder. Subfigure 11.7a depicts the graph G. Subfigure 11.7b depicts the
graph G with the labels. Note that the labels are depicts using special symbols for each
vertex. Edge directions are omitted in Subfigure 11.7b since they are implied.

The set of the combinational gates in this example is Γ = {and,xor}. The labeling
function π ∶ V → Γ is as follows.

π(v1) = (in, a),
π(v2) = (in, b),
π(v3) = and,

π(v4) = xor,

π(v5) = (out, cout),
π(v6) = (out, s) .

Example. Consider the circuits depicted in Figure 11.8. Can you explain why these
are not valid combinational circuits?

11.6 Properties of Combinational Circuits

Our goal now is to prove the following four important properties of combinational circuits.

Completeness: For every Boolean function B, there exists a combinational circuit that
implements B.

11.6. PROPERTIES OF COMBINATIONAL CIRCUITS 177

v1

v2

v3

v4

v5

v6

(a)

(in, b)

(in, a)

(out, s)

(out, cout)

(b)

Figure 11.7: A Half-Adder combinational circuit and its matching DAG.

Figure 11.8: Two examples of non-combinational circuits.

178 CHAPTER 11. FOUNDATIONS OF COMBINATIONAL CIRCUITS

Soundness: Every combinational circuit implements a Boolean function.

Simulation: Given the digital values of the inputs of a combinational circuit, one can
simulate the circuit efficiently (the running time is linear in the size of the circuit).
Namely, one can compute the digital values of the outputs of the circuit that are
output by the circuit once the circuit becomes consistent.

Delay analysis: Given the propagation delays of all the gates in a combinational circuit,
one can compute in linear time an upper bound on the propagation delay of the
circuit.

The proof that these properties hold proceeds as follows. First, we present an algo-
rithm for simulation and delay analysis. The correctness of this algorithm implies the
property of soundness. We then prove completeness by presenting a simple algorithm
that constructs a combinational circuit that implements a given Boolean formula.

11.7 Simulation and Delay Analysis

In this section we prove that combinational circuits are sound and can be simulated
efficiently. In fact, soundness is proved by a simulation, namely, we prove that, in a
combinational circuit, the stable signal along every wire is a Boolean function of the
inputs of the circuit.

Assumption. To simplify the presentation, we assume that every combinational gate
has a single output terminal and implements a commutative Boolean function. Moreover,
we assume that the fan-in of combinational gates is one or two.

Consider a combinational circuit C = (G,N,π). We identify a vertex v with its output
terminal, and denote the digital signal at the output terminal of v simply by v(t). For
an output-gate v, we denote the digital signal at the input terminal of v also by v(t). We
assume that C has k input gates named (in, xi), for 1 ≤ i ≤ k. To simplify notation, we
use x⃗(t) to denote the vector x1(t), . . . , xk(t).
Theorem 11.2 (Simulation theorem of combinational circuits) Assume that the
digital signals {xi(t)}ki=1 are stable during the interval [t1, t2]. Then, for every vertex
v ∈ V there exist:

1. a Boolean function fv ∶ {0,1}k → {0,1}, and

2. a propagation delay tpd(v)
such that v(t) = fv(x⃗(t)), for every t ∈ [t1 + tpd(v), t2].
Note the difference between tpd(v) and tpd(π(v)). The propagation delay tpd(π(v)) refers
to the delay of a single gate of type π(v). This delay is measured with respect to the
input of the gate. On the other hand, the propagation delay tpd(v) refers to the delay of
the output of v with respect to the input gates of the circuit C.

11.7. SIMULATION AND DELAY ANALYSIS 179

We prove the Simulation Theorem by presenting algorithm SIM(C, x⃗) (a listing ap-
pears as Algorithm 11.1). The algorithm computes the value of fv(x⃗) and the propaga-
tion delays tpd(v). We prove below that, for all v ∈ V , v(t) = fv(x⃗) during the interval[t1 + tpd(v), t2]. The algorithm first sorts the vertices in topological order. We rename
the vertices, so that vi is the vertex given the ith position in the topological ordering.
Without loss of generality, the sources appear first in the topological ordering so that
vi = xi, for 1 ≤ i ≤ k. The algorithm scans the vertices in this order. Source vertices
are the the easiest. Each source vertex vi equals xi. So fvi

simply equals xi, and the
propagation delay of an input gate is zero. Suppose that the in-degree of the next vertex
vi is one. In this case, vi is either an output gate or an inverter. If vi is an output gate,
then let vj denote the gate that feeds vi. Clearly, fvi

= fvj
and tpd(vi) = tpd(vj). If vi is

an inverter, then it outputs the negation of its input. The propagation delay of the vi is
the propagation delay of the vertex that feeds the inverter plus the propagation delay of
the inverter itself. Finally, a vertex vi whose in-degree equals two is treated as follows.
We apply the local Boolean function fπ(vi) to the values of its inputs. The propagation
delay equals the maximum propagation delay of the gates that fed vi plus the propagation
delay of π(vi).
Algorithm 11.1 SIM(C, x⃗) - An algorithm for simulating the combinational circuit
C = (V,N,π) with respect an input vector x⃗.

(v1, v2, . . . , vn)← TS(DG(C)) {topological sorting of DG(C)}
For i = 1 to n do

switch deg in(vi)
case deg in(vi) = 0: {π(vi) = (in, xj)}� Let xj denote the name of vi before topological sorting.� Set fvi

(x⃗) △= xj and tpd(vi) △= 0.

case deg in(vi) = 1:

If {π(vi) = not}, then� Let vj Ð→ vi denote the arc that enters vi.� Set fvi
(x⃗) = not(fvj

(x⃗)) and tpd(vi) = tpd(vj) + tpd(not).
If {π(vi) = (out, y)}, then� Let vj Ð→ vi denote the arc that enters vi.� Set fvi

(x⃗) = fvj
(x⃗) and tpd(vi) = tpd(vj).

case deg in(vi) = 2:� Let vj Ð→ vi and vk Ð→ vi denote the arcs that enter vi.� Set fvi
(x⃗) = Bπ(vi)(fvj

(x⃗), fvk
(x⃗)), and tpd(vi) = max{tpd(vj), tpd(vk)} +

tpd(π(vi)).

180 CHAPTER 11. FOUNDATIONS OF COMBINATIONAL CIRCUITS

Proof of Theorem 11.2: We prove that Algorithm SIM(C, x⃗) computes correct func-
tionalities fvi

and propagation delays tpd(vi). By correct we mean that

∀i ∈ [1..n] ∀x⃗ ∈ {0,1}k ∀t ∈ [t1 + tpd(vi), t2] ∶ vi(t) = fvi
(x⃗). (11.4)

The proof is by complete induction on i, the index of a vertex after topological sorting
takes place. We assume that topological ordering orders the sources first, namely, vi = xi,
for 1 ≤ i ≤ k. In Lemma 11.3, this assumption is justified.

Induction Basis: Recall that the first k nets are the input signals, hence vi(t) = xi(t),
if i ≤ k. The algorithm sets fvi

(x⃗(t)) = xi(t) and the propagation delay tpd(vi) is zero.
The induction basis follows for i ≤ k.

Induction Step: We assume that Eq. 11.4 holds for every j, provided that j < i, and
prove it for i. Since i > k, the vertex vi is not a source. By our assumption its in-degree
is either one or two.

If deg in(vi) = 1, then π(vi) = not. Let vj the vertex such that (vj , vi) is the arc
that enters vi. Since the vertices are topologically sorted, it follows that j < i. Hence,
we may apply the induction hypothesis to vj . The induction hypothesis states that
vj(t) = fvj

(x⃗(t)) during the interval [t1 + tpd(vj), t2]. Thus, the input to vi is stable
during the interval [t1 + tpd(vj), t2]. Since vj is a combinational gate, this implies that
its output is consistent with Bπ(vi) during the interval [t1 + tpd(vj) + tpd(not), t2]. Thus,
vi(t) = not(vj(t)) during this interval, and Eq. 11.4 holds for i.

If deg in(vi) = 2, then let vj and vk denote the two vertices such that (vj , vi) and(vk, vi) are the arcs that enter vi. Since the vertices are topologically sorted, it fol-
lows that j, k < i. Hence, we may apply the induction hypothesis to vj and vk. The
induction hypothesis states that vj(t) = fvj

(x⃗(t)) during the interval [t1 + tpd(vj), t2].
Similarly, vk(t) = fvk

(x⃗(t)) during the interval [t1 + tpd(vk), t2]. Thus, both inputs to
vi are stable during the interval [t1 + max{tpd(vj), tpd(vk)}, t2]. Since vj is a combi-
national gate this implies that its output is consistent with Bπ(vi) during the interval[t1 +max{tpd(vj), tpd(vk)} + tpd(π(vi)), t2]. Thus, vi(t) = Bπ(vi)(vj(t), vk(t)) during this
interval. We conclude that Eq. 11.4 holds for i, and the induction step follows. 2

Recall that a DAG may have more than one topological ordering. The following lemma
shows that Algorithm SIM(C, x⃗) outputs the same results independent of the topological
ordering computed in the first line.

Lemma 11.3 The output of SIM(C, x⃗) does not depend on the topological ordering com-
puted by TS(G).
Proof: Consider two topological orderings. The first one, (v1, . . . , vn), is “specific” in
the sense that vi = xi, for i ≤ k. Namely, the input gates appear first. The second
ordering (u1, . . . , un) is arbitrary. We consider two executions of Algorithm SIM(C, x⃗):
In the first execution, Algorithm TS computed the topological ordering (v1, . . . , vn). In
the second execution, Algorithm TS computed the topological ordering (u1, . . . , un). It

11.7. SIMULATION AND DELAY ANALYSIS 181

suffices to prove that, in both executions, SIM(C, x⃗) computes the same functionalities
and propagation delays. The proof is by complete induction on i, the index of a vertex
in the second ordering (u1, . . . , un).

The induction basis, for i = 1, holds because u1 is a source, and therefore, an input
gate. This means that ui = vj for some j ≤ k. Therefore, in the second execution,
fu1
(x⃗) = xj , and tpd(u1) = 0. It follows that the second execution agrees with the first

execution, as required.
The induction step is proved as follows.

1. If ui is a source, then the proof is identical to the proof of the induction basis.

2. If deg in(ui) = 1, then let uj Ð→ ui denote the incoming edge. Since the vertices
are sorted in topological order, j < i. The induction hypothesis implies that both
execution agree on the functionality and propagation delay of uj. It follows that
they also agree on the functionality of ui.

3. If deg in(ui) = 2, then let uj Ð→ ui and uk Ð→ ui denote the incoming edges. Since
the vertices are sorted in topological order, j, k < i. The induction hypothesis
implies that both execution agree on the functionality and propagation delay of uj
and uk. It follows that they also agree on the functionality of ui.

2

An important interpretation of Theorem 11.2 is that it enables us to regard a com-
binational circuit as a “macro-gate”. This macro-gate computes a Boolean function
B ∶ {0,1}k → {0,1}ℓ, where k denotes the number of input gates and ℓ denotes the num-
ber of output gates. All instances of the same combinational circuit implement the same
Boolean function and have the same propagation delay.

Corollary 11.4 (Soundness) Every combinational circuit implements a Boolean func-
tion.

Proof: Consider a combinational circuit C with k input gates and ℓ output gates. Let
xi denote the i’th input gate, and let yi denote the i’th output gate. Let tpd(C) △

=
maxv∈V {tpd(v)}. By Theorem 11.2, yi(t) = fyi

(x⃗) during the interval [t1 + tpd(C), t2].
Thus, C implements the Boolean function f ∶ {0,1}k → {0,1}ℓ defined by

f(x⃗) △= (fy1(x⃗), . . . , fyℓ
(x⃗)).

2

Remarks:

1. The computation of the values fvi
(x⃗) by Algorithm SIM(C, x⃗) is actually identi-

cal to the evaluation of the truth value of a Boolean formula (see Algorithm 6.2

182 CHAPTER 11. FOUNDATIONS OF COMBINATIONAL CIRCUITS

EVAL(G,π, τ)). One could rewrite algorithm EVAL(G,π, τ) so that instead of
employing recursion, it runs as follows: Scan the vertices according to a topologi-
cal order, and evaluate the output of each vertex v as the Boolean function Bπ(v)
applied to the values that enter v.

2. The computation of the propagation delays is, in fact, a computation of longest
paths in DAGs with non-unit delays. Assume that each vertex v has a delay δ(v) ≥ 0.
(In our case, sources and sinks have zero delay, but we can deal with the general
case just the same.) The delay of a path p is defined by d(p) △= ∑v∈p δ(v). Algo-
rithm 11.2 computes the longest delay of paths in a DAG. It is a straightforward
generalization of Algorithm 4.2. Note that the computation of the propagation
delays by Algorithm SIM(C, x⃗) follows the same method.

Algorithm 11.2 weighted-longest-path-lengths(V,E, δ) - An algorithm for com-
puting the longest delays of paths in a DAG. Returns a delay function d(v).
(a) topological sort: (v0, . . . , vn−1)← TS(V,E).
(b) For j = 0 to (n − 1) do

i. If vj is a source then d(vj)← δ(vj).
ii. Else

d(vj) = δ(vj) +max{d(vi) ∣ i < j and (vi, vj) ∈ E}.

3. The running time of the Algorithm SIM(C, x⃗) is linear in the number of gates in
C. Indeed, we preform a constant amount of “work” per vertex.

4. We do not rule out the usage of constants as inputs. In this case we add the
possibility for input-gates labeled (in,0) and (in,1). Such an input gate feeds a
constant to the circuit. Algorithm 11.1 needs to be modified to handle constant
inputs. Namely, the case that vi is a source has to be split to a constant input and
a variable input.

11.8 Completeness

Theorems 6.6 and 9.2 state that the set {¬,or,and} of logical connectives is complete.
Therefore, every Boolean function B ∶ {0,1}n → {0,1} can be represented by a Boolean
formula ϕ. To complete the proof of completeness, we need to show that every Boolean
formula can be implemented by a combinational circuit.

The case that B is a constant Boolean function is handled quite easily. Simply con-
struct a combinational gate with one input gate that feeds one output gate. Let the
input-gate output a constant, and we are done. Thus, we focus on the case that B is not
a constant Boolean function. In this case, by Theorem 9.2, the Boolean formula ϕ is a
sum of minterms, and therefore, lacks constants. Thus, we focus on the construction of a

11.8. COMPLETENESS 183

combinational circuit Cϕ that implements the function Bϕ, where ϕ is a Boolean formula
in which the constants {0,1} do not appear.

Note that the key difference between a formula and a Boolean circuit is that multiple
leaves may be labeled by the same variable in a parse tree. For example, in the parse
tree depicted in Figure 11.10a there are two leaves that are labeled by X1.

Our proof uses an operation of merging (or coalescing) of vertices in a directed graph
defined as follows.

Definition 11.12 Let G = (V,E) denote a directed graph, and let X ⊆ V denote a
nonempty set of vertices. The graph GX = (V ′,E′) obtained by merging the vertices in X
is defined as follows (the new merged vertex is denoted by x, so we assume that x ∉ V):

V ′
△

= (V ∖X) ∪ {x}
E′

△

= (E ∖ {e ∣ e enters or emanates from a vertex in X})
∪ {(u,x) ∣ ∃v ∈X ∶ (u, v) ∈ E} ∪ {(x,u) ∣ ∃v ∈X ∶ (v, u) ∈ E}.

Example. Consider the DAG G = (V,E) depicted in Figure 11.9.
In this example the graph GX = (V ′,E′) obtained by merging the vertices in X ={v3, v4, v5, v6}. The edges that enter or emanate from a vertex in X are in the set

{e2, e3, e4, e5, e6, e8, e9, e10, e11} .
The new edges are in the set {e′2, e′3, e′9, e′10, e′11}. In this example the set X is not a set
of sources. In general, merging of an arbitrary set of vertices may lead to a cyclic graph,
e.g., G{v2,v7} is cyclic since it contains the cycle x → v4 → v6 → x.

Claim 11.5 If G = (V,E) is a DAG and X is a subset of sources, then the graph GX is
also a DAG.

Proof: Since X contains only sources, the vertex x in GX is also a source. Therefore,
a cycle in GX does not contain x. On the other hand, any path p in GX that does not
traverse x is also a path in G. Since G is acyclic, such a path p cannot be closed. 2

Consider a Boolean formula ϕ that is generated by a parse tree (G,π), where G = (V,E).
We construct the combinational circuit Cϕ as follows.

Definition 11.13 The combinational circuit Cϕ = (V ′,N ′, π′) is defined as follows. Con-
struct the directed graph G′ = (V ′,E′) as follows

1. For each 1 ≤ i ≤ n, merge all sources in G labeled Xi into one new source vertex ui
and define π′(ui) △= (in, xi).

2. Add a new vertex y labeled π′(y) △= (out, y) and an arc form the root of G to y,
i.e., add the arc r(G)Ð→ y.

The nets in N are defined as follows. For each node u define the net Nu by

Nu
△

= {u} ∪ {v ∶ (u, v) ∈ E′}.

184 CHAPTER 11. FOUNDATIONS OF COMBINATIONAL CIRCUITS

e12

v0

e1

v2

v6
v4

v9

v7

e7

e6

e8

e2

e3
e5

e4

e9

e0

v1

v3
v5

v10

v8

e10

e11

e13

(a) G = (V,E)

e′9

v0

e1

v2

v9

v7

e7

e0

v1

v10

v8

e13

e12xe′3

e′11

e′10

e′2

(b) GX = (V
′,E′)

Figure 11.9: The merging operation on DAGs. The set X is bordered by a dashed line.

11.8. COMPLETENESS 185

X1X1 X2

or

and

not

(a)

and

X1 X2 X1

notor

(b)

or

and

(in, X1) (in, X2)

(out, y)

not

(c)

Figure 11.10: The combinational circuit Cϕ: (a) the parse tree of ϕ, (G,π), (b) the
dashed line borders the sources labeled by X1, (c) these sources are merged to a single
source vertex. The source labeled by x2 is “merged” to a single source as well. The labels
of these merged sources are (in, x1) and (in, x2). An additional vertex (out, y) is added
and connected by an arc to r(G).
We chose an imprecise definition of the net Nu to avoid cumbersome notation. Note
that Nu is a subset of nodes instead of terminals. One could replace u by the unique
output port of u. However, defining the input terminals in Nu requires some work.
Note that there can be two edges entering v in E′. Which input terminal is fed by
which edge? Luckily, it does not matter as long as the node is assigned a commutative
Boolean function. One should just make sure that the two edges are connected to distinct
input terminals. Thus, the definition of Nu can be fixed by employing a one-to-one
correspondence between incoming edges and input ports for each node.

Example. Consider the parse tree depicted in Figure 11.10a. In this example the
Boolean formula is ϕ = ((X1 ∨X2). ∧ ¬X1) The combinational circuit Cϕ is derived from
the parse-tree (G,π) depicted in Figure 11.10a as follows. We merge the bordered sources
that are labeled by X1. The source labeled by X2 is, also, “merged”. The labels of these
merged sources are (in,X1) and (in,X2), respectively. An additional vertex is added(out, y). That vertex is connected by an arc to r(G). Note that the labeling function π
is augmented so that it is defined over all the vertices of Cϕ.

Claim 11.6 Cϕ is a combinational circuit.

186 CHAPTER 11. FOUNDATIONS OF COMBINATIONAL CIRCUITS

Proof: By Claim 11.5, the merging of the sources labeled Xi keeps the graph acyclic.
The root G(r) is a sink in G, therefore, connecting it to the new sink y does not introduce
a cycle. Note also that all terminals belong to exactly one net, and that the nets are all
simple. 2

To complete the proof of completeness, we need to show that Cϕ implements the same
Boolean function Bϕ that is represented by ϕ. Note that the signal that enters the output
gate y is output by r(G).
Theorem 11.7 The combinational circuit Cϕ implements the Boolean function Bϕ, namely,

∀x⃗ ∈ {0,1}n ∶ fr(G)(x⃗) = Bϕ(x⃗).
Proof: The proof is by induction on the number of vertices in the parse tree of ϕ. The
induction basis for a single vertex proceeds as follows. If G contains a single vertex r(G),
then it labeled by a variable, say Xi. In this case Cϕ consists of a single input-gate labeled(in, xi) connected to the output-gate labeled (out, y). It follows that fr(G)(x⃗) = xi. But,
Bϕ(x⃗) = xi, and the induction basis follows.

The induction step is proved as follows. If ϕ = ϕ1 ○ ϕ2, then apply the induction
hypothesis to ϕ1 and ϕ2. This means that Cϕi

implements Bϕi
. Let (Gi, πi) denote the

parse tree of ϕi. Then,

Bϕ(x⃗) = B○(Bϕ1
(x⃗),Bϕ2

(x⃗))
= B○(fr(G1)(x⃗), fr(G2)(x⃗)
= fr(G)(x⃗),

where the first line follows from Lemma 6.3, the second line from the induction hypothesis,
and the third line by Algorithm SIM(C, x⃗). A similar argument is used to prove the
induction step for the case that ϕ = ¬ϕ1.

We remark that there is one subtle point that we omitted. One needs to show that
the simulations SIM(Cϕ, x⃗) and SIM(Cϕi

, x⃗) agree on the value of fr(Gi)(x⃗). This can be
shown as follows. By Lemma 11.3, we may assume that, in the execution of SIM(Cϕ, x⃗),
the topological ordering puts all the vertices of Gϕi

first. Thus, both executions agree
while scanning the vertices of Gϕi

. 2

11.9 Cost and propagation delay

In this section we define the cost and propagation delay of a combinational circuit.
Throughout this section, let C = (V,N,π) denote a combinational circuit.

Let c ∶ Γ → R≥0 denote a cost function. Usually, input-gates and output-gates have zero
cost.

Definition 11.14 The cost of C is defined by

c(C) △= ∑
v∈V

c(π(v)).

11.10. EXAMPLE: RELATIVE GATE COSTS AND DELAY 187

Recall that the propagation delays tpd(v) are computed by Algorithm SIM(C, x⃗).
Definition 11.15 The propagation delay of C is defined by

tpd(C) △= max
v∈V

tpd(v).
We often refer to the propagation delay of a combinational circuit as its depth or simply
its delay .

Definition 11.16 The propagation delay of a path p in G is defined as

tpd(p) △=∑
v∈p
tpd(π(v)).

The following claim states that Algorithm SIM(C, x⃗) computes the largest delay of a path
in G.

Claim 11.8
tpd(C) = max{tpd(p) ∣ p is a path in G}

Proof: Follows the proof of Theorem 4.5. 2

Definition 11.17 Let C = (V,N,π) denote a combinational circuit. A path p in C is
critical if tpd(p) = tpd(C).
We focus on critical paths that are maximal (i.e., cannot be further augmented). This
means that maximal critical paths begin in an input-gate and end in an output-gate.

11.10 Example: relative gate costs and delay

Müller and Paul compiled a table of costs and delays of gates [11]. These figures were
obtained by considering ASIC libraries of two technologies and normalizing them with
respect to the cost and delay of an inverter. They referred to these technologies as
Motorola and Venus. Table 11.1 summarizes the normalized costs and delays in these
technologies according to Müller and Paul.

11.11 Semantics and Syntax

The term semantics (in our context) refers to the function that a circuit implements.
Synonyms for semantics of a circuit are functionality or even the circuit!behavior of the
circuit. In general, the semantics of a circuit is a formal description that relates the
outputs of the circuit to the inputs of the circuit (including timing). In the case of
combinational circuits, semantics are described by Boolean functions. Note that in non-
combinational circuits, the output depends not only on the current inputs, so semantics
cannot be described simply by a Boolean function.

188 CHAPTER 11. FOUNDATIONS OF COMBINATIONAL CIRCUITS

Gate Motorola Venus
cost delay cost delay

inv 1 1 1 1
and,or 2 2 2 1
nand, nor 2 1 2 1
xor, nxor 4 2 6 2
mux 3 2 3 2

Table 11.1: Costs and delays of gates

The term syntax refers to a formal set of rules that govern how “grammatically cor-
rect” circuits are constructed from smaller circuits (just as sentences are built by com-
bining words). In the syntactic definition of combinational circuits, the functionality (or
gate-type) of each gate is not important. The only part that matters is that the rules
for connecting gates together are followed. Following syntax in itself does not guarantee
that the resulting circuit is useful. Following syntax is, in fact, a restriction that we are
willing to accept so that we can enjoy the benefits of well defined functionality, simple
simulation, and simple timing analysis. The restriction of following syntax rules is a
reasonable choice since every Boolean function can be implemented by a syntactically
correct combinational circuit.

In this chapter we defined design rules for building combinational circuits. These
design rules define syntactically correct circuits. Our main result is that syntactically
correct circuits, called combinational circuits, can implement any Boolean function. We
are now left with the following design task: Given a Boolean function B, design a com-
binational circuit C that implements B such that the delay and cost of C is as small as
possible.

11.12 Summary

Combinational circuits are formally defined in this chapter. We started by considering
the basic building blocks: gates and wires. Gates are simply implementations of Boolean
functions. The digital abstraction enables a simple definition of what it means to im-
plement a Boolean function B. Given a propagation delay tpd and stable inputs whose
digital value is x⃗, the digital values of the outputs of a gate equal B(x⃗) after tpd time
elapses.

Wires are used to connect terminals together. Bunches of wires are used to connect
multiple terminals to each other and are called nets. Simple nets are nets in which the
direction in which information flows is well defined; from a single output terminal of a
gate to input terminals of gates.

The formal definition of combinational circuits turns out to be most useful. It is a
syntactic definition that only depends on the topology of the circuit, namely, how the
terminals of the gates are connected. One can check in linear time whether a given circuit

11.12. SUMMARY 189

is indeed a combinational circuit. Even though the definition ignores functionality, one
can compute in linear time the digital signals of every wire in the circuit. Moreover, one
can also compute in linear time the propagation delay of every net with respect to the
circuit inputs.

Two quality measures are defined for every combinational circuit: cost and propaga-
tion delay. The cost of a combinational circuit is the sum of the costs of the gates in the
circuit. The propagation delay of a combinational is the maximum delay of a path in the
circuit.

Problems

11.1 Does every collection of combinational gates and wires constitute a combinational
circuit?

11.2 Which of these tasks is easy?

1. Check if a circuit is combinational.

2. Simulate a combinational circuit.

3. Estimate the propagation delay of a combinational circuit for an arbitrary input.

11.3 Describe a combinational circuit with n gates that has at least 2n/2−1 paths. Can
you describe a circuit with 2n different paths?

11.4 In Claim 11.8 the propagation delay of a combinational circuit is claimed to equal
the maximum delay of a path in the circuit. The number of paths can be exponential in n.
Does this mean that we cannot compute the propagation delay of a combinational circuit
in linear time?

11.5 Suggest criteria for comparing functionally equivalent combinational circuits. For
example: Suppose C1 and C2 are 32-bit adders. Which circuit should we use as an adder?

11.6 ∗ For a Boolean function f , let c∗(f) denote the minimum cost of a combinational
circuit that implements f .

Prove that for every n, there exists a Boolean function f ∶ {0,1}n → {0,1} such that
c∗(f) ≥ 2n

4n
.

Can you extend your proof to show this lower bound for most Boolean functions?
(Assume that a combinational circuit uses only gates with two inputs and that the cost

of all gates is one.)

190 CHAPTER 11. FOUNDATIONS OF COMBINATIONAL CIRCUITS

Chapter 12

Trees

Contents
12.1 Associative Boolean functions . 192

12.2 Trees of associative Boolean gates 193

12.2.1 Cost analysis . 194

12.2.2 Delay analysis . 195

12.3 Optimality of trees . 200

12.3.1 Definitions . 200

12.3.2 Lower bound on cost . 202

12.3.3 Lower bound on delay . 204

12.4 Summary . 206

191

192 CHAPTER 12. TREES

Consider the problem of designing a circuit that computes the or of n bits. A natural
approach for solving this problem is to partition the bits into pairs, compute the or of
each pair, and continue recursively till we are left with one bit, the result. The underlying
graph, or topology, of the combinational circuit we obtain is a rooted tree. Is this the
best design? In this chapter we prove that indeed this is the case.

We consider this question in a more general setting. First, we define a class of functions
for which the above problem can be easily formulated. This is the class of associative
Boolean functions. Second, we define combinational circuit with a topology of a rooted
tree, all gates of which are identical.

We prove two lower bounds; one for cost and one for delay. These lower bounds do
not assume that topology of the circuits is a rooted tree. The lower bounds prove that
rooted trees have optimal cost and that balanced rooted trees have optimal delay.

12.1 Associative Boolean functions

Definition 12.1 A Boolean function f ∶ {0,1}2 → {0,1} is associative if

f(f(σ1, σ2), σ3) = f(σ1, f(σ2, σ3)),
for every σ1, σ2, σ3 ∈ {0,1}.

A Boolean function defined over the domain {0,1}2 is often denoted by a dyadic
operator, say ∗. Namely, f(σ1, σ2) is denoted by σ1 ∗ σ2. Associativity of a Boolean
function ∗ is then formulated by

∀σ1, σ2, σ3 ∈ {0,1} ∶ (σ1 ∗ σ2) ∗ σ3 = σ1 ∗ (σ2 ∗ σ3).
This implies that one may omit parenthesis from expressions involving an associative
Boolean function and simply write σ1 ∗ σ2 ∗ σ3. Thus we obtain a function defined over{0,1}n from a dyadic Boolean function. We formalize this composition of functions as
follows.

Definition 12.2 Let f ∶ {0,1}2 → {0,1} denote a Boolean function. The function fn ∶{0,1}n → {0,1}, for n ≥ 1, is defined recursively as follows.

1. If n = 1, then f1(x) = x.
2. If n = 2, then f2 = f .

3. If n > 2, then fn is defined based on fn−1 as follows:

fn(x1, x2, . . . xn) △= f(fn−1(x1, . . . , xn−1), xn).
If f(x1, x2) is an associative Boolean function, then one could define fn in many

equivalent ways, as summarized in the following claim.

Claim 12.1 If f ∶ {0,1}2 → {0,1} is an associative Boolean function, then

fn(x1, x2, . . . xn) = f(fn−k(x1, . . . , xn−k), fk(xn−k+1, . . . , xn)),
for every n ≥ 2 and k ∈ [1, n − 1].

12.2. TREES OF ASSOCIATIVE BOOLEAN GATES 193

Proof: The proof is by double induction on n and k. The induction basis for n = 2 is
proved as follows. Since n = 2 and k ∈ [1, n−1], it follows that k = 1. Therefore, the claim
simply states that

f2(x1, x2) = f(f1(x1), f1(x2)).
But f1(xi) = xi, and the induction basis holds.

The induction step is proved as follows. Let n ≥ 3. Assume the claim holds for all
n′ < n. We wish to prove the claim for n. We now apply induction on k. The induction
basis for k = 1 holds because this is the definition of fn. We now prove the induction step
for k + 1 < n. Let

Fi,j
△

= fj−i+1(xi, . . . , xj).
In this notation, the induction hypothesis states that, for every n′ < n and every k′ ≤ k,

F1,n′ = f(F1,n′−k′ , Fn′−k′+1,n′).
In the induction step we need to prove that

F1,n = f(F1,n−(k+1), Fn−(k+1)+1,n).
But,

f(F1,n−(k+1), Fn−(k+1)+1,n) = f(F1,n−(k+1), f(Fn−(k+1)+1,n−1, xn))
= f(f(F1,n−(k+1), Fn−(k+1)+1,n−1), xn)
= f(F1,n−1, xn)
= F1,n.

The first line follows from Fn−(k+1)+1,n = f(Fn−(k+1)+1,n−1, xn)). The justification for this is
the definition of fk+1. The second line follows by applying associativity of f . The third
line follows by the induction hypothesis for n′ = n − 1 and k′ = k. The last line follows
from the definition of fn. 2

12.2 Trees of associative Boolean gates

In this section, we deal with combinational circuits that have a topology of a tree. All
the gates in the circuits we consider are instances of the same gate that implements an
associative Boolean function. To simplify the presentation, we consider only the Boolean
function orn. The discussion for the other three non-trivial associative functions is
analogous.

Definition 12.3 A combinational circuit C = (G,π) that satisfies the following condi-
tions is called an or-tree(n).

1. Topology: The graph G is a rooted tree with n sources.

194 CHAPTER 12. TREES

or

or

x[3]

y

x[2]

or

or

or

x[0] x[1] x[2] x[3]

or

x[0] x[1]

y

Figure 12.1: Two implementations of an or-tree(n) with n = 4 inputs.

2. Each vertex v in G that is not a source or a sink is labeled π(v) = or.

Figure 12.1 depicts two or-tree(n) for n = 4. The following claim states that these
trees implement the same Boolean function.

Claim 12.2 Every or-tree(n) implements the Boolean function orn.

Proof: The proof is by complete induction on n. For the purpose of the proof we define
or1(x) △= x. The induction basis for n = 1 and n = 2 is trivial. The proof of the induction
step relies on Claim 4.7 that decomposes a rooted tree. Let C = (G,π) denote an or-
tree(n), for n > 2 . The root r(G) is an output-gate. Let v denote the child of r(G).
Since C is an or-tree, π(v) = or. Consider the two rooted trees G1 and G2 hanging from
v. Let Ci = (Gi, πi) denote the subcircuit that corresponds to Gi. Note that the root of
Gi is an or-gate, so we attach its output to a new root that is labeled as an output gate.
The labeling πi keeps all the labels assigned by π to the leaves and the internal nodes.
Hence, leaves are labeled as input-gates, and internal nodes (except for the new roots)
are labeled as or-gates. Let ni denote the number of leaves in Gi. Note that ni > 0 and
n1 + n2 = n, therefore n1 < n. The induction hypothesis states that Ci implements the
function orni

. This implies that the output y of C equals

y = or(orn1
(x1, . . . , xn1

),orn2
(xn1+1, . . . , xn)).

By Claim 12.1, y = orn(x1, . . . , xn), as required. 2

12.2.1 Cost analysis

You may have noticed that both or-trees depicted in Figure 12.1 contain three or-
gates. However, their delay is different. The following claim summarizes the fact that

12.2. TREES OF ASSOCIATIVE BOOLEAN GATES 195

all or-trees have the same cost. Recall that we use the convention that input-gates and
output-gates have zero cost.

Claim 12.3 The cost of every or-tree(n) is (n − 1) ⋅ c(or).
Proof: The proof is by complete induction on n. The induction basis, for n = 2 follows
because or-tree(2) contains a single or-gate. (What about the case n = 1?)

We now prove the induction step. The proof is similar to the proof of the induction
step in Claim 12.2. Let C = (G,π) denote an or-tree(n), for n > 2 . Let Ci = (Gi, πi)
denote the subcircuit generated by (i) the subtree Gi hanging from child v of the root
of G, and (ii) the labeling πi. We attach a new root to Gi that is labeled as an output
gate. Let ni denote the number of leaves in Gi. Note that n1 + n2 = n. The induction
hypothesis states that c(C1) = (n1 − 1) ⋅ c(or) and c(C2) = (n2 − 1) ⋅ c(or). We conclude
that

c(C) = c(v) + c(C1) + c(C2)
= (1 + n1 − 1 + n2 − 1) ⋅ c(or)
= (n − 1) ⋅ c(or),

and the claim follows. 2

In fact, Claim 12.3 is re-statement of the well known relationship between the number
of leaves and interior nodes of in-degree two in rooted binary trees.

Lemma 12.4 Let G = (V,E) denote a rooted tree in which the in-degree of each vertex
is at most 2. Then,

∣{v ∈ V ∣ degin(v) = 2}∣ = ∣{v ∈ V ∣ degin(v) = 0}∣ − 1.

Proof: The proof is almost identical to the proof of Claim12.3. The only difference is
in the induction when the root of the subtree has an in-degree that equals one. In this
case, we apply the induction hypothesis to the subtree hanging from this root. 2

12.2.2 Delay analysis

The delay of an or-tree(n) is simply the number of or-gates along the longest path from
an input to an output times the delay of an or-gate. In terms of rooted trees depth is
defined as follows.

Definition 12.4 The depth of a rooted tree T is the maximum number of vertices with
in-degree greater than one in a path in T . We denote the depth of T by depth(T).
We emphasize that this definition of depth is nonstandard. It ignores input-gates, output-
gate, and gates with in-degree one. Input and output gates have zero delay. However,
inverters have positive delay. The fact that we ignore inverters in this definition does not
affect the lower bound on the delay because they only increase the delay.

196 CHAPTER 12. TREES

Binary rooted trees

In this section we focus on binary trees, defined as follows.

Definition 12.5 A rooted tree is a binary tree if the maximum in-degree is two.

We refer to a rooted tree as a minimum depth tree if its depth is minimum among all
the rooted trees with the same number of leaves.

Consider the set of all rooted binary trees that have n leaves. By Lemma 12.4, each
tree in this set has n−1 nodes whose in-degree equals 2. Thus, we focus on minimizing the
depth of the tree without worrying about the cost. The natural candidates to minimize
delay are “balanced” trees (we formalize the term balanced trees in Definition 12.8) . We
will show that, if n that is a power of 2, then there is a unique minimum depth tree,
namely, the perfect binary tree with log2 n levels. On the other hand, if n is not a power
of 2, we show that there is more than one minimum depth tree, as demonstrated in the
following example.

Example 12.1 Consider the two trees that are depicted in Figure 12.2, each with 6
inputs. One tree is obtained from two binary trees with three leaves each. The second tree
is obtained from one binary tree with four leaves and one with two leaves. Although both
these trees have six leaves, they are quite different. On the other hand, their depth is the
same. Are these minimum depth trees?

or

or

or

or

or or

or

or

or

or

Figure 12.2: Two trees with six inputs.

Our goal is to prove that the depth of every rooted binary tree with n leaves is at
least ⌈log2 n⌉. Moreover, we wish to show that this bound can be obtained rather easily.

Claim 12.5 If Tn is a rooted binary tree with n leaves, then the depth of Tn is at least⌈log2 n⌉.

12.2. TREES OF ASSOCIATIVE BOOLEAN GATES 197

Proof: Since the depth is an integer, it suffices to prove that it is at least log2 n. We
now modify the tree so that all vertices have in-degree 0 or 2. This modification proceeds
by merging, one by one, vertices with in-degree one with their child. Note that this
modification does not increase the depth.

We now assume that all vertices in Tn have in-degree 0 or 2. We prove that the depth
of Tn is at least log2 n. Since Tn ∈ N, it follows that Tn ≥ ⌈log2 n⌉, as required.

The proof is by complete induction on n. The induction basis follows since the depth
of T1 is 0 ≥ log2 1 = 0. We now prove the induction step.

Let Tn denote a binary rooted tree, for n > 2 . Let Tn1
, Tn2

denote the subtrees hanging
from the root of Tn. Let n1 + n2 = n denote the number of leaves in Tn. The induction
hypothesis states that depth(Tn1

) ≥ log2 n1 and depth(Tn2
) ≥ log2 n2. We conclude that

depth(Tn) = 1 +max{depth(Tn1
),depth(Tn2

)}
≥ 1 +max{log2 n1, log2 n2}
≥ 1 + log2(n/2)
= log2 n ,

where the first line follows from Definition 12.4. The second line follows from the induction
hypothesis. The third line follows from assumption that n1 + n2 = n, and the fact that
the log2 function is monotone increasing, and the claim follows. 2

Perfect binary trees

The distance of a vertex v to the root r in a rooted tree is the length of the path from v

to r. Note that the length of a path equals the number of edges along it, hence it includes
traversed nodes with in-degree one.

Definition 12.6 A rooted binary tree is perfect if: (i) The in-degree of every non-leaf is
two, and (ii) All leaves have the same distance to the root.

Note that the depth of a perfect tree equals the distance from the leaves to the root.

Claim 12.6 The number of leaves in a perfect tree is 2k, where k is the distance of the
leaves to the root.

Proof: By induction on the distance from the leaves to the root. The induction basis
is trivial for k = 0 since the tree consists only of the root. The induction step is proved
as follows. Consider a perfect tree T rooted at r such that the distance from the leaves
to r equals k + 1. Let r1 and r2 denote the children of r. The subtrees Ti rooted at ri,
for i = 1,2, are also perfect and the distance of a leaf of Ti to the root ri is k. By the
induction hypothesis, each subtree has 2k leaves, and hence the tree T has 2k + 2k = 2k+1

leaves, as required. 2

Claim 12.7 Let n denote the number of leaves in a perfect tree. Then, the distance from
every leaf to the root is log2 n.

198 CHAPTER 12. TREES

Proof: Let k denote the distance of the leaves to the root. By Claim 12.6, the tree has
2k leaves. Therefore, n = 2k, and the claim follows. 2

Minimum depth trees

Let T ∗n denote a minimum depth tree with n leaves. We now show that for every n, the
depth of T ∗n is ⌈log2 n⌉. In fact, if n is not a power of 2, then there are many such trees.

We start with a simple rule for determining how to split the leaves between the
subtrees hanging from the root.

Definition 12.7 Two positive integers a, b are a balanced partition of n if:

1. a + b = n, and

2. max{⌈log2 a⌉, ⌈log2 b⌉} ≤ ⌈log2 n⌉ − 1.

Claim 12.8 If n = 2k − r, where 0 ≤ r < 2k−1, then the set of balanced partitions is

P
△

= {(a, b) ∣ 2k−1 − r ≤ a ≤ 2k−1 and b = n − a}.
Proof: First, we observe that if n = 2k − r, where 0 ≤ r < 2k−1, then

⌈log2 n⌉ = k . (12.1)

Let (a, b) ∈ P . By the definition of P it follows that a + b = n, as required. Moreover,

b = n − a

≤ 2k − r − 2k−1 + r

= 2k−1 ,

where the first line follows from the definition of P . The second line follows since n = 2k−r
and 2k−1 − r ≤ a.

We now prove that max{⌈log2 a⌉, ⌈log2 b⌉} ≤ ⌈log2 n⌉ − 1:

max{⌈log2 a⌉, ⌈log2 b⌉} ≤ ⌈log2 (2k−1)⌉
= log2 (2k−1)
= k − 1

= ⌈log2(n)⌉ − 1 ,

where the first line follows since a, b ≤ 2k−1 and since log2 is a monotone increasing
function. The last line follows from Equation 12.1. Hence, (a, b) is a balanced partition,
as required.

To prove the other direction, one must prove that if (a, b) is a balanced partition,
then (a, b) ∈ P . Indeed, if (a, b) is a balanced partition, then max{a, b} ≤ 2k−1. Hence,
a = n − b ≥ (2k − r) − 2k−1 = 2k−1 − r, as required. 2

The following algorithm deals with the construction of minimum depth trees. The algo-
rithm partitions n = a+b using any balanced partition described in Claim 12.8. Note that

12.2. TREES OF ASSOCIATIVE BOOLEAN GATES 199

Algorithm 12.1 Balanced-Tree(n) - a recursive algorithm for constructing a binary tree
T ∗n with n ≥ 1 leaves.

1. The case that n = 1 is trivial (an isolated root).

2. If n ≥ 2, then let a, b be balanced partition of n.

3. Compute trees T ∗a and T ∗b . Connect their roots to a new root to obtain T ∗n .

if n is not a power of 2, then there are multiple balanced partitions. In such a case, the
algorithm has more than one valid output. Note also that the in-degree of every vertex
in the tree output by the algorithm is either 2 or 0.

Claim 12.9 The depth of a binary tree T ∗n constructed by Algorithm Balanced-Tree(n)
equals ⌈log2 n⌉.
Proof: The proof is by complete induction on n. The induction basis for n = 1 holds
since the depth of T ∗1 is 0.

We now prove the induction step. Let a+b = n be a balanced partition of n that the al-
gorithm has chosen in step (2). By Definition 12.4 depth(T ∗n) = 1+max{depth(T ∗a),depth(T ∗b)}.
Hence,

depth(T ∗n) = 1 +max{depth(T ∗a),depth(T ∗b)}
= 1 +max{⌈log2 a⌉, ⌈log2 b⌉}
≤ 1 + ⌈log2 n⌉ − 1

= ⌈log2 n⌉ ,
where the second line follows from the induction hypothesis. The third line follows since
a + b = n is a balanced partition.

Claim 12.5 implies that depth(T ∗n) ≥ ⌈log2 n⌉. We conclude that depth(T ∗n) = ⌈log2 n⌉,
as required. 2

The conclusion from Claims 12.5 and 12.9 is summarized in the following corollary.

Corollary 12.10 The propagation delay of a minimum depth or-tree(n) is ⌈log2 n⌉ ⋅
tpd(or).
Proof: A balanced or-tree(n) is constructed from T ∗n as follows. Label all leaves as
input-gates and all other vertices in T ∗n as or-gates. Add a new root, labeled as an
output-gate, and connect the new root to the root of T ∗n . 2

Definition 12.8 A rooted binary tree Tn is a balanced tree if it is a valid output of
Algorithm Balanced-Tree(n).

200 CHAPTER 12. TREES

12.3 Optimality of trees

In this section we deal with the following questions: What is the best choice of a topology
for a combinational circuit that implements the Boolean function orn? Is a tree indeed
the best topology? Perhaps one could do better if another implementation is used? (Say,
using other gates or connecting an input xi to more than one gate.)

We attach two measures to every design: cost and delay. In this section we prove lower
bounds on the cost and delay of every circuit that implements the Boolean function orn.
These lower bounds imply that a balanced or-trees is an optimal combinational circuit
both in terms of cost and in terms of delay.

12.3.1 Definitions

In this section we present the definition of a cone of a Boolean function.

Definition 12.9 (Restricted Boolean functions) Let f ∶ {0,1}n → {0,1} denote a
Boolean function. Let σ ∈ {0,1}. The Boolean function g ∶ {0,1}n−1 → {0,1} defined by

g(w0, . . . ,wn−2) △= f(w0, . . . ,wi−1, σ,wi, . . . ,wn−2)
is called the restriction of f with xi = σ. We denote it by f↾xi=σ.

Example. Consider the Boolean function f(x⃗) = xorn(x1, . . . , xn). The restriction of
f with xn = 1 is the Boolean function

f↾xn=1(x1, . . . , xn−1) △= xorn(x1, . . . , xn−1,1)
= inv(xorn−1(x1, . . . , xn−1)).

Definition 12.10 A Boolean function f ∶ {0,1}n → {0,1} depends on its ith input if

f↾xi=0 ≠ f↾xi=1.

Example. Consider the Boolean function f(x⃗) = xor2(x1, x2). The function f depends
on the ith input for i = 2. Indeed, f↾x2=1(x1) = not(x1) and f↾x2=0(x1) = x1.

Definition 12.11 (Cone of a Boolean function) The cone of a Boolean function f ∶{0,1}n → {0,1} is defined by

cone(f) △= {i ∶ f↾xi=0 ≠ f↾xi=1}.
Example. The cone of the Boolean function f(x⃗) = xor2(x1, x2) equals {1,2} because
xor depends on both inputs.

Definition 12.12 Let flipi ∶ {0,1}n → {0,1}n be the Boolean function defined by flipi(x⃗) △=
y⃗, where

yj
△

=

⎧⎪⎪⎨⎪⎪⎩
xj if j ≠ i

not(xj) if i = j.

12.3. OPTIMALITY OF TREES 201

Example. Let x[1 ∶ 5] = 11111. Then flip3(x) = 11011.

Claim 12.11 Let f ∶ {0,1}n → {0,1} denote a Boolean function. Then,

i ∈ cone(f)⇐⇒ ∃v⃗ ∈ {0,1}n ∶ f(v⃗) ≠ f(flipi(v⃗)).
Proof: By definition, i ∈ cone(i) iff f↾xi=0 ≠ f↾xi=1. This is equivalent to f(v) ≠
f(flipi(v⃗)), for a vector v⃗ ∈ {0,1}n. 2

Claim 12.12 The Boolean function orn depends on all its inputs, namely,

∣cone(orn)∣ = n.
Proof: For every i, or(0n) = 0, but or(flipi(0n)) = 1. 2

Example. Consider the following Boolean function:

f(x⃗) = ⎧⎪⎪⎨⎪⎪⎩
0 if ∑i xi < 3

1 otherwise.

Suppose that one reveals the input bits one by one. As soon as 3 ones are revealed,
one can determine the value of f(x⃗). Nevertheless, the function f(x⃗) depends on all its
inputs (why?), and hence, cone(f) = {1, . . . , n}.
The following trivial claim deals with the case that cone(f) = ∅.

Claim 12.13 cone(f) = ∅⇐⇒ f is a constant Boolean function.

Proof: If f is constant, then f(v) = f(flipi(v⃗)), for every i and every v⃗. To prove the
other direction, we prove that if f is not constant, then there exists an index i and a
vector v⃗ such that f(v⃗) ≠ f(flipi(v⃗)), thus implying that i ∈ cone(f).

To prove this, we consider the undirected graph G = (V,E), where V = {0,1}n (the
range of f). The edge set E consists of all the pairs (u⃗, v⃗) such that u⃗ and v⃗ disagree
in a single bit. Namely, there exists an index i such that v⃗ = flipi(u⃗). Thus, all we
need to prove is that, if f is not constant, then there exists an edge (u⃗, v⃗) ∈ E such that
f(u⃗) ≠ f(v⃗).

It is easy to see that G is connected, that is, between every two vertices u⃗ and v⃗ there
is a path. To obtain a path from u⃗ to v⃗ simply flip, one by one, the bits that u⃗ and v⃗

disagree on.
Now, if f is not constant, then there exist vectors u⃗ and v⃗ such that f(u⃗) ≠ f(v⃗). If(u⃗, v⃗) ∈ E, then we are done. But what do we do if (u⃗, v⃗) /∈ E? We may assume that u⃗ and

v⃗ are a pair of closest vertices in G such that f(u⃗) ≠ f(v⃗). Now, consider a shortest path
p in G from u⃗ to v⃗. Let (u⃗, w⃗) ∈ E denote the first edge along p. Clearly, f(u⃗) = f(w⃗),
otherwise the pair u⃗ and w⃗ are closer than u⃗ and v⃗, a contradiction. Hence, f(v⃗) ≠ f(w⃗).
But, v⃗ and w⃗ are closer to each other than v⃗ and u⃗, a contradiction. 2

202 CHAPTER 12. TREES

12.3.2 Lower bound on cost

The following claim shows that, if a combinational circuit C = (G,π) implements a
Boolean function B ∶ {0,1}n → {0,1}, then there must be a path in G from every input
labeled xi, where i ∈ cone(B) to the output gate of C.

Claim 12.14 Let C = (G,π) denote a combinational circuit that implements a Boolean
function B ∶ {0,1}n → {0,1}. If i ∈ cone(B), then G must contain an input gate feeds the
ith input. Moreover, denote this input gate by xi, and let y ∈ G denote the output gate of
C. Then, there is a path in G from xi to y.

Proof: Assume, for the sake of contradiction, that G does not contain an input gate
that feeds the ith input. Hence, xi does not appear in the topological ordering of the
vertices of G.

Since i ∈ cone(B), there exists a vector v ∈ {0,1}n such that B(v⃗) ≠ B(flipi(v⃗)). Con-
sider the executions of SIM(C, v⃗) and SIM(C,flipi(v⃗)). We claim that both executions
agree on the value fy that is attached to the input of y. Namely, fy(v⃗) = fy(flipi(v⃗)). This
can be proved by induction on the position (or index) of y in the topological ordering.

By Theorem 11.2, B(v⃗) = fy(v⃗) and B(flipi(v⃗)) = fy(flipi(v⃗)), a contradiction. Thus,
G contains an input gate that feeds the i’th input.

To complete the claim, consider a maximal path p in G that starts in xi. By maximal,
we mean that p is not a proper subpath of another path. Note that since G is acyclic,
there is a maximal path. This means that the endpoint of p must be a sink. However, G
contains a single sink, that is, the output gate y. Thus, there is a path from xi to y, as
required, and the claim follows. 2

In the following theorem we assume that the cost of every non-trivial gate is at least one.
(Input and output gates are considered trivial, and have zero cost.)

Theorem 12.15 (Linear Cost Lower Bound Theorem) Let C denote a combina-
tional circuit that implements a Boolean function f ∶ {0,1}n → {0,1}. If the fan-in of
every gate in C is at most 2, then

c(C) ≥ ∣cone(f)∣ − 1.

Before we prove Theorem 12.15 we show that it implies the optimality of or-trees. Note
that it is very easy to prove a lower bound of n/2. The reason is that every input must
be fed to a non-trivial gate, and each gate can be fed by at most two inputs.

Corollary 12.16 Let Cn denote a combinational circuit that implements orn. Then,

c(Cn) ≥ n − 1.

Proof: Follows directly from Claim 12.12 and Theorem 12.15. 2

The proof of Theorem 12.15 is based on the following lemma that generalizes Lemma 12.4.

12.3. OPTIMALITY OF TREES 203

Lemma 12.17 Let G = (V,E) denote a DAG with a single sink in which the in-degree
of each vertex is at most 2. Then,

∣{v ∈ V ∣ degin(v) = 2}∣ ≥ ∣{v ∈ V ∣ degin(v) = 0}∣ − 1. (12.2)

Proof: If G is a rooted tree, then by Lemma 12.4, Eq. 12.2 holds with equality. To
prove the theorem, we first show that there exist subsets V ′ ⊆ V and E′ ⊂ E such that:
(1) V ′ contains all the sources in G as well as the sink of G, and (2) (V ′,E′) is a rooted
tree.

The sets V ′ and E′ are constructed as follows. Let r denote the sink of G.

1. Initialize E′ = ∅ and V ′ = ∅.

2. For every source v in G do

(a) Find a path pv from v to r.

(b) Let qv denote the prefix of pv, the vertices and edges of which are not contained
in V ′ or E′.

(c) Add the edges of qv to E′, and add the vertices of qv to V ′.

By construction, V ′ contains all the sources ofG and the sink r. In addition, the algorithm
for constructing (V ′,E′) maintains the invariant that the there is a single path from
every vertex in V ′ to the sink r (see Problem 12.4). Moreover, this invariant implies that(V ′,E′) is a rooted tree (see Problem 12.3).

Let deg ′in(v) denote the in-degree of v with respect to E′. Lemma 12.4, applied to(V,E′), implies that

∣{v ∈ V ∣ deg ′in(v) = 2}∣ = ∣{v ∈ V ∣ deg ′in(v) = 0}∣ − 1.

Since,

{v ∈ V ∣ deg ′in(v) = 2} ⊆ {v ∈ V ∣ deg in(v) = 2} , and{v ∈ V ∣ deg ′in(v) = 0} = {v ∈ V ∣ deg in(v) = 0},
Equation 12.2 holds, and the lemma follows. 2

Proof of Theorem 12.15: Consider a combinational circuit C = (G,π) that im-
plements f . Since the range of f is {0,1}, the circuit C has a single output-gate, and
therefore, G has a single sink. Since C implements f , it must have an input-gate xi for ev-
ery i ∈ cone(f). Thus, the number of sources in C is at least ∣cone(f)∣. By Lemma 12.17,∣{v ∈ V ∣ deg in(v) = 2}∣ is at least the number of sources in G minus 1. If deg in(v) ≥ 2,
then c(π(v)) ≥ 1, and therefore c(C) ≥ ∣cone(f)∣ − 1, as required. 2

204 CHAPTER 12. TREES

12.3.3 Lower bound on delay

We now turn to proving a lower bound on the delay of a combinational circuit that
implements orn. Again, we use a general technique and rely on all gates in the design
having a constant fan-in.

The following theorem shows a lower bound on the delay of combinational circuits
that is logarithmic in the size of the cone. We assume that the delay of every nontrivial
gate is at least one.

Theorem 12.18 (Logarithmic Delay Lower Bound Theorem) Let C = (G,π) de-
note a combinational circuit that implements a non-constant Boolean function f ∶ {0,1}n →{0,1}. If the fan-in of every gate in C is at most k, then

tpd(C) ≥ logk ∣cone(f)∣.
Before we prove Theorem 12.18, we show that the theorem implies a lower bound on the
delay of combinational circuits that implement orn.

Corollary 12.19 Let Cn denote a combinational circuit that implements orn. Let k
denote the maximum fan-in of a gate in Cn. Then

tpd(Cn) ≥ ⌈logk n⌉ .
Proof: The corollary follows directly from Claim 12.12 and Theorem 12.18. 2

The proof of Theorem 12.18 is based on the following definition and lemma.

Definition 12.13 Let G = (V,E) denote a DAG. The cone of a vertex v ∈ V is defined
by

cone(v) △= {u ∈ V ∶ degin(u) = 0 and there is a path from u to v}.
Let tpd(v) denote the maximum delay of a path ending in v as computed by Algo-
rithm 11.1. We assume that the propagation delay of input-gates and output-gates is
zero. However, we assume that the propagation delay of every other gate is one (i.e.,
tpd(γ) = 1, for every gate γ ∈ Γ). The lemma obviously holds if tpd(γ) ≥ 1, for every gate
γ ∈ Γ.

Lemma 12.20 If G = (V,E) is a DAG in which the in-degree of every vertex is at most
k, then

tpd(v) ≥ logk ∣cone(v)∣.
Proof: We first prove the lemma for all the vertices, except sinks. We prove the lemma
by complete induction on tpd(v). The induction basis, for tpd(v) = 0, is trivial since
tpd(v) = 0 implies that v is a source. The cone of a source v consists v itself, and
logk 1 = 0.

The induction hypothesis is

tpd(v) ≤ i Ô⇒ tpd(v) ≥ logk ∣cone(v)∣. (12.3)

12.3. OPTIMALITY OF TREES 205

cone(v)1
cone(v)2 cone(v)k’

v1 v2
vk’

v

Figure 12.3: The induction step in the proof of Theorem 12.18

In the induction step, we wish to prove that the induction hypothesis implies that
Equation 12.3 holds also if tpd(v) = i + 1. Consider a vertex v with tpd(v) = i + 1 (see
Figure 12.3 for a depiction of the induction step). Denote the vertices that precede v by
v1, . . . , vk′ , where k′ ≤ k. Namely, the edges that enter v are v1 → v, . . . , vk′ → v, where
k′ ≤ k. By the definition of tpd(v) (see Algorithm 11.2) it follows that

tpd(v) = max{tpd(vi)}k′i=1 + δ(v). (12.4)

By the definition of cone(v) it follows that

cone(v) = k′⋃
i=1

cone(vi).
Hence

∣cone(v)∣ ≤ k′∑
i=1
∣cone(vi)∣

≤ k′ ⋅max{∣cone(v1)∣, . . . , ∣cone(vk′)∣}. (12.5)

Let v′ denote a predecessor of v that satisfies ∣cone(v′)∣ = max{∣cone(vi)∣}k′i=1. The induc-
tion hypothesis implies that

tpd(v′) ≥ logk ∣cone(v′)∣. (12.6)

But,

tpd(v) ≥ δ(v) + tpd(v′) by Eq. 12.4

≥ δ(v) + logk ∣cone(v′)∣ by Eq. 12.6

≥ δ(v) + logk(∣cone(v)∣/k′) by Eq. 12.5.

Since v is not sink, δ(v) ≥ 1. Since k′ ≤ k, it follows that tpd(v) ≥ 1 + logk(∣cone(v)∣/k) =
logk ∣cone(v)∣, as required.

206 CHAPTER 12. TREES

To complete the proof, consider a sink v′. Let v denote the vertex such that (v, v′) is
an arc in G. Note that cone(v) = cone(v′) and tpd(v) = tpd(v′), and the lemma follows. 2

Proof of Theorem 12.18: Since the combinational circuit C = (G,π) implements
f , it must contain an input-gate labeled xi, for every i ∈ cone(f). By Claim 12.14,
there must be a path in G from xi to y, the output-gate of C. This implies that, in G,∣cone(y)∣ ≥ ∣cone(f)∣.

By Lemma 12.20, tpd(y) ≥ logk ∣cone(y)∣, hence tpd(C) ≥ logk ∣cone(f)∣, and the theo-
rem follows. 2

12.4 Summary

In this chapter we focused on combinational circuits that have a topology of a tree and are
built from instances of identical gates. Such circuits are especially suited for computing
associative Boolean functions (make sure you understand why).

We began this chapter by extending associative dyadic functions to n arguments. We
argued that there are only four non-trivial associative Boolean functions; and we decided
to focus on orn. We then defined an or-tree(n) to be a combinational circuit that
implements orn using a topology of a tree.

Although it is intuitive that or-trees are the cheapest designs for implementing orn,
we had to work a bit to prove it. It is also intuitive that balanced or-trees are the fastest
designs for implementing orn, and again, we had to work a bit to prove that too.

We will be using the lower bounds that we proved in this chapter also in the next
chapters. To prove these lower bounds, we introduced the cone(f) of a Boolean function
f . The cone of f is the set of inputs the function f depends on.

If all the gates have a fan-in of at most two and the cost and delay of non-trivial gates
is at least one, then the lower bounds are as follows. The first lower bound states that
the number of gates of a combinational circuit implementing a Boolean function f must
be at least ∣cone(f)∣ − 1. The second lower bound states that the propagation delay of a
circuit implementing a Boolean function f is at least log2 ∣cone(f)∣.
Problems

12.1 Design a zero-tester defined as follows.

Input: x[n − 1 ∶ 0].
Output: y

Functionality:
y = 1 iff x[n − 1 ∶ 0] = 0n.

1. Suggest a design based on an or-tree.

2. Suggest a design based on an and-tree.

12.4. SUMMARY 207

3. What do you think about a design based on a tree of nor-gates?

12.2 Prove that each of the following functions f ∶ {0,1}n → {0,1} is associative:

f ∈ {constant 0, constant 1, x1, xn,andn,orn,xorn,nxorn} .
12.3 Let G = (V,E) be a DAG with a single sink r. Prove the following statement:

∀v ∈ V ∃ a single path from v to r⇒ G is a rooted tree .

12.4 Recall the algorithm for constructing (V ′,E′) in the proof of Lemma 12.17. Prove
that this algorithm maintains the following invariant:

There is a single path from every v ∈ V ′ to the sink r.

12.5 Prove that there is only one balanced partition of n if and only if n is a power of
two.

12.6 An even partition of n is the partition a = ⌈n/2⌉ and b = ⌊n/2⌋.
1. Give an example of a balanced partition that is not an even partition.

2. Prove that every even partition is a balanced partition. Namely, prove that

∀n ≥ 2 ∶ ⌈log2⌈n/2⌉⌉ = ⌈log2 n⌉ − 1. (12.7)

Hint: The proof of Eq. 12.7 is easy if n is even. If n is odd, then ⌈log2⌈n2 ⌉⌉ =⌈log2(n + 1)⌉ − 1. Thus, one needs to prove that

∀n = 2k + 1 ∶ ⌈log2(n + 1)⌉ = ⌈log2 n⌉. (12.8)

12.7 Prove the second direction in Claim 12.8, that is: Prove that if (a, b) is a balanced
partition, then (a, b) ∈ P .

12.8 Consider the Boolean function xorn.

1. What is the cost and delay of a xor-tree(n)?
2. What is the length of the shortest SOP Boolean formula ϕ∗ that represents xorn?

3. What is the cost and delay of a combinational circuit obtained from ϕ∗? What is
the maximum fan-in and fan-out of this circuit?

12.9 State and prove a generalization of Theorem 12.15 for the case that the fan-in of
every gate is bounded by a constant k.

12.10

Let U ⊆ V denote a subset of vertices of a directed graph G = (V,E), and let r ∈ V . Let
dist(u, v) denote the length of a shortest path in G from u to v. If there is no such path,
then dist(u, v) =∞. Let k denote the maximum in-degree in G.

Prove that there exists a vertex u ∈ U such that dist(u, r) ≥ logk ∣U ∣.

208 CHAPTER 12. TREES

Chapter 13

Decoders and Encoders

Contents
13.1 Buses . 210

13.2 Decoders . 212

13.2.1 Division in Binary Representation 212

13.2.2 Definition of Decoder . 213

13.2.3 Brute force design . 214

13.2.4 An optimal decoder design . 214

13.2.5 Correctness . 215

13.2.6 Cost and delay analysis . 216

13.2.7 Asymptotic Optimality . 218

13.3 Encoders . 219

13.3.1 Hamming Distance and Weight . 219

13.3.2 Concatenation of Strings . 219

13.3.3 Definition of Encoder . 220

13.3.4 Brute Force Implementation . 220

13.3.5 Implementation and Correctness 221

13.3.6 Cost Analysis . 223

13.3.7 Reducing the Cost . 223

13.3.8 Cost and delay analysis . 224

13.3.9 Asymptotic Optimality . 225

13.4 Summary . 225

209

210 CHAPTER 13. DECODERS AND ENCODERS

Consider the following problem. We need a combinational circuit that controls many
devices numbered 0,1, . . . ,2k−1. At every moment, the circuit instructs exactly one device
to work while the others must be inactive. The input to the circuit is a k-bit string that
represents the number i of the device to be active. Now, the circuit has 2k outputs, one
for each device, and only the ith output should equal 1; the other outputs must equal
zero. How do we design such a circuit? The circuit described above is known as a decoder.
The circuit that implements the inverse Boolean function is called an encoder.

In this chapter we specify and design decoders and encoders. We also prove that the
combinational circuit are correct, namely, they satisfy the specification. Moreover, we
prove that these designs are asymptotically optimal.

13.1 Buses

We begin this section by describing what buses are. Consider a circuit that contains an
adder and a register (a memory device). The output of the adder should be stored by the
register. Suppose that the adder outputs 8 bits. This means that there are 8 different
wires that emanate from the output of the adder to the input of the register. There 8
wires are distinct, and must have distinct name. Instead of naming the wires a, b, c, . . .,
we often use names such as a[0], a[1], . . . , a[7].
Definition 13.1 A bus is a set of wires that are connected to the same modules. The
width of a bus is the number of wires in the bus.

Very often buses are used to connect between multiple components or modules. For
example, a PCI bus is used to connect hardware devices (e.g., network cards, sound
cards, USB adapters) to the main memory. In our settings, we consider wires instead of
nets.

In VLSI-CAD tools and hardware description languages (such as VHDL), one often
uses indexes to represent buses. Indexing of buses is often a cause of confusion. For
example, assume that the terminals on one side of a bus are called a[0 ∶ 3] and the
terminals on the other side of the bus are called b[3 ∶ 0]. Does that mean that a[0] is
connected to b[0] or does it mean that a[0] is connected to b[3]? Obviously, naming
rules are well defined in hardware description languages, but these rules are too strict
for our purposes (for example, negative indexes are not allowed, and connections are not
implied).

Our convention regarding indexing of terminals and their connection by buses is as follows:

1. Connection of terminals is done by assignment statements. For example, the ter-
minals a[0 ∶ 3] are connected to the terminals b[0 ∶ 3] by the statement b[0 ∶ 3] ←
a[0 ∶ 3]. This statement is meaningful if a[0 ∶ 3] are output terminals and b[0 ∶ 3]
are input terminals. The statement b[0 ∶ 3]← a[0 ∶ 3] means connect a[i] to b[i].

2. “Reversing” of indexes does not take place unless explicitly stated. Hence, unless
stated otherwise, assignments of buses in which the index ranges are the same or

13.1. BUSES 211

reversed, such as: b[i ∶ j] ← a[i ∶ j] and b[i ∶ j] ← a[j ∶ i], have the same meaning,
i.e., b[i] ← a[i], . . . , b[j] ← a[j].

3. “Shifting” is done by default. For example, will often write a[0 ∶ 3] ← b[4 ∶ 7],
meaning that a[0] ← b[4], a[1] ← b[5], etc. Similarly, assignments in which the
index ranges are shifted, such as: b[i + 5 ∶ j + 5] ← a[i ∶ j], mean b[i + 5] ←
a[i], . . . , b[j + 5] ← a[j]. We refer to such an implied re-assignment of indexes as
hardwired shifting.

Recall that we denote the (digital) signal on a wire N by N(t). This notation is a bit
cumbersome in buses, e.g., a[i](t) means the signal on the wire a[i]. To shorten notation,
we will often refer to a[i](t) simply as a[i]. Note that a[i](t) is a bit (this is true only
after the signal stabilizes). So, according to our shortened notation, we often refer to a[i]
as a bit meaning actually “the stable value of the signal a[i](t)”. This establishes the
somewhat confusing convention of attaching several meanings to a[n − 1 ∶ 0]; it is a bus,
a string, a binary vector, or a binary representation of a number.

We will often use an even shorter abbreviation for signals on buses, namely, vector
notation. We often use the shorthand a⃗ for a binary string a[n−1 ∶ 0] provided, of course,
that the indexes of the string a[n − 1 ∶ 0] are obvious from the context.

Consider a gate G with two input terminals a and b and one output terminal z. The
combinational circuit G(n) is simply n instances of the gate G, as depicted in part (A)
of Figure 13.1. The ith instance of gate G in G(n) is denoted by Gi. The two input
terminals of Gi are denoted by ai and bi. The output terminal of Gi is denoted by
zi. We use shorthand when drawing the schematics of G(n) as depicted in part (B) of
Figure 13.1. The short segment drawn across a wire indicates that the line represents a
bus. The bus width is written next to the short segment.

G0

a0 b0

z0

n n

n

G1

a1 b1

z1

Gn−1

an−1 bn−1

zn−1

(A) (B)

G(n)

z[0 ∶ n − 1]

a[0 ∶ n − 1] b[0 ∶ n − 1]

Figure 13.1: Vector notation: multiple instances of the same gate.

We often wish to feed all the second input terminals of gates in G(n) with the same
signal. Figure 13.2 denotes a circuit G(n) in which the value b is fed to the second input
terminal of all the gates.

212 CHAPTER 13. DECODERS AND ENCODERS

n

n

G1

a1

z1

Gn−1

an−1

zn−1

(A) (B)

G(n)

z[0 ∶ n − 1]

a[0 ∶ n − 1]b

1

b

G0

a0

z0

Figure 13.2: Vector notation: b feeds all the gates.

Note that the fan-out of the net that carries the signal b in Figure 13.2 is n. In
practice, the capacity of a net increases linearly with the fan-out, hence large fan-out
increases the propagation delay. To keep our delay model simple, we often ignore this
important phenomenon in this course.

13.2 Decoders

In this section we present a combinational module called a decoder. We start by defining
decoders. We then suggest an implementation, prove its correctness, and analyze its
cost and delay. Finally, we prove that the cost and delay of our implementation is
asymptotically optimal.

13.2.1 Division in Binary Representation

Recall that ⟨a[n − 1 ∶ 0]⟩n denotes the binary number represented by an n-bit vector a⃗.

⟨a[n − 1 ∶ 0]⟩n △= n−1∑
i=0
ai ⋅ 2

i.

In Theorem 5.6, it was shown that ⟨⟩n ∶ {0,1}n → {0,1, . . . ,2n − 1} is a bijection. This
means that the inverse function is well defined. The inverse function, called the binary
representation function, attaches a binary representation to natural numbers.

Definition 13.2 Binary representation using n-bits is a function binn ∶ {0,1, . . . ,2n −
1} → {0,1}n that is the inverse function of ⟨⋅⟩. Namely, for every a[n − 1 ∶ 0] ∈ {0,1}n,

binn(⟨a[n − 1 ∶ 0]⟩n) = a[n − 1 ∶ 0].
We defined division and modulo in Section 5.1. Recall that division of a by b means

finding a quotient q and a remainder r that satisfy:

a = q ⋅ b + r, where 0 ≤ r < b.

13.2. DECODERS 213

One advantage of binary representation is that it is trivial to divide by powers of two
as well as compute the remainders. We summarize this property in the following claim.

Claim 13.1 Let s = ⟨x[n − 1 ∶ 0]⟩n, and 0 ≤ k ≤ n − 1. Let q and r denote the quotient
and remainder obtained by dividing s by 2k. Define the binary strings xR[k − 1 ∶ 0] and
xL[n − 1 ∶ n − k − 1] as follows.

xR[k − 1 ∶ 0] △= x[k − 1 ∶ 0]
xL[n − k − 1 ∶ 0] △= x[n − 1 ∶ k].

Then,

q = ⟨xL[n − k − 1 ∶ 0]⟩
r = ⟨xR[k − 1 ∶ 0]⟩.

13.2.2 Definition of Decoder

Definition 13.3 A decoder with input length n is a combinational circuit specified as
follows:

Input: x[n − 1 ∶ 0] ∈ {0,1}n.
Output: y[2n − 1 ∶ 0] ∈ {0,1}2n

Functionality:

y[i] △= ⎧⎪⎪⎨⎪⎪⎩
1 if ⟨x⃗⟩ = i
0 otherwise.

We denote a decoder with input length n by decoder(n).
Note that the number of outputs of a decoder is exponential in the number of inputs.

Note also that exactly one bit of the output y⃗ is set to one. Such a representation of a
number is often termed one-hot encoding or 1-out-of-k encoding.

Example 13.1 Consider a decoder decoder(3). On input x = 101, the output y equals
00100000.

An example of how a decoder is used is in decoding of controller instructions. Suppose
that each instruction is a coded by an 4-bit string. Our goal is to determine what
instruction is to be executed. For this purpose, we feed the 4 bits to a decoder(4).
There are 16 outputs, exactly one of which will equal 1. This output will activate a
module that should be activated in this instruction.

214 CHAPTER 13. DECODERS AND ENCODERS

13.2.3 Brute force design

The simplest way to design a decoder is to build a separate circuit for every output bit
y[i]. The circuit for y[i] is simply a product of n literals. Let v

△

= binn(i), i.e., v is the
binary representation of the index i. Using the notation from Definition 9.5, define the
minterm pv to be pv

△

= (ℓv1 ⋅ ℓv2⋯ℓvn), where:

ℓvj
△

=

⎧⎪⎪⎨⎪⎪⎩
xj if vj = 1

x̄j if vj = 0.

In the following claim we refer to pv as a Boolean function of the input x[n − 1 ∶ 0].
Claim 13.2 If ⟨v⟩ = i, then y[i] = pv.
Proof: By definition y[i] = 1 iff ⟨x⃗⟩ = i. Now ⟨x⃗⟩ = i iff x⃗ = v. Indeed, pv attains the
value 1 iff x⃗ = v, as required. 2

The brute force decoder circuit consists of: (i) n inverters used to compute inv(x⃗),
and (ii) computing pv by a separate and(n)-tree for every v ∈ {0,1}n. The delay of the
brute force design is tpd(inv)+ tpd(and(n)-tree) = O(log2 n). The cost of the brute force
design is Θ(n ⋅ 2n), since we have an and(n)-tree for each of the 2n outputs.

Intuitively, the brute force design is wasteful because, if the binary representation of
i and j differ in a single bit, then the and-trees of y[i] and y[j] share all but a single
input. Hence the product of n− 1 bits is computed twice. In the next section we present
a systematic way to share hardware between different outputs.

13.2.4 An optimal decoder design

We design a decoder(n) using recursion on n. The base case, for n = 1, is trivial. We
then proceed with the reduction rule by designing a decoder(n) based on “smaller”
decoders.

Base case decoder(1): The circuit decoder(1) is simply one inverter where: y[0]←
inv(x[0]) and y[1]← x[0].
Reduction rule decoder(n): We assume that we know how to design decoders with
input length less than n, and design a decoder with input length n.

The method we apply for our design is called “divide-and-conquer”. Consider a pa-
rameter k, where 0 < k < n. We partition the input string x[n − 1 ∶ 0] into two strings as
follows:

1. The right part (or lower part) is xR[k−1 ∶ 0] and is defined by xR[k−1 ∶ 0] = x[k−1 ∶
0].

2. The left part (or upper part) is xL[n − k − 1 ∶ 0] and is defined by xL[i] ← x[i + k].
We write this also by xL[n − k − 1 ∶ 0] = x[n − 1 ∶ k], which means that hardwired
shift by k positions is applied.

13.2. DECODERS 215

We will later show that, to reduce delay, it is best to choose k as close to n/2 as possible.
However, at this point we consider k to be an arbitrary integer such that 0 < k < n.

Figure 13.3 depicts a recursive implementation of a decoder(n). Our recursive
design feeds xL[n − k − 1 ∶ 0] to decoder(n − k). We denote the output of the decoder
decoder(n − k) by Q[2n−k − 1 ∶ 0]. (The letter ’Q’ stands “quotient”.) In a similar
manner, our recursive design feeds xR[k − 1 ∶ 0] to decoder(k). We denote the output
of the decoder decoder(k) by R[2k − 1 ∶ 0]. (The letter ’R’ stands for “remainder”.)

The decoder outputs Q[2n−k − 1 ∶ 0] and R[2k − 1 ∶ 0] are fed to a 2n−k × 2k array of
and-gates. We denote the and-gate in position (q, r) in the array by andq,r. The rules
for connecting the and-gates in the array are as follows. The inputs of the gate andq,r

are Q[q] and R[r]. The output of the gate andq,r is y[q ⋅ 2k + r].
Note that we have defined a routing rule for connecting the outputs Q[2n−k − 1 ∶ 0]

and R[2k − 1 ∶ 0] to the inputs of the and-gates in the array. This routing rule (that
involves division with remainder by 2k) is not computed by the circuit; the routing rule
defines the circuit and must be followed by the person implementing the design.

In Figure 13.3, we do not draw the connections in the array of and-gates. Instead,
connections are inferred by the names of the wires (e.g., two wires called R[5] belong to
the same net).

Decoder(k)

k

2k

xR[k − 1 : 0]
△

= x[k − 1 : 0]

R[2k − 1 : 0]

Decoder(n− k)

andq,r

y[q · 2k + r]

Q[q]

R[r]

2n−k × 2k

array of

and-gates
Q[2n−k − 1 : 0]

n− k 2n−kxL[n− k − 1 : 0]

x[n− 1 : k]

△

=

Figure 13.3: A recursive implementation of decoder(n).

Example: implementing decoder(2). In this example we “unroll” the recursive
design, decoder(n), for n = 2. The implementation of decoder(2) is depicted in
Figure 13.4.

13.2.5 Correctness

In this section we prove the correctness of the decoder(n) design.

Claim 13.3 The decoder(n) design is a correct implementation of a decoder.

216 CHAPTER 13. DECODERS AND ENCODERS

x[1]

Q[1]

Q[0]

R[1]

Q[1]

y[3] y[2]

R[1]

y[0]y[1]

Q[1] R[0]

R[0]Q[0]Q[0]

R[0]R[1]

x[0]

Figure 13.4: An implementation of decoder(2).

Proof: Our goal is to prove that, for every n and every 0 ≤ i < 2n, the following holds:

y[i] = 1 ⇐⇒ ⟨x[n − 1 ∶ 0]⟩ = i.
The proof is by induction on n. The induction basis, for n = 1, is trivial. We proceed

directly to the induction step. Fix an index i and divide i by 2k to obtain i = q ⋅ 2k + r,
where r ∈ [2k − 1 ∶ 0].

We apply the induction hypothesis to decoder(k) to conclude that R[r] = 1 iff⟨xR[k − 1 ∶ 0]⟩ = r. Similarly, the induction hypothesis when applied to decoder(n − k)
implies that Q[q] = 1 iff ⟨xL[n − k − 1 ∶ 0]⟩ = q. Since i = q ⋅ 2k + r, this implies that

y[i] = 1⇐⇒ R[r] = 1 and Q[q] = 1

⇐⇒ ⟨xR[k − 1 ∶ 0]⟩ = r and ⟨xL[n − k − 1 ∶ 0]⟩ = q.
⇐⇒ ⟨x[n − 1 ∶ 0]⟩ = i,

where the first line is by the functionality of the and-gate that outputs y[i]. The second
line follows from the induction hypothesis. The third line follows from the property of
division by 2k, and the claim follows. 2

13.2.6 Cost and delay analysis

In this section we analyze the cost and delay of the decoder(n) design. We denote the
cost and delay of decoder(n) by c(n) and d(n), respectively.

13.2. DECODERS 217

Cost analysis. The cost c(n) satisfies the following recurrence equation:

c(n) = ⎧⎪⎪⎨⎪⎪⎩
c(inv) if n=1

c(k) + c(n − k) + 2n ⋅ c(and) otherwise.

It follows that, up to constant factors

c(n) = ⎧⎪⎪⎨⎪⎪⎩
1⋅ if n = 1

c(k) + c(n − k) + 2n if n > 1.
(13.1)

Obviously, c(n) = Ω(2n) (regardless of the value of k), so the best we can hope for is
to find a value of k such that c(n) = O(2n). In fact, it can be shown that c(n) = O(2n),
for every choice of 1 ≤ k < n. The following claim considers the case that k = ⌈n/2⌉.
Claim 13.4 The solution of Eq. 13.1 is c(n) = O(2n) if k = ⌈n/2⌉.
Proof: By Lemma 7.2, it suffices to consider the case that n is a power of 2, namely,
n = 2ℓ. Define γ(n), for n ≥ 1, as follows

γ(n) △= c(n)
2n

.

We now prove that γ(n) < 2, for powers of 2, by induction on n. The induction basis, for
n = 1, is immediate since

γ(1) = c(1)
21

=
1

2
.

The induction step is proved as follows:

γ(2n) = c(2n)
22n

=
1

22n
⋅ (2c(n) + 22n)

=
2c(n)
22n

+ 1

=
2 ⋅ 2n ⋅ γ(n)

22n
+ 1

=
γ(n)
2n−1

+ 1 < 2.

The first line follows from the definition of γ. The second line follows from Eq. 13.1. The
fourth line uses the identity c(n) = 2n ⋅ γ(n). Since n ≥ 2, it follows that 2n−1 ≥ 2. By
the induction hypothesis, γ(n) < 2, hence γ(n)/2n−1 < 1, and the last line holds. Thus,
γ(2n) < 2, and the induction step follows. We conclude that c(n) < 2 ⋅ 2n, as required. 2

218 CHAPTER 13. DECODERS AND ENCODERS

Delay analysis. The delay of decoder(n) satisfies the following recurrence equation:

d(n) = ⎧⎪⎪⎨⎪⎪⎩
d(inv) if n=1

max{d(k), d(n − k)} + d(and) otherwise.

Set k = n/2. By Problem 7.9 it follows that d(n) = Θ(logn).
13.2.7 Asymptotic Optimality

Our goal is to prove that the design we presented is optimal. Optimality is not well
defined since we are not committed to specific costs and propagation delays of the basic
gates. Instead, we resort to asymptotic optimality. Of course, we are also very interested
in the constants since they are important from a practical point of view. The analysis
presented in the previous section also proves very reasonable constants (i.e., c(n) ≤ 2 ⋅2n ⋅
max{c(and), c(inv)} and d(n) ≤ log2 n ⋅max{c(and), c(inv)}).

In the following theorem we assume that every gate in G has a constant number of
input terminals (say, at most two).

Theorem 13.5 For every decoder G of input length n:

d(G) = Ω(logn)
c(G) = Ω(2n).

Proof: We begin by proving that d(G) = Ω(logn). The proof is a simple application of
the Logarithmic Delay Lower Bound (Theorem 12.18). Consider the output y[0]. The
Boolean function implemented by y[0] is

y[0] = not(or(x[n − 1], . . . , x[0])).
The cone of this Boolean function is the set {0, . . . , n−1}, and the first part of the theorem
follows. (In fact, every output bit depends on all the inputs - see Problem 13.3.)

We now prove that c(G) = Ω(2n). The proof is based on the following observations:
(i) Computing each output bit requires at least one nontrivial gate. (ii) No two output
bits are identical. Assume, for the sake of contradiction, that the first observation does
not hold. Then, there exists an index i ∈ [0 ∶ 2n−1] such that y[i] equals one of the input
bits, say x[j]. But, y[i] = 1 only for one unique input vector, a contradiction.

Assume, for the sake of contradiction, that the second observation does not hold.
Then, there exist two distinct indexes i, j ∈ [0 ∶ 2n − 1] such that y[i] = y[j], for every
input. However, consider the input vector x⃗ such that ⟨x⃗⟩ = i. Given this input, we have
y[i] = 1 and y[j] = 0, a contradiction.

These two observations imply that the 2n output bits are outcomes of distinct non-
trivial gates, and the theorem follows. 2

Note that Theorem 12.15 only implies that, for every decoder G of input length n,
c(G) = Ω(n), a very weak result. In Theorem 13.5 we proved a much stronger lower
bound.

13.3. ENCODERS 219

13.3 Encoders

An encoder implements the inverse Boolean function implemented by a decoder. Note
however, that the Boolean function implemented by a decoder is not surjective. In fact,
the range of the Boolean function implemented by a decoder is the set of binary vectors in
which exactly one bit equals 1. It follows that an encoder implements a partial Boolean
function (i.e., a function that is not defined for every binary string).

13.3.1 Hamming Distance and Weight

We first define the Hamming weight of binary strings.

Definition 13.4 The Hamming distance between two binary strings u, v ∈ {0,1}n is
defined by

dist(u, v) △= {i ∣ ui ≠ vi}.
Definition 13.5 The Hamming weight of a binary string u ∈ {0,1}n equals dist(u,0n).
Namely, the number of non-zero symbols in the string.

We denote the Hamming weight of a binary string a⃗ by wt(a⃗), namely,

wt(a[n − 1 ∶ 0]) △= ∣{i ∶ a[i] ≠ 0}∣.
13.3.2 Concatenation of Strings

Recall that the concatenation of the strings a and b is denoted by a ○ b.

Definition 13.6 The binary string obtained by i concatenations of the string a is denoted
by ai.

Consider the following examples of string concatenation:� If a = 01 and b = 10, then a ○ b = 0110.� If a = 1 and i = 5, then ai = 11111.� If a = 01 and i = 3, then ai = 010101.� We denote the zeros string of length n by 0n (hopefully, there is no confusion
between exponentiation and concatenation of the binary string 0).

220 CHAPTER 13. DECODERS AND ENCODERS

13.3.3 Definition of Encoder

We define the encoder partial function as follows.

Definition 13.7 The function encodern ∶ {y⃗ ∈ {0,1}2n
∶ wt(y⃗) = 1}→ {0,1}n is defined

as follows: ⟨encodern(y⃗)⟩ equals the index of the bit of y[2n − 1 ∶ 0] that equals one.
Formally,

wt(y) = 1Ô⇒ y[⟨encodern(y⃗)⟩] = 1.

Examples:

1. encoder2(0001) = 00, encoder2(0010) = 01,
encoder2(0100) = 10, encoder2(1000) = 11.

2. encodern(02n
−k−1 ○ 1 ○ 0k) = binn(k).

Definition 13.8 An encoder with input length 2n and output length n is a combinational
circuit that implements the Boolean function encodern.

We denote an encoder with input length 2n and output length n by encoder(n). An
encoder(n) can be also specified as follows:

Input: y[2n − 1 ∶ 0] ∈ {0,1}2n
.

Output: x[n − 1 ∶ 0] ∈ {0,1}n.
Functionality: If wt(y⃗) = 1, let i denote the index such that y[i] = 1. In this case x⃗

should satisfy ⟨x⃗⟩ = i. Formally:

wt(y⃗) = 1 Ô⇒ y[⟨x⃗⟩] = 1.

Note that the functionality is not specified for all inputs y⃗. Functionality is only spec-
ified for inputs whose Hamming weight equals one. Since an encoder is a combinational
circuit, it implements a Boolean function. This means that it outputs a digital value
even if wt(y) ≠ 1. The specification only requires that two encoders agree with respect to
inputs whose Hamming weight equals one.

If y⃗ is output by a decoder, then wt(y⃗) = 1, and hence an encoder implements the
inverse function of a decoder.

13.3.4 Brute Force Implementation

We begin by describing a brute force implementation. Recall that binn(i)[j] denotes the
jth bit in the binary representation of i. Let Aj denote the set of all integers in [0 ∶ 2n−1]
whose jth bit in binary representation equals one. Formally,

Aj
△

= {i ∈ [0 ∶ 2n − 1] ∣ binn(i)[j] = 1}.

Claim 13.6 If wt(y) = 1, then x[j] = ⋁i∈Aj
y[i] for every j ∈ [0 ∶ n − 1].

13.3. ENCODERS 221

Proof: Assume that the output of an encoder with input y equals x. Let ℓ ∈ [0 ∶ 2n −1]
denote the position of the one in y, namely, y[ℓ] = 1. We consider two cases:

1. If ℓ = 0, then y = 02n
and x = 0n. Therefore, ⋁i∈Aj

y[i] equals 0, for each j, as
required.

2. If ℓ > 0, then ⟨x⟩ = ℓ. By the definition of binary representation, x[j] = 1 iff
binn(ℓ)[j] = 1. Namely, x[j] = 1 iff ℓ ∈ Aj. But

⋁
i∈Aj

y[i] =
⎧⎪⎪⎨⎪⎪⎩
0 if ℓ /∈ Aj
1 if ℓ ∈ Aj .

Thus, x[j] = ⋁i∈Aj
y[i], as required.

2

Claim 13.6 gives us a recipe for implementing an encoder(n). For each output
xj , use a separate or-tree whose inputs are {y[i] ∣ i ∈ Aj}. Each such or-tree has at
most 2n inputs (in fact, ∣Aj ∣ = 2n−1, for every j). Therefore, the cost of each or-tree is
O(2n). There are n outputs, so the total cost is O(n ⋅ 2n). The delay of each or-tree is
O(log 2n) = O(n).

In the following sections we try to design a better encoder.

13.3.5 Implementation and Correctness

In this section we present a step by step implementation of an encoder. We start with
a rather costly design, which we denote by encoder′(n). We then show how to modify
encoder′(n) to an asymptotically optimal one.

Implementation

As in the design of a decoder, our design is recursive. The design for n = 1, is simply
x[0]← y[1]. Hence, for n = 1, the cost and delay of our design are zero. We proceed with
the design for n > 1.

Again, we use the divide-and-conquer method. We partition the input y⃗ into two
strings of equal length as follows:

yL[2n−1 − 1 ∶ 0] = y[2n − 1 ∶ 2n−1] yR[2n−1 − 1 ∶ 0] = y[2n−1 − 1 ∶ 0].
The idea is to feed these two parts into two encoders encoder′(n−1) (see Figure 13.5).
However, there is a problem with this approach. The problem is that even if y⃗ is a “legal”
input (namely, wt(y⃗) = 1), then one of the strings y⃗L or y⃗R is all zeros, which is not a
legal input. An “illegal” input can produce an arbitrary output, which might make the
design wrong.

To fix this problem we augment the definition of the encodern function so that its
domain also includes the all zeros string 02n

. We define

encodern(02n) △= 0n.

222 CHAPTER 13. DECODERS AND ENCODERS

n − 1 n − 1

or(n − 1)

n − 1

x[n − 2 : 0]

2n−1

1

△

= y[2n − 1 : 2n−1]
△

= y[2n−1 − 1 : 0]

2n−1

a[n − 2 : 0]b[n − 2 : 0]

or-tree(2n−1)

encoder
′(n − 1) encoder

′(n − 1)

x[n − 1]

yL[2
n−1 − 1 : 0] yR[2n−1 − 1 : 0]

Figure 13.5: A recursive implementation of encoder′(n).

Note that encoder′(1) also meets this new condition, so the induction basis of the
correctness proof holds.

Let a[n − 2 ∶ 0] (resp., b[n − 2 ∶ 0]) denote the output of the encoder′(n − 1) circuit
that is fed by y⃗R (resp., y⃗L). The output is defined by

x[i] ← or(b[i], a[i]), if 0 ≤ i ≤ n − 2, and

x[n − 1]← or2n−1(y⃗L)

Correctness

Claim 13.7 The circuit encoder′(n) depicted in Figure 13.5 implements the Boolean
function encodern.

Proof: The correctness of the encoder design is proved as follows. We distinguish
between three cases, depending on which half contains the bit that is lit in y⃗, if any.

1. If wt(y⃗L) = 0 and wt(y⃗R) = 1, then the induction hypothesis implies that b⃗ = 0n−1

and yR[⟨a⃗⟩] = 1. It follows that y[⟨a⃗⟩] = 1, hence the required output is x⃗ = 0 ⋅ a⃗.
The actual output equals the required output, and correctness holds in this case.

2. If wt(y⃗L) = 1 and wt(y⃗R) = 0, then the induction hypothesis implies that yL[⟨b⃗⟩] = 1
and a⃗ = 0n−1. It follows that y[2n−1 + ⟨b⃗⟩] = 1, hence the required output is x⃗ = 1 ⋅ b⃗.
The actual output equals the required output, and correctness holds in this case.

3. If wt(⟨y⃗⟩) = 0, then the required output is x⃗ = 0n. The induction hypothesis implies
that a⃗ = b⃗ = 0n−1. The actual output is x⃗ = 0n, and correctness follows.

2

13.3. ENCODERS 223

13.3.6 Cost Analysis

The problem with the encoder′(n) design is that it is too costly. The cost of encoder′(n)
satisfies the following recurrence:

c(encoder
′(n)) =

⎧⎪⎪⎨⎪⎪⎩
0 if n = 1

2 ⋅ c(encoder′(n − 1)) + c(or-tree(2n−1)) + (n − 1) ⋅ c(or) if n > 1.

Let c(n) △= c(encoder′(n))/c(or). Then, c(n) satisfies the recurrence

c(n) =
⎧⎪⎪⎨⎪⎪⎩
0 if n = 1

2 ⋅ c(n − 1) + (2n−1 − 1 + n − 1) if n > 1.
(13.2)

Claim 13.8 c(n) = Θ(n ⋅ 2n).

Proof: Define a(2k) △= c(k). Then, a(2k) = 2 ⋅ a(2k−1)+Θ(2k). By Lemma 7.4 it follows
that a(2k) = Θ(k ⋅ 2k). Hence c(n) = Θ(n ⋅ 2n), as required. 2

We conclude with the following corollary.

Corollary 13.9 c(encoder′(n)) = Θ(n ⋅ 2n).

13.3.7 Reducing the Cost

Corollary 13.9 suggests that the encoder′(n) design is not (asymptotically) cheaper
than a brute force design. Can we do better? The following claim serves as a basis for
reducing the cost of an encoder.

Claim 13.10 If wt(y[2n − 1 ∶ 0]) ≤ 1, then

encodern−1(or(y⃗L, y⃗R)) = or(encodern−1(y⃗L),encodern−1(y⃗R)). (13.3)

Proof: The proof in case y⃗ = 02n
is trivial. We consider the case that wt(y⃗L) = 0 and

wt(y⃗R) = 1 (the proof of other case is analogous). The left-hand side of Eq. 13.3 equals

encodern−1(or(y⃗L, y⃗R)) = encodern−1(or(02n−1

, y⃗R))
= encodern−1(y⃗R).

However, the right-hand side of Eq. 13.3 equals

or(encodern−1(y⃗L),encodern−1(y⃗R)) = or(encodern−1(02n−1),encodern−1(y⃗R))
= or(0n−1,encodern−1(y⃗R))
= encodern−1(y⃗R),

and the claim follows. 2

Figure 13.6 depicts the design encoder∗(n) obtained from encoder′(n) after com-
muting the or and the encoder(n−1) operations. Claim 13.10 implies that encoder′(n)
and encoder∗(n) are functionally equivalent.

224 CHAPTER 13. DECODERS AND ENCODERS

Definition 13.9 Two combinational circuits are functionally equivalent if they imple-
ment the same Boolean function.

In other words, functionally equivalent combinational circuits output the same output
when they are input by the same values.

We conclude that we do not need to prove the correctness of the encoder∗(n) cir-
cuit from scratch. Namely, the correctness of encoder′(n) implies the correctness of
encoder∗(n). The following claim is proved by induction on n.

Claim 13.11 The circuits encoder′(n) and encoder∗(n) are functionally equivalent.

2n−1

n − 1

encoder∗(n − 1)

1

or-tree(2n−1)

x[n − 1]

2n−1

or(2n−1)

2n−1

x[n − 2 ∶ 0]

y⃗L y⃗R

Figure 13.6: A recursive implementation of encoder∗(n).

13.3.8 Cost and delay analysis

The cost of encoder∗(n) satisfies the following recurrence equation:

c(encoder∗(n)) =
⎧⎪⎪⎨⎪⎪⎩
0 if n=1

c(encoder∗(n − 1)) + (2n − 1) ⋅ c(or) otherwise.

Let us rewrite the recurrence so that the parameter is the number of inputs. Note,
that the error term is linear in the number of inputs. In other words, let C(2k) △

=
c(encoder∗(k))/c(or). Then,

C(2k) =
⎧⎪⎪⎨⎪⎪⎩
0 if k=0

C(2k−1) + (2k − 1) otherwise.

By Lemma 7.1, we conclude that C(2k) = Θ(2k).

13.4. SUMMARY 225

Corollary 13.12 c(encoder∗(n)) = Θ(2n).

The delay of encoder∗(n) satisfies the following recurrence equation:

d(encoder∗(n)) =
⎧⎪⎪⎨⎪⎪⎩
0 if n=1

max{d(or-tree(2n−1)), d(encoder∗(n − 1) + d(or))} otherwise.

Since d(or-tree(2n−1)) = (n − 1) ⋅ d(or), it can be proven by induction that

d(encoder∗(n)) = (n − 1) ⋅ d(or).

13.3.9 Asymptotic Optimality

Our goal is to prove that the encoder design we presented is optimal. In the following
theorem we assume that every gate in G has a constant number of input terminals (say,
at most two).

Theorem 13.13 For every encoder G of input length n:

d(G) = Ω(n)
c(G) = Ω(2n).

Proof: Let f0 ∶ {0,1}2n → {0,1} denote the Boolean function implemented by the
output x[0]. We claim that

{2i + 1 ∣ 0 ≤ i ≤ 2n−1 − 1} ⊆ cone(f0).

Indeed, consider y = 02n
and z

△

= flip2i+1(y). On input y, G outputs 02n
, and hence,

x[0] = 0. On input z, G outputs binn(2i+1). Since (2i+1) is odd, x[0] = 1, and therefore
2i + 1 ∈ cone(f0), as required.

It follows that ∣cone(f0)∣ ≥ 2n−1. By Theorem 12.18, it follows that d(G) ≥ log ∣cone(f0)∣ =
Ω(n), as required. By Theorem 12.15, if follows that c(G) ≥ 2n−1 = Ω(2n), and the theo-
rem follows. 2

13.4 Summary

In this chapter, we introduced notation for buses that is used to denote indexed sig-
nals (e.g., a[n − 1 ∶ 0]). We presented designs for decoders and encoders using design
methodology called divide-and-conquer.

The first combinational circuit we described is a decoder. A decoder can be viewed as
a circuit that translates a number represented in binary representation to a 1-out-of-2n

encoding. We started by presenting a brute force design in which a separate and-tree
is used for each output bit. The brute force design is simple yet wasteful. We then
presented a recursive decoder design with asymptotically optimal cost and delay.

226 CHAPTER 13. DECODERS AND ENCODERS

There are many advantages in using recursion. First, we were able to formally define
the circuit. The other option would have been to draw small cases (say, n = 3,4) and
then argue informally that the circuit is built in a similar fashion for larger values of n.
Second, having recursively defined the design, we were able to prove its correctness using
induction. Third, writing the recurrence equations for cost and delay is easy. We proved
that our decoder design is asymptotically optimal both in cost and in delay.

The second combinational circuit we described is an encoder. An encoder is the inverse
circuit of a decoder. We presented a naive design and proved its correctness. We then
reduced the cost of the naive design by commuting the order of two operations without
changing the functionality. We proved that the final encoder design has asymptotically
optimal cost and delay.

Three main techniques were used in this chapter.� Divide & Conquer. We solve a problem by dividing it into smaller sub-problems.
The solutions of the smaller sub-problems are “glued” together to solve the big
problem. Divide & Conquer is a design methodology that uses recursion.� Extend specification to make problem easier. We encountered a difficulty in the
encoder design due to an all zeros input. We bypassed this problem by extending
the specification of an encoder so that it must output all zeros when input an all
zeros. Adding restrictions to the specification made the task easier since we were
able to add assumptions in our recursive designs.� Evolution. We started with a naive and correct design. This design turned out to
be too costly. We improved the naive design while preserving its functionality to
obtain a cheaper design. The correctness of the improved design follows from the
correctness of the naive design and the fact that it is functionally equivalent to the
naive design.

Problems

13.1 Answer the following questions.

1. Implement the decoder(3) combinational circuit using the Logisim software.� First, implement decoder(1) and decoder(2). Hint: Implement an array
of and gates.� Verify that the outputs of these decoders are indexed in ascending order, i.e.,
edit the subcircuit’s appearance.� Submit: (i) printouts of decoder(1),decoder(2) and decoder(3), (ii) print-
outs of the truth tables of each of these decoders, and (iii) simulate the following
input vector x⃗ = 010, i.e., draw (by hand) the logical values on every wire on
your printout of decoder(3).

2. Implement the encoder*(3) combinational circuit using the Logisim software.

13.4. SUMMARY 227� First, implement encoder*(1), encoder*(2), and or-tree(4).� Verify that the outputs of these encoders are indexed in ascending order, i.e.,
edit the subcircuit’s appearance.� Submit: (i) printouts of encoder*(1),encoder*(2) and encoder*(3), (ii) print-
outs of the truth tables of each of these encoders, and (iii) simulate the follow-
ing input vector y⃗ = 00100000, i.e., draw (by hand) the logical values on every
wire on your printout of encoder*(3).

3. Connect the output of decoder(3) to the input of encoder*(3). Print the truth
table containing the decoder’s input, decoder’s output and the encoder’s output.

13.2 Let c(n) and d(n) denote the cost of the decoder with n inputs presented in Sec-
tion 13.2.4.

1. Prove that c(n) = O(2n) even if k = 1 in all the reduction rules.

2. Analyze d(n) if k = 1 in all the reduction rules.

3. (*)Prove that c(n) = O(2n), for every choice of 1 ≤ k < n.

13.3 Prove that every output bit of a decoder depends on all the inputs.

13.4 Prove that d(encoder′(n)) = Θ(n).

13.5 Provide a direct correctness proof for the encoder∗(n) design (i.e., do not rely
on the correctness of encoder′(n)). Does the correctness of encoder∗(n) require that
encoder∗(n − 1) output an all-zeros string when the input is an all-zeros string?

13.6 The following question is based on the following definitions:

Definition 13.10 A binary string x′[n− 1 ∶ 0] dominates the binary string x′′[n− 1 ∶ 0]
if

∀i ∈ [n − 1 ∶ 0] ∶ x′′[i] = 1⇒ x′[i] = 1.

Definition 13.11 A Boolean function f is monotone if x′ dominates x′′ implies that
f(x′) dominates f(x′′).

1. Prove that if a combinational circuit C contains only gates that implement mono-
tone Boolean functions (e.g., only and-gates and or-gates, no inverters), then C

implements a monotone Boolean function.

2. The designs encoder′(n) and encoder∗(n) lack inverters, and hence are mono-
tone circuits. Is the Boolean function encodern a monotone Boolean function?

3. Suppose that G is an encoder and is a monotone combinational circuit. Suppose
that the input y of G has two ones (namely, wt(y) = 2). Can you immediately
deduce which outputs of G must equal one?

228 CHAPTER 13. DECODERS AND ENCODERS

Chapter 14

Selectors and Shifters

Contents
14.1 Multiplexers . 230

14.1.1 Implementation . 231

14.2 Cyclic Shifters . 234

14.2.1 Implementation . 235

14.2.2 Correctness and analysis of cost and delay 235

14.3 Logical Shifters . 238

14.3.1 Implementation . 239

14.4 Arithmetic Shifters . 241

14.4.1 Two’s complement . 241

14.4.2 Arithmetic shifter . 241

14.5 Summary . 243

229

230 CHAPTER 14. SELECTORS AND SHIFTERS

In this chapter we present combinational circuits that manipulate the input bits. By
manipulation we mean that the bits in the output appear in the input. Why do we need
such circuits?

We deal with two settings in which such manipulations take place: selection and
shifting.� In selection, we are given an n-bit string D[n − 1 ∶ 0] and an encoding of an index

0 ≤ i < n in binary representation. The output is simply D[i]. Namely, we want
the output to equal the ith bit of the input. The circuit that performs selection is
often called a multiplexer.� In shifting, we wish to ”move” the input bits around. Most programming languages
include shift instructions, so we must design combinational circuits that can execute
these instructions.

14.1 Multiplexers

In this section we present designs of (n ∶ 1)-multiplexers. Multiplexers are often also
called selectors.
We first define a mux-gate (also known as a (2 ∶ 1)-multiplexer).

Definition 14.1 A mux-gate is a combinational gate that has three inputs D[0],D[1], S
and one output Y . The functionality is defined by

Y =

⎧⎪⎪⎨⎪⎪⎩
D[0] if S = 0

D[1] if S = 1.

Note that we could have used the shorter expression Y = D[S] to define the functionality
of a mux-gate.
An (n:1)-mux is a combinational circuit defined as follows:

Input: D[n − 1 ∶ 0] and S[k − 1 ∶ 0] where k = ⌈log2 n⌉.

Output: Y ∈ {0,1}.

Functionality:

Y =D[⟨S⃗⟩].

We often refer to D⃗ as the data input and to S⃗ as the select input. The select input S⃗
encodes the index of the bit of the data input D⃗ that should be output. To simplify the
discussion, we will assume in this chapter that n is a power of 2, namely, n = 2k.

Example 14.1 Let n = 4 and D[3 ∶ 0] = 0101. If S[1 ∶ 0] = 00, then Y = D[0] = 1. If
S[1 ∶ 0] = 01, then Y =D[1] = 0.

14.1. MULTIPLEXERS 231

14.1.1 Implementation

We describe two implementations of (n:1)-mux. The first implementation is based on
translating the number ⟨S⃗⟩ to 1-out-of-n representation (using a decoder). The second
implementation is basically a tree.

A decoder based implementation. Figure 14.1 depicts an implementation of a
(n:1)-mux based on a decoder. The input S[k − 1 ∶ 0] is fed to a decoder(k). The
decoder outputs a 1-out-of-n representation of ⟨S⃗⟩. Bitwise-and is applied to the output
of the decoder and the input D[n − 1 ∶ 0]. The output of the bitwise-and is then fed to
an or-tree to produce Y .

k

2k2k

1

or-tree(2k)

2k

decoder(k)

S[k − 1 ∶ 0]D[n − 1 ∶ 0]

Y

and(2k)

W [2k − 1 ∶ 0]

Z[2k − 1 ∶ 0]

Figure 14.1: An (n:1)-mux based on a decoder (n = 2k).

Claim 14.1 The (n:1)-mux design depicted in Fig. 14.1 is correct.

Proof: Let s = ⟨S[k − 1 ∶ 0]⟩. The output W⃗ of the decoder satisfies:

W [i] =
⎧⎪⎪⎨⎪⎪⎩
1 if i = s

0 otherwise.

The output Z⃗ of the bitwise-and satisfies:

Z[i] =
⎧⎪⎪⎨⎪⎪⎩
D[i] if i = s

0 otherwise.

It follows that Y =D[s], as required. 2

Claim 14.2 The cost of the (n:1)-mux design depicted in Fig. 14.1 is Θ(n).

232 CHAPTER 14. SELECTORS AND SHIFTERS

Proof: The cost consists of three parts: (i) c(decoder(k)) = Θ(2k), (ii) c(and(2k)) =
Θ(2k), and (iii) c(or-tree(2k)) = Θ(2k). It follows, that c((n:1)-mux) = Θ(n), as re-
quired. 2

Claim 14.3 The delay of the (n:1)-mux design depicted in Fig. 14.1 is Θ(logn).

Proof: The delay consists of three parts: (i) d(decoder(k)) = Θ(logk), (ii) d(and(2k)) =
Θ(1), and (iii) d(or-tree(2k)) = Θ(k). It follows, that d((n:1)-mux) = Θ(k), as required.

2

Claim 14.4 The cone of the Boolean function implemented by a (n ∶ 1)-mux circuit
contains at least n elements.

Proof: Fix an index i ∈ {0, . . . , n−1}. Let S[k−1 ∶ 0] satisfy ⟨S⃗⟩ = i. LetD[n−1 ∶ 0] = 0n.
Since Y =D[⟨S⃗⟩], if we flip D[i] from 0 to 1, then the output Y flips from 0 to 1. Thus,
the cone contains all n indexes that correspond to the input D. 2

Corollary 14.5 The cost of the (n:1)-mux design depicted in Fig. 14.1 is asymptotically
optimal.

Proof: Follows from Theorem 12.15 and Claim 14.4. 2

Corollary 14.6 The delay of the (n:1)-mux design depicted in Fig. 14.1 is asymptoti-
cally optimal.

Proof: Follows from Theorem 12.18 and Claim 14.4. 2

A tree-like implementation. A second implementation of (n:1)-mux is a recursive
tree-like implementation. The design for n = 2 is simply a mux-gate. The design for
n = 2k is depicted in Figure 14.2. The input D⃗ is divided into two parts of equal length.
Each part is fed to an (n

2
∶ 1)-mux controlled by the signal S[k − 2 ∶ 0]. The outputs of

the (n
2
∶ 1)-muxs are YL and YR. Finally a mux selects between YL and YR according to

the value of S[k − 1].
Claim 14.7 The (n:1)-mux design depicted in Fig. 14.2 is correct.

Proof: The proof is by induction on k. The induction basis for k = 1 follows from the
correctness of a mux-gate. The induction step is proved as follows.

Let s = ⟨S[k − 1 ∶ 0]⟩ and s′ = ⟨S[k − 2 ∶ 0]⟩. By the induction hypothesis YR = D[s′]
and YL =D[n2 + s′]. The mux-gate selects

Y =

⎧⎪⎪⎨⎪⎪⎩
YR if S[k − 1] = 0

YL if S[k − 1] = 1.

It follows that Y =D[s], as required. 2

Claim 14.8 The cost of the (n:1)-mux design depicted in Fig. 14.2 is Θ(n).

14.1. MULTIPLEXERS 233

S[k − 1]

(n
2
∶ 1)-mux

n/2

1

S[k − 2 ∶ 0]

D[n

2
− 1 ∶ 0]

(n
2
∶ 1)-mux

n/2

1

S[k − 2 ∶ 0]

D[n − 1 ∶ n

2
]

1

mux

Y

YL YR

1 0

Figure 14.2: A recursive implementation of (n:1)-mux (n = 2k).

Proof: Since we are not interested in the constants, let c(mux) = 1. The cost satisfies
the recurrence:

c(n) =
⎧⎪⎪⎨⎪⎪⎩
1 if n = 2

2 ⋅ c(n/2) + 1 otherwise.

We claim that c(n) = n−1. The proof is by induction on n. The induction basis for n = 2
holds because c(2) = 1. The induction step is proved as follows: c(n) = 2c(n/2) + 1 =
2(n/2 − 1) + 1 = n − 1, and the claim follows. 2

The proof of Claim 14.8 shows, in fact, that c((n:1)-mux) = (n − 1) ⋅ c(mux), if imple-
mented according to Fig. 14.2.

Claim 14.9 The delay of the (n:1)-mux design depicted in Fig. 14.2 is Θ(logn).

Proof: Since we are not interested in the constants, let d(mux) = 1. The delay satisfies
the recurrence:

d(n) =
⎧⎪⎪⎨⎪⎪⎩
1 if n = 2

d(n/2) + 1 otherwise.

We claim that d(n) = log2(n). The proof is by induction on n. Indeed, d(2) = 1, and
d(n) = d(n/2) + 1 = log2(n/2) + 1 = log2(n), as required. 2

Comparison. Both implementations suggested in this section are asymptotically opti-
mal with respect to cost and delay. Which design is better? A cost and delay analysis
based on the cost and delay of gates listed in Table 11.1 suggests that the tree-like imple-
mentation is cheaper and faster. Nevertheless, our model is not refined enough to answer
this question sharply. On one hand, the tree-like design is simply a tree of multiplexers.
The decoder based design contains, in addition to an or(n)-tree with n inputs, also a line
of and-gates and a decoder. So one may conclude that the decoder based design is worse.
On the other hand, or-gates are typically cheaper and faster than mux-gates. Moreover,

234 CHAPTER 14. SELECTORS AND SHIFTERS

fast and cheap implementations of mux-gates in CMOS technology do not restore the
signals well; this means that long paths consisting only of mux-gates are not allowed. We
conclude that the model we use cannot be used to deduce conclusively which multiplexer
design is better.

14.2 Cyclic Shifters

We explain what a cyclic shift is by the following example. Consider a binary string
a[1 ∶ 12] and assume that we place the bits of a on a wheel. The position of a[1] is at
one o’clock, the position of a[2] is at two o’clock, etc. We now rotate the wheel, and read
the bits in clockwise order starting from one o’clock and ending at twelve o’clock. The
resulting string is a cyclic shift of a[1 ∶ 12]. Figure 14.3 depicts an example of a cyclic
shift.

9
10

11
12

1

2
3

4

5
6

7

8

"clock"reads:
5,3,1,11,...,8,10,12

"clock"reads:
8,10,12,...,2,4,6

9
10

11
12

1

2
3

4

5
6

7

8

5

3
1

11

9
72

4
6

8

10 12

5

3
111

9
7

2

4
6 8

10
1

2

rotate clockwise
by 3 positions

Figure 14.3: An example of a cyclic shift. The clock “reads” the numbers stored in each
clock notch in clockwise order starting from the one o’clock notch.

Notation. In this section we denote (a mod b) by mod(a, b).
Definition 14.2 The string b[n − 1 ∶ 0] is a cyclic left shift by i positions of the string
a[n − 1 ∶ 0] if

∀j ∶ b[j] = a[mod(j − i, n)].
Example 14.2 Let a[3 ∶ 0] = 0010. A cyclic left shift by one position of a⃗ is the string
0100. A cyclic left shift by 3 positions of a⃗ is the string 0001.

Definition 14.3 A barrel-shifter(n) is a combinational circuit defined as follows:

Input: x[n − 1 ∶ 0] ∈ {0,1}n and sa[k − 1 ∶ 0] ∈ {0,1}k where k = ⌈log2 n⌉.
Output: y[n − 1 ∶ 0] ∈ {0,1}n.
Functionality: y⃗ is a cyclic left shift of x⃗ by ⟨s⃗a⟩ positions. Formally,

∀j ∈ [n − 1 ∶ 0] ∶ y[j] = x[mod(j − ⟨s⃗a⟩, n)].
We often refer to the input x⃗ as the data input and to the input s⃗a as the shift amount

input. To simplify the discussion, we will assume in this section that n is a power of 2,
namely, n = 2k.

14.2. CYCLIC SHIFTERS 235

14.2.1 Implementation

We break the task of designing a barrel shifter into smaller sub-tasks of shifting by powers
of two. We define this sub-task formally as follows.
A cls(n,2i) is a combinational circuit that implements a cyclic left shift by zero or 2i

positions depending on the value of its select input.

Definition 14.4 A cls(n, i) is a combinational circuit defined as follows:

Input: x[n − 1 ∶ 0] and s ∈ {0,1}.
Output: y[n − 1 ∶ 0].
Functionality:

∀j ∈ [n − 1 ∶ 0] ∶ y[j] = x[mod(j − s ⋅ i, n)].

A cls(n, i) is quite simple to implement since y[j] is either x[j] or x[mod(j − i, n)].
So all one needs is a mux-gate to select between x[j] or x[mod(j − i, n)]. The selection
is based on the value of s. It follows that the delay of cls(n, i) is the delay of a mux,
and the cost is n times the cost of a mux. Figure 14.4 depicts an implementation of a
cls(4,2). It is self-evident that the main complication with the design of cls(n, i) is
routing (i.e., drawing the wires). However, we do not deal with the area required for
routing in this book.

1

s
1 0

mux

y[2]

1

s
1 0

mux

y[1]

s

1

y[3]

1

s
1 0

mux

y[0]

1 0

mux

x[0]x[1]x[2]x[3]

Figure 14.4: A row of multiplexers implement a cls(4,2).

The design of a barrel-shifter(n) is based on cls(n,2i) shifters. Figure 14.5
depicts an implementation of a barrel-shifter(n). The implementation is based on k
levels of cls(n,2i), for i ∈ [k − 1 ∶ 0], where the ith level is controlled by sa[i].

14.2.2 Correctness and analysis of cost and delay

We now prove the correctness of the design for a barrel shifter depicted in Fig. 14.5. The
proof uses the following observation.

236 CHAPTER 14. SELECTORS AND SHIFTERS

x[n− 1 : 0]

y[n− 1 : 0]

cls(n, 21)sa[1]

cls(n, 20)sa[0]

sa[k − 1] cls(n, 2k−1)

Figure 14.5: A barrel-shifter(n) built of k levels of cls(n,2i) (n = 2k).

14.2. CYCLIC SHIFTERS 237

Observation 14.1 If α = mod(a,n) and β = mod(b, n), then

mod(a − b, n) = mod(α − β,n) .

Proof: Divide a by n to obtain the quotient qa and the remainder α:

a = qa ⋅ n + α.

Similarly,
b = qb ⋅ n + β.

Divide α − β by n to obtain the quotient q and the remainder r, namely,

α − β = q ⋅ n + r.

Then,

a − b = qan + α − (qbn + β)
= (qa − qb) ⋅ n + (α − β)
= (qa − qb) ⋅ n + (qn + r)
= (qa − qb + q) ⋅ n + r.

Hence, mod(a − b, n) = r, as required. 2

Claim 14.10 The barrel shifter design depicted in Fig. 14.5 is correct.

Proof: Let clsn,2i denote the Boolean function that is implemented by a cls(n,2i)
circuit. Define the strings yi[n − 1 ∶ 0], for 0 ≤ i ≤ k − 1, recursively as follows:

y0[n − 1 ∶ 0]← clsn,20(x[n − 1 ∶ 0], sa[0])
yi+1[n − 1 ∶ 0]← clsn,2i+1(yi[n − 1 ∶ 0], sa[i + 1])

Note that the vector yi[n − 1 ∶ 0] equals the output of the shifter cls(n,2i). We claim
that the string yi[n − 1 ∶ 0] is a cyclic left shift of the string x[n − 1 ∶ 0] by ⟨sa[i ∶ 0]⟩
positions.

The proof is by induction on i. The induction basis, for i = 0, holds because of the
definition of cls(2,20).

The induction step is proved as follows.

yi[j] = clsn,2i(yi−1[n − 1 ∶ 0], sa[i])[j] (by definition of yi)

= yi−1[mod(j − 2i ⋅ sa[i], n)] (by definition of clsn,2i).

The induction hypothesis states that, for every j,

yi−1[j] = x[mod(j − ⟨sa[i − 1 ∶ 0]⟩, n)].

238 CHAPTER 14. SELECTORS AND SHIFTERS

Let ℓ = mod(j − 2i ⋅ sa[i], n). By Observation 14.1,

mod(ℓ − ⟨sa[i − 1 ∶ 0]⟩, n) = mod(j − 2i ⋅ sa[i] − ⟨sa[i − 1 ∶ 0]⟩, n)
= mod(j − ⟨sa[i ∶ 0]⟩, n).

Therefore
yi[j] = x[mod(j − ⟨sa[i ∶ 0]⟩, n)],

and the claim follows. 2

Claim 14.11 The cost and delay of barrel-shifter(n) satisfy:

c(barrel-shifter(n)) = n log2 n ⋅ c(mux)
d(barrel-shifter(n)) = log2 n ⋅ d(mux).

Proof: Follows from the fact that the design consists of log2 n levels of cls(n,2i)
shifters. 2

Consider the output y[0] of barrel-shifter(n) .

Claim 14.12 The cone of the Boolean function implemented by the output y[0] contains
at least n elements.

Proof: Fix an index i. Let sa[k − 1 ∶ 0] satisfy ⟨sa[k − 1 ∶ 0]⟩ = i. Consider the input
x[n − 1 ∶ 0] = 0n. If we flip x[n − i] from 0 to 1, then the output y[0] flips from 0 to
1. Hence, the index corresponding to the input x[n − i] belongs to the cone. Since this
is true for every index i ∈ {0, . . . , n − 1}, we conclude that the cone contains at least n
elements. 2

Corollary 14.13 The delay of barrel-shifter(n) is asymptotically optimal.

Proof: The claim follows from Theorem 12.18 and Claim 14.12. 2

14.3 Logical Shifters

Logical shifting is used for shifting binary strings that represent unsigned integers in
binary representation. Shifting to the left by s positions corresponds to multiplying by
2s followed by modulo 2n. Shifting to the right by s positions corresponds to division by
2s followed by truncation.

Definition 14.5 The binary string y[n− 1 ∶ 0] is a logical left shift by ℓ positions of the
binary string x[n − 1 ∶ 0] if

y[i] △=
⎧⎪⎪⎨⎪⎪⎩
0 if i < ℓ

x[i − ℓ] if ℓ ≤ i < n.

14.3. LOGICAL SHIFTERS 239

For example, y[3 ∶ 0] = 0100 is a logical left shift of x[3 ∶ 0] = 1001 by ℓ = 2 positions.
When we apply a logical left shift to x[n − 1 ∶ 0] by ℓ positions, we obtain the string
x[n − 1 − ℓ ∶ 0] ○ 0ℓ.

Definition 14.6 The binary string y[n − 1 ∶ 0] is a logical right shift by ℓ positions of
the binary string x[n − 1 ∶ 0] if

y[i] △=
⎧⎪⎪⎨⎪⎪⎩
0 if i ≥ n − ℓ

x[i + ℓ] if 0 ≤ i < n − ℓ.

For example, y[3 ∶ 0] = 0010 is a logical right shift of x[3 ∶ 0] = 1001 by ℓ = 2 positions.
When we apply a logical right shift to x[n − 1 ∶ 0] by ℓ positions, we obtain the string
0ℓ ○ x[n − 1 ∶ ℓ].

Notation. Let lls(x⃗, i) denote the logical left shift of x⃗ by i positions. Let lrs(x⃗, i)
denote the logical right shift of x⃗ by i positions.

A bi-directional logical shifter is defined as follows.

Definition 14.7 A l-shift(n) is a combinational circuit defined as follows:

Input: � x[n − 1 ∶ 0] ∈ {0,1}n,� sa[k − 1 ∶ 0] ∈ {0,1}k, where k = ⌈log2 n⌉, and� ℓ ∈ {0,1}.

Output: y[n − 1 ∶ 0] ∈ {0,1}n.

Functionality: The output y⃗ satisfies

y⃗
△

=

⎧⎪⎪⎨⎪⎪⎩
lls(x⃗, ⟨s⃗a⟩) if ℓ = 1,

lrs(x⃗, ⟨s⃗a⟩) if ℓ = 0.

For example, let x[3 ∶ 0] = 0010. If sa[1 ∶ 0] = 10 and ℓ = 1, then l-shift(4) outputs
y[3 ∶ 0] = 1000. If ℓ = 0, then the output equals y[3 ∶ 0] = 0000.

14.3.1 Implementation

As in the case of cyclic shifters, we break the task of designing a logical shifter into
sub-tasks of logical shifts by powers of two.

Definition 14.8 An lbs(n, i) is a combinational circuit defined as follows:

Input: x[n − 1 ∶ 0] and s, ℓ ∈ {0,1}.

240 CHAPTER 14. SELECTORS AND SHIFTERS

Output: y[n − 1 ∶ 0].

Functionality: The output y⃗ satisfies

y⃗
△

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x⃗ if s = 0,

lls(x⃗, i) if s = 1 and ℓ = 1,

lrs(x⃗, i) if s = 1 and ℓ = 0.

The role of the input s in is to determine if a shift (in either direction) takes place at all.
If s = 0, then y[j] = x[j], and no shift takes place. If s = 1, then the direction of the shift
is determined by ℓ.

A bit-slice of an implementation of an lbs(n, i) is depicted in Figure 14.6. By the
term “bit-slice” we mean that the figure depicts only how a single output bit y[j] is
computed. The whole circuit is obtained by combining such circuits for every output bit
y[j]. We do not depict the whole circuit to avoid a messy figure with lots of wires that
are hard to follow. The implementation of lbs(n, i) uses the following notation:

x′[i] △=
⎧⎪⎪⎨⎪⎪⎩
x[i] if 0 ≤ i ≤ n − 1

0 otherwise.

s
1 0

mux

ℓ

y[j]

1 0

mux

x′[j − 2i] x′[j + 2i] x[j]

Figure 14.6: A bit-slice of an implementation of lbs(n,2i).

We leave it to the reader to complete the following details:

1. Show how lbs(n, i) circuits can be cascaded to obtain a l-shift(n). Hint: follow
the design of a barrel-shifter(n).

2. Prove the correctness of your l-shift(n) design.

3. Analyze the cost and delay of the resulting circuit.

4. Can you prove asymptotic optimality of the delay?

14.4. ARITHMETIC SHIFTERS 241

14.4 Arithmetic Shifters

14.4.1 Two’s complement

We briefly deal with the representation of negative integers. This issue is dealt with in
detail in Chapter 16.

Definition 14.9 The number represented in two’s complement representation by A[n−1 ∶
0] ∈ {0,1}n is

−2n−1 ⋅A[n − 1] + ⟨A[n − 2 ∶ 0]⟩.

We denote the number represented in two’s complement representation by A[n−1 ∶ 0] as
follows:

[A[n − 1 ∶ 0]] △= −2n−1 ⋅A[n − 1] + ⟨A[n − 2 ∶ 0]⟩.

14.4.2 Arithmetic shifter

Arithmetic shifters are used for shifting binary strings that represent signed integers in
two’s complement representation. Since left shifting is the same in logical shifting and in
arithmetic shifting, we discuss only right shifting (i.e., division by a power of 2).

Definition 14.10 The binary string y[n−1 ∶ 0] is an arithmetic right shift by ℓ positions
of the binary string x[n − 1 ∶ 0] if the following holds:

y[i] △=
⎧⎪⎪⎨⎪⎪⎩
x[n − 1] if i ≥ n − ℓ

x[i + ℓ] if 0 ≤ i < n − ℓ.

For example, y[3 ∶ 0] = 0010 is an arithmetic shift of x[3 ∶ 0] = 0101 by ℓ = −1 positions.
On the other hand, y[3 ∶ 0] = 1110 is an arithmetic shift of x[3 ∶ 0] = 1001 by ℓ = −2
positions. When we apply an arithmetic shift by ℓ < 0 positions to x[n− 1 ∶ 0], we obtain
the string x[n − 1]ℓ ○ x[n − 1 ∶ ℓ].

Notation. Let ars(x⃗, i) denote the arithmetic right shift of x⃗ by i positions.

The following claim shows that an arithmetic right shift by ℓ positions implements
division by 2ℓ with respect to two’s complement representation.

Claim 14.14 Let X[n − 1 ∶ 0] and Y [n − 1 ∶ 0] satisfy Y⃗ = ars(X⃗, ℓ). Let x = [X⃗] and

y = [Y⃗], then

y = ⌊ x
2ℓ
⌋ .

242 CHAPTER 14. SELECTORS AND SHIFTERS

Proof: By definition,

y = −2n−1 ⋅ Y [n − 1] + n−2

∑
j=0

Y [j] ⋅ 2j
= −2n−1 ⋅ Y [n − 1] + n−2

∑
j=n−ℓ

Y [j] ⋅ 2j + n−ℓ−1

∑
j=0

Y [j] ⋅ 2j . (14.1)

We simplify the first two addends in Eq. 14.1 by noticing that Y [j] = X[n−1] for j ≥ n−ℓ.

−2n−1 ⋅ Y [n − 1] + n−2

∑
j=n−ℓ

Y [j] ⋅ 2j =X[n − 1] ⋅ (−2n−1 +
n−2

∑
j=n−ℓ

2j)
=X[n − 1] ⋅ (−2n−ℓ).

The last addend in Eq. 14.1 is simplified by noticing that Y [j] =X[j + ℓ] for j < n − ℓ.

n−ℓ−1

∑
j=0

Y [j] ⋅ 2j = n−ℓ−1

∑
j=0

X[j + ℓ] ⋅ 2j
=

1

2ℓ
⋅

n−1

∑
j=ℓ
X[j] ⋅ 2j

We combine these two simplification to obtain,

y =
1

2ℓ
⋅
⎛⎝−X[n − 1] ⋅ 2n + n−1

∑
j=ℓ
X[j] ⋅ 2j⎞⎠

Hence, y = ⌊x ⋅ 2−ℓ⌋, as required. 2

An arithmetic right shifter is defined as follows.

Definition 14.11 An arith-shift(n) is a combinational circuit defined as follows:

Input: x[n − 1 ∶ 0] ∈ {0,1}n and sa[k − 1 ∶ 0] ∈ {0,1}k, where k = ⌈log2 n⌉.
Output: y[n − 1 ∶ 0] ∈ {0,1}n.
Functionality: The output y⃗ is a (sign-extended) arithmetic right shift of x⃗ by ⟨s⃗a⟩

positions. Formally,

y[n − 1 ∶ 0] △= ars(x[n − 1 ∶ 0], ⟨s⃗a⟩).

Example 14.3 Let x[3 ∶ 0] = 1001. If sa[1 ∶ 0] = 10, then arith-shift(4) outputs
y[3 ∶ 0] = 1110.

We leave it to the reader to complete the following details:

1. Suggest a circuit ars(n, i) that implements an arithmetic right shift by i positions.

14.5. SUMMARY 243

2. Show how ars(n, i) circuits can be cascaded to obtain a arith-shift(n). Hint:
follow the design of a barrel-shifter(n).

3. Prove the correctness of your arith-shift(n) design.

4. Analyze the cost and delay of the resulting circuit.

5. Can you prove asymptotic optimality of the delay?

14.5 Summary

We began this chapter by defining (n ∶ 1)-multiplexers. We presented two optimal im-
plementations. One implementations is based on a decoder, the other implementation is
based on a tree of multiplexers.

We continued by defining three types of shifts: cyclic, logical, and arithmetic shifts.
The method we propose for designing such shifters is to cascade a logarithmic number of
shifters (with parameter i) that either perform a shift by 2i positions or no shift at all.

Problems

14.1 Compute the cost and delay of both implementations of (n:1)-mux based on the
data in Table 11.1 for various values of n (e.g., n = 4,8,16,32).

14.2 Is the functionality of barrel-shifter(n) preserved if the order of the levels is
changed?

14.3 Recall the definition of the combinational circuit lbs(n, i) (see Definition 14.8).
Recall the definition of the combinational circuit l-shift(n) (see Definition 14.7). Complete

the following details:

1. Show how lbs(n, i) circuits can be cascaded to obtain a l-shift(n). Hint: follow
the design of a barrel-shifter(n).

2. Prove the correctness of your l-shift(n) design.

3. Analyze the cost and delay of the resulting circuit.

4. Can you prove asymptotic optimality of the delay?

14.4 Recall that ars(x⃗, i) denotes the arithmetic shift of x⃗ by i positions (see Defi-
nition 14.10). Recall the definition of the combinational circuit arith-shift(n) (see
Definition 14.11). Complete the following details:

1. Suggest a circuit ars(n, i) that implements an arithmetic right shift by i positions.

244 CHAPTER 14. SELECTORS AND SHIFTERS

2. Show how ars(n, i) circuits can be cascaded to obtain a arith-shift(n). Hint:
follow the design of a barrel-shifter(n).

3. Prove the correctness of your arith-shift(n) design.

4. Analyze the cost and delay of the resulting circuit.

5. Can you prove asymptotic optimality of the delay?

14.5 Prove that every Boolean function can be implemented by a combinational circuit
containing only (2 ∶ 1)-mux gates.

14.6 Design a bi-directional cyclic shifter. Such a shifter is like a cyclic left shifter but
has an additional input ℓ ∈ {0,1} that indicates the direction of the required shift. Hint:
Consider reducing a cyclic right shift to a cyclic left shifter. To simplify the reduction
you may assume that n = 2k − 1 (hint: use one’s complement negation). Suggest a simple
reduction in case n = 2k (hint: avoid explicit subtraction!).

14.7 A priority encoder with input length 2n is defined as follows.

Input: y[2n − 1 ∶ 0] ∈ {0,1}2n
.

Output: x[n − 1 ∶ 0] ∈ {0,1}n.
Functionality: If y ≠ 02n

, let i denote the smallest index i such that y[i] = 1. In this
case x⃗ should satisfy ⟨x⃗⟩ = i. Formally:

wt(y⃗) > 0 Ô⇒ y[⟨x⃗⟩ ∶ 0] = 1 ○ 0⟨x⃗⟩−1.

1. Design a priority encoder with input length 2n. (Hint: add an output indicating if
y = 02n

and apply divide-and-conquer.)

2. Prove the correctness of your design.

3. Prove asymptotic lower bounds on the cost and delay of a priority encoder with
input length 2n.

Chapter 15

Addition

Contents
15.1 Definition of a binary adder . 246

15.2 Ripple Carry Adder . 247

15.2.1 Correctness proof . 248

15.2.2 Delay and cost analysis . 249

15.3 Lower Bounds . 249

15.3.1 Carry bits . 249

15.3.2 Cone of adder outputs . 249

15.3.3 Lower bounds . 250

15.4 Conditional Sum Adder . 251

15.4.1 Motivation . 251

15.4.2 Implementation . 251

15.4.3 Delay and cost analysis . 252

15.5 Compound Adder . 253

15.5.1 Implementation . 253

15.5.2 Correctness . 254

15.5.3 Delay and cost analysis . 255

15.6 Reductions between sum and carry bits 256

15.7 Redundant and non-redundant representation 256

15.8 Summary . 257

245

246 CHAPTER 15. ADDITION

In this chapter we define binary adders. An adder is a combinational circuit that
implements the function f(x, y) = x + y. To be more precise, we want the function f to
be a Boolean function, not a function defined over the integers. We therefore use binary
representation. This means that the inputs are two n-bit strings, each string represents
a nonnegative integer in binary representation. The output should represent their sum
in binary representation.

One complication, that we must address if we wish to be precise, is that the sum
might be too large, and cannot be represented using n bits. We solve this problem by
adding one bit to the output called the carry-out bit.

We present three different combinational circuits for addition. These designs have an
increasing level of sophistication. The first design, called a Ripple Carry Adder imple-
ments a binary version of how addition is taught in elementary school. Its correctness
proof can be easily modified to finally prove the correctness of the addition algorithm we
have been using since elementary school.

15.1 Definition of a binary adder

Definition 15.1 A binary adder with input length n is a combinational circuit specified
as follows.

Input: A[n − 1 ∶ 0],B[n − 1 ∶ 0] ∈ {0,1}n, and C[0] ∈ {0,1}.
Output: S[n − 1 ∶ 0] ∈ {0,1}n and C[n] ∈ {0,1}.
Functionality:

⟨S⃗⟩ + 2n ⋅C[n] = ⟨A⃗⟩ + ⟨B⃗⟩ +C[0]. (15.1)

We denote a binary adder with input length n by adder(n). The inputs A⃗ and B⃗ are
the binary representations of the addends. The input C[0] is often called the carry-in
bit. The output S⃗ is the binary representation of the sum (more precisely, S⃗ is the binary
representation of the sum modulo 2n), and the output C[n] is often called the carry-out
bit.

The following claim shows that the functionality of a binary adder is well defined.

Claim 15.1 For every A[n − 1 ∶ 0],B[n − 1 ∶ 0] ∈ {0,1}n, and C[0] ∈ {0,1}, there exist
S[n − 1 ∶ 0] ∈ {0,1}n and C[n] ∈ {0,1} such that

⟨S⃗⟩ + 2n ⋅C[n] = ⟨A⃗⟩ + ⟨B⃗⟩ +C[0]

Proof: Since 0 ≤ A⃗, B⃗ ≤ 2n − 1, it follows that

0 ≤ ⟨A⃗⟩ + ⟨B⃗⟩ +C[0] ≤ 2n+1 − 1.

By Lemma 5.2, we can represent any integer in the set {0, . . . ,2n+1 − 1} if we have n + 1
bits. Since S⃗ and C[n] together represent a number in binary representation, the claim
follows. 2

There are many ways to implement an adder(n). In this chapter we present a few
adder(n) designs.

15.2. RIPPLE CARRY ADDER 247

15.2 Ripple Carry Adder

Ripple Carry Adders are built by chaining a row of Full-Adders. We denote a Ripple
Carry Adder that implements an adder(n) by rca(n). A Full-Adder is a combinational
circuit that adds three bits and represents their sum in binary representation.

Definition 15.2 (Full-Adder) A Full-Adder is a combinational circuit with 3 inputs
x, y, z ∈ {0,1} and 2 outputs c, s ∈ {0,1} that satisfies:

2c + s = x + y + z.

The output s of a Full-Adder is often called the sum output. The output c of a Full-
Adder is often called the carry-out output. We denote a Full-Adder by fa. The Boolean
function corresponding the carry-out output is called the 3-bit carry function (see p. 16).
The Boolean formula for the outputs of a Full-Adder are presented in the following claim.
We denote the Boolean functions or,and,xor by ∨, ⋅,⊕, respectively.

Claim 15.2 The following equations specify the Boolean formulas for c and s in a Full-
Adder:

s = x⊕ y ⊕ z,

c = (x ⋅ y) ∨ (y ⋅ z) ∨ (x ⋅ z).

Proof: The claim can be easily proved using a truth table. Instead, we consider four
cases based on the value of the sum x + y + z (this is a regular sum, not an or).

1. If x+ y + z = 0, then x⊕ y⊕ z = 0 and (x ⋅ y)∨ (y ⋅ z)∨ (x ⋅ z) = 0, hence 2c+ s = 0, as
required.

2. If x + y + z = 1, then exactly one of the inputs equals one. Therefore, x ⊕ y ⊕ z = 1
and (x ⋅ y) ∨ (y ⋅ z) ∨ (x ⋅ z) = 0, hence 2c + s = 1, as required.

3. If x + y + z = 2, then exactly two of the inputs equal one. Therefore, x ⊕ y ⊕ z = 0
and (x ⋅ y) ∨ (y ⋅ z) ∨ (x ⋅ z) = 1, hence 2c + s = 2, as required.

4. If x + y + z = 3, then all the inputs equal one. Therefore, x⊕ y ⊕ z = 1 and (x ⋅ y) ∨
(y ⋅ z) ∨ (x ⋅ z) = 1, hence 2c + s = 3, as required.

2

Implementation of rca(n). A Ripple Carry Adder, rca(n), is built by chaining a
row of n Full-Adders. An rca(n) is depicted in Figure 15.1. Note that the carry-out
output of the ith Full-Adder is denoted by c[i + 1]. The weight of c[i + 1] is 2i+1. This
way, the weight of every signal is two to the power of its index. One can readily notice
that an rca(n) adds numbers using the same addition algorithm that we use for adding
numbers by hand.

248 CHAPTER 15. ADDITION

sc
fa0

S[0]

A[0]B[0]

sc
fa1

A[1]B[1]

C[2] S[1]C[n − 2]

sc
fan−2

sc
fan−1

S[n − 2]C[n − 1]S[n − 1]C[n] C[1]

A[n − 2]B[n − 2]A[n − 1]B[n − 1]

C[0]

Figure 15.1: A Ripple Carry Adder rca(n).

15.2.1 Correctness proof

In this section we prove the correctness of an rca(n). To facilitate the proof, we use an
equivalent recursive definition of rca(n). The recursive definition is as follows.

The basis, rca(1), is simply a Full-Adder. The reduction rule for designing rca(n),
for n > 1, is depicted in Figure 15.2.

S[n − 2 : 0]

n-1n-1

n-1

sc
fan−1

S[n − 1]C[n]

C[0]
rca(n − 1)

A[n − 1]B[n − 1]

C[n − 1]

A[n − 2 : 0]B[n − 2 : 0]

Figure 15.2: A recursive description of rca(n).

The following claim deals with the correctness of rca(n).
Claim 15.3 rca(n) is a correct implementation of adder(n).

Proof: The proof is by induction on n. The induction basis, for n = 1, follows directly
from the definition of a Full-Adder. The induction step is proved as follows.

The induction hypothesis, for n − 1, is

⟨A[n − 2 ∶ 0]⟩ + ⟨B[n − 2 ∶ 0]⟩ +C[0] = 2n−1 ⋅C[n − 1] + ⟨S[n − 2 ∶ 0]⟩. (15.2)

The definition of a Full-Adder states that

A[n − 1] +B[n − 1] +C[n − 1] = 2 ⋅C[n] + S[n − 1]. (15.3)

Multiply Equation 15.3 by 2n−1 to obtain

2n−1 ⋅A[n − 1] + 2n−1 ⋅B[n − 1] + 2n−1 ⋅C[n − 1] = 2n ⋅C[n] + 2n−1 ⋅ S[n − 1]. (15.4)

Note that 2n−1 ⋅ A[n − 1] + ⟨A[n − 2 ∶ 0]⟩ = ⟨A[n − 1 ∶ 0]⟩. By adding Equations 15.2
and 15.4 we obtain:

2n−1 ⋅C[n−1]+⟨A[n − 1 ∶ 0]⟩+⟨B[n − 1 ∶ 0]⟩+C[0] = 2n ⋅C[n]+2n−1 ⋅C[n−1]+⟨S[n − 1 ∶ 0]⟩.
Cancel out 2n−1 ⋅C[n − 1], and the claim follows. 2

15.3. LOWER BOUNDS 249

15.2.2 Delay and cost analysis

The cost of an rca(n) satisfies:

c(rca(n)) = n ⋅ c(fa) = Θ(n).
The delay of an rca(n) satisfies

d(rca(n)) = n ⋅ d(fa) = Θ(n).
Clock rates in modern microprocessors correspond to the delay of 15-20 gates (in more
aggressive designs, the critical paths are even shorter). Most microprocessors easily add
32-bit numbers within one clock cycle (high-end microprocessors even add 100-bit number
in a cycle). Obviously, adders in such microprocessors are not Ripple Carry Adders. In
the rest of the chapter we present faster adder(n) designs.

15.3 Lower Bounds

15.3.1 Carry bits

We now define the carry bits associated with the addition

⟨A[n − 1 ∶ 0]⟩ + ⟨B[n − 1 ∶ 0]⟩ +C[0] = ⟨S[n − 1 ∶ 0]⟩ + 2n ⋅C[n]. (15.5)

Our definition is based on the values of the signals C[n − 1 ∶ 1] of an rca(n). This
definition is well defined in light of the Simulation Theorem of combinational circuits.

Definition 15.3 The carry bits C[n ∶ 0] corresponding to the addition in Eq. 15.5 are
defined as the values of the stable signals C[n ∶ 0] in an rca(n).

Note that there are n + 1 carry-bits associated with the addition defined in Equa-
tion 15.5; these bits are indexed from zero to n. The first carry bit C[0] is an input, the
last carry bit C[n] is an output, and the remaining carry bits C[n − 1 ∶ 0] are internal
signals.

We now discuss a few issues related to the definition of the carry bits and binary
addition.

15.3.2 Cone of adder outputs

The correctness proof of rca(n) implies that, for every 0 ≤ i ≤ n − 1,

⟨A[i ∶ 0]⟩ + ⟨B[i ∶ 0]⟩ +C[0] = 2i+1 ⋅C[i + 1] + ⟨S[i ∶ 0]⟩. (15.6)

Equation 15.6 implies that, for every 0 ≤ i ≤ n − 1,

⟨S[i ∶ 0]⟩ = mod(⟨A[i ∶ 0]⟩ + ⟨B[i ∶ 0]⟩ +C[0],2i+1).
These equations imply that the cone of each of the signals C[i+1] and S[i] is the set

of inputs corresponding to A[i ∶ 0]⋃B[i ∶ 0]⋃C[0].
Claim 15.4 For each 0 ≤ i ≤ n−1, the cone of Boolean functions corresponding to C[i+1]
and S[i] consists of 2i + 3 inputs corresponding to A[i ∶ 0],B[i ∶ 0], and C[0].

250 CHAPTER 15. ADDITION

Proof: To simplify notation, we abuse notation, and say that A[j] is in the cone(C[i]).
Formally, we should say that the index of the input corresponding to the input A[j]
belongs to the cone of the Boolean function corresponding to C[i].

Equation 15.6 implies that the bits S[i] and C[i + 1] are determined by the bits of
A[i ∶ 0],B[i ∶ 0], and C[0]. This implies that the cone is contained in the union of these
2i + 3 input bits.

We need to prove that every bit among these 2i+3 influences the bits S[i] and C[i+1].
For example, consider A[j], for 0 ≤ j ≤ i. Let A[i ∶ 0] = 0i+1, B[i ∶ 0] = 1i−j+1 ○ 0j and
C[0] = 0. Since

⟨A[i ∶ 0]⟩ + ⟨B[i ∶ 0]⟩ +C[0] = 2i+1 − 2j.

By Eq. 15.6, it follows that

C[i + 1] = 0 and S[i] = 1.

We now flip A[j], namely, set A[j] = 1. This increases the sum ⟨A[i ∶ 0]⟩+⟨B[i ∶ 0]⟩+C[0]
by 2j . Therefore,

⟨A[i ∶ 0]⟩ + ⟨B[i ∶ 0]⟩ +C[0] = 2i+1.

By Eq. 15.6, it follows that

C[i + 1] = 1 and S[i] = 0.

It follows that A[j] belongs to the cones of S[i] and C[i+ 1]. By interchanging the roles
of A⃗ and B⃗, we obtain that B[j] also belongs to the cones of S[i] and C[i+1]. To prove
that C[0] also belongs to these cones, consider A⃗ = 0i+1, B⃗ = 1i+1, and the two possible
values of C[0]. 2

15.3.3 Lower bounds

Claim 15.4 implies the following lower bounds.

Claim 15.5 Let A denote a combinational circuit that implements an adder(n). If the
fan-in in C is at most 2, then

c(A) ≥ 2n,

d(A) ≥ log2(2n + 1).

Proof: By Claim 15.4 the cones of C[n] and S[n − 1] contain 2n + 1 elements. The
claim follows from Theorems 12.15 and 12.18. 2

Hence, the cost of the Ripple Carry Adder is asymptotically optimal, but its delay is far
from the lower bound.

15.4. CONDITIONAL SUM ADDER 251

15.4 Conditional Sum Adder

A Conditional Sum Adder is a recursive adder design that is based on divide-and-conquer.
One often uses only one “level” of recursion. Namely, three adders with input length n/2
are used to construct one adder with input size n.

15.4.1 Motivation

The following “story” captures the main idea behind a conditional sum adder.
Imagine a situation in which Alice, who is positioned on Earth, holds the strings

A[k − 1 ∶ 0],B[k − 1 ∶ 0],C[0]. Bob, who is stationed on the Moon, holds the strings
A[n − 1 ∶ k],B[n − 1 ∶ k]. The goal of Alice and Bob is to jointly compute the sum
⟨A[n − 1 ∶ 0]⟩ + ⟨B[n − 1 ∶ 0]⟩ +C[0]. They don’t care who holds the sum bits and C[n],
as long as one of them does. Now, sending information from Alice to Bob is costly. The
first question we pose is: how many bits must Alice send to Bob? After a short thought,
Alice figures out that it suffices to send C[k] to Bob. Alice is happy since she only needs
to pay for sending a single bit (which is a big savings compared to sending her 2k + 1
input bits!).

Unfortunately, sending information from Alice to Bob takes time. Even at the speed
of light, it takes a second, which is a lot compared to the time it takes to compute the
sum. Suppose Bob wants to finish his task as soon as possible after receiving C[k] from
Alice. The second question we pose is: what should Bob do during the second it takes
C[k] to reach him? Since the message has only two possible values (one or zero), an
industrious Bob will compute two sums; one under the assumption that C[k] = 0, and
one under the assumption that C[k] = 1. Finally, when C[k] arrives, Bob only needs to
select between the two sums he has pre-computed.

15.4.2 Implementation

A Conditional Sum Adder is designed recursively using divide-and-conquer. We denote a
Conditional Sum Adder that implements an adder(n) by csa(n). A csa(1) is simply a
Full-Adder. A csa(n), for n > 1 is depicted in Figure 15.3. The input is partitioned into
a lower part consisting of the bits in positions [k − 1 ∶ 0] and an upper part consisting of
the bits in positions [n−1 ∶ k]. The lower part (handled by Alice in our short tale) is fed
to a csa(k) to produce the sum bits S[k − 1 ∶ 0] and the carry bit C[k]. The upper part
(handled by Bob) is fed to two csa(n − k) circuits. The first one is given a carry-in of 0
and the second is given a carry-in of 1. These two csa(n−k) circuits output n−k+1 bits
each. A multiplexer selects one of these outputs according to the value of C[k] which
arrives from the lower part.

Claim 15.6 The csa(n) is a correct adder(n) design.

Proof: The proof is by complete induction on n. The induction basis, for n = 1, follows
from the correctness of a Full-Adder. The induction step is proved as follows. By the

252 CHAPTER 15. ADDITION

1 0

csa(k)

k

A[k − 1 : 0]

k

B[k − 1 : 0]

k

C[0]

S[k − 1 : 0]

C[k]

csa(n − k)

n − k + 1

csa(n − k)

n − k + 1

n − k + 1

B[n − 1 : k] A[n − 1 : k]

n − k n − k

C0[n] · S0[n − 1 : k]

B[n − 1 : k] A[n − 1 : k]

n − k n − k

C1[n] · S1[n − 1 : k]

mux(n − k + 1)

C[n] · S[n − 1 : k]

01

Figure 15.3: A Conditional Sum Adder csa(n).

induction hypothesis and the functionality of a mux it follows that

C[k] ⋅ 2k + ⟨S[k − 1 ∶ 0]⟩ = ⟨A[k − 1 ∶ 0]⟩ + ⟨B[k − 1 ∶ 0]⟩ +C[0], (15.7)

2n−k ⋅C[n] + ⟨S[n − 1 ∶ k]⟩ = ⟨A[n − 1 ∶ k]⟩ + ⟨B[n − 1 ∶ k]⟩ +C[k]. (15.8)

We multiply Eq. 15.8 by 2k and add it to Eq. 15.7 to obtain

2n ⋅C[n] + ⟨S[n − 1 ∶ 0]⟩ = ⟨A[n − 1 ∶ 0]⟩ + ⟨B[n − 1 ∶ 0]⟩,

and the claim follows. 2

15.4.3 Delay and cost analysis

Simplifying assumptions. To simplify the analysis we assume that n = 2ℓ. To opti-
mize the delay, we use k = n/2.

Delay analysis. Let d(fa) denote the delay of a Full-Adder. The delay of a csa(n)
satisfies the following recurrence:

d(csa(n)) =
⎧⎪⎪⎨⎪⎪⎩
d(fa) if n = 1

d(csa(n/2)) + d(mux) otherwise.

By Problem 7.9 it follows that the delay of a csa(n) is

d(csa(n)) = ℓ ⋅ d(mux) + d(fa)
= Θ(logn).

15.5. COMPOUND ADDER 253

Cost analysis. Let c(fa) denote the cost of a Full-Adder. The cost of a csa(n) satisfies
the following recurrence:

c(csa(n)) =
⎧⎪⎪⎨⎪⎪⎩
c(fa) if n = 1

3 ⋅ c(csa(n/2)) + (n/2 + 1) ⋅ c(mux) otherwise.

By Lemma 7.5, the solution of this recurrence is c(csa(n)) = Θ (nlog2 3).
Since log2 3 ≈ 1.58, we conclude that a csa(n) is rather costly - although, for the

time being, this is the only adder we know whose delay is logarithmic. We do point out
that the csa(n) design does allow us to use three half-size adders (i.e., adders with input
length n/2) to implement a full-size adder (i.e., input length n).

15.5 Compound Adder

The Conditional Sum Adder is a divide-and-conquer design that uses two adders in the
upper part, one with a zero carry-in and one with a one carry-in. This motivates the
definition of an adder that computes both the sum and the incremented sum. Surprisingly,
this augmented specification leads to an asymptotically cheaper design. We refer to such
an adder as a Compound Adder.

Definition 15.4 A Compound Adder with input length n is a combinational circuit spec-
ified as follows.

Input: A[n − 1 ∶ 0],B[n − 1 ∶ 0] ∈ {0,1}n.

Output: S[n ∶ 0], T [n ∶ 0] ∈ {0,1}n+1.

Functionality:

⟨S⃗⟩ = ⟨A⃗⟩ + ⟨B⃗⟩
⟨T⃗ ⟩ = ⟨A⃗⟩ + ⟨B⃗⟩ + 1.

Note that a Compound Adder does not have carry-in input. To simplify notation, the
carry-out bits are denoted by S[n] for the sum and by T [n] for the incremented sum.

We denote a compound adder with input length n by comp-adder(n).

15.5.1 Implementation

We apply divide-and-conquer to design a comp-adder(n). For n = 1, we simply use
a Full-Adder and a Half-Adder (one could optimize this a bit and combine the Half-
Adder and the Full-Adder to reduce the constants). The design for n > 1 is depicted in
Figure 15.4.

254 CHAPTER 15. ADDITION

1 01 0

T ′[k] S′[k]

n − k + 1

mux(n − k + 1)

S[n : k]

S′[k]

n − k + 1

mux(n − k + 1)

T [n : k]

T ′[k]

T”[n : k] S”[n : k]

comp-adder(n − k)

n − k + 1 n − k + 1

A[n − 1 : k]

n − k

B[n − 1 : k]

n − k

T [k − 1 : 0]

T ′[k : 0]

S[k − 1 : 0]

S′[k : 0]

comp-adder(k)

k + 1 k + 1

k k

A[k − 1 : 0]

k

B[k − 1 : 0]

k

Figure 15.4: A Compound Adder comp-adder(n).

Example 15.1 Consider a comp-adder(4) with input A[3 ∶ 0] = 0110 and B[3 ∶ 0] =
1001. The lower part computes S′[2 ∶ 0] = 011 and T ′[2 ∶ 0] = 100. The two lower bits of
the outputs are simply S[1 ∶ 0] = S′[1 ∶ 0] = 11 and T [1 ∶ 0] = T ′[1 ∶ 0] = 00. The upper
part computes S′′[4 ∶ 2] = 011 and T ′′[4 ∶ 2] = 100. The output S[4 ∶ 2] is selected to be
S′′[4 ∶ 2] since S′[2] = 0. The output T [4 ∶ 2] is selected to be T ′′[4 ∶ 2] since T ′[2] = 1.
Hence S[4 ∶ 0] = 01111 and T [4 ∶ 0] = 10000.

15.5.2 Correctness

We prove the correctness of comp-adder(n).
Claim 15.7 The comp-adder(n) design depicted in Figure 15.4 is a correct adder.

Proof: The proof is by induction on n. The case of n = 1 follows from the correctness
of a Full-Adder and a Half-Adder. We prove the induction step for the output S[n ∶ 0];
the correctness of T [n ∶ 0] can be proved in a similar fashion and is left as an exercise.

The induction hypothesis implies that

⟨S′[k ∶ 0]⟩ = ⟨A[k − 1 ∶ 0]⟩ + ⟨B[k − 1 ∶ 0]⟩. (15.9)

Note that (i) the output S[k − 1 ∶ 0] equals S′[k − 1 ∶ 0], and (ii) S′[k] equals the carry
bit C[k] corresponding to the addition ⟨A[k − 1 ∶ 0]⟩ + ⟨B[k − 1 ∶ 0]⟩.
The induction hypothesis implies that

⟨S′′[n ∶ k]⟩ = ⟨A[n − 1 ∶ k]⟩ + ⟨B[n − 1 ∶ k]⟩
⟨T ′′[n ∶ k]⟩ = ⟨A[n − 1 ∶ k]⟩ + ⟨B[n − 1 ∶ k]⟩ + 1.

(15.10)

15.5. COMPOUND ADDER 255

It follows from Equations 15.9 and 15.10 that

⟨S′′[n ∶ k]⟩ ⋅ 2k + ⟨S′[k ∶ 0]⟩ = ⟨A[n − 1 ∶ 0]⟩ + ⟨B[n − 1 ∶ 0]⟩ (15.11)

We consider two cases of the carry bit C[k]: C[k] = 0 and C[k] = 1.

1. If C[k] = 0, then S′[k] = 0. Equation 15.11 then reduces to

⟨A[n − 1 ∶ 0]⟩ + ⟨B[n − 1 ∶ 0]⟩ = ⟨S′′[n ∶ k]⟩ ⋅ 2k + ⟨S′[k − 1 ∶ 0]⟩
= ⟨S[n ∶ k]⟩ ⋅ 2k + ⟨S[k − 1 ∶ 0]⟩ = ⟨S[n ∶ 0]⟩.

2. If C[k] = 1, then S′[k] = 1. Equation 15.11 then reduces to

⟨A[n − 1 ∶ 0]⟩ + ⟨B[n − 1 ∶ 0]⟩ = ⟨S′′[n ∶ k]⟩ ⋅ 2k + 2k ⋅ 1 + ⟨S′[k − 1 ∶ 0]⟩
= 2k ⋅ (⟨S′′[n ∶ k]⟩ + 1) + ⟨S′[k − 1 ∶ 0]⟩
= 2k ⋅ ⟨T ′′[n ∶ k]⟩ + ⟨S[k − 1 ∶ 0]⟩ = ⟨S[n ∶ 0]⟩.

In both cases, the output S[n ∶ 0] is as required, and the claim follows. 2

15.5.3 Delay and cost analysis

Simplifying assumptions. To simplify the analysis we assume that n = 2ℓ. To opti-
mize the delay, we use k = n/2.

Delay analysis. The delay of a comp-adder(n) satisfies the following recurrence:

d(comp-adder(n)) =
⎧⎪⎪⎨⎪⎪⎩
d(fa) if n = 1

d(comp-adder(n/2)) + d(mux) otherwise.

By Problem 7.9, it follows that the delay of a comp-adder(n) is

d(comp-adder(n)) = ℓ ⋅ d(mux) + d(fa)
= Θ(logn).

Cost analysis. The cost of a comp-adder(n) satisfies the following recurrence:

c(comp-adder(n)) =
⎧⎪⎪⎨⎪⎪⎩
c(fa) + c(ha) if n = 1

2 ⋅ c(comp-adder(n/2)) + 2 ⋅ (n/2 + 1) ⋅ c(mux) otherwise.

By Lemma 7.4, the solution to this recurrence is c(comp-adder) = Θ(n logn).

256 CHAPTER 15. ADDITION

15.6 Reductions between sum and carry bits

The correctness of rca(n) implies that, for every 0 ≤ i ≤ n − 1,

S[i] = xor(A[i],B[i],C[i]). (15.12)

This immediately implies that, for every 0 ≤ i ≤ n − 1,

C[i] = xor(A[i],B[i], S[i]). (15.13)

Equations 15.12 and 15.13 imply constant-time linear-cost reductions between the
problems of computing the sum bits S[n−1 ∶ 0] and computing the carry bits C[n−1 ∶ 0].
(This reduction uses the addends A⃗ and B⃗.) The task of computing the sum bits is
the task of an adder. In an rca(n), the carry bit C[i] is computed first, and then the
sum bit S[i] is computed according to Eq. 15.12. We will later design an asymptotically
optimal adder that first computes all the carry bits and then obtains the sum bits from
the carry-bits by applying Eq. 15.12.

15.7 Redundant and non-redundant representation

Consider Eq. 15.5 and let x = ⟨A⃗⟩ + ⟨B⃗⟩ + C[0]. Equation 15.5 means that the sum
x admits two representations. The representation of x on the right hand side is the
standard binary representation. This representation is non-redundant. This means that
every number that is representable by n + 1 bits has a unique representation. (Note
that we need to restrict ourselves to n + 1 bits, otherwise leading zeros create multiple
representations. For example: 1, 01, and 001 are different representations of the same
number).

One nice characteristic of non-redundant representation is that comparison is easy.
Suppose that X[n− 1 ∶ 0] is a binary representation of x and that Y [n− 1 ∶ 0] is a binary
representation of y. If we wish to check if x = y, all we need to do is check if the binary
strings X⃗ and Y⃗ are identical.

The left hand side represents the same value represented by C[n] and S[n − 1 ∶ 0].
However, on the left hand side we have two binary strings and a carry-in bit. Given x,
there are many possible combinations of values of ⟨A⃗⟩, ⟨B⃗⟩ and C[0] that represent x.
For example: 8 = 4 + 3 + 1 and also 8 = 5 + 3 + 0.

We refer to such a representation as redundant representation. Comparison of val-
ues represented in redundant representation is not as easy as it is with non-redundant
representation. For example, assume that

x = A⃗ + B⃗

x′ = A⃗′ + B⃗′.

It is possible that x = x′ even though A ≠ A′ and B ≠ B′. Namely, in redundant repre-
sentation inequality of the representations does not imply inequality of the represented
values.

15.8. SUMMARY 257

Some of you might wonder at this point whether redundant representations are useful
at all. We just saw that redundant representation makes comparison non-trivial. The
answer is that redundant representation is most useful. Probably the most noted applica-
tion of redundant representation is fast multiplication. In fast multiplication, redundant
representation is used for fast (redundant) addition.

We summarize this discussion by noting that an alternative way to interpret an
rca(n) (or an adder(n), in general) is to say that it translates a redundant repre-
sentation to a non-redundant binary representation.

15.8 Summary

We started by defining binary addition. We reviewed the Ripple Carry Adder. We proved
its correctness rigorously and used it to define the carry bits associated with addition.

We showed that the problems of computing the sum bits and the carry bits are
equivalent modulo a constant-time linear-cost reduction. Since the cost of every adder is
Ω(n) and the delay is Ω(logn), we regard the problems of computing the sum bits and
the carry bits as equivalently hard.

We presented an adder design called Conditional Sum Adder (csa(n)). The csa(n)
design is based on divide-and-conquer. Its delay is asymptotically optimal (if fanout is
not taken into account). However, its cost is rather large, approximately Θ (n1.58).

We then considered the problem of simultaneously computing the sum and incre-
mented sum of two binary numbers. We presented a design called Compound Adder
(comp-adder(n)). This design is also based on divide-and-conquer. The asymptotic
delay is also logarithmic, however, the cost is Θ(n ⋅ logn).

This result is rather surprising: a comp-adder(n) is much cheaper asymptotically
than a csa(n)! You should make sure that you understand the rational behind this
magic. Moreover, by adding a line of multiplexers controlled by the carry-in bit C[0],
one can obtain an adder(n) from a comp-adder(n). So, asymptotically, the design of
a comp-adder(n) is a real improvement over the csa(n).

There exists an adder design that is asymptotically optimal both with respect to delay
and with respect to cost. Moreover, the asymptotic delay and cost of this asymptotically
optimal design is not affected by considering fanout. This adder is often called a parallel
prefix adder [11, 2].

Problems

15.1 Manually simulate the following input on CSA(4) and comp-adder(4) with k = 2:

A[3 ∶ 0] = 0110,

B[3 ∶ 0] = 1001,

C[0] = 0.

258 CHAPTER 15. ADDITION

15.2 (Effect of fanout on csa(n)) Consider the csa(n) design. The fanout of the
net fed by the carry-bit C[k] is n/2 + 1 if k = n/2.

1. Suppose that we associate a delay of log2(f) with a fanout f . How would taking the
fanout into account change the delay analysis of a csa(n)?

2. Suppose that we associate a cost O(f) with a fanout f . How would taking the fanout
into account change the cost analysis of a csa(n)?

15.3 Complete the correctness of comp-adder(n), that is, prove that T [n ∶ 0] satisfies
the specification.

15.4 Prove the following claims.

1. Consider two binary strings S[k ∶ 0] and T [k ∶ 0]. Prove that if S[k] > T [k], then
⟨S⃗⟩ > ⟨T⃗ ⟩.

2. (a) Implement comp-adder(2) by using two comp-adder(1). Print all possible
outputs, and show that T ′[1] ≥ S′[1].

(b) Consider S′[k] and T ′[k] in the design of comp-adder(n). Prove that T ′[k] ≥
S′[k].

Prove that T ′[k] ≥ S′[k].
3. Present an example for comp-adder(4) in which T [4 ∶ 2] is selected to be S′′[4 ∶ 2].

Is it possible that S′[k] = 1 and T ′[k] = 0? Which combinations of S′[k] and T ′[k]
are possible?

15.5 (Effect of fanout on comp-adder(n)) Note that the fanout of S′[k] and T ′[k]
is n/2+1. Prove that, if the effect of fanout on delay is taken into account, then, as in the
case of csa(n), the delay is actually Θ(log2 n). Here we assume that the delay incurred
by a fanout f is Θ(log f).

15.6 Prove Equation 15.13, that is, for every 0 ≤ i ≤ n − 1,

C[i] = xor(A[i],B[i], S[i]).

15.7 (Subtraction) Consider the following definition of a subtractor.

Definition 15.5 A binary subtractor with input length n is a combinational circuit
specified as follows.

Input: X[n − 1 ∶ 0], Y [n − 1 ∶ 0] ∈ {0,1}n, and B[0] ∈ {0,1}.
Output: S[n − 1 ∶ 0] ∈ {0,1}n and B[n] ∈ {0,1}.
Functionality:

⟨S[n − 1 ∶ 0]⟩ − 2n ⋅B[n] = ⟨X[n − 1 ∶ 0]⟩ − ⟨Y [n − 1 ∶ 0]⟩ −B[0]. (15.14)

15.8. SUMMARY 259

Our goal is to define a Ripple Borrow Subtractor, a combinational circuit that is
analogous to an rca(n).

1. Define a full-subtractor (analogous to a full adder).

2. Suggest an implementation of a full-subtractor that uses a full-adder and three in-
verters.

3. Build a binary subtractor by chaining together n full-subtractors.

4. Implement your circuit for n = 2 using Logisim, and simulate it for all possible
inputs.

5. Prove the correctness of your design.

260 CHAPTER 15. ADDITION

Chapter 16

Signed Addition

Contents
16.1 Representation of negative integers 262

16.2 Computing a two’s complement representation 263

16.3 Negation in two’s complement representation 264

16.4 Properties of two’s complement representation 266

16.5 Reduction: two’s complement addition to binary addition . . 268

16.5.1 Detecting overflow . 270

16.5.2 Determining the sign of the sum 271

16.6 A two’s-complement adder . 272

16.7 A two’s complement adder/subtractor 273

16.8 Summary . 275

261

262 CHAPTER 16. SIGNED ADDITION

So far we have dealt with the representation of nonnegative integers by binary strings.
We also designed combinational circuits that perform addition for nonnegative numbers
represented by binary strings. How are negative integers represented? Can we add and
subtract negative integers?

We refer to integers that are either positive, zero, or negative as signed integers. In
this chapter we deal with the representation of signed integers by binary strings. We focus
on a representation that is called two’s complement. We present combinational circuits
for adding and subtracting signed numbers that are represented in two’s complement
representation. Although the designs are obtained by very minor changes of a binary
adder designs, the theory behind these changes requires some effort.

16.1 Representation of negative integers

We use binary representation to represent non-negative integers. We now address the issue
of representing positive and negative integers. Following programming languages, we refer
to non-negative integers as unsigned numbers and to negative and positive numbers as
signed numbers.

There are three common methods for representing signed numbers: sign-magnitude,
one’s complements, and two’s complement.

Definition 16.1 The number represented in sign-magnitude representation by A[n − 1 ∶
0] ∈ {0,1}n and S ∈ {0,1} is

(−1)S ⋅ ⟨A[n − 1 ∶ 0]⟩.
Definition 16.2 The number represented in one’s complement representation by A[n−1 ∶
0] ∈ {0,1}n is

−(2n−1 − 1) ⋅A[n − 1] + ⟨A[n − 2 ∶ 0]⟩.
Definition 16.3 The number represented in two’s complement representation by A[n−1 ∶
0] ∈ {0,1}n is

−2n−1 ⋅A[n − 1] + ⟨A[n − 2 ∶ 0]⟩.
We denote the number represented in two’s complement representation by A[n−1 ∶ 0] as
follows:

[A[n − 1 ∶ 0]] △= −2n−1 ⋅A[n − 1] + ⟨A[n − 2 ∶ 0]⟩.
We often use the term “a two’s complement number A[n − 1 ∶ 0]” as an abbrevia-

tion of the longer phrase “the number represented by A[n − 1 ∶ 0] in two’s complement
representation”.

The most common method for representing signed numbers is two’s complement repre-
sentation. The main reason is that adding, subtracting, and multiplying signed numbers
represented in two’s complement representation is almost as easy as performing these
computations on unsigned binary numbers.

Example 16.1 Table 16.1 compares representations of negative integers. Note that the
sign bit in the last column is X[2].

16.2. COMPUTING A TWO’S COMPLEMENT REPRESENTATION 263

binary string X⃗ ⟨X⃗⟩ two’s complement one’s complement sign-magnitude

000 0 0 0 +0
001 1 1 1 1
010 2 2 2 2
011 3 3 3 3
100 4 −4 −3 −0
101 5 −3 −2 −1
110 6 −2 −1 −2
111 7 −1 0 −3

Table 16.1: Comparison between representation of negative integers. Note that zero
has two representations in one’s complement and sign-magnitude representations. In
sign-magnitude, one may distinguish between +0 and −0.

16.2 Computing a two’s complement representation

We denote the set of signed numbers that are representable in two’s complement repre-
sentation using n-bit binary strings by Tn.

Claim 16.1

Tn = {−2n−1,−2n−1 + 1, . . . ,2n−1 − 1} .

Proof: Consider a binary string A[n − 1 ∶ 0]. Clearly,

[A[n − 1 ∶ 0]] △= −2n−1 ⋅A[n − 1] + ⟨A[n − 2 ∶ 0]⟩
≤ ⟨A[n − 2 ∶ 0]⟩
≤ 2n−1 − 1.

Similarly,

[A[n − 1 ∶ 0]] △= −2n−1 ⋅A[n − 1] + ⟨A[n − 2 ∶ 0]⟩
≥ −2n−1.

This proves that Tn ⊆ {−2n−1,−2n−1 + 1, . . . ,2n−1 − 1}. To prove the other direction,
consider an integer −2n−1 ≤ x ≤ 2n−1−1. We prove that x ∈ Tn by considering the following
two cases:

1. If x ≥ 0, then x can represented in binary representation by a string A[n − 2 ∶ 0].
Hence, x = [0 ○A[n − 2 ∶ 0]], as required.

2. If x < 0, let y
△

= x+2n. Since −2n−1 ≤ x ≤ −1, it follows that 2n−1 < y ≤ 2n −1. Thus y
can be represented in binary representation by Y [n−1 ∶ 0], where Y [n−1] = 1. We
know that y = ⟨Y [n − 1 ∶ 0]⟩. We now check which value is represented by Y [n−1 ∶ 0]

264 CHAPTER 16. SIGNED ADDITION

in two’s complement representation.

[Y [n − 1 ∶ 0]] = ⟨Y [n − 2 ∶ 0]⟩ − 2n−1 ⋅ Y [n − 1]
= (y − 2n−1) − 2n−1 ⋅ 1

= y − 2n = x.

Hence x ∈ Tn, as required.

2

The proof of Claim 16.1 justifies the following algorithm for computing the two’s
complement representation of a number x ∈ Tn.

Algorithm 16.1 two-comp(x,n) - An algorithm for computing the two’s complement
representation of x using n bits.

1. If x /∈ Tn return (fail).

2. If x ≥ 0 return (0 ○ binn−1(x)).
3. If x < 0 return (binn(x + 2n)).

Example 16.2 Claim 16.1 implies that

T4 = {−23,−23
+ 1, . . . ,23

− 1} .

Hence,

two-comp(8,4) = fail ,

two-comp(5,4) = (0 ○ bin3(5)) = 0101 ,

two-comp(−6,4) = (bin4(−6 + 24)) = 1010 ,

two-comp(−1,4) = (bin4(−1 + 24)) = 1111 .

16.3 Negation in two’s complement representation

The following claim deals with negating a value represented in two’s complement repre-
sentation.

Claim 16.2

− [A[n − 1 ∶ 0]] = [inv(A[n − 1 ∶ 0])] + 1.

16.3. NEGATION IN TWO’S COMPLEMENT REPRESENTATION 265

Proof: Note that inv(A[i]) = 1 −A[i]. Hence,

[inv(A[n − 1 ∶ 0])] = −2n−1 ⋅ inv(A[n − 1]) + ⟨inv(A[n − 2 ∶ 0])⟩

= −2n−1 ⋅ (1 −A[n − 1]) +
n−2

∑
i=0
(1 −A[i]) ⋅ 2i

= −2n−1 +
n−2

∑
i=0

2i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=−1

+2n−1 ⋅A[n − 1] −
n−2

∑
i=0
A[i] ⋅ 2i

´¹¹¹¸¹¹¹¶
=−[A[n−1∶0]]

= −1 − [A[n − 1 ∶ 0]] .

2

Example 16.3 Let n = 4 and let A[3 ∶ 0] = 1001, then:

− [A[3 ∶ 0]] = 7 ,

[inv(A[3 ∶ 0])] + 1 = [0110] + 1 = 6 + 1 = 7 .

Hence,
− [A[3 ∶ 0]] = [inv(A[3 ∶ 0])] + 1.

In Figure 16.1 we depict a design for negating numbers based on Claim 16.2. The
circuit is input A⃗ and is supposed to compute the two’s complement representation of
− [A⃗]. The bits in the string A⃗ are first inverted to obtain A[n − 1 ∶ 0]. An increment
circuit outputs C[n] ⋅B[n − 1 ∶ 0] such that

⟨C[n] ⋅B[n − 1 ∶ 0]⟩ = ⟨A[n − 1 ∶ 0]⟩ + 1.

Such an increment circuit can be implemented simply by using a binary adder with one
addend string fixed to 0n−1 ⋅ 1.

We would like to claim that the circuit depicted in Fig. 16.1 is correct. Unfortunately,
we do not have yet the tools to prove the correctness. Let us try and see the point in
which we run into trouble.

Claim 16.2 implies that all we need to do to compute − [A⃗] is invert the bits of A⃗
and increment. The problem is with the meaning of increment. The increment circuit
computes:

⟨A[n − 1 ∶ 0]⟩ + 1.

However, Claim 16.2 requires that we compute

[A[n − 1 ∶ 0]] + 1.

Now, let C[n] ⋅B[n − 1 ∶ 0] denote the output of the incrementor. We know that

⟨C[n] ⋅B[n − 1 ∶ 0]⟩ = ⟨A[n − 1 ∶ 0]⟩ + 1.

266 CHAPTER 16. SIGNED ADDITION

inv(n)

inc(n)

A[n− 1 : 0]

B[n− 1 : 0]

n

n

n

A[n− 1 : 0]

C[n]

Figure 16.1: A (wrong) circuit for negating a value represented in two’s complement
representation.

One may suspect that if C[n] = 1, then correctness might fail due to the “lost” carry-bit.
Assume we are “lucky” and C[n] = 0. In this case,

⟨B[n − 1 ∶ 0]⟩ = ⟨A[n − 1 ∶ 0]⟩ + 1.

Why should this imply that

[B[n − 1 ∶ 0]] = [A[n − 1 ∶ 0]] + 1?

At this point we leave this issue unresolved. We prove a more general result in
Theorem 16.7. Note, however, that the circuit errs with the input A[n − 1 ∶ 0] = 1 ⋅ 0n−1.

The value represented by A⃗ equals −2n−1. Inversion yields A[n − 1 ∶ 0] = 0⋅1n−2. Increment
yields C[n] = 0 and B[n − 1 ∶ 0] = 1 ⋅ 0n−2 = A[n − 1 ∶ 0]. This, of course, is not a
counter-example to Claim 16.2. It is an example in which an increment with respect to

⟨A[n − 1 ∶ 0]⟩ is not an increment with respect to [A[n − 1 ∶ 0]]. This is exactly the point

which concerned us. A more careful look at this case shows that every circuit must err
with such an input. The reason is that − [A⃗] /∈ Tn. Hence, the negated value cannot be
represented using an n-bit string, and negation had to fail.

Interestingly, as opposed to negation in two’s complement representation, negation in
sign-magnitude and one’s complement representation is very easy.

16.4 Properties of two’s complement representation

Alternative definition of two’s complement representation. The following claim
follows immediately from the definition of two’s complement representation.

16.4. PROPERTIES OF TWO’S COMPLEMENT REPRESENTATION 267

Claim 16.3 For every A[n − 1 ∶ 0] ∈ {0,1}n
mod(⟨A⃗⟩,2n) = mod([A⃗] ,2n).

Proof: It suffices to show that ⟨A⃗⟩− [A⃗] is a multiple of 2n. Indeed, ⟨A⃗⟩− [A⃗] ∈ {0,2n},
and the claim follows. 2

Example 16.4 Let n = 4 and let A[3 ∶ 0] = 0110,B[3 ∶ 0] = 1001, then:

⟨A[3 ∶ 0]⟩ = 6 , [A[3 ∶ 0]] = 6 ,

⟨B[3 ∶ 0]⟩ = 9 , [B[3 ∶ 0]] = −7 .

Hence,

⟨A⃗⟩ − [A⃗] = 6 − 6 = 0 = 0 (mod 24) ,
⟨B⃗⟩ − [B⃗] = 9 − (−7) = 16 = 0 (mod 24) .

Claim 16.3 provides an explanation for the term “two’s complement representation.”
In fact, the precise term is 2n complement representation. Moreover, one could define
two’s complement representation based on the claim. Namely, represent x ∈ [−2n−1,2n−1−
1] by binn(x′), where x′ ∈ [0,2n − 1] satisfies x′ = mod(x,2n).
Sign bit. The most significant bit A[n − 1] of a string A[n − 1 ∶ 0] that represents a
two’s complement number is often called the sign-bit of A⃗. The following claim justifies
this term.

Claim 16.4 [A[n − 1 ∶ 0]] < 0 ⇐⇒ A[n − 1] = 1.

Proof: Consider a binary string A[n − 1 ∶ 0]. If A[n − 1] = 0, then [A[n − 1 ∶ 0]] =
⟨A[n − 2 ∶ 0]⟩ ≥ 0. On the other hand, if A[n − 1 ∶ 0] = 1, then

[A[n − 1 ∶ 0]] △= −2n−1 ⋅A[n − 1] + ⟨A[n − 2 ∶ 0]⟩
≤ −2n−1 + (2n−1 − 1)
≤ −1.

2

Do not be misled by the term sign-bit. Two’s complement representation is not
sign-magnitude representation. In particular, the prefix A[n − 2 ∶ 0] is not a binary
representation of the magnitude of [A[n − 1 ∶ 0]]. Computing the absolute value of a
negative signed number represented in two’s complement representation involves inversion
of the bits and an increment (as suggested by Claim 16.2).

268 CHAPTER 16. SIGNED ADDITION

Sign extension. The following claim is often referred to as “sign-extension”. It basi-
cally means that duplicating the most significant bit does not affect the value represented
in two’s complement representation. This is similar to padding zeros from the left in bi-
nary representation.

Claim 16.5 If A[n] = A[n − 1], then

[A[n ∶ 0]] = [A[n − 1 ∶ 0]] .

Proof:

[A[n ∶ 0]] = −2n ⋅A[n] + ⟨A[n − 1 ∶ 0]⟩
= −2n ⋅A[n] + 2n−1 ⋅A[n − 1] + ⟨A[n − 2 ∶ 0]⟩
= −2n ⋅A[n − 1] + 2n−1 ⋅A[n − 1] + ⟨A[n − 2 ∶ 0]⟩
= −2n−1 ⋅A[n − 1] + ⟨A[n − 2 ∶ 0]⟩
= [A[n − 1 ∶ 0]] .

2

We can now apply arbitrarily long sign-extension, as summarized in the following Corol-
lary (proved by induction on the length of the sign extension).

Corollary 16.6
[A[n − 1]∗ ○A[n − 1 ∶ 0]] = [A[n − 1 ∶ 0]] .

Where A[n−1]∗ denotes an arbitrarily long binary string that consists of concatenations
of A[n − 1].
Example 16.5 Let n = 2 and let A[1 ∶ 0] = 10.

[A[1 ∶ 0]] = −2 + 0 = −2 ,

[A[1] ○A[1] ○A[1 ∶ 0]] = [1110] = −23
+ 6 = −2 .

Also,

[11111111111111111110] = [10] = −2

[11111111111111111111] = [1] = −1

16.5 Reduction: two’s complement addition to bi-

nary addition

In Section 16.3 we tried (and partly failed) to use a binary incrementor for incrementing
a two’s complement signed number. In this section we deal with a more general case,
namely computing the two’s complement representation of

[A⃗] + [B⃗] +C[0].

16.5. REDUCTION: TWO’S COMPLEMENT ADDITION TO BINARY ADDITION269

The following theorem deals with the following setting. Let

A[n − 1 ∶ 0],B[n − 1 ∶ 0], S[n − 1 ∶ 0] ∈ {0,1}n
C[0],C[n] ∈ {0,1}

satisfy
⟨A[n − 1 ∶ 0]⟩ + ⟨B[n − 1 ∶ 0]⟩ +C[0] = ⟨C[n] ⋅ S[n − 1 ∶ 0]⟩. (16.1)

Namely, A⃗, B⃗, and C[0] are fed to a binary adder adder(n) and S⃗ and C[n] are output
by the adder. The theorem addresses the following questions:� When does the output S[n − 1 ∶ 0] satisfy:

[S⃗] = [A[n − 1 ∶ 0]] + [B[n − 1 ∶ 0]] +C[0]? (16.2)� How can we know that Equation 16.2 holds?

Theorem 16.7 Let C[n − 1] denote the carry-bit in position [n − 1] associated with the
binary addition described in Equation 16.1 and let

z
△

= [A[n − 1 ∶ 0]] + [B[n − 1 ∶ 0]] +C[0].
Then,

C[n] −C[n − 1] = 1 Ô⇒ z < −2n−1 (16.3)

C[n − 1] −C[n] = 1 Ô⇒ z > 2n−1 − 1 (16.4)

z ∈ Tn ⇐⇒ C[n] = C[n − 1] (16.5)

z ∈ Tn Ô⇒ z = [S[n − 1 ∶ 0]] . (16.6)

Proof: Recall that the definition of the functionality of fan−1 in a Ripple-Carry Adder
rca(n) implies that

A[n − 1] +B[n − 1] +C[n − 1] = 2C[n] + S[n − 1].
Hence

A[n − 1] +B[n − 1] = 2C[n] −C[n − 1] + S[n − 1]. (16.7)

We now expand z as follows:

z = [A[n − 1 ∶ 0]] + [B[n − 1 ∶ 0]] +C[0]
= −2n−1 ⋅ (A[n − 1] +B[n − 1]) + ⟨A[n − 2 ∶ 0]⟩ + ⟨B[n − 2 ∶ 0]⟩ +C[0]
= −2n−1 ⋅ (2C[n] −C[n − 1] + S[n − 1]) + ⟨C[n − 1] ⋅ S[n − 2 ∶ 0]⟩,

where the last line is based on Equation 16.7 and on

⟨A[n − 2 ∶ 0]⟩ + ⟨B[n − 2 ∶ 0]⟩ +C[0] = ⟨C[n − 1] ⋅ S[n − 2 ∶ 0]⟩.
Commuting S[n − 1] and C[n − 1] implies that

z = −2n−1 ⋅ (2C[n] −C[n − 1] −C[n − 1]) + [S[n − 1] ⋅ S[n − 2 ∶ 0]]
= −2n ⋅ (C[n] −C[n − 1]) + [S[n − 1 ∶ 0]] .

We distinguish between three cases:

270 CHAPTER 16. SIGNED ADDITION

1. If C[n] −C[n − 1] = 1, then

z = −2n + [S[n − 1 ∶ 0]]
≤ −2n + 2n−1 − 1 = −2n−1 − 1.

Hence Equation 16.3 follows.

2. If C[n] −C[n − 1] = −1, then

z = 2n + [S[n − 1 ∶ 0]]
≥ 2n − 2n−1 = 2n−1.

Hence Equation 16.4 follows.

3. If C[n] = C[n − 1], then z = [S[n − 1 ∶ 0]], and obviously z ∈ Tn.

The converse direction of Equation 16.5 follows from the fact that if C[n] ≠ C[n−1], then
either C[n]−C[n−1] = 1 or C[n−1]−C[n] = 1. In both these cases z /∈ Tn. Equation 16.6
follows from the third case as well, and the theorem follows. 2

16.5.1 Detecting overflow

Overflow occurs when the sum of signed numbers is not in Tn. Using the notation of
Theorem 16.7, overflow is defined as follows.

Definition 16.4 Let z
△

= [A[n − 1 ∶ 0]] + [B[n − 1 ∶ 0]] +C[0]. The signal ovf is defined
as follows:

ovf
△

=

⎧⎪⎪⎨⎪⎪⎩
1 if z /∈ Tn
0 otherwise.

Note that overflow means that the sum is either too large or too small. Perhaps the term
“out-of-range” is more appropriate than “overflow” (which suggests that the sum is too
big). We choose to favor tradition here and follow the common term overflow rather than
introduce a new term.

By Theorem 16.7, overflow occurs iff C[n − 1] ≠ C[n]. Namely,

ovf = xor(C[n − 1],C[n]).

Moreover, if overflow does not occur, then Equation 16.2 holds. Hence, we have a simple
way to answer both questions raised before the statement of Theorem 16.7. The signal
C[n − 1] may not be available if one uses a “black-box” binary-adder (e.g., a library
component in which C[n−1] is an internal signal). In this case we detect overflow based
on the following claim.

Claim 16.8

xor(C[n − 1],C[n]) = xor4(A[n − 1],B[n − 1], S[n − 1],C[n]).

16.5. REDUCTION: TWO’S COMPLEMENT ADDITION TO BINARY ADDITION271

Proof: By Eq. 15.13,

C[n − 1] = xor3(A[n − 1],B[n − 1], S[n − 1]).

2

16.5.2 Determining the sign of the sum

How do we determine the sign of the sum z? Obviously, if z ∈ Tn, then Claim 16.4 implies
that S[n−1] indicates whether z is negative. However, if overflow occurs, this is not true.

We would like to be able to know whether z is negative regardless of whether overflow
occurs. We define the neg signal.

Definition 16.5 The signal neg is defined as follows:

neg
△

=

⎧⎪⎪⎨⎪⎪⎩
1 if z < 0

0 if z ≥ 0.

A brute force method based on Theorem 16.7 for computing the neg signal is as follows:

neg =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S[n − 1] if no overflow

1 if C[n] −C[n − 1] = 1

0 if C[n − 1] −C[n] = 1.

(16.8)

Although this computation obviously signals correctly whether the sum is negative, it
requires some further work if we wish to obtain a small circuit for computing neg that
is not given C[n − 1] as input.

Instead pursuing this direction, we compute neg using a more elegant method.

Claim 16.9
neg = xor3(A[n − 1],B[n − 1],C[n]).

Proof: The proof is based on playing the following “mental game”. We extend the
computation to n + 1 bits. We then show that overflow does not occur. This means that
the sum bit in position n indicates correctly the sign of the sum z. We then express this
sum bit using n-bit addition signals.
Let

Ã[n ∶ 0] △= A[n − 1] ○A[n − 1 ∶ 0]
B̃[n ∶ 0] △= B[n − 1] ○B[n − 1 ∶ 0]

⟨C̃[n + 1] ○ S̃[n ∶ 0]⟩ △= ⟨Ã[n ∶ 0]⟩ + ⟨B̃[n ∶ 0]⟩ +C[0].

Since sign-extension preserves value (see Claim 16.5), it follows that

z = [Ã[n ∶ 0]] + [B̃[n ∶ 0]] +C[0].

272 CHAPTER 16. SIGNED ADDITION

We claim that z ∈ Tn+1. This follows from

z = [A[n − 1 ∶ 0]] + [B[n − 1 ∶ 0]] +C[0]
≤ 2n−1 − 1 + 2n−1 − 1 + 1

≤ 2n − 1.

Similarly z ≥ 2−n. Hence z ∈ Tn+1, and therefore, by Theorem 16.7

[S̃[n ∶ 0]] = [Ã[n ∶ 0]] + [B̃[n ∶ 0]] +C[0].
We conclude that z = [S̃[n ∶ 0]]. It follows that neg = S̃[n]. However,

S̃[n] = xor3(Ã[n], B̃[n], C̃[n])
= xor3(A[n − 1],B[n − 1],C[n]),

and the claim follows. 2

Example 16.6 Let n = 4. Claim 16.1 implies that

T4 = {−23,−23
+ 1, . . . ,23

− 1} .
Table 16.2 presents the values of C[n],C[n − 1], [S[n − 1 ∶ 0]], and z for various values
of A,B and C[0].

[A[3 ∶ 0]] −3 −4 −6 7[B[3 ∶ 0]] −5 −5 5 1
C[0] 1 0 0 1

C[n] 1 1 1 0
C[n − 1] 1 0 1 1[S[n − 1 ∶ 0]] −7 6 −1 −7

z −7 −9 −1 9

Table 16.2: Values of C[n],C[n − 1], [S⃗], and z for various values of [A⃗] , [B⃗] and C[0].

16.6 A two’s-complement adder

In this section we define and implement a two’s complement adder.

Definition 16.6 A two’s-complement adder with input length n is a combinational cir-
cuit specified as follows.

Input: A[n − 1 ∶ 0],B[n − 1 ∶ 0] ∈ {0,1}n, and C[0] ∈ {0,1}.
Output: S[n − 1 ∶ 0] ∈ {0,1}n and neg,ovf ∈ {0,1}.

16.7. A TWO’S COMPLEMENT ADDER/SUBTRACTOR 273

Functionality: Define z as follows:

z
△

= [A[n − 1 ∶ 0]] + [B[n − 1 ∶ 0]] +C[0].
The functionality is defined as follows:

z ∈ Tn Ô⇒ [S[n − 1 ∶ 0]] = z
ovf =

⎧⎪⎪⎨⎪⎪⎩
0 if z ∈ Tn

1 if z /∈ Tn.
neg =

⎧⎪⎪⎨⎪⎪⎩
0 if z ≥ 0

1 if z < 0.

Note that no carry-out C[n] is output. We denote a two’s-complement adder by s-adder(n).
The implementation of an s-adder(n) is depicted in Figure 16.2 and is as follows:

1. The outputs C[n] and S[n−1 ∶ 0] are computed by a binary adder adder(n) that
is fed by A[n − 1 ∶ 0],B[n − 1 ∶ 0], and C[0].

2. The output ovf is simply xor(C[n − 1],C[n]) if C[n − 1] is available. Otherwise,
we apply Claim 16.8, namely, ovf = xor4(A[n − 1],B[n − 1], S[n − 1],C[n]).

3. The output neg is computed according to Claim 16.9. Namely, neg = xor3(A[n−
1],B[n − 1],C[n]).

C[n]

xor

C[n− 1]

ovf

adder(n)

B[n− 1 : 0]A[n− 1 : 0]

S[n− 1 : 0]C[n]

C[0]

C[n]A[n− 1]

neg

B[n− 1]

xor3

Figure 16.2: A two’s complement adder s-adder(n)
Note that, except for the circuitry that computes the flags ovf and neg, a two’s com-
plement adder is identical to a binary adder. Hence, in an arithmetic logic unit (ALU),
one may use the same circuit for signed addition and unsigned addition.

16.7 A two’s complement adder/subtractor

In this section we define and implement a two’s complement adder/subtractor. A two’s
complement adder/subtractor is used in ALUs to implement addition and subtraction of
signed numbers.

274 CHAPTER 16. SIGNED ADDITION

Definition 16.7 A two’s-complement adder/subtractor with input length n is a combi-
national circuit specified as follows.

Input: A[n − 1 ∶ 0],B[n − 1 ∶ 0] ∈ {0,1}n, and sub ∈ {0,1}.
Output: S[n − 1 ∶ 0] ∈ {0,1}n and neg,ovf ∈ {0,1}.
Functionality: Define z as follows:

z
△

=

⎧⎪⎪⎨⎪⎪⎩
[A[n − 1 ∶ 0]] + [B[n − 1 ∶ 0]] if sub = 0[A[n − 1 ∶ 0]] − [B[n − 1 ∶ 0]] if sub = 1.

The functionality is defined as follows:

z ∈ Tn Ô⇒ [S[n − 1 ∶ 0]] = z
ovf =

⎧⎪⎪⎨⎪⎪⎩
0 if z ∈ Tn

1 if z /∈ Tn.
neg =

⎧⎪⎪⎨⎪⎪⎩
0 if z ≥ 0

1 if z < 0.

We denote a two’s-complement adder/subtractor by add-sub(n). Note that the input
sub indicates if the operation is addition or subtraction. Note also that no carry-in bit
C[0] is input and no carry-out C[n] is output.

An implementation of a two’s-complement adder/subtractor add-sub(n) is depicted
in Figure 16.3. The implementation is based on a two’s complement adder s-adder(n)
and Claim 16.2.

S[n − 1 : 0]

ovf,neg

s-adder(n)

xor(n)

B[n − 1 : 0]

sub

A[n − 1 : 0]

Figure 16.3: A two’s-complement adder/subtractor add-sub(n).
Claim 16.10 The implementation of add-sub(n) depicted in Figure 16.3 is correct.

16.8. SUMMARY 275

Proof: The correctness follows from Claim 16.2 and the correctness of s-adder(n). 2

16.8 Summary

In this chapter we presented circuits for adding and subtracting two’s complement signed
numbers. We started by describing three ways for representing negative integers: sign-
magnitude, one’s-complement, and two’s complement. We then focused on two’s comple-
ment representation.

The first task we consider is negating. We proved that negating in two’s complement
representation requires inverting the bits and incrementing. The claim that describes
negation was insufficient to argue about the correctness of a circuit for negating a two’s
complement signed number. We also noticed that negating the represented value is harder
in two’s complement representation than in the other two representations.

In Section 16.4 we discussed a few properties of two’s complement representation:
(i) We showed that the values represented by the same n-bit string in binary representa-
tion and in two’s complement representation are congruent modulo 2n. (ii) We showed
that the most-significant bit indicates whether the represented value is negative. (iii) Fi-
nally, we discussed sign-extension. Sign-extension enables us to increase the number of
bits used to represent a two’s complement number while preserving the represented value.

The main result of this chapter is presented in Section 16.5. We reduce the task of
two’s complement addition to binary addition. Theorem 16.7 also provides a rule that
enables us to tell when this reduction fails. The rest of this section deals with: (i) the
detection of overflow - this is the case that the sum is out of range; and (ii) determining
the sign of the sum even if an overflow occurs.

In Section 16.6 we present an implementation of a circuit that adds two’s complement
numbers. Finally, in Section 16.7 we present an implementation of a circuit that can add
and subtract two’s complement numbers. Such a circuit is used in arithmetic logic units
(ALUs) to implement signed addition and subtraction.

Problems

16.1 Recall the definition of one’s complement representation (see Definition 16.2).
We denote the number represented in one’s complement representation A[n − 1 ∶ 0] by
one’s(A⃗).
Definition 16.8 A one’s complement negating circuit with input length n is a combi-
national circuit specified as follows.

Input: A[n − 1 ∶ 0] ∈ {0,1}n.
Output: B[n − 1 ∶ 0] ∈ {0,1}n.
Functionality:

one’s(A⃗) = −one’s(B⃗)

276 CHAPTER 16. SIGNED ADDITION

1. Design a circuit that implements a one’s complement negator.

2. Prove the correctness of your design.

16.2 Prove that

ovf = A[n − 1] ⋅B[n − 1] ⋅ inv(S[n − 1]) + inv(A[n − 1]) ⋅ inv(B[n − 1]) ⋅ S[n − 1]
16.3 Provide an example in which the sign of z is not signaled correctly by S[n − 1].
16.4 Prove that neg = xor(ovf, S[n − 1]).
16.5 Prove the correctness of the implementation of s-adder(n) depicted in Figure 16.2.

16.6 Is the design depicted in Figure 16.4 a correct s-adder(2n)?

c[0]

B[n− 1 : 0]A[n− 1 : 0]

S[n− 1 : 0]

C[n]

B[2n− 1 : n]A[2n− 1 : n]

adder(n)s-adder(n)

S[2n− 1 : n]C[2n]

ovf,neg

Figure 16.4: Concatenating an s-adder(n) with an adder(n).
16.7 (back to the negation circuit) Consider the negation circuit depicted in Fig-

ure 16.1.

1. When is the circuit correct?

2. Suppose we wish to add a signal that indicates whether the circuit satisfies [B⃗] =
− [A⃗]. How should we compute this signal?

16.8 (wrong implementation of add-sub(n)) Find a input for which the circuit de-
picted in Figure 16.5 errs. Can you list all the inputs for which this circuit outputs a
wrong output?

16.9 (ovf and neg flags in high level programming) High level programming lan-
guages such as C and Java do not enable one to see the value of the ovf and neg signals
(although these signals are computed by adders in all microprocessors).

1. Write a short program that deduces the values of these flags. Count how many
instructions are needed to recover these lost flags.

16.8. SUMMARY 277

mux(n)

inc(n)

inv(n)

S[n − 1 : 0]

ovf,neg

s-adder(n)

A[n − 1 : 0]

10

0

B[n − 1 : 0]

sub

Figure 16.5: A wrong implementation of add-sub(n).
2. Short segments in a low level language (Assembly) can be integrated in C programs.

Do you know how to see the values of the ovf and neg flags using a low level
language?

16.10 (bi-directional cyclic shifting) The goal in this question is to design a bi-
directional barrel-shifter.

Definition 16.9 A bi-directional barrel-shifter bi-barrel-shifter(n) is a combina-
tional circuit defined as follows:

Input: x[n − 1 ∶ 0], dir ∈ {0,1}, and sa[k − 1 ∶ 0] where k = ⌈log2 n⌉.
Output: y[n − 1 ∶ 0].
Functionality: If dir = 0 then y⃗ is a cyclic right shift of x⃗ by ⟨s⃗a⟩ positions. Formally,

∀j ∈ [n − 1 ∶ 0] ∶ y[j] = x[mod(j + ⟨s⃗a⟩, n)].

If dir = 1 then y⃗ is a cyclic left shift of x⃗ by ⟨s⃗a⟩ positions. Formally,

∀j ∈ [n − 1 ∶ 0] ∶ y[j] = x[mod(j − ⟨s⃗a⟩, n)].

1. Suggest a reduction of right cyclic shifting to left cyclic shifting for n = 2k. (Hint:
shift by x to the right is equivalent to shift by 2k − x to the left.)

278 CHAPTER 16. SIGNED ADDITION

2. If your reduction includes an increment, suggest a method that avoids the Ω(logk)
delay associated with incrementing.

16.11 (Comparison) Design a combinational circuit compare(n) defined as follows.

Inputs: A[n − 1 ∶ 0],B[n − 1 ∶ 0] ∈ {0,1}n.
Output: LT,EQ,GT ∈ {0,1}.
Functionality:

(GT,EQ,LT) △=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1,0,0), if [A⃗] > [B⃗] ,(0,1,0), if [A⃗] = [B⃗] ,(0,0,1), if [A⃗] < [B⃗] .
1. Design a comparator based on a two’s complement subtractor and a zero-tester.

2. Implement your design in Logisim. Verify by yourself that your design is correct.
Submit a printout of your implementation.

16.12 (one’s complement adder/subtractor) Design an adder/subtractor with re-
spect to one’s complement representation.

16.13 (sign-magnitude adder/subtractor) Design an adder/subtractor with respect
to sign-magnitude representation.

Part III

Synchronous Circuits

279

Chapter 17

Flip-Flops

Contents
17.1 The clock . 282

17.2 Edge-triggered Flip-Flop . 283

17.3 Arbitration∗ . 285

17.4 Arbiters - an impossibility result∗ 286

17.5 Necessity of critical segments∗ . 289

17.6 A Timing Example . 290

17.6.1 Non-empty intersection of Ci and Ai 291

17.7 Bounding Instability . 291

17.8 Other types of memory devices 295

17.8.1 D-Latch . 295

17.8.2 Clock enabled flip-flops . 296

17.9 Summary . 297

281

282 CHAPTER 17. FLIP-FLOPS

So far we have focused only on combinational circuits. It is time to deal with circuits
that have a memory. Memory, in principle, means that the output depends not only on
the input but also on the “history”. However, if we wish to refer to the history, then we
need a notion of time. So before we consider a memory device we must address the issue
of time.

Time in digital logic is defined by a special signal called the clock. The clock signal
is not a clock in everyday terms; it is simply a periodic signal that alternates between
zero and one. The alternations help us partition time into disjoint intervals, called clock
cycles.

Bits are stored in a special memory device called a flip-flop. The definition of flip-flops
is rather elaborate and requires that the input be stable during a critical segment. One
may wonder why such a complicated definition is required. We prove that flip-flops with
empty critical segments do not exist.

17.1 The clock

Synchronous circuits depend on a special signal called the clock. In practice, the clock is
generated by rectifying and amplifying a signal generated by special non-digital devices
(e.g., crystal oscillators). Since our course is about digital circuits, we use the following
abstraction to describe the clock.

Definition 17.1 A clock is a periodic logical signal that oscillates instantaneously be-
tween logical one and logical zero. There are two instantaneous transitions in every clock
period: (i) in the beginning of the clock period, the clock transitions instantaneously from
zero to one; and (ii) at some time in the interior of the clock period, the clock transitions
instantaneously from one to zero.

Figure 17.1 depicts a clock signal. We use the convention that the clock rise occurs in
the beginning of the clock period. Note that we assume that the transitions of the clock
signal are instantaneous; this is obviously impossible in practice. We show later how we
get around this unrealistic assumption.

logical level

0

1
pulse width

time

clock fall clock rise

clock period

Figure 17.1: A clock signal.

17.2. EDGE-TRIGGERED FLIP-FLOP 283

Notation and Terminology. We denote the clock signal by clk. The clock pulse is the
period of time within a clock period during which the clock equals one (see Fig. 17.1). The
duration of the clock pulse is denoted by clkpw. The clock period is denoted by ϕ(clk).
A clock signal clk is symmetric if clkpw = ϕ(clk)/2. A clock is said to have narrow
pulses if clkpw < ϕ(clk)/2. A clock is said to have wide pulses if clkpw > ϕ(clk)/2.
See Figure 17.2 for three examples.

logical level

0

1

time

(A)

(B)

(C)

logical level

0

1

time

logical level

0

1

time

Figure 17.2: (A) A symmetric clock (B) A clock with narrow pulses (C) A clock with
wide pulses.

Clock cycles. A signal clock partitions time into discrete intervals. Throughout this
chapter we denote the starting time of the ith clock periods by ti. We refer to the half-
closed interval [ti, ti+1) as clock cycle i. This convention avoids overlaps or gaps between
clock periods. From a practical point of view, one could use open or closed intervals
instead to defined clock cycles.

17.2 Edge-triggered Flip-Flop

In this section we define edge-triggered flip-flops.

284 CHAPTER 17. FLIP-FLOPS

Definition 17.2 An edge-triggered flip-flop is defined as follows.

Inputs: A digital signal D(t) and a clock clk.

Output: A digital signal Q(t).
Parameters: Four parameters are used to specify the functionality of a flip-flop:� Setup-time denoted by tsu,� Hold-time denoted by thold,� Contamination-delay denoted by tcont, and� Propagation-delay denoted by tpd.

These parameters satisfy −tsu < thold < tcont < tpd. We refer to the interval (ti −
tsu, ti + thold) as the critical segment Ci and to the interval [ti + tcont, ti + tpd] as the
instability segment Ai. See Figure 17.3 for a depiction of these parameters.

Functionality: If D(t) is stable during the critical segment Ci, then Q(t) =D(ti) during
the interval (ti + tpd, ti+1 + tcont).

Ci

clk

Ai

Figure 17.3: The critical segment Ci = (ti − tsu, ti + thold) and instability segment Ai =[ti + tcont, ti + tpd] corresponding the clock period starting at ti.

The definition of edge-triggered flip-flops is a rather complicated, so we elaborate.

1. The assumption −tsu < thold < tcont < tpd implies that the critical segment Ci and the
instability segment Ai are disjoint.

2. If D(t) is stable during the critical segment Ci, then the value of D(t) during the
critical segment Ci is well defined and equals D(ti).

3. The flip-flop samples the input signal D(t) during the critical segment Ci. The
sampled value D(ti) is output during the interval (ti + tpd, ti+1 + tcont). Sampling is
successful only if D(t) is stable while it is sampled. This is why we refer to Ci as a
critical segment.

17.3. ARBITRATION∗ 285

4. If the input D(t) is stable during the critical segments {Ci}i, then the output Q(t)
is stable in between the instability segments {Ai}i.

5. The stability of the input D(t) during the critical segments depends on the clock
period. We will later see that slowing down the clock (i.e., increasing the clock
period) helps in achieving a stable signal D(t) during the critical segments.

Figure 17.4 depicts a simplified timing diagram of a flip-flop. The x-axis corresponds
to time. A light gray interval means that the signal is stable during this interval. A dark
gray interval means that the signal may be unstable. Note that if D(t) = x during the
critical segment Ci, then Q(t) = x during the interval (ti + tpd, ti+1 + tcont).

Ci Ai Ci+1 Ai+1

tpd

tcont tcont

clk

D(t)
tsu

thold

Q(t)

x

x

y

y

Figure 17.4: A simplified timing diagram of an edge-triggered flip-flop

Figure 17.5 depicts a schematic of an edge-triggered flip-flop. Note the special “arrow”
that marks the clock-port. We refer to an edge-triggered flip-flop, in short, as a flip-flop.

Q

clk ff

D

Figure 17.5: A schematic of an edge-triggered flip-flop

17.3 Arbitration∗

Arbitration in the context of digital design is the problem of deciding which event occurs
first. For the sake of simplicity we focus on the event that the digital interpretation of an
analog signal becomes 1. Hence, an arbiter is supposed to determine which of two signals
reaches first the value one. We formally define arbitration as follows.

286 CHAPTER 17. FLIP-FLOPS

Definition 17.3 An arbiter is a circuit defined as follows.

Inputs: Non-decreasing analog signals A0(t),A1(t) defined for every t ≥ 0.

Output: An analog signal Z(t).
Functionality: Assume that A0(0) = A1(0) = 0. Define Ti, for i = 0,1, as follows:

Ti
△

= inf{t ∣ dig(Ai(t)) = 1}.
Let t′

△

= 10 +max{T0, T1}. The output Z(t) must satisfy, for every t ≥ t′,

dig(Z(t)) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if T0 < T1 − 1

1 if T1 < T0 − 1

0 or 1 otherwise.

Note that if T0 or T1 equals infinity, then t′ equals infinity, and there is no requirement on
the output Z(t). The idea is that the arbiter circuit is given 10 time units starting from
max{T0, T1} to determine if T0 < T1 or T1 < T0. We refer to the case in which ∣T0 −T1∣ ≤ 1
as a “tie”. The arbiter is not required to make a specific decision if a tie occurs. However,
even in the case of a tie, the arbiter must make some decision after 10 time units and its
output Z(t) must have a logical value.

Arbiters are very important in many applications since an arbiter determines the order
between events. For example, an arbiter can determine which message arrived first in a
network switch.

We will show in this chapter that, under very reasonable assumptions, arbiters do not
exist. Moreover, we will show that a flip-flop with an empty critical segment can be used
to implement an arbiter. The lesson is that flip-flops without critical segments do not
exist.

17.4 Arbiters - an impossibility result∗

In this section we prove that arbiters do not exist.

Claim 17.1 There does not exist a circuit C that implements an arbiter.

Proof: Let C denote an analog circuit with inputs A0(t),A1(t) and output Z(t). Define
A0(t) to be the analog signal that rises linearly in the interval [0,100] from 0 to Vin,high,
and for every t ≥ 100, A0(t) = Vin,high. Let x denote a parameter that defines A1(t) as
follows: A1(t) rises linearly in the interval [0,100 + x] from 0 to Vin,high, and for every
t ≥ 100+x, A1(t) = Vin,high. Let f(x) denote the function that describes the value of Z(200)
(i.e., the value of Z(t) at time t = 200) when fed by the signals A0(t) and A1(t). We
study the function f(x) in the interval x ∈ [−2,2]. We make the following observations:

17.4. ARBITERS - AN IMPOSSIBILITY RESULT∗ 287

1. f(−2) ≥ Vout,high. The reason is that if x = −2, then T0 = 100 and T1 = 98. Hence
A1(t) “wins”, and by time t = 200, the arbiter’s output should stabilize on the
logical value 1.

2. f(2) ≤ Vout,low. The reason is that if x = 2, then T0 = 100 and T1 = 102. Hence A0(t)
“wins”, and dig(Z(200)) = 0.

3. f(x) is continuous in the interval [−2,2]. This is not a trivial statement and its
formal proof is not within the scope of this course. We provide an intuitive proof
of this fact. The idea of the proof of the continuity of f(x) is that the output
Z(200) depends on the following: (i) The initial state of the device C at time t = 0.
We assume that the device C is in a stable state and that the charge is known
everywhere. (ii) The signal Ai(t) is continuous in the interval [0,200], for i = 0,1.

An infinitesimal change in x affects only A1(t) (i.e., the initial state of the circuit
and A0(t) are not affected by x). Moreover, the difference in energy of A1(t)
corresponding to two very close values of x is infinitesimal. Hence, the difference
in Z(200) for two very close values of x is also infinitesimal. This is the same
assumption that we make with respect to noise, namely, since noise is small, its
effect on the output is also small.

If this were not the case, then noise would cause uncontrollable changes in Z(t)
and the circuit C would not be useful anyhow.

By the Mean Value Theorem, it follows that, for every y ∈ [Vout,low, Vout,high], there exists
an x ∈ [−2,2] such that f(x) = y. In particular, choose a value y for which dig(y) is not
logical. We conclude that circuit C is not a valid arbiter since its output can be forced
to be non-logical way past the time it should be logical. 2

Claim 17.1 and its proof are very hard to grasp at first. It seems to imply some
serious flaw in our perception. Among other things, the claim implies that there does not
exist a perfect judge who can determine the winner in a 100-meters dash. This statement
remains true even in the presence of high speed cameras located at the finish line and
even if the runners run slowly. Moreover, the judge is given several hours to decide, and
if the running times of the winner and runner-up are within a second, then the judge
may decide arbitrarily! Does this mean that races are pointless?! We just proved that,
for every judge, there exist two runners whose running times are such that the judge still
hangs after an hour?

Our predicament can be clarified by the following example depicted in Figure 17.6.
Consider a player whose goal is to throw a ball past an obstacle so that it rolls past point
P . If the ball is rolled at a speed above v′, then it will pass the obstacle and then roll
past point P . If the ball is thrown at a speed below v′ it will not pass the obstacle. The
judge is supposed to announce her decision 24 hours after the player throws the ball.
The judge’s decision must be either “passed” or “did not pass”. Seems like an easy task.
However, if the player throws the ball at speed v′, then the ball reaches the tip of the
obstacle and may remain there indefinitely long! If the ball remains on the obstacle’s tip
24 hours past the throw, then the judge cannot announce her decision.

288 CHAPTER 17. FLIP-FLOPS

player

ball

obstacle

P

Figure 17.6: A player attempting to roll a ball so that it passes point P .

Figure 17.7: The event of metastability

We refer to the state of the ball when resting on the tip of the obstacle as a meta-stable
state of equilibrium (see Fig. 17.7). Luckily, throwing the ball so that it rests on the tip
of the obstacle is a very hard task. Suppose there is some probability distribution for
the speed of the ball when thrown. Unless this probability distribution is pathological,
the probability of obtaining a meta-stable state is small. Moreover, the probability of
meta-stability occurring can be reduced by sharpening the tip of the obstacle or giving
the arbiter more time to decide. This ability to control the probability of the event that
a decision cannot be reached plays a crucial role in real life. In VLSI chips, millions of
transistors transition from one state to another millions of times per second. If even one
transistor is “stuck” in a meta-stable state, then the chip might output a wrong value. By
reducing the probability of meta-stability, one can estimate that meta-stability will not
happen during the life-time of the chip (a lightening will hit the chip before meta-stability
happens).

The consequence of this discussion is that Claim 17.1 does not make judges unem-
ployed just as a coin toss is not likely to end up with the coin standing on its perimeter
(but bear in mind that it could!). The moral of Claim 17.1 is that: (i) Certain tasks are
not achievable with probability 1. If we consider the random nature of noise, we should
not be surprised at all. In fact, noise could be big enough to cause the digital value of a
signal to flip from zero to one. If the noise margin is large enough, then such an event is
not likely to occur. However, there is always a positive probability that such an error will
occur. (ii) Increasing the amount of time during which the arbiter is allowed to reach a
decision (significantly) decreases the chances of meta-stability. As time progresses, even
if the ball is resting on the tip of the obstacle, it is likely to fall to one of the sides. Note,

17.5. NECESSITY OF CRITICAL SEGMENTS∗ 289

however, that increasing the clock rate means that “decisions” must be made faster (i.e.,
within a clock period) and the chance of meta-stability increases.

17.5 Necessity of critical segments∗

In this section we present a reduction from flip-flops without critical segments to arbiters.
Since arbiters do not exist, the implication of this reduction is that flip-flops without
critical segments do not exist as well.

We define a flip-flop without a critical segment as a flip-flop in which the setup-time
and hold-time satisfy tsu = thold = 0. The functionality is defined as follows: For every i,
Q(t) is logical (either zero or one) during the interval t ∈ (ti + tpd, ti+1 + tcont) regardless
of whether D(ti) is logical. If dig(D(ti)) ∈ {0,1}, then dig(Q(t)) = dig(D(ti)) during the
interval t ∈ (ti + tpd, ti−1 + tcont).

The definition of a flip-flop without a critical segment is similar to an arbiter. Just
as the arbiter’s decision is free if a tie occurs, the flip-flop is allowed to output zero or
one if D(ti) is not logical. However, the output of the flip-flop must be logical once the
instability segment ends.

Consider the circuit depicted in Figure 17.8 in which the flip-flop is without a critical
segment. Assume that the parameters tcont and tpd are significantly smaller than one time
unit (e.g., at most 10−9 second, where one time unit equals one second). Assume also
that the intervals during which the inputs A0(t) and A1(t) are non-logical are also very
short (e.g., 10−9 second). Let ε = 10−9, and define the signals A0(t) and A1(t) as follows.

A0(t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if t < T0 − ε

Vin,high if t > T0

t−(T0−ε)
ε

⋅ Vin,high if t ∈ (T0 − ε,T0).
A1(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if t < T1 − ε

Vin,high if t > T1

t−(T1−ε)
ε

⋅ Vin,high if t ∈ (T1 − ε,T1).

Z(t)

A0(t) ff

A1(t)

Figure 17.8: An arbiter based on a flip-flop without a critical segment.

Note that the signal A0(t) is input as a clock to the flip-flop. This is not a standard
clock signal; it has one single transition from low to high. This transition occurs at time

290 CHAPTER 17. FLIP-FLOPS

t = T0. Claim 17.2 uses only one “tick of the clock”, so we may regard A0(t) as a clock
with a very long period.

Claim 17.2 The circuit depicted in Figure 17.8 is an arbiter.

Proof: We need to show that: (i) if T1 < T0−1, then dig(Z(t)) = 1, for every t ≥ T0+tpd,
and (ii) if T0 < T1−1, then dig(Z(t)) = 0, for every t ≥ T0+tpd. The case T1−1 ≤ T0 ≤ T1+1
is solved because the flip-flop’s output Z(t) is always logical at time T0 + tpd.

Indeed, the transition of the clock input from zero to one is completed at time T0. At
this time, the flip-flop samples its input A1(T0). If dig(A1(T0)) ∈ {0,1}, then dig(Z(t)) =
dig(A1(T0)) during the interval (T0 + tpd,∞). Note that the signal A1(t) transitions from
zero to one at time T1.

If T1 < T0−1, then at time T0, the signal A1(t) is already high. Thus, dig(A1(T0)) = 1,
and hence, dig(Z(t)) = 1, for every t ≥ T0 + tpd, as required.

If T0 < T1−1, then dig(A1(T0)) = 0. It follows that dig(Z(t)) = 0, for every t ≥ T0+ tpd,
as required. 2

Claims 17.1 and 17.2 imply that a flip-flop without a critical segment does not exist.
In other words, for every flip-flop, if there is no critical segment requirement, then there
exist input signals that can cause it to output a non-logical value outside of the instability
segment.

Corollary 17.3 There does not exist an edge-triggered flip-flop without a critical seg-
ment.

17.6 A Timing Example

Figure 17.9a depicts a circuit consisting of two identical flip-flops and a combinational cir-
cuit C in between. A simplified timing diagram of this circuit is depicted in Figure 17.9b.
Instead of drawing the clock signal, only the times ti and ti+1 are marked on the time
axis. In addition, the critical segment and instability segment are depicted for each clock
period. The digital signals D0(t),Q0(t),D1(t),Q1(t) are depicted using a simplified tim-
ing diagram. In this diagram, intervals during which a digital signal is guaranteed to be
stable are marked by a light gray block. On the other hand, intervals during which a
digital signal is possibly non-logical are marked by a dark gray block.

In this example, we make the pessimistic assumption that the signal D0(t) is stable
only during the critical segments. As a result, the signal Q0(t) is stable in the complement
of the instability segments Ai and Ai+1. The signal D1(t) is output by the combinational
circuit C. We assume that the contamination delay of the combinational circuit is zero,
and thus, the signal D1(t) becomes instable as soon as Q0(T) (the input of C) becomes
instable. We denote the propagation delay of the combinational circuit C by d(C).
The signal D1(t) stabilizes at most d(C) time units after Q0(t) stabilizes.The signal
D1(t) is stable during the critical segment Ci+1, and therefore, Q1(t) is stable during the
complement of the instability segments.

17.7. BOUNDING INSTABILITY 291

From a functional point of view, stability of D0(t) during the critical segments implies
that D0(ti) is logical. We denote D0(ti) by X ∈ {0,1}. During the interval (ti + tpd, ti+1 +
tcont) the flip-flop’s output Q0(t) equals X. The circuit C outputs a logical value f(X) ∈{0,1} which is a Boolean function of X. The value f(X) is output by C during the
interval (ti + tpd +d(C), ti+1 + tcont). It follows that Q1(t) equals f(X) during the interval(ti+1 + tpd, ti+2 + tcont).
17.6.1 Non-empty intersection of Ci and Ai

The timing analysis fails if the critical segment Ci and the instability segment intersect,
namely,

Ci ∩Ai ≠ ∅.

This could happen, if thold > tcont (in contradiction to Definition 17.2).
We now explain why this can cause the circuit to fail (see Figure 17.10). The period

during which D1(t) is guaranteed to be stable is (ti + tpd + d(C), ti+1 + tcont). However,
if tcont < thold, then D1(t) is not guaranteed to be stable during the critical segment
Ci+1. This is a violation of the assumptions we require in order to guarantee correct
functionality. As a result of this violation, the signal Q1(t) is unspecified outside the
instability segments.

In many flip-flop implementations it so happens that thold > tcont. How are such flip-
flops used? The answer is that one needs to rely on the contamination delay of the
combinational circuit C. Let cont(C) denote the contamination delay of C. The interval
during which D1(t) is guaranteed to be stable is

(ti + tpd + d(C), ti+1 + tcont + cont(C)).
If tcont + cont(C) > thold, then the signal D1(t) is stable during the critical segment Ci+1,
and correct functionality is obtained.

In this book we simplify by adopting the pessimistic assumption that the contamina-
tion delay of every combinational circuit is zero. This means that we need to be more
restrictive with respect to flip-flops and require that the critical segment and the insta-
bility segments are disjoint. Note, however, that even if the contamination delay of C is
positive (although we assumed it is zero), then our analysis is still valid. Hence, assuming
zero contamination delay of combinational circuits does not introduce errors even if the
contamination delay is positive.

17.7 Bounding Instability

Flip-flops play a crucial role in bounding the segments of time during which signals may
be instable. Informally, uncertainty increases as the segments of stability become shorter.
In this section we discuss the role of flip-flops in bounding instability.

Figure 17.11 depicts two circuits: (a) a chain of k = 3 inverters, and (b) a chain of
k = 3 flip-flops. We use the same naming convention in both circuits. Namely, we index

292 CHAPTER 17. FLIP-FLOPS

clk

ff

clk

ff

combinational
circuit
C

D0(t) Q1(t)
D1(t)Q0(t)

(a) A circuit with two identical flip-flops and a combinational circuit in
between.

d(C)

Ci Ai Ci+1 Ai+1

clk

D0(t)
tsu

thold

D1(t)

tpd

tcont

tpd

tcont

Q0(t)

Q1(t)

(b) A simplified timing diagram. Dark gray areas denote potential
instability of a signal. Light gray areas denote intervals during which
the signal is guaranteed to be stable.

f(X)

X

X

f(X)

clk

D0(t)

D1(t)

Q0(t)

Q1(t)

(c) Flow of data.

Figure 17.9: A circuit and its simplified timing analysis.

17.7. BOUNDING INSTABILITY 293

���
���
���
���

���������
���������
���������
���������

�����
�����
�����
�����

d(C)

Ci Ci+1

Ci+1Ci

clk

D0(t)
tsu

thold

D1(t)

Q0(t)

Q1(t)

Ai Ai+1

tcont

tpd

tcont

tpd

Figure 17.10: The simplified timing diagram in the case that Ai ∩ Ci ≠ ∅. Note that
D1(t) is not guaranteed to be stable during the critical segment Ci+1. The hatched
pattern denotes intervals during which the signal is unspecified.

the k components from 0 to k −1. The input of the ith component is denoted by Di, and
the output is denoted by Qi(t). Note that Di+1(t) is fed by Qi(t).

inv1

D1(t) D2(t) Q2(t)
inv2D0(t)

Q1(t)
inv0

Q0(t)

(a)

D1(t)D0(t)

clk

ff0

clk

ff1

Q0(t) D1(t)

clk

ff2 Q2(t)
Q1(t)

(b)

Figure 17.11: A chain of k inverters and a chain of k flip-flops.

The timing diagrams of the two chains are depicted in Figure 17.12. Part (a) shows
the timing analysis for a chain of k inverters. The input D0(t) is stable for a “long”
time. Each inverter along the chain decreases the segment of stability by tpd(inv). Thus,
uncertainty increases along the chain of inverters.

On the other hand, instability in a chain of flip-flops is confined to the instability
segments {Ai}i of the flip-flops. Formally, if Dj(t) is stable during the interval (ti −
tsu, ti + thold), then Qj(t) is stable during the interval (ti + tpd, ti+1 + tcont).

294 CHAPTER 17. FLIP-FLOPS

k · tpd(inv)

tpd(inv)

tpd(inv)

Q1(t)

Qk−1(t)

D0(t)

Q0(t)

(a) Timing diagram of a chain of k inverters

tcont

clk

D0(t)
tsu

thold

tpd

tcont

Q0(t)

Q1(t)

Qk−1(t)

Ci Ai Ci+1 Ai+1

tpd

tcont

tpd

tcont

tcont

tcont

(b) Timing diagram of a chain of k flip-flops

Figure 17.12: Comparison of segments of instability in two chains.

17.8. OTHER TYPES OF MEMORY DEVICES 295

Ci

thold

tsu tsu

clk

Q(t)

D(t)

d

x y

x y z

ti t′i ti+1

d

z

Figure 17.13: A timing diagram of a D-Latch.

17.8 Other types of memory devices

Edge triggered flip-flops are not the only memory device that exist. We briefly overview
some of these devices.

17.8.1 D-Latch

A D-latch, unlike an edge-triggered flip-flop, is characterized by three parameters tsu,
thold, and d. The critical segment is defined with respect to the falling edge of the clock.
Let t′i denote the time of the falling edge of the clock during the ith clock cycle. The

critical segment of a D-latch is defined to be Ci
△

= (t′i − tsu, t′i + thold). In addition, the
D-latch is characterized by a combinational delay d. The functionality of a D-latch is
defined as follows (see Figure 17.13).

1. During the interval [ti+d, t′i), the output Q(t) satisfies: Q(t) =D(t), provided that
D(t) is stable during the interval (t − d, t). We say that the D-latch is transparent
during the interval [ti + d, t′i).

2. During the interval (t′i + thold, ti+1), if D(t) is stable during the critical segment(t′i − tsu, t′i + thold), then Q(t) = D(t′i). We say that the D-latch is opaque during the
interval (t′i + thold, ti+1).

Figure 17.13 depicts a timing diagram of a D-latch. During the pulse (ti, t′i) the input
D(t) stabilizes on the value x. Since the D-latch is transparent, after a delay of d, the
output Q(t) equals x. During the critical segment Ci, the input D(t) is stable and equals
y. The D-latch is opaque when the clock is zero. Therefore, during the interval (t′i+d, ti+1)
the output equals y. Note that during the interval (t′i +d, ti+1), the output is not affected
by changes in the input. The input stabilizes on z before ti+1. But the value of D(t)
during the interval (t′i + thold) does not affect the output. After the clock rise in ti+1, the
D-latch is transparent again. Therefore, the output Q(t) equals z after a delay of d.

D-latches are very important devices. In fact, D-latches are the building blocks of
flip-flops. A flip-flop can be built from two D-latches and additional inverters (required

296 CHAPTER 17. FLIP-FLOPS

ce-ff
clk

Q

D

ce(t)

Figure 17.14: A a schematic of a clock enabled flip-flop.

to restore the signals). Design based on D-latches lead to faster designs. However,
such designs based on D-latches require multiple clock phases and are harder to analyze.
Although timing with multiple clock phases is an important and interesting topic, we do
not deal with it in this book.

17.8.2 Clock enabled flip-flops

We use the terminology and notation of an edge-triggered flip-flop in the definition of a
clock enabled flip-flop.

Definition 17.4 A clock enabled flip-flop is defined as follows.

Inputs: Digital signals D(t),ce(t) and a clock clk.

Output: A digital signal Q(t).
Functionality: If D(t) and ce(t) are stable during the critical segment Ci, then for

every t ∈ (ti + tpd, ti+1 + tcont)
Q(t) = ⎧⎪⎪⎨⎪⎪⎩

D(ti) if ce(ti) = 1

Q(ti) if ce(ti) = 0.

Figure 17.14 depicts a schematic of a clock enabled flip-flop. Note the additional
ce(t) port.

We refer to the input signal ce(t) as the clock-enable signal. Note that the input
ce(t) indicates whether the flip-flop samples the input D(t) or maintains its previous
value.

Part (A) of Figure 17.15 depicts a successful implementation of a clock enabled flip-
flop. This implementation uses a mux and an edge-triggered flip-flop. Part (B) of Fig-
ure 17.15 depicts a weak implementation of a clock enabled flip-flop.

The main weakness of the design depicted in part (B) is that the output of the and-
gate is not a clock signal. For example, the output of the and-gate is allowed to fluctuate
when ce(t) is not logical. Such fluctuations (called glitches) can cause the flip-flop to
sample the input when not needed. In addition, the transitions of the output of the and-
gate might be slow and require increasing the hold time. Moreover, in some technologies,

17.9. SUMMARY 297

clk ff

mux

01

Q(t)

D(t)

ce(t)

(A)

ff

Q(t)

(B)

D(t)

clk

ce(t)
and

Figure 17.15: (A) a successful implementation of a clock enabled flip-flop. (B) A wrong
design.

the flip-flop does not retain the stored bit forever. For example, consider the case in which
the stored value is retained only for 2-3 clock cycles. In such a case, if the clock-enable
signal is low for a long period then the flip-flop’s output may become non-logical.

17.9 Summary

In this chapter we presented memory devices called flip-flops. We consider using flip-flops
in the presence of a clock signal. The clock signal causes the flip-flop to sample the value
of the input towards the end of a clock cycle and output the sampled value during the
next clock cycle. Flip-flops play a crucial role in bounding the segments of time during
which signals may be instable.

In a sense, flip-flops and combinational circuits have opposite roles. Combinational
circuits compute interesting Boolean functions but increase uncertainty (namely, lengthen
segments of time during which signals may be instable). Flip-flops, on the other hand,
output the same value that is fed as input but they limit uncertainty.

We considered a task called arbitration. We proved that no circuit can implement an
arbiter. We then proved that a flip-flop with an empty critical segment can be used to
build an arbiter. This proves that a flip-flop must have a non-empty critical segment.

Problems

17.1 Is an edge-triggered flip-flop a combinational gate?

17.2 Does the proof of Claim 17.1 hold only if the signals Ai(t) rise “slowly”? Prove
the claim with respect to non-decreasing signals Ai(t) such that the length of the inter-
val during which dig(Ai(t)) is non-logical equals ε. (Figure 17.16 depicts slow and fast
signals.)

298 CHAPTER 17. FLIP-FLOPS

Non-Logical Level

t

Ai(t)Ai(t)

t

(A) (B)

Non-Logical Level

ε

Figure 17.16: (A) Slowly rising signals Ai(t) used in proof of Claim 17.1. (B) Fast signals
Ai(t).

ffnew

ff

C1

C2

D

clk

Q

Figure 17.17: A schematic of a “new” flip-flop that is composed of a flip-flop and two
additional combinational circuits C1 and C2.

17.3 Assume that we have an edge-triggered flip-flop ff in which thold > tcont. Suppose
that we have an inverter with a contamination delay cont(inv) > 0. Suggest how to
design an edge-triggered flip-flop ff′ that satisfies thold(ff′) < tcont(ff′). What are the
parameters of ff′?

17.4 Compute the parameters of the clock-enabled flip-flop depicted in part (A) of Fig-
ure 17.15 in terms of the parameters of the edge-triggered flip-flop and the mux.

17.5 Figure 17.17 depicts a schematic of a flip-flop ffnew. This new flip-flop is composed
of a regular flip-flop and two combinational circuits C1 and C2. The parameters of the
flip-flop ff are tsu ,thold , tcont and tpd. The propagation delay and contamination delay
of the combinational circuit Ci are tpd(Ci), cont(Ci) respectively, for i ∈ {1,2}.
What are the parameters t′su ,t′hold , t′cont and t′pd of the new flip-flop ffnew?

17.9. SUMMARY 299

17.6 Design a circuit that satisfies the following specification:

Input: {X(t)}∞t=0, where X(t) ∈ {0,1} for every clock cycle t, and a clock signal clk.

Output: {Y (t)}∞t=0, where Y (t) ∈ {0,1} for every clock cycle t. {Z(t)}∞t=0, where Z(t) ∈{0,1} for every clock cycle t.

Functionality:

∀t ≥ 1 ∶ Y (t) =xor(X(0), . . . ,X(t − 1)) ,
∀t ≥ 0 ∶ Z(t) =xor(X(0), . . . ,X(t)) .

1. Implement your design using Logisim. Submit a printout of your design.

2. Simulate two different inputs of length 5: (i) 01010, (ii) 11111 . Verify by yourself
that your design is correct (make sure you know how to initialize the flip-flops, and
to see the values of a signal in each clock cycle).

300 CHAPTER 17. FLIP-FLOPS

Chapter 18

Memory Modules

Contents
18.1 The Zero Delay Model . 302

18.1.1 Example: Sequential xor . 303

18.2 Registers . 303

18.2.1 Parallel Load Register . 303

18.2.2 Shift Register . 304

18.3 Random Access Memory (RAM) 304

18.3.1 A simple Implementation of a RAM 307

18.4 Read-Only Memory (ROM) . 307

18.5 Summary . 309

301

302 CHAPTER 18. MEMORY MODULES

In this chapter we present circuits that serve as memory modules. The first type of
circuit, called a parallel load register, is simply built of identical copies of clock enabled
flip-flops. The second type, called a shift register, remembers the input from k clock
cycles ago. Such a shift register is build from k clock enabled flip-flops connected in
chain.

We also consider memory circuits. The first circuit, called a Random Access Memory
(RAM) is capable of storing and reading values. It is like a blackboard divided into many
cells. We can write a value in each cell, and we can read the value written in a cell.
When we write in a cell, it erases the previous value so that only the new value is written
in the cell. The second memory circuit is called a Read Only Memory (ROM). It is like
a blackboard in which a value has been written in each cell with permanent ink. The
contents of each cell can not be erased or written over, and we can only read values stored
in the cells.

The functionality of a flip-flop is complicated and following the timing is tedious.
Instead, we propose an abstract model called the zero delay model. In this simplified
model, all transitions are instantaneous. The zero delay model enables us to separate
between functionality and timing so that we can focus on functionality.

18.1 The Zero Delay Model

In the zero delay model transitions of all signals are instantaneous. This means that the
propagation delay and contamination delay of combinational circuits is zero. In addition,
the parameters of flip-flops satisfy:

tsu = ti+1 − ti,

thold = tcont = tpd = 0.

We emphasize that this model is used only as a simplified model for specifying and
simulating the functionality of circuits with flip-flops.

The clock period, in the zero delay model, equals 1. That is, ti+1 − ti = 1, for every i.
Hence, the duration of the ith clock cycle is the interval [ti, ti+1) = [i, i + 1).

Since all transitions are instantaneous, we may assume that each signal is stable during
each clock cycle. Let Xi denote the digital value of the signal X during the i’th clock
cycle.

Under the zero delay model, the functionality of a flip-flop is specified as follows:

Q(t) =D(t − 1).
Since each signal is stable during each clock cycle, we could also write Qi = Di−1. The
meaning of this specification is that as follows. The critical segment Ci equals [ti−1, ti).
The value of D(t) is stable during the critical segment [ti−1, ti). This value, denoted by
Di−1, is sampled by the flip-flop during the clock cycle (i − 1). In the next clock cycle[ti, ti+1), the flip-flop’s output Q(t) equals the value of the input sampled during the
previous cycle.

18.2. REGISTERS 303

18.1.1 Example: Sequential xor

Consider the circuit depicted in Figure 18.1. Let Ai denote the value of the input A
during the interval [ti, ti+1).

clk

Q

D
ff

A

xor

Z

Y

(a)

i Ai Yi Zi
0 0 0 0
1 0 0 0
2 1 1 0
3 0 1 1
4 0 1 1
5 1 0 1
6 0 0 0
7 1 1 0
8 0 1 1

(b)

Figure 18.1: A sequential xor circuit. (a) schematic (b) logical simulation in the zero
delay model. We assume that the flip-flop is initialized to zero. Note that Zi+1 = Yi and
Yi = xor(Ai,Zi).

18.2 Registers

A term register is used to define a memory device that stores a bit or more. There are
two main types of register depending on how their contents are loaded.

18.2.1 Parallel Load Register

Definition 18.1 An n-bit parallel load register is specified as follows.

Inputs: (i) D[n − 1 ∶ 0](t), (ii) ce(t), and (iii) a clock clk.

Output: Q[n − 1 ∶ 0](t).
Functionality:

Q[n − 1 ∶ 0](t + 1) = ⎧⎪⎪⎨⎪⎪⎩
D[n − 1 ∶ 0](t) if ce(t) = 1

Q[n − 1 ∶ 0](t) if ce(t) = 0.

304 CHAPTER 18. MEMORY MODULES

An n-bit parallel load register is simply built from n clock enabled flip-flops. The ith
flip-flop is fed by D[i] and CE and outputs Q[i]. Fig. 18.2 depicts a 4-bit parallel load
register.

4

clk

ce

ce-ff(4)

D[3 : 0]

Q[3 : 0]

4

(a)

Q[3]

clk

ce

D[0]

ce-ff

1

1

Q[0]

clk

ce

D[1]

ce-ff

1

1

Q[1]

clk

ce

D[2]

ce-ff

1

1

Q[2]

clk

ce

D[3]

ce-ff

1

1

(b)

Figure 18.2: A 4-bit parallel load register:(a) a shorthand drawing of the schematics of a
4-bit parallel load register. (b) an elaborated drawing of the schematics of a 4-bit parallel
load register.

18.2.2 Shift Register

A shift register is also called a serial load register.

Definition 18.2 A shift register of n bits is defined as follows.

Inputs: D[0](t) and a clock clk.

Output: Q[n − 1](t).
Functionality: Q[n − 1](t + n) =D[0](t).

An n-bit shift register is built from a chain of n flip-flops, indexed from 0 to n−1. The
ith flip-flop is fed by D[i] and outputs Q[i]. Since the flip-flops are chained, D[i + 1] ←
Q[i]. Fig. 18.3 depicts a 4-bit shift register.

18.3 Random Access Memory (RAM)

The module called Random Access Memory (RAM) is an array of memory cells. Each
memory cell stores a single bit. In each cycle, a single memory cell is accessed. Two

18.3. RANDOM ACCESS MEMORY (RAM) 305

i D[3 ∶ 0] ce Q[3 ∶ 0]
0 1010 1 0000
1 0101 1 1010
2 1100 0 0101
3 1100 1 0101
4 0011 1 1100

(a) Simulation of parallel load
register

i D[0] Q[3 ∶ 0]
0 1 0000
1 1 0001
2 1 0011
3 0 0111
4 1 1110

(b) Simulation of shift
register

Table 18.1: Comparison of simulations of a parallel load register and a shift register. We
assume all flip-flops are initialized to zero.

Q[3]

clk clk clk clk

1

1

1

1

1

1

1

1

ff0ff1ff2ff3

D[3] D[2] D[1] D[0]

Q[0]Q[1]Q[2]

Figure 18.3: A 4-bit shift register.

306 CHAPTER 18. MEMORY MODULES

operations are supported: read and write. In a read operation, the contents of the
accessed memory is output. In a write operation, a new value is stored in the accessed
memory.

The number of memory cells is denoted by 2n. Each cell has a distinct address between
0 and 2n − 1. The cell to be accessed is specified by an n-bit string called Address.

The array of memory cells is denoted by M[2n − 1 ∶ 0]. Let M[i](t) denote the value
stored in the ith entry of the array M during clock cycle t.

The module ram(2n) is specified using the zero-delay model as follows (a schematic
symbol is depicted in Figure 18.4):

Definition 18.3 A ram(2n) is specified as follows.

Inputs: Address[n − 1 ∶ 0](t) ∈ {0,1}n,Din(t) ∈ {0,1}, R/W(t) ∈ {0,1} and a clock clk.

Output: Dout(t) ∈ {0,1}.
Functionality : The functionality of a ram is specified by the following program:

1. data: array M[2n − 1 ∶ 0] of bits.

2. initialize: ∀i ∶M[i] ← 0.

3. For t = 0 to ∞ do

(a) Dout(t) =M[⟨Address⟩](t).
(b) For all i ≠ ⟨Address⟩: M[i](t + 1)←M[i](t).
(c)

M[⟨Address⟩](t + 1)← ⎧⎪⎪⎨⎪⎪⎩
Din(t) if R/W(t) = 0

M[⟨Address⟩](t) else.

We note that the value of Dout(t) in a write cycle (i.e., when R/W (t) = 0) is not really
important. For simplicity we defined it to be the “old” value of the memory entry, i.e.,
the value before Din(t) is stored in M[⟨Address⟩].

Din

clk

R/W
ram(2n)

Dout

Address[n− 1 : 0]

Figure 18.4: A schematic of a ram(2n).

18.4. READ-ONLY MEMORY (ROM) 307

18.3.1 A simple Implementation of a RAM

In this section we present a simple implementation of a ram(2n), the schematics of which
is depicted in Figure 18.5. The implementation consists of the following three parts:

1. An address decoder.

2. An array of 2n memory cells.

3. A (2n ∶ 1)-mux.

Each memory cell is specified as follows:

Definition 18.4 A single bit memory cell is defined as follows.

Inputs: Din(t), R/W(t), sel(t), and a clock clk.

Output: Dout(t).
Functionality: Let S(t) ∈ {0,1} denote the state of memory cell in cycle t. Assume that

the state is initialized to be S(0) = 0. The functionality is defined according to the
following cases.

1. S(t)← ⎧⎪⎪⎨⎪⎪⎩
Din(t) if sel(t) = 1 and R/W(t) = 0

S(t − 1) otherwise.

2. Dout(t)← S(t − 1).
Note that we do not need to specify the value of Dout(t) if sel(t) = 0. We do so for
simplicity.

An implementation of a memory cell is depicted in Fig. 18.6.

18.4 Read-Only Memory (ROM)

The module called Read-Only Memory (ROM) is similar to a RAM, except that write
operations are not supported. This means that the contents stored in each memory cell
are preset and fixed. ROMs are used to store information that should not be changed.
For example, the ROM stores the program that is executed when the computer is turned
on.

Definition 18.5 A rom(2n) that implements a Boolean function M ∶ [0..2n−1]→ {0,1}
is defined as follows.

Inputs: Address[n − 1 ∶ 0](t).
Output: Dout(t).
Functionality :

Dout =M[⟨Address⟩] .
A rom(2n) can be implemented by a (2n ∶ 1)-mux, where the ith data input equals

M[i]. An implementation is depicted in Fig. 18.7.

308 CHAPTER 18. MEMORY MODULES

M(2n)

2n

2n

1

Address[n − 1 : 0]

n

R/W
1

1

decoder(n)

(2n : 1) − mux

Dout

D[2n
− 1 : 0]

B[2n
− 1 : 0]

n
Address[n − 1 : 0]

Din

(a)

Address[n − 1 : 0]

2n

2n

1

1

1

Din

1 1

111

R/W
1

R/W
1

R/W
1

Address[n − 1 : 0]

n

decoder(n)

(2n : 1) − mux

Dout

M2n
−1

D[2n
− 1]

Din

1

D[2n
− 1 : 0]

B[2n
− 1 : 0]

1

M1

D[1]

M0

D[0]

DinB[2n
− 1] B[1] B[0]

n

(b)

Figure 18.5: A simplified implementation of a ram(2n): (a) a shorthand drawing of the
schematics of ram(2n). (b) an elaborated drawing of the schematics of ram(2n).

18.5. SUMMARY 309

sel ∧ not(R/W)
ff

clk

ce

Din

Dout

Figure 18.6: An implementation of a memory cell.

Address[n − 1 : 0]

1

2n

(2n : 1) −muxn

Dout

M [2n
− 1 : 0]

Figure 18.7: An implementation of a rom(2n).

18.5 Summary

In this chapter we defined four major memory modules and presented simple implementa-
tions for each module. In practice, memory modules such as RAMs are highly optimized
circuits that are implemented using analog methods.

Problems

18.1 Define and implement a shift register with a clock enable signal ce. When ce = 1,
a shift occurs. When ce = 0, the contents of the register remain unchanged.

18.2 A shift register with a parallel load is a shift register with additional inputs, as
follows. This register has an input D[n − 1 ∶ 0] and an extra input called load ∈ {0,1}.
When load = 0, a shift takes place. When load = 1, the vector D[n− 1 ∶ 0] is stored in the
register. Design a shift register with a parallel load that satisfies this definition.

18.3 Design a random access memory with 2n memory cells, where each cell can store
k bits.

18.4 Design a dual port random access memory with 2n memory cells, where each cell
can store 1 bits. In a dual port memory there are two address inputs A1 and A2, and two
data outputs D1 and D2. In each cycle, either a write operation takes place to the cell
M[⟨A1⟩], or two read operations take place, namely,

D1(t)←M[⟨A1(t)⟩](t) D2(t)←M[⟨A2(t)⟩](t).

310 CHAPTER 18. MEMORY MODULES

Chapter 19

Foundations of Synchronous Circuits

Contents
19.1 Definition . 312

19.2 The Canonic Form of a Synchronous Circuit 314

19.3 Timing Analysis: the canonic form 314

19.3.1 An Easy Example . 315

19.3.2 Input/Output Timing Constraints 318

19.3.3 Sufficient Conditions . 319

19.3.4 Satisfying the Timing Constrains 320

19.3.5 Initialization . 320

19.4 Functionality: the canonic form 322

19.5 Finite State Machines . 323

19.6 Timing analysis: the general case 324

19.6.1 Timing Constraints . 325

19.6.2 Algorithms: feasibility and minimum clock period 326

19.6.3 Algorithms: correctness . 327

19.7 Simulation of Synchronous Circuits 329

19.8 Synthesis and Analysis . 330

19.8.1 Analysis . 330

19.8.2 Synthesis . 331

19.9 Summary . 331

19.10Problems . 332

311

312 CHAPTER 19. FOUNDATIONS OF SYNCHRONOUS CIRCUITS

In this chapter we deal with synchronous circuits. We begin with a formal definition
that builds on the definition of combinational circuits. This definition is syntactic, and
we must prove that a circuit that satisfies this definition does what we expect it to do.
But how do we define what it should do? Namely, how do we specify functionality and
how do we specify timing?

We begin with a simple form of synchronous that we call the canonic form. In the
canonic form it is clear what the flip-flops do, where the output is computed, and where we
compute the inputs of the flip-flops. We begin by analyzing the timing of a synchronous
circuit in canonic form. We show that stability during the critical segments of the flip-flops
can be achieved if the clock period is sufficiently long. We also address the painful issue
of initialization. The functionality of a synchronous circuit in canonic form is specified
using an abstract model called a finite state machine.

We then proceed with the timing analysis of synchronous circuit in general. We
present two algorithms for timing analysis. The first algorithm, FEAS, tells us if the
timing constraints of the circuit are feasible. The second algorithm, Min- − Φ, finds the
minimum clock period. We also present an algorithm for simulating a synchronous circuit.

Two tasks are often associated with synchronous circuit. The first task, called anal-
ysis, is to find the finite state machine that specifies the functionality of a given syn-
chronous circuit. The second task, called synthesis, is to design a synchronous circuit,
the functionality of which is specified by a given finite state machine.

19.1 Definition

The building blocks of a synchronous circuit are combinational gates, wires, and flip-flops.
As in the case of a combinational circuit, a synchronous circuit is a netlist H = (V,N,π).
However, the requirements are somewhat different. First, the graph DG(H) is directed
but may contain cycles. Second, we also use flip-flops, hence Γ includes combinational
gates, input/output gates, and flip-flops (ff and ce-ff). Thus, a vertex may be labeled
as a flip-flip.

Since a flip-flop has two inputs D and clk that play quite different roles, we must
make sure that we know the input port of each incoming edge. This task is quite easy
since the clock signal must be fed to the clk input port of each and every flip-flop!

In the following definition we do not deal with the graphG and the labeling π. Instead,
we transform the circuit C to a different circuit C ′ and require that C ′ is a combinational
circuit.

Definition 19.1 A synchronous circuit is a circuit C composed of combinational gates,
wires, and flip-flops that satisfies the following conditions:

1. There is an input gate that feeds the clock signal clk.

2. The set of ports that are fed by the clock clk equals the set of clock-inputs of the
flip-flops.

19.1. DEFINITION 313

3. Let C ′ denote a circuit obtained from C by the following changes: (i) Delete the
input gate that feeds the clock clk and all the wires carrying the clock signal. (ii) Re-
place each flip-flop with an output gate (instead of the port D) and an input gate
(instead of the port Q). We require that the circuit C ′ is a combinational circuit.

We emphasize again that in a synchronous circuit the clock signal is connected only
to the clock port of the flip-flops; the clock may not feed other inputs (i.e. inputs of
combinational gates or the D-port of flip-flops). Moreover, every clock-port of a flip-flop
is fed by the clock signal.

Part 3 in the definition of synchronous circuit considers the circuit after the flip-flops
are removed. We refer to this transformation as stripping away the flip-flops. Figure 19.1
depicts a synchronous circuit C and the corresponding combinational circuit C ′ obtained
from C by stripping away the flip-flops.

clk

ff

and3

clk

ff

or

and3

or

Figure 19.1: A synchronous circuit C and the combinational circuit C ′ obtained from C

by stripping away the flip-flops.

An equivalent way to define a synchronous circuit is to start with a combinational

314 CHAPTER 19. FOUNDATIONS OF SYNCHRONOUS CIRCUITS

circuit C ′. Now, flip-flips are added as follows. Of course, the clock port of each flip-flip
is fed by the clock signal. In addition, for each flip-flop, designate a pair consisting of an
output-gate and an input-gate of C ′. We replace this pair by a flip-flop. The D-port of
the flip-flop is fed by the signal that feeds the output-gate, and the Q-port of the flip-flop
feeds the signal that is fed by the input-gate.

Finally, we point out that it is easy to check if a given circuit C is a synchronous
circuit. We simply check if there is a clock signal that is connected to all the clock
terminals of the flip-flops and only to them. Strip the flip-flops away to obtain the circuit
C ′. Now, all we need to do is to check if C ′ is a combinational circuit; a task we have
already discussed in Chapter 11.

Claim 19.1 Every cycle in a synchronous circuit traverses at least one flip-flop.

Proof: Consider a cycle p in a synchronous circuit C. Clearly, p cannot contain an
edge that carries the clock signal. Indeed, the clock signal emanates from an input gate,
which is a source, and cycle cannot contain a source.

Consider the circuit C ′ obtained from C by stripping away the flip-flops. Since p does
not contain edges that carry the clock signal, all the edges of p are also edges in C ′. Since
C ′ is acyclic, it follows that one of the vertices in p is split into a sink and a source. This
implies that p contains a flip-flop, as required. 2

19.2 The Canonic Form of a Synchronous Circuit

Consider the synchronous circuit depicted in Figure 19.2. The circuit has an input IN ,
and output OUT , and internal signals S (for “state”) and NS (for “next state”). We
abuse notation and refer to the combinational circuits λ and δ by the Boolean functions
that they implement. In this example, all the signals in the circuit carry single bits (as
normal signals do). However, we could easily deal with the case in which IN,OUT,S,NS
are buses (i.e. multiple-bit signals).

One can transform every synchronous circuit so that it fits the description in Fig-
ure 19.2. This is achieved by: (i) gathering the flip-flops into one group and (ii) du-
plicating the combinational circuits (if necessary) so that we can separate between the
combinational circuits that produce output signals and combinational circuits that pro-
duce signals that are fed back to the flip-flops. This is why we refer to the circuit depicted
in Figure 19.2 as a canonic form of a synchronous circuit.

19.3 Timing Analysis: the canonic form

In this section we analyze the timing constraints of a synchronous circuit that is given in
canonic form.

19.3. TIMING ANALYSIS: THE CANONIC FORM 315

comb. circuit
λ

comb. circuit
δ

Q D

clk

IN

OUT

S NS

Figure 19.2: A synchronous circuit in canonic form.

Stability interval. We associate with each signal an interval corresponding to the ith
clock cycle during which the signal is supposed to be stable. We refer to this interval
as the stability interval. We denote the stability interval corresponding to the ith clock
cycle of a signal X by stable(X)i. We denote the digital value of X during the interval
stable(X)i by Xi.

The stability interval is part of the specification. When referring to an input X,
this means that we are guaranteed that the input will stable during stable(X)i. When
referring to an output Y , this means that we must design the circuit so that Y will be
stable during stable(Y)i.

19.3.1 An Easy Example

Consider the simple synchronous circuit depicted in Fig. 19.3a. A simplified timing
diagram of this circuit is depicted in Figure 19.3b. In this example we do not assume
that the two flip-flops have the same parameters.

We require that the input D0(t) to flip-flop FF1 is stable during the critical segments
of FF1, namely, for every i ≥ 0:

stable(D0)i △= Ci+1(FF1) (19.1)

= (ti+1 − tsu(FF1), ti+1 + thold(FF1)). (19.2)

Note, that the stability interval corresponding to the ith clock cycle of an input of a flip-
flop must contain the critical segment Ci+1. Indeed, in the ith clock cycle, the flip-flop
samples its input at the end of the cycle, at time ti+1.

The stability interval of the output Q0(t) of flip-flop FF1 is defined by

stable(Q0)i △= (ti + tpd(FF1), ti+1 + tcont(FF1)). (19.3)

The rational behind this definition is that if the input D0(t) is stable during every critical
segment Ci, then the output Q0(t) of the flip-flop is stable in the above interval.

316 CHAPTER 19. FOUNDATIONS OF SYNCHRONOUS CIRCUITS

Note that we have a problem with the guarantee for the stability interval of Q0 during
clock cycle zero. This is not a minor technical issue! How can we argue anything about the
output of FF1 during clock cycle zero?! To solve this problem, we need an initialization
assumption that tells us what the value of the the output of the flip-flop is during the
first clock cycle, and when is it stable. Indeed, the issue of proper initialization has the
role of the induction basis in the timing analysis of synchronous circuits. We elaborate
on this important issue in Section 19.3.5. In the meantime, assume that Eq. 19.3 holds
also for i = 0.

To ensure proper functionality, the input D1(t) must be stable during the critical
segments of flip-flop FF2. Therefore, we define the stability interval of D1(t) as follows:

stable(D1)i △= Ci+1(FF2) (19.4)

= (ti+1 − tsu(FF2), ti+1 + thold(FF2)). (19.5)

The following claim provides a sufficient condition that guarantees that D1(t) is indeed
stable during the stability intervals {stable(D1)i}i≥0.

Claim 19.2 The signal D1(t) is stable during the critical segments of flip-flop FF2 if

∀i ≥ 0 ∶ tpd(FF1) + pd(C) + tsu(FF2) ≤ ti+1 − ti, and (19.6)

thold(FF2) ≤ tcont(FF1) + cont(C). (19.7)

Proof: The signal D1(t) is output by the combinational circuit C. The circuit C has a
contamination delay cont(C) and a propagation delay pd(C). Since stable(Q0)i satisfies
Eq. 19.3 and since D1(t) is output by C, the signal D1(t) is stable during the intervals:

(ti + tpd(FF1) + pd(C), ti+1 + tcont(FF1) + cont(C)). (19.8)

Thus, we require that

Ci+1(FF2) ⊆ (ti + tpd(FF1) + pd(C), ti+1 + tcont(FF1) + cont(C)). (19.9)

Note that Eq. 19.9 is in fact two inequalities:

ti+1 − tsu(FF2) ≥ ti + tpd(FF1) + pd(C)
ti+1 + thold(FF2) ≤ ti+1 + tcont(FF1) + cont(C).

These two inequalities are equivalent to Equations 19.6 and 19.7, respectively, and the
claim follows. 2

Claim 19.2 teaches us two important lessons:

Minimum clock period: To ensure proper functionality, the clock period cannot be
too short. Namely, the time ti+1 − ti between two consecutive rising clock edges
must be longer than tpd(FF1) + pd(C) + tsu(FF2).

19.3. TIMING ANALYSIS: THE CANONIC FORM 317

clk

ff1

clk

ff2

combinational
circuit
C

D0(t) Q1(t)
D1(t)Q0(t)

(a) A circuit with two flip-flops and a combinational circuit in between.

pd(C)cont(C)

clk

D0(t)
tsu(FF1)

thold(FF1)

D1(t)

tpd(FF1)
Q0(t)

tcont(FF1)

thold(FF2)

tsu(FF2)

Ci Ai Ci+1 Ai+1

(b) A simplified timing diagram.

Figure 19.3: A simple synchronous circuit. In this example the two flip-flops have different
parameters: tsu(FF2) > tsu(FF1) and thold(FF2) > thold(FF1).

318 CHAPTER 19. FOUNDATIONS OF SYNCHRONOUS CIRCUITS

Use simple flip-flops: Inequality 19.7 is satisfied if tcont(FF1) ≥ thold(FF2). When we
defined a flip-flop we assumed that tcont ≥ thold so that the critical segment and the
segment of instability are disjoint. There are many ways to complicate the task of
designing correct synchronous circuits. One possibility for such a complication is to
use two or more types of flip-flops FF1 and FF2 in which tcont(FF1) < thold(FF2).
In such a case, one has to rely on the contamination delay of the combinational
logic between the flip-flop.

19.3.2 Input/Output Timing Constraints

The input/output timing constraints formulate the timing interface between the circuit
and the “external world”. The constraint corresponding to the input tells us when the
input is guaranteed to be stable, and the constraint corresponding to the output tells us
when the circuit’s output is required to be stable. Usually the external world is also a
synchronous circuit. This means that the signal IN is an output of another synchronous
circuit. Similarly, the signal OUT is an input of another synchronous circuit. Hence, it is
helpful to think of IN as the output of a flip-flop and of OUT as the input of a flip-flop.

1. The timing constraint corresponding to IN is defined by two parameters: pd(IN) >
cont(IN) as follows. The stability intervals of signal IN are defined, for every i ≥ 0
by:

stable(IN)i △= (ti + pd(IN), ti+1 + cont(IN)). (19.10)

Recall that ti denotes the starting time of the ith clock period. Note that if pd(IN) ≤
cont(IN), then the stability intervals stable(IN)i and stable(IN)i+1 overlap. This
means that IN is always stable, and hence, constant, which is obviously not an
interesting case. Hence, we require that pd(IN) > cont(IN).

2. The timing constraint corresponding toOUT is defined by two parameters: setup(OUT)
and hold(OUT) as follows. The stability intervals of signal OUT are defined, for
every i ≥ 0 by:

stable(OUT)i △= (ti+1 − setup(OUT), ti+1 + hold(OUT)). (19.11)

Note that, as in Eq. 19.1, the timing constraint of OUT is given relative to the end
of the ith cycle (i.e. ti+1) .

Note that there is an asymmetry in the terminology regarding IN and OUT . The param-
eters associated with IN are pd(IN) and cont(IN), whereas the parameters associated
with OUT are setup(OUT) and hold(OUT). This is not very aesthetic if OUT is itself
an input to another synchronous circuit. The reason for this asymmetric choice is that it
is useful to regard IN as an output of a flip-flip and OUT as an input of a flip-flop (even
if they are not). Hence, there is an analogy between the signals IN and S. Similarly,
there is an analogy between the signals OUT and NS.

19.3. TIMING ANALYSIS: THE CANONIC FORM 319

19.3.3 Sufficient Conditions

In this section we formulate sufficient conditions for guaranteeing correct functionality
and satisfying the timing constraints of the output signal.

Timing constraints of internal signals. The only constraint we have for an internal
signal is that the signal NS that feeds a flip-flop is stable during the critical segments.
Namely, for every i ≥ 0,

stable(NS)i △= Ci+1. (19.12)

Note that, as in Eq 19.1, the timing constraint of NS corresponding to clock cycle i is
relative to the end of the ith clock cycle (i.e. the critical segment Ci+1).

When performing a timing analysis of a synchronous circuit in canonic form, we notice
that there are only four maximal paths without flip-flops:

1. the path IN → δ → NS,

2. the path S → δ →NS,

3. the path IN → λ→ OUT , and

4. the path S → λ→ OUT .

If we regard the signal IN to be the output of a flip-flop, and the signal OUT to be an
input to a flip-flop, then we have four paths of the type studied in Fig. 19.3a.

Consider the two paths that end in NS. By Claim 19.2, the timing constraints of NS
are satisfied if:

∀i ≥ 0 ∶ max{pd(IN), tpd(FF)} + pd(δ) + tsu(FF) ≤ ti+1 − ti, and (19.13)

min{cont(IN), tcont(FF)} + cont(δ) ≥ thold(FF). (19.14)

Consider the two paths that end in OUT . By Claim 19.2, the timing constraints of
OUT are satisfied if:

∀i ≥ 0 ∶ max{pd(IN), tpd(FF)} + pd(λ) + setup(OUT) ≤ ti+1 − ti, and (19.15)

min{cont(IN), tcont(FF)} + cont(λ) ≥ hold(OUT). (19.16)

This leads us to the following claim which is proved by induction on the clock cycle t.
(See Claim 19.6 for a proof of a more general Claim.)

Claim 19.3 The timing constraints of the signals OUT and NS (as stated in Equa-
tions 19.11 and 19.12) are satisfied if Equations 19.13-19.16 hold.

We point out that we are left with the assumption that the flip-flop is properly ini-
tialized so that S is stable during stable(S)0. We deal with issue of initialization in
Section 19.3.5.

320 CHAPTER 19. FOUNDATIONS OF SYNCHRONOUS CIRCUITS

19.3.4 Satisfying the Timing Constrains

What do we need to do to make sure that the timing constraints of a synchronous circuit
are satisfied? In this section we considered the canonic form of synchronous circuit.
Claim 19.3 gives us two types of constraints: a minimum clock period and contamination
delay greater than hold time.

The constraints in Eqs. 19.13 and 19.15 are lower bounds on the clock period. All we
need to do is to use a clock period Φ

△

= ti+1−ti that is large enough. Clearly the longer the
propagation delay of the combinational logic, the longer Φ must be. This is an important
reason to be interested in combinational circuits with a short propagation delay.

The constraints in Eqs. 19.14 and 19.16 can be regraded as technological constraints.
If we use simple flip-flops in which tcont ≥ thold, then these constraints are satisfied without
any further requirements. If not, then we may need to add extra combinational circuitry
(such as two cascaded inverters) to increase the contamination delay. This extra combi-
national circuitry also increases the lower bound on the clock period. So we stick to our
recommendation: use flip-flops with tcont ≥ thold.

We return to the issue of satisfying the timing constraints even when the synchronous
circuit is not in canonic form in Section 19.6.

19.3.5 Initialization

Meeting the timing constraints relies on the circuit being properly initialized. Specifically,
we require that the output of every flip-flop be defined and stable during the interval
(t0 + tpd(FF), t1 + tcont(FF)).

Consider the flip-flop in the circuit depicted in Fig. 19.3a. How is the first clock cycle
[t0, t1) defined? It is natural to define it as the first clock cycle after power is turned on.
In this case, we know nothing about the output of each flip-flop. In fact, the outputs of
flip-flops might be metastable, and their output might not even be logical!

The natural solution to the problem of initialization is to introduce a reset signal.
There are other situations where resetting the circuit is desirable. For example, a human
user presses a reset button or the operating system decides to reset the system. However,
the situation after power-up combines all the complications associated with reset.

Here we are confronted with a boot-strapping problem: How is a reset signal gener-
ated? Why does a reset signal differ from the the output of the flip-flop? After all, the
reset signal might be metastable. So we must address the issue of guaranteeing a stability
interval for the reset signal.

Not surprisingly, there is no solution to this problem within the digital abstraction.
The reason is that a circuit attempting to generate a reset signal might be in a metastable
state. All we can try to do is reduce the probability of such an event.

We have already discussed two methods to reduce the probability of metastability:
(i) allow slow decisions and (ii) increase the “slope” (i.e., the derivative of the energy).
Slowing down the decision is achieved by using a slow clock in the circuit that gener-
ates the reset signal. For example, the reset circuitry might use a clock frequency of
1KHz while the clock frequency of the synchronous circuit can be a million times larger).

19.3. TIMING ANALYSIS: THE CANONIC FORM 321

Increasing the slope is achieved by cascading (i.e., connecting in series) edge-triggered
flip-flops. In practice, a special circuit, often called a reset controller, generates a reset
signal that is stable during the first clock period with very high probability. In fact, the
first clock period of the synchronous circuit is defined by the reset controller.

Assume that the reset signal is output by a flip-flop so that it satisfies two conditions:

reset(t) △=
⎧⎪⎪⎨⎪⎪⎩
1 if t ∈ (t0 + tpd(FF), t1 + tcont(FF)),
0 if t > t1 + tpd(FF).

(19.17)

Such a reset signal is employed in as depicted in Figure 19.4. We must take into
account the possibility that the output Q of each flip-flop is not logical or stable during
the first clock cycle. Hence, the implementation of the mux that selects between the
initial state (a constant string) and Q should be such that if reset = 1, then the mux

outputs the initial state even if the input D is not logical. Again, the details of such an
implementation is not within the scope of the digital abstraction.

comb. circuit
λ

comb. circuit
δ

Q D

clk

IN

OUT

NSS

reset
initial state

0

1
sel

mux

2 : 1-

Figure 19.4: A synchronous circuit in canonic form with reset.

Usually the flip-flop with the multiplexer are encapsulated into a single module called
an edge triggered flip-flop with a reset . Of course, the propagation delay and the con-
tamination delay of the multiplexer are added to tpd(FF) and tcont(FF). Let FF ′

denote an edge triggered flip-flop with a reset, then tpd(FF ′) = tpd(FF) + pd(mux)
and tcont(FF ′) = tcont(FF) + cont(mux). On the other hand, tsu(FF ′) = tsu(FF) and
thold(FF ′) = thold(FF).

We conclude with the following claim, that resolves the issue of the value of the signal
S and its stability interval in the first clock cycle.

Claim 19.4 If the reset signal satisfies Eq. 19.17, then S(t) is stable during the interval

(t0 + tpd(FF) + pd(mux), t1 + tcont(FF) + cont(mux)).
Note that the stability interval of S in the first clock cycle does not depend on the stability
of the flip-flop’s output.

322 CHAPTER 19. FOUNDATIONS OF SYNCHRONOUS CIRCUITS

19.4 Functionality: the canonic form

In this section we deal with the functionality of a synchronous circuit in canonic form.
Functionality is well defined provided that the following conditions hold:

1. Initialization: the signal S satisfies

(t0 + tpd(FF), t1 + tcont(FF)) ⊆ stable(S)0 (19.18)

2. Clock period is long enough: Let Φ denote the clock period (i.e., Φ = ti+1 − ti, for
every i ≥ 0). Then,

max{pd(IN), tpd(FF)} + pd(δ) + tsu(FF) ≤ Φ, and (19.19)

max{pd(IN), tpd(FF)} + pd(λ) + setup(OUT) ≤ Φ. (19.20)

3. Hold times are smaller than the contamination delays: formally, we require that:

min{cont(IN), tcont(FF)} + cont(δ) ≥ thold(FF). (19.21)

min{cont(IN), tcont(FF)} + cont(λ) ≥ hold(OUT). (19.22)

We denote the logical value of a signal X during the stability interval stable(X)i by Xi.

Claim 19.5 If Equations 19.18- 19.22 hold, then the following relations hold for every
i ≥ 0:

NSi = δ(INi, Si)
OUTi = λ(INi, Si)
Si+1 = NSi.

Proof: The proof is by induction on i. The induction basis for i = 0 is proved as follows.
Since S0 is properly initialized (see Eq. 19.18), and since IN is stable during stable(IN)0
(see Eq. 19.10), it follows that they are both stable during the interval

(t0 +max{pd(IN), tpd(FF)}, t1 +min{cont(IN), tcont(FF)}).
This implies that the signal NS is stable during the interval

(t0 +max{pd(IN), tpd(FF)} + pd(δ), t1 +min{cont(IN), tcont(FF)} + cont(δ)).
By Eq. 19.19 and Eq. 19.21,

(t1 − tsu(FF), t1 + thold(FF))
⊆ (t0 +max{pd(IN), tpd(FF)} + pd(δ), t1 +min{cont(IN), tcont(FF)} + cont(δ))

Hence, NS is stable during the critical segment C1 and NS0 = δ(IN0, S0), as required.
The induction step, for i > 0, is proved in the same fashion. Simply replace t0 by ti,

and t1 by ti+1. The only difference is that we do not rely on initialization. To show that
Si+1 is well defined, note that NSi is stable during the critical segment Ci. It follows that
the flip-flop’s output Si+1 equals NSi. We omit the proof for OUTi+1 since it follows the
same lines. 2

19.5. FINITE STATE MACHINES 323

19.5 Finite State Machines

The functionality of a synchronous circuit in the canonic form is so important that it
justifies a term called finite state machines.

Definition 19.2 A finite state machine (FSM) is a 6-tuple A = ⟨Q,Σ,∆, δ, λ, q0⟩, where� Q is a set of states.� Σ is the alphabet of the input.� ∆ is the alphabet of the output.� δ ∶ Q ×Σ→ Q is a transition function.� λ ∶ Q ×Σ→ ∆ is an output function.� q0 ∈ Q is an initial state.

Other terms for a finite state machine are a finite automaton with outputs and transducer.
In the literature, an FSM according to Definition 19.2 is often called a Mealy Machine.
Another type of machine, called Moore Machine, is an FSM in which the domain of
output function λ is Q (namely, the output is only a function of the state and does not
depend on the input).

An FSM is an abstract machine that operates as follows. The input is a sequence
{xi}n−1i=0 of symbols over the alphabet Σ. The output is a sequence {yi}n−1i=0 of symbols over
the alphabet ∆. An FSM transitions through the sequence of states {qi}ni=0. The state qi
is defined recursively as follows:

qi+1
△

= δ(qi, xi)

The output yi is defined as follows:

yi
△

= λ(qi, xi).

State Diagrams. FSMs are often depicted using state diagrams.

Definition 19.3 The state diagram corresponding to an FSM A is a directed graph
G = (Q,E) with edge input/output labels (x, y) ∈ Σ ×∆. The edge set E is defined by

E
△

= {(q, δ(q, x)) ∶ q ∈ Q and x ∈ Σ}.

Each edge (q, δ(q, x)) is labeled (x,λ(q, x)).

324 CHAPTER 19. FOUNDATIONS OF SYNCHRONOUS CIRCUITS

Consider an edge from vertex q to vertex q′ labeled by (x, y). This means that if the
input equals x when the FSM is in state q, then the FSM outputs y and transitions to
the state q′

△

= δ(q, x).
The vertex q0 corresponding to the initial state of an FSM is usually marked in an

FSM by a double circle.

We remark that a state diagram is in fact a multi-graph, namely, one allows more
than one directed edge between two vertices. Such edges are often called parallel edges.
Note that the out-degree of every vertex in a state diagram equals ∣∆∣.

Example 19.1 Figure 19.5 depicts a state diagram of an FSM that outputs ‘y’ if the
weight of the input so far is divisible by 4, and ‘n’ otherwise.

(0, y) (0, n)

(0, n)(0, n)

(1, y)
(1, n)

(1, n)

(1, n)

q0

q3 q2

q1

Figure 19.5: A state diagram of an FSM that counts (mod 4).

19.6 Timing analysis: the general case

In this section we present a timing analysis of a synchronous circuit that is not in canonic
form. Indeed, the timing analysis of synchronous circuits in canonic form is overly pes-
simistic. The problem is that each of the combinational circuits λ and δ is regarded
as a “macro gate” with a propagation delay. In practice it may be the case that the
accumulated delay from the input IN to the output OUT is significantly different than
the accumulated delay from S to the output OUT . The situation is even somewhat
more complicated in the case of multi-bit signals. Hence, dealing with the general case
is interesting.

19.6. TIMING ANALYSIS: THE GENERAL CASE 325

kINC

k

k

Q D

clk

NSS

OUT

IN

k

reset
initial state

k

k

0

1
sel

mux

2 : 1-

Figure 19.6: An example in which the timing analysis for the canonic form is overly
pessimistic.

Example 19.2 Consider the synchronous circuit depicted in Fig. 19.6. Assume that
pd(IN) = 9 while tpd(FF) = pd(mux) = pd(and) = 1 and tsu(FF) = setup(OUT) =
1. Moreover, assume that pd(INC) = 7. The timing analysis for the canonic form
encapsulates the incrementer and the and-gate into one combinational circuit δ whose
propagation delay is 8. The clock period has to be at least

ti+1 − ti ≥ max{tpd(FF) + pd(mux),pd(IN)} + pd(δ) + tsu(FF)
= 9 + 9 + 1 = 19.

However, the output of the incrementer is valid starting ti+tpd(FF)+pd(mux)+pd(INC) =
ti+9. Thus, the output of the and-gate is valid starting ti+10, and hence the clock period
has to be only at least 11.

In this section we present timing constraints for the signals in a synchronous circuit. We
then present an algorithm that decides whether the timing constraints are feasible (i.e.,
can be satisfied). If the timing constraints are feasible, then the algorithm computes the
minimum clock period.

19.6.1 Timing Constraints

Given a synchronous circuit C, we distinguish between four types of signals:

1. Inputs - these are signals that are fed by input gates.

2. Outputs - these are signals that are fed to output gates.

3. Inputs to the D-ports of flip-flops.

326 CHAPTER 19. FOUNDATIONS OF SYNCHRONOUS CIRCUITS

4. Outputs of flip-flops.

The timing constraints of general synchronous circuits are identical to those of the
canonic form. For completeness, we list them below:

Input constraints: For every input signal IN , it is guaranteed that the stability inter-
vals of IN satisfy, for every i ≥ 0:

stable(IN)i △= (ti + pd(IN), ti+1 + cont(IN)). (19.23)

Output constraints: For every output signal OUT , it is required that the stability
intervals of OUT satisfy:

stable(OUT)i △= (ti+1 − setup(OUT), ti+1 + hold(OUT)). (19.24)

Critical segments: For every signal NS that feeds a D-port of a flip-flop, it is required
that NS is stable during the critical segments, namely:

stable(NS)i △= Ci+1. (19.25)

We say that a timing constraint of signal X is satisfied if the signal X is indeed stable
during the intervals {stable(X)i}i≥0.
Definition 19.4 The timing constraints are feasible if there exists a clock period Φ such
that all timing constraints are satisfied if ti+1 − ti = Φ.

19.6.2 Algorithms: feasibility and minimum clock period

We now present two algorithms:

1. Algorithm FEAS(C), decides whether the timing constraints of a synchronous cir-
cuit C are feasible.

2. Algorithm Min-Φ(C) computes the minimum clock period of C if the timing con-
straints are feasible.

The two algorithms are quite similar: FEAS(C) computes a lightest path in a DAG,
and decides that the timing constraints are feasible if the lightest path is nonnegative.
On the other hand, Min-Φ(C) computes a longest path in a DAG.

For simplicity, we assume that all the flips-flops in the synchronous circuit C are
identical and have the same parameters (i.e., tsu(FF), thold(FF), tcont(FF), tpd(FF)).

Algorithm FEAS(C). Algorithm FEAS(C) is listed as Algorithm 19.1. The input of
algorithm FEAS(C) consists of:

1. A description of the circuit C, namely, a directed graph G = (V,E) and a labeling
π ∶ V → Γ ∪ IO ∪ {FF},

2. cont(IN) for every input signal IN , and

3. hold(OUT) for every output signal OUT .

19.6. TIMING ANALYSIS: THE GENERAL CASE 327

Algorithm 19.1 FEAS(C) - an algorithm that decides if the timing constraints of a
synchronous circuit C are feasible.

1. Let C ′ denote the combinational circuit obtained from C by stripping away the
flip-flops (see item 3 in Definition 19.1).

2. Assign weights w(v) to vertices in C ′ as follows.

w(v) △=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cont(IN) if v is an input gate of C and v feeds the input signal IN .

tcont(FF) if v corresponds to a Q-port of a flip-flop.

−hold(OUT) if v is an output gate of C and v is fed by the output signal OUT .

−thold(FF) if v corresponds to a D-port of a flip-flop.

cont(π(v)) if π(v) is a combinational gate.

3. Compute

w∗
△

= min{w(p) ∣ p is a path from a source to a sink in C ′}.

4. If w∗ ≥ 0, then return(“feasible”), else return(“not feasible”).

Algorithm Min-Φ(C). Algorithm Min-Φ(C) is listed as Algorithm 19.2. The input
of algorithm Min-Φ(C) consists of:

1. A description of the circuit C, namely, a directed graph G = (V,E) and a labeling
π ∶ V → Γ ∪ IO ∪ {FF},

2. pd(IN) for every input signal IN , and

3. setup(OUT) for every output signal OUT .

Algorithm Min-Φ(C) reduces the problem of computing the minimum clock period
to the problem of computing a longest path in a DAG. Since a longest path in a DAG is
computable in linear time, the algorithm runs in linear time as well.

19.6.3 Algorithms: correctness

In this section we prove that the algorithms FEAS(C) and Min-Φ(C) are correct. The
idea is that algorithm FEAS(C) checks if the upper limit of each stability interval can
be satisfied. On the other hand, Min-Φ computes a lower bound on the clock period that
guarantees that the lower limit of each stability interval is satisfied.

Notation. Given a vertex v ∈ C ′, let c∗(v) denote lightest weight of a path from a
source to v. Similarly, let d∗(v) denote the largest delay of a path from a source to v.

328 CHAPTER 19. FOUNDATIONS OF SYNCHRONOUS CIRCUITS

Algorithm 19.2 Min-Φ(C) - an algorithm that computes the minimum clock period of
a synchronous circuit C.

1. Let C ′ denote the combinational circuit obtained from C by stripping away the
flip-flops (see item 3 in Definition 19.1).

2. Assign delays d(v) to vertices in C ′ as follows.

d(v) △=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pd(IN) if v is an input gate of C and v feeds the input signal IN .

tpd(FF) if v corresponds to a Q-port of a flip-flop.

setup(OUT) if v is an output gate of C and v is fed by the output signal OUT .

tsu(FF) if v corresponds to a D-port of a flip-flop.

pd(π(v)) if π(v) is a combinational gate.

3. Compute

Φ∗
△

= max{d(p) ∣ p is a path from a source to a sink in C ′}.

4. Return(Φ∗).

Using this notation, we have a simple description of the algorithms: (i) FEAS(C)
decides that the timing constraints are feasible if and only if minv c∗(v) ≥ 0. (ii) Min-Φ(C)
returns Φ∗ = maxv d∗(v).

Assume that the flip-flops are reset so that their outputs are stable during (t0 +
tpd(FF), t1 + tcont(FF)). Assume also that the inputs satisfy the input constraints in
Eq. 19.23.

In the following claim we abuse notation and mix between the vertices of the syn-
chronous circuit C and the combinational circuit C ′ obtained by stripping away the
flip-flops of C. This notation should not cause any confusion at all. A source in C ′ is
either an input gate or an output of a flip-flop. A sink in C ′ is either an output gate or
an input to a D-port of a flip-flop. Interior vertices are the same in C and in C ′.

Claim 19.6 If minv c∗(v) ≥ 0 and ti+1 − ti ≥ maxv d∗(v), then, for every vertex v, every
output of v is stable during the interval

(ti + d∗(v), ti+1 + c∗(v)).
Moreover, the inputs to flip-flops are stable during the critical segments and the output
constraints are satisfied.

Proof: The proof uses double induction. The outer induction is on i, and the inner
induction is on the topological ordering of the vertices of C ′.

Let us begin with the induction basis of the outer induction for i = 0. The proof
of the induction basis requires applying the inner induction on the topological ordering

19.7. SIMULATION OF SYNCHRONOUS CIRCUITS 329

of the vertices of C ′. The induction basis of the inner induction considers the sources.
Indeed, suppose v is a source in C ′. For simplicity assume that it is an output of a
flip-flop. Since flip-flops are reset properly, the output of v is stable during the interval
(t0+tpd(FF), t1+tcont(FF)). Moreover, d∗(v) = tpd(FF) and c∗(v) = tcont(FF). A similar
argument holds if v is an input gate. Thus the inner induction basis holds for sources.

The proof of the inner induction step for the case that v is not a source proceeds as
follows. If v is not a sink, then it is a combinational gate. The output of v is stable
pd(π(v)) time units after all its inputs are stable. Thus, every output of v is stable
starting t0 + d∗(v). On the other hand, every output of v remains stable cont(π(v)) time
units after the first input to v becomes unstable. Thus, every output of v remains stable
until t1+c∗(v). Finally, if v is a sink, then it has no outputs, and the claim trivially holds
for it. This completes the proof of the outer induction basis for i = 0.

The proof of the outer induction step, for i > 0, is quite similar. The only important
difference is the proof of the inner induction basis. Here, we cannot rely on the initial-
ization. Instead, we need to show that the input of each flip-flop is stable during the
critical segment Ci, and hence, the output of the flip-flop is stable during the interval
(ti + tpd(FF), ti+1 + tcont(FF)).

Consider a node v, the output of which feeds the D-port of a flip-flop u. The outer
induction hypothesis states that the output of v is stable during the interval (ti−1 +
d∗(v), ti + c∗(v)). Hence, it suffices to prove that

Ci ⊆ (ti−1 + d∗(v), ti + c∗(v)).

Namely, we want to prove that

ti − tsu(FF) ≥ ti−1 + d∗(v), and (19.26)

ti + thold(FF) ≤ ti + c∗(v). (19.27)

But ti − ti−1 ≥ d∗(u) = d∗(v) + tsu(FF), and hence Eq. 19.26 holds. Similarly, c∗(u) =
−thold(FF) + c∗(v) ≥ 0, and hence Eq. 19.27 holds.

A similar argument proves that the output constraints are satisfied, and the claim
follows. 2

We close this section by remarking that the timing analysis is tight. Let p denote a
path in C ′ with a maximum delay. Suppose ti+1 − ti < d(p). If the actual propagation
delays along p are maximal, then the signal feeding v is not stable at time ti+1 − d(p). If
v is a flip-flop, then its input is not stable during the critical segment. If v is an output
gate, then its input does not meet the output constraint. We point out that the actual
delay along p may indeed be d(p). For example, in a Ripple Carry Adder rca(n), we
might have a ripple of n carries from zeros to ones.

19.7 Simulation of Synchronous Circuits

In this section we present an algorithm for logical simulation of synchronous circuits. The
algorithm works under the assumption that the timing constraints are satisfied.

330 CHAPTER 19. FOUNDATIONS OF SYNCHRONOUS CIRCUITS

Simulation of synchronous circuit in the zero delay model during cycles i = 0, . . . , n−1
is listed as Algorithm 19.3. The correctness of the simulation algorithm can be proved
by double induction as in the proof of Claim 19.6.

Let F denote the set of flip-flops in the synchronous circuit. Let Si ∶ F → {0,1} denote
a function that specifies the values output by each flip-flop in the ith clock cycle. For
i = 0, the function S0 specifies the initialization of the flip-flops. Let I denote the set
of input gates in the synchronous circuit. Let INi ∶ I → {0,1} denote a function that
specifies the input value fed by each input gate in clock cycle i. Let NSi ∶ F → {0,1}
denote a function that specifies the input to each flip-flop in the (end of the) ith clock
cycle. Similarly, let Z denote the set of output gates in the synchronous circuit. Let
OUTi ∶ Z → {0,1} denote the value fed to each output gate in the ith clock cycle.

Algorithm 19.3 SIM(C,S0,{INi}n−1i=0) - An algorithm for simulating a synchronous cir-
cuit C with respect to an initialization S0 and a sequence of inputs {INi}n−1i=0 .

1. Construct the combinational circuit C ′ obtained from C by stripping away the
flip-flops.

2. For i = 0 to n − 1 do:

(a) Simulate the combinational circuit C ′ with input values corresponding to Si
and INi. Namely, every input gate in C feeds a value according to INi, and
every Q-port of a flip-flop feeds a value according to Si. The outcome of the
simulation determines the functions OUTi and NSi.

(b) Define Si+1 ← NSi.

19.8 Synthesis and Analysis

Two tasks are often associated with synchronous circuits. These tasks are defined as
follows.

1. Analysis: given a synchronous circuit C, describe its functionality by an FSM.

2. Synthesis: given an FSM A, design a synchronous circuit C that implements A.

19.8.1 Analysis

The task of analyzing a synchronous circuit C is carried out as follows.

1. Define the FSM A = ⟨Q,Σ,∆, δ, λ, q0⟩ as follows.

(a) The set of states is Q ⊆ {0,1}k, where k denotes the number of flip-flops in C.

(b) Define the initial state q0 to be the initial outputs of the flip-flops.

19.9. SUMMARY 331

(c) Σ = {0,1}ℓ, where ℓ denotes the number of input gates in C.

(d) ∆ = {0,1}r, where r denotes the number of output gates in C.

(e) Transform C to a functionally equivalent synchronous circuit C̃ in canonic
form. Compute the truth tables of the combinational circuits λ and δ. Define
the Boolean functions according to these truth tables.

19.8.2 Synthesis

Given an FSM A = ⟨Q,Σ,∆, δ, λ, q0⟩, the task of designing a synchronous circuit C that
implements A is carried out as follows.

1. Encode Q,Σ and ∆ by binary strings. Formally, let f, g, h denote one-to-one func-
tions, where

f ∶Q → {0,1}k
g ∶Σ → {0,1}ℓ
h ∶∆ → {0,1}r.

2. Design a combinational circuit Cδ that implements the (partial) Boolean function
Bδ ∶ {0,1}k × {0,1}ℓ → {0,1}k defined by

Bδ(f(x), g(y)) △= f(δ(x, y)), for every (x, y) ∈ Q ×Σ.

3. Design a combinational circuit Cλ that implements the (partial) Boolean function
Bλ ∶ {0,1}k × {0,1}ℓ → {0,1}r defined by

Bλ(f(x), g(z)) △= h(λ(x, z)), for every (x, z) ∈ Q ×Σ.

4. Let C denote the synchronous circuit in canonic form constructed from k flip-flops
and the combinational circuits Cδ for the next state and Cλ for the output.

The description of the encoding step leaves a great deal of freedom. Since ∣{0,1}k∣ ≥
∣Q∣, it follows that k ≥ log2 ∣Q∣, and similar bounds apply to ℓ and r. However, it is not
clear that using the smallest lengths is the best idea. Certain encodings lead to more
complicated Boolean functions Bδ and Bλ. Thus, the question of selecting a “good”
encoding is a very complicated task, and there is no simple solution to this problem.

19.9 Summary

This chapter deals with the fundamental issues relating to synchronous circuits. We
began by defining synchronous circuits. We first focused on synchronous circuits in
canonic form. Timing analysis of synchronous circuits in canonic form is a simple task.
However, it requires proper initialization of the flip-flops. Thus, we introduced edge-
triggered flip-flops with a reset.

332 CHAPTER 19. FOUNDATIONS OF SYNCHRONOUS CIRCUITS

The timing analysis leads to a functional specification of synchronous circuit in canonic
form. We introduced finite-state machines to describe this functionality.

Since timing analysis in canonic form might be overly pessimistic, we presented al-
gorithms for timing analysis in the general case. Two algorithms are presented: one
verifies whether the timing constraints are feasible. The second algorithm computes the
minimum clock period.

We then turned to describing a simulation algorithm. This simulation is based on a
reduction to simulating a combinational circuit. We ended this chapter with a description
of two tasks: analysis and synthesis of synchronous circuits.

19.10 Problems

19.1 Consider the circuit depicted in Figure 19.7. Is this circuit Combinational? Syn-
chronous? Explain your answer.

clk

ff

y(t)

D(t)
Q(t)

x(t)

Figure 19.7: A circuit.

19.2 Design a synchronous circuit that indicates whether the number of ones in the
input so far is divisible by n.

Input: X(t) ∈ {0,1} and a clock signal clk.

Output: Y (t) ∈ {0,1}.

Functionality: The output Y (t) should satisfy:

Y (t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if mod(∑t−1i=0 X(t), n) = 0

0 otherwise.

Remarks: (1) You may assume that the flip-flops are initialized to zero. (2) The output
in clock cycle 0 is not specified.

19.10. PROBLEMS 333

1. Describe an FSM that satisfies the specification.

2. Synthesize the FSM to obtain an synchronous circuit. Use as few flip-flop as possi-
ble.

3. Compute the minimum clock period of your design.

4. Suggest another synthesis of the FSM so that the clock period is constant. (Hint:
use a “cyclic shift register” of n flip-flips.)

19.3 (MSB to LSB Sequential Comparator.) Design a synchronous circuit S that
satisfies the following specification.

Input: x(t), y(t) ∈ {0,1}, for every clock cycle t.

Output: EQ(t),LT (t),GT (t) ∈ {0,1}, for every clock cycle t.

Functionality: � Let

Xt
△

=
t

∑
i=0
x(i) ⋅ 2t−i ,

Yt
△

=
t

∑
i=0
y(i) ⋅ 2t−i .� For every clock cycle t ≥ 0:

EQ(t) =
⎧⎪⎪⎨⎪⎪⎩
1, if Xt = Yt,

0, otherwise .
LT (t) =

⎧⎪⎪⎨⎪⎪⎩
1, if Xt < Yt,

0, otherwise .
GT (t) =

⎧⎪⎪⎨⎪⎪⎩
1, if Xt > Yt,

0, otherwise .

Answer the following questions:

1. Define the finite state machine FSM(S) = ⟨Q,Σ,∆, δ, λ, q0⟩ that satisfies the
above specification.

2. Implement S by synthesizing FSM(S). Hint: use the canonic form.

3. Implement your design in Logisim. Verify by yourself that your design is
correct. Submit your design.

4. Assume that: (i) tsu = thold = 1, tcont = 2, tpd = 3, (ii) also assume that cont(C) =
0,pd(C) = 1, for every combinational gate, i.e., or, nand, not, and, xor,
nxor, nor, (2 ∶ 1)-mux, (iii) assume that the inputs x(t), y(t) are outputs of
a ff, moreover, the outputs EQ(t),LT (t),GT (t) are fed to a ff.
Execute Min-Φ(S). What is the minimum clock period?

5. Under the same assumptions as in the last bullet. Execute FEAS(S). Are the
timing constraints of the circuit feasible?

19.4 (LSB to MSB Sequential Comparator.) Design a synchronous circuit S that
implements the following specification:

334 CHAPTER 19. FOUNDATIONS OF SYNCHRONOUS CIRCUITS

Input: x, y ∈ {0,1}
Output: EQ,LT,GT ∈ {0,1}
Functionality: � Let xt = ⟨x[t ∶ 0]⟩,� let yt = ⟨y[t ∶ 0]⟩, then� for every t ≥ 0,

EQ(t) =
⎧⎪⎪⎨⎪⎪⎩
1, if xt = yt,

0, o.w,
LT (t) =

⎧⎪⎪⎨⎪⎪⎩
1, if xt < yt,

0, o.w,
GT (t) =

⎧⎪⎪⎨⎪⎪⎩
1, if xt > yt,

0, o.w.

1. Define an FSM that models this sequential comparator. Draw its state diagram
(write explicitly the set of states, input/output alphabet, transition function, output
function, and initial state).

2. Synthesize your FSM.

3. Implement your design in Logisim. Verify by yourself that your design is correct.
Submit a printout of your implementation.

4. Assume that: (i) tsu = thold = 1, tcont = 2, tpd = 3, (ii) also assume that cont(C) =
0,pd(C) = 1, for every combinational gate, i.e., or, nand, not, and, xor, nxor,
nor, (2 ∶ 1)-mux, (iii) assume that the inputs x(t), y(t) are outputs of a ff, more-
over, the outputs EQ(t),LT (t),GT (t) are fed to a ff.
Execute Min-Φ(S). What is the minimum clock period?

5. Under the same assumptions as in the last bullet. Execute FEAS(S). Are the timing
constraints of the circuit feasible?

19.5 Let σ ∈ {0,1}n be a fixed binary string. Design a shift register with a reset signal
that initializes the register to D[n − 1 ∶ 0] = σ.

19.6 Consider the synchronous circuit depicted in Figure 19.8. This circuit is called a
Linear Feedback Shift Register (LFSR).
The ff’s of the LFSR are initialized at t = 0 to D[3 ∶ 0] = 0001. The output is Q[3] ∈
{0,1}. Note that D[0] is a function of Q[3],Q[1], and Q[0]. Answer the following
questions.

1. Assume that: (i) tsu = thold = 1, tcont = 2, tpd = 3, (ii) also assume that cont(xor) =
0,pd(xor) = 1, (iii) assume that the output Q[3] is fed to a ff.
Execute Min-Φ(S). What is the minimum clock period?

2. Under the same assumptions as in the last bullet. Execute FEAS(S). Are the timing
constraints of the circuit feasible?

19.10. PROBLEMS 335

D[0]

clk clk clk clk

1

1

1

1

1

1

1

1

ff0ff1ff2ff3

D[3] D[2] D[1]

Q[0]Q[1]Q[2]

Q[3]

Figure 19.8: An LFSR synchronous circuit with four ff’s. The ⊕ denotes a xor gate.

3. Present the LFSR in the form of a canonic synchronous circuit.

4. Analyze the LFSR, i.e., define the corresponding FSM A = ⟨Q,Σ,∆, δ, λ, q0⟩. Draw
the state diagram of the FSM A.

5. Implement the LFSR in Logisim. Simulate the circuit with the initial value of 0001,
for 10 time steps. How many states has A “visited”?

336 CHAPTER 19. FOUNDATIONS OF SYNCHRONOUS CIRCUITS

Chapter 20

Synchronous Modules: Analysis and
Synthesis

Contents
20.1 Example: a two-state FSM . 338

20.2 Sequential Adder . 339

20.2.1 Implementation . 340

20.2.2 Analysis . 341

20.3 Initialization and the Corresponding FSM 342

20.4 Counter . 343

20.4.1 Implementation . 343

20.4.2 Analysis . 343

20.5 Revisiting Shift Registers . 344

20.5.1 Analysis . 345

20.6 Revisiting RAM . 345

20.6.1 Analysis . 345

20.6.2 Synthesis and Analysis . 347

337

338 CHAPTER 20. SYNCHRONOUS MODULES: ANALYSIS AND SYNTHESIS

In this chapter we practice the method of analysis and synthesis of synchronous cir-
cuits. We begin with two-state finite state machines. First we synthesize a synchronous
circuit, and the we analyze a serial adder. Another simple case is finite state machines,
the state diagram of which is simple cycle. These FSMs are called counters. We then
define, implement, and analyze counters. We also discuss how initialization effects the
corresponding FSM.

Finally, we revisit the synchronous circuits described earlier (shift registers and RAM).
We analyze these circuits and show that their state diagrams are important graphs.

20.1 Example: a two-state FSM

In this section we synthesize a two-state FSM. In this example, the encoding of the
alphabets and the states are trivial.

Consider the FSM A = ⟨Q,Σ,∆, δ, λ, q0⟩ depicted in Figure 20.1a, where

Q = {q0, q1},
Σ = ∆ = {0,1}.

We now apply the synthesis procedure to the FSM A to obtain an implementation by
a synchronous circuit C (see Section 19.8.2 for a description of synthesis).

1. Encoding. We need to encode Q,Σ and ∆. In this case we use the trivial encoding
where each state qi is encoded by the bit i. Similarly, the alphabets Σ and ∆ are
encoded by the identity functions. Namely g(σ) = h(σ) = σ, for σ ∈ {0,1}.
This encoding implies that: (i) the state is stored by a single flip-flop, and (ii) the
input and output are single bits.

2. We need to design a combinational circuit Cδ that computes the next state. Since
the transition function δ ∶ Q ×Σ→ Q satisfies:

δ(qi, σ) = inv(σ),
the Boolean circuit Cδ is simply an inverter.

3. We need to design a combinational circuit Cλ that implements the output function
λ ∶ Q × Σ → ∆. The truth table of λ is listed as Table 20.1. It follows that

qi σ λ(qi, σ)
0 0 1
1 0 1
0 1 0
1 1 1

Table 20.1: The truth table of λ.

λ(qi, σ) = i ∨ σ. Hence, the circuit Cλ is built from an inverter and an or-gate.

20.2. SEQUENTIAL ADDER 339

4. The synchronous circuit in canonic form constructed from one flip-flop and two
combinational circuits is depicted in Figure 20.1b.

We remark that one could share the inverters in Cδ and Cλ to obtain a circuit C
that uses only an inverter and an or-gate.

(1, 1)

(1, 0)

(0, 1)

q0 q1

(0, 1)

(a)

clk

OUT

S NS
ff

Cλ

Cδ

IN

Q D

(b)

Figure 20.1: (a) A two-state FSM A. (b) An implementation of A by a synchronous
circuit in canonic form.

20.2 Sequential Adder

Definition 20.1 A sequential adder is defined as follows.

Inputs: A,B, reset and a clock signal clk, where Ai,Bi, reseti ∈ {0,1}.
Output: S, where Si ∈ {0,1}.
Functionality: The reset signal is an initialization signal that satisfies:

reseti =

⎧⎪⎪⎨⎪⎪⎩
1 if i = 0,

0 if i > 0.

340 CHAPTER 20. SYNCHRONOUS MODULES: ANALYSIS AND SYNTHESIS

Then, for every i ≥ 0, ⟨A[i ∶ 0]⟩ + ⟨B[i ∶ 0]⟩ = ⟨S[i ∶ 0]⟩ (mod 2i+1).
What happens if the value of the input reset equals 1 in more than once cycle? Following
the above definition, if reset i = 1, then we forget about the past, we treat clock cycle
(ti, ti+1) as the first clock cycle.

Formally, we define the last initialization r(i) as follows:

r(i) △= max{j ≤ i ∶ reset j = 1}.
Namely, r(i) specifies the last time reset j = 1 not after cycle i. If reset j = 0, for every
j ≤ i, then r(i) is not defined, and functionality is unspecified. If r(i) is well defined,
then the specification is that, for every i ≥ 0,

⟨A[i ∶ r(i)]⟩ + ⟨B[i ∶ r(i)]⟩ = ⟨S[i ∶ r(i)]⟩ (mod 2i+1).

20.2.1 Implementation

An implementation of a sequential adder is depicted in Figure 20.2a. Note that the
minimum clock period of the sequential adder is constant. However, computing the sum
of two n-bit numbers requires n clock cycles.

We now prove the correctness of this implementation.

Theorem 20.1
i

∑
j=0
Aj ⋅ 2

j
+

i

∑
j=0
Bj ⋅ 2

j =
i

∑
j=0
Sj ⋅ 2

j
+Cout(i) ⋅ 2i+1 .

Proof: The proof is by induction on i. The induction basis for i = 0 is simple because
Cin(0) = 0. Hence, the functionality of the full-adder implies that:

A0 +B0 +Cin(0) = 2 ⋅Cout(0) + S0 ,

and the induction basis follows.
We now prove the induction step for i > 0.

i

∑
j=0
Aj ⋅ 2

j
+

i

∑
j=0
Bj ⋅ 2

j = (Ai +Bi) ⋅ 2i +
i−1

∑
j=0
Aj ⋅ 2

j
+

i−1

∑
j=0
Bj ⋅ 2

j

= (Ai +Bi) ⋅ 2i +
i−1

∑
j=0
Sj ⋅ 2

j
+Cout(i − 1) ⋅ 2i

= (Cin(i) +Ai +Bi) ⋅ 2i +
i−1

∑
j=0
Sj ⋅ 2

j

= (Si + 2 ⋅Cout(i)) ⋅ 2i +
i−1

∑
j=0
Sj ⋅ 2

j

=
i

∑
j=0
Sj ⋅ 2

j
+Cout(i) ⋅ 2i+1.

20.2. SEQUENTIAL ADDER 341

clk

D

Q
ff

A

SC

BCin

Full-Adder

S
Cout

reset

(a)

((reset = 1, A+B = 2), 0)

0

((A+B ≤ 1), A⊕B)

((reset = 0, A+B = 0), 1)

(A+B = 2, 0)

((reset = 1, A+B ≤ 1), A⊕B)

1

((reset = 0, A+B ≥ 1), 1 ⊕A⊕B)

(b)

Figure 20.2: A sequential adder:(a) a synchronous circuit that implements a sequential
adder, and (b) an FSM of a sequential adder (each transition is labeled by a pair: the
condition that the input satisfies and the value of the output).

The first line is simply a rearrangement, the second line follows from the induction hy-
pothesis, the third line follows from the functionality of a flip-flop in cycle i, the fourth
line follows from the functionality of the full-adder in cycle i, and the fifth line is a
rearrangement. 2

20.2.2 Analysis

We analyze the implementation of the sequential adder to obtain an FSM that describes
the functionality of the sequential adder.

The set of state Q = {0,1}. The initial state q0 = 0. The input alphabet is {0,1}3,
where the coordinates correspond to the values of reset i,Ai, and Bi, respectively. The
output alphabet is ∆ = {0,1}.

Let carry3 ∶ {0,1}3 → {0,1} denote the 3-bit carry function. The output function λ

342 CHAPTER 20. SYNCHRONOUS MODULES: ANALYSIS AND SYNTHESIS

and the transition function δ are defined as follows:

λ(q, (reset ,A,B)) △=
⎧⎪⎪⎨⎪⎪⎩
xor3(q,A,B) if reset = 0

xor3(0,A,B) if reset = 1.

δ(q, (reset ,A,B)) △=
⎧⎪⎪⎨⎪⎪⎩
carry3(q,A,B) if reset = 0

carry3(0,A,B) if reset = 1.

The state diagram of the resulting FSM is depicted in Figure 20.2b.

20.3 Initialization and the Corresponding FSM

Suppose we have a synchronous circuit C without an initialization signal. Now we intro-
duce an initialization signal reset that initializes the outputs of all flip-flops (namely, it
cause the outputs of the flip-flops to equal a value that encodes the initial state). This is
done by replacing each edge triggered D-flop-flop by an edge triggered D-flip-flop with
a reset input. The reset signal is fed to the reset input port of each flip-flop. We denote
the new synchronous circuit by Ĉ.

Let A and Â denote the FSMs that model the functionality of C and Ĉ, respectively.
What is the relation between A and Â?

In the following theorem we show how the FSM Â can be derived from the FSM A.

Theorem 20.2 Let A = ⟨Q,Σ,∆, δ, λ, q0⟩ denote the FSM that models the functionality
of the synchronous circuit C. Let Â = ⟨Q′,Σ′,∆′, δ′, λ′, q′0⟩ denote the FSM that models

the synchronous circuit Ĉ. Then,

Q′
△

= Q,

q′0
△

= q0,

Σ′
△

= Σ × {0,1},
∆′

△

= ∆,

δ′(q, (σ, reset)) △=
⎧⎪⎪⎨⎪⎪⎩
δ(q, σ), if reset = 0,

δ(q0, σ), if reset = 1,

λ′(q, (σ, reset)) △=
⎧⎪⎪⎨⎪⎪⎩
λ(q, σ), if reset = 0,

λ(q0, σ), if reset = 1.

Proof: The proof is straightforward. The last bit in the input alphabet Σ is the ini-
tialization signal reset . Let (σ, reset) ∈ Σ × {0,1} denote the input to the FSM Â. If
reset = 0, then the FSM Â simulates the FSM A on the input σ from the current state q.

20.4. COUNTER 343

If reset = 1, then the FSM Â simulates the FSM A on the input σ from the initial state
q0. 2

We often ignore initialization or postpone its implementation. The reason is that one
can always introduce initialization later. Thus, we can focus on the more “interesting”
issues first.

20.4 Counter

Definition 20.2 An n-bit counter is defined as follows.

Inputs: A clock signal clk.

Output: N[n − 1 ∶ 0].

Functionality: Let Ni[n − 1 ∶ 0] denote the value of N[n − 1 ∶ 0] in clock cycle i. We
require that, for every i ≥ 0,

⟨Ni[n − 1 ∶ 0]⟩ = i (mod 2n).

The counter is an unusual synchronous circuit because it does not have any input
apart from the clock signal. We are, of course, interested in a counter with initialization.
But, as discussed in Sec. 20.3, this is a modification we prefer to perform after we complete
the implementation.

20.4.1 Implementation

In Figure 20.3a we depict a synchronous circuit that implements a counter with a reset
signal that initializes all the flip-flops to zero. An incrementer is simply an n-bit binary
adder in which: (i) one addend is 0n−1○1, and (ii) there is no carry-out output. Note that
the propagation delay of the incrementer is Θ(logn), hence the minimum clock period of
the counter is also Θ(logn).

20.4.2 Analysis

The task of analyzing a synchronous circuit in which the input alphabet Σ is empty needs
to be defined. The reason is that we defined analysis only for FSMs in which the input
alphabet is not empty. The required modification is quite simple. Simply consider the
input alphabet Σ as a set with a single input. That means that the input is constant and
does not change from one clock cycle to the next one.

We now analyze the n-bit counter design to obtain an FSM that models its function-
ality. Define the FSM A = ⟨Q,Σ,∆, δ, λ, q0⟩ as follows.

1. The set of states is Q
△

= {0,1}n.

2. Define the initial state q0 to be q0 = 0n.

344 CHAPTER 20. SYNCHRONOUS MODULES: ANALYSIS AND SYNTHESIS

n

n

n

D

ff(n)

incrementer(n)

Q

clk

N

(a)

10

3 2

(b)

Figure 20.3: (a) A synchronous circuit that implements an n-bit counter, and (b) a state
diagram of a counter with n = 2. The output always equals the state from which the edge
emanates.

3. Σ = ∅.

4. ∆ = {0,1}n.
5. The output function λ simply outputs the current state, i.e., λ(q) = q. The transi-

tion function δ is defined as follows:

δ(q) = binn(⟨q⟩ + 1 (mod 2n)).

20.5 Revisiting Shift Registers

Recall the definition of an n-bit shift-register (see Definition 18.2), that is:

Inputs: D[0](t) and a clock clk.

20.6. REVISITING RAM 345

Output: Q[n − 1](t).

Functionality: Q[n − 1](t + n) =D[0](t).

An implementation of an 4-bit shift-register is depicted in Figure 20.4a.

20.5.1 Analysis

We now analyze an n-bit shift register to obtain an FSM that models its functionality.
Define the FSM A = ⟨Q,Σ,∆, δ, λ, q0⟩ as follows.

1. The set of states is Q
△

= {0,1}n.

2. Define the initial state q0 to be 0n.

3. Σ = {0,1}.

4. ∆ = {0,1}.

5. The output function is simply δ(q[n − 1 ∶ 0]) = q[n − 1]. The transition function δ

is defined by

δ(q[n − 1 ∶ 0], σ) △= q[n − 2 ∶ 0] ○ σ.

The state diagram of the FSM corresponding to a 2-bit shift register is depicted in
Figure 20.4b. The state diagram of an n-bit diagram is an important graph. It is called
the n-dimensional De Bruijn Graph.

20.6 Revisiting RAM

Recall the definition of a ram(2n) (see Definition 18.3).

20.6.1 Analysis

We now analyze a ram(2n) to obtain an FSM that models its functionality. Define the
FSM A = ⟨Q,Σ,∆, δ, λ, q0⟩ as follows.

1. The set of states is Q
△

= {0,1}2n
.

2. Define the initial state q0 to be 02n
.

3. Σ = {0,1}n × {0,1} × {0,1}.

4. ∆ = {0,1}.

346 CHAPTER 20. SYNCHRONOUS MODULES: ANALYSIS AND SYNTHESIS

Q[3]

clk clk clk clk

1

1

1

1

1

1

1

1

ff0ff1ff2ff3

D[3] D[2] D[1] D[0]

Q[0]Q[1]Q[2]

(a)

00

10 11

01

(0, 0)

(1, 0)

(1, 0)
(0, 0)

(1, 1)

(1, 1)

(0, 1)

(0, 1)

(b)

Figure 20.4: (a) A 4-bit shift-register, and (b) an FSM of a 2-bit shift-register

5. The output function is simply

λ(q[2n − 1 ∶ 0],Address,Din,R/W) = q[⟨Address[n − 1 ∶ 0]⟩] .

The transition function δ is defined by

δ(q[2n − 1 ∶ 0],Address,Din,R/W) △=
⎧⎪⎪⎨⎪⎪⎩
q[2n − 1 ∶ 0] if R/W = 1,

q′[2n − 1 ∶ 0] if R/W = 0,

where q′[i] = q[i], for all i, except q′[⟨Address[n − 1 ∶ 0]⟩] = Din.

The state diagram of the FSM corresponding to a ram(21) is depicted in Figure 20.5b.
The state diagram of an n-bit diagram is an important graph. The subgraph correspond-
ing to transitions in which a write operation takes place is called the n-dimensional
Hypercube.

20.6. REVISITING RAM 347

20.6.2 Synthesis and Analysis

Din

clk

R/W
ram(2n)

Dout

Address[n− 1 : 0]

(a)

(R/W = 1, 0)

00

10

(R/W = 1,Address = 0, 0)
(R/W = 1,Address = 1, 1)

(R/W = 1,Address = 0, 1)
(R/W = 1,Address = 1, 0)

01

(R/W = 1, 1)

11

((R/W = 0,Address = 1, Din = 1), 0)

((R/W = 0,Address = 0, Din = 0), 1)

((R/W = 0,Address = 0, Din = 1), 0)

((R/W = 0,Address = 0, Din = 0), 1)

((R/W = 0,Address = 0, Din = 1), 0)

((R/W = 0,Address = 1, Din = 0), 1)

(b)

Figure 20.5: (a) A schematic of a ram(2n), and (b) an FSM of a ram(21) (transition
conditions and the output bit are written next to each edge.

Problems

20.1 For each of the following specifications, write an FSM that satisfies the specifica-
tion, and synthesize corresponding synchronous circuit.

1. The output is one iff the number of ones in the input so far is even.

2. The output is one iff the number of ones in the input so far is odd.

3. The output is one iff the the input so far is all ones.

4. The output is one iff the the input so far is all zeros.

348 CHAPTER 20. SYNCHRONOUS MODULES: ANALYSIS AND SYNTHESIS

5. The output is zero iff the every block of zeros in the input so far was followed by a
block of ones.

6. The output is zero iff the number of blocks of zeros in the input so far is even.

7. The output is zero iff the number of blocks of ones in the input so far is even.

Does one of these specifications match the FSM described in Section 20.1?

20.2 (adapted from [4]) Consider the toy depicted in Figure 20.6. In each cycle, a marble
is dropped in A or B (but not both). Levers x, y, z cause the marble to fall either to the
left or to the right. If a marble encounters a lever, then it causes the lever to change its
state, so that the next marble to encounter the same lever will take the opposite branch.

1. Define an FSM that models this toy and draw its state diagram (state explicitly the
set of states, input/output alphabet, transition function, output function, and initial
state). Make sure that: (1) your FSM has the minimum number of states, (2) ∣Σ∣
is minimal, and (3) ∣∆∣ is minimal.

2. Synthesis and Simulation.

(a) Synthesize your FSM. Use the Logisim schematic entry to implement the syn-
chronous circuit.

(b) Find an input sequence that causes your FSM to traverse all the states.

(c) Simulate your FSM implementation with the above input sequence, using the
Logisim simulator.

(d) Submit: schematics and simulation results.

3. Let C denote the synchronous circuit that implements the toy. Let C ′ denote the
combinational circuit obtained by stripping away the flip-flops. Execute the algo-
rithm FEAS(C) on your circuit. Assume that all the parameters are equal to ‘1’.

4. Let C denote the synchronous circuit that implements the toy. let C ′ denote the
combinational circuit obtained by stripping away the flip-flops. Execute the algo-
rithm Min-Φ(C) on your circuit. Assume that all the parameters are equal to ‘1’.

20.3 The synchronous circuit C(n) is specified as follows. Let n = 2k.

Input: n inputs {Xi}ni=1, where each Xi ∈ {0,1}k. Assume that the inputs are valid and
stable from clock cycle 0 to clock cycle n.

Output: A single bit Y .

Functionality: The circuit C(n) satisfies the following condition: The output Y should
satisfy in every clock cycle t ≥ n:

Y (t) =
⎧⎪⎪⎨⎪⎪⎩
1, if all {Xi}ni=1 are distinct,

0, otherwise .

20.6. REVISITING RAM 349

R

A B

z

x y

L

Figure 20.6: A toy.

Note that n strings are distinct if no two are equal.

1. How many states does the corresponding FSM have?

2. Conclude that you cannot design C(n) by synthesizing an FSM, hence an ad-hoc
design is required.

3. Design C(n) so that it meets the following goals:

(a) Number of flip-flops should be at most n ⋅ k + 1.

(b) The minimum clock period should be O(k) = O(logn).
4. Implement your design for k = 2 in Logisim. Verify by yourself that your design is

correct. Submit a printout of your implementation.

350 CHAPTER 20. SYNCHRONOUS MODULES: ANALYSIS AND SYNTHESIS

Part IV

A Simplified DLX

351

Chapter 21

The ISA of a Simplified DLX

Contents
21.1 Why use abstractions? . 354

21.2 Instruction set architecture . 355

21.2.1 Architectural Registers and Memory 355

21.2.2 Instruction Set . 357

21.2.3 Encoding of the Instruction Set . 363

21.3 Examples of Program Segments 365

21.4 Summary . 366

353

354 CHAPTER 21. THE ISA OF A SIMPLIFIED DLX

In this chapter we describe a specification of a simple microprocessor called the sim-
plified DLX. The specification of the microprocessor is done by an instruction set archi-
tecture (ISA). The ISA is a simple programming language, called machine language, that
defines manipulations of data as well as control of the program.

The simplified DLX is a stored-program computer. This term means that both the
data and the instructions are stored in the same memory. In 1945, John von Neumann
proposed how to build such a computer. This proposal was influenced by the concept
of a universal Turing machine. Modern computers are based on the same principles but
include many techniques for speeding up the execution of programs. These techniques
include: cache memories, pipelining, running instructions in parallel and even out of order,
predicting branches, etc. These topics are discussed in books on Computer Architecture.

21.1 Why use abstractions?

The term architecture according to the Collins Dictionary means the art of planning,
designing, and constructing buildings. Computer architecture refers to computers instead
of buildings. Computers are rather complicated; even a very simple microprocessor is
built from tens of thousands of gates and an operating system spans thousands of lines
of instructions. To simplify things, people focus at a given time on certain aspects of
computers and ignore other aspects. For example, the hardware designer ignores questions
such as: which programs will be executed by the computer? The programmer, on the
other hand, often does not even know exactly which type of computer will be executing
the program she is writing. It is the task of the architect to be aware of different aspects
so that the designed system meets the required price and performance goals.

To facilitate focusing on certain aspects, abstractions are used. Several abstractions
are used in computer systems. For example, the C programmer uses the abstraction of
a computer that runs C programs, owns a private memory, and has access to various
peripheral devices (such as a printer, a monitor, a keyboard, etc.). Supporting this
abstraction requires software tools (e.g., editor, compiler, linker, loader, debugger). The
user, who runs various applications, uses the abstraction of a computer that is capable of
running several applications concurrently, supports a file system, and responds to mouse
movements and typing on the keyboard. Supporting the user’s abstraction requires an
operating system (to coordinate between several programs running in the same time
and manage the file system), and hardware (that executes programs, but not in C).
The hardware designer, is given a specification, called the Instruction Set Architecture
(in short, ISA). Her goal is to design a circuit that implements this specification while
minimizing cost and delay.

The architect is supposed to be aware of these different viewpoints. The architect’s
main goal is to suggest an ISA. On one hand, this ISA should provide support for the
users of the ISA (these are the programmer, the end user, and even the operating system).
On the other, the ISA should be simple enough so that the hardware designer can come
up with an implementation that is not too expensive or slow.

What exactly is the ISA? The ISA is a specification of the microprocessor from the

21.2. INSTRUCTION SET ARCHITECTURE 355

programmer’s point of view. However, this is not a C programmer or a programmer that
is programming in a high level language. Instead, this is a programmer programming in
machine language. Since it is not common anymore for people to program in machine
language, the machine language programmer is actually a program!

Programs in machine language are output by a program called an assembler . The
input of an assembler is a program in assembly language. Most assembly programs are
also written by programs called compilers. Compilers are input a program in a high level
language and output assembly programs. Hence a C program undergoes the following
sequence of translations: 1. The compiler translates it to an assembly program. 2. The
assembler translates it to a machine language program.

This two-stage sequence of translations starting from a C program and ending with a
machine language program has several advantages:

1. The microprocessor executes programs written in a very simple language (machine
language). This facilitates the design of the microprocessor.

2. The C programmer need not think about the actual platform that executes the
program.

3. Only one compiler is required. For each platform, there is an assembler that trans-
lates the assembly programs to the machine language of the platform.

4. Every stage of the translation works in a certain abstraction. The amount of detail
increases as one descends to lower level abstractions. In each translation step,
decisions can be made that are optimal with respect to the current abstraction.

One can see that all these advantages have to do with good engineering practice.
Namely, a task is partitioned in smaller subtasks that are simpler and easier. Clear and
precise borderlines between the subtasks guarantee correctness when the subtasks are
“glued” together.

21.2 Instruction set architecture

We now describe the ISA of the simplified DLX. The term instruction set architecture
refers to the specification of the computer from the point of view of the machine language
programmer. This abstraction consists of two main components:� The objects that are manipulated. The objects are words (i.e. binary strings)

stored in registers or in memory.� The instructions (or commands) that tell the computer what to do to the objects.

21.2.1 Architectural Registers and Memory

Both the registers and the memory store words. In the DLX ISA, a word is a 32-bit
string. The memory is often called also the main memory.

356 CHAPTER 21. THE ISA OF A SIMPLIFIED DLX

The memory. The memory is used to store both the program itself (i.e., instructions)
and the data (i.e., constant and variables used by the program). We regard the memory
as an array M[0 ∶ 232 − 1] of words. Each element M[i] in the array holds one word.
The memory is organized like a Random Access Memory (RAM). This means that the
processor can access the memory in one of two ways:� Read or load M[i]. Request to copy the contents of M[i] to a register called MDR

(Memory Data Register).� Write or store in M[i]. Request to store the contents of a register called MDR in
M[i].

Note that writing to the memory require two “operands”. Namely, we need to specify
the value we would like to store and we need to specify where we wish to store it. As
mentioned above, a special register, called the MDR, stores the word that we wish to
write to the memory. The index or address i in which we would like to store the contents
of the MDR is output by a register called the MAR (Memory Address Register).

Hence the (partial) semantics of a write operation are:

M[⟨MAR⟩]←MDR.

Note the angular brackets around the MAR; they signify that we interpret the binary
string stored in the MAR as a binary number.

Similarly, the (partial) semantics of a read operation are:

MDR ←M[⟨MAR⟩].
The reason that we refer to this description as a partial semantics is that an actual read

or write operation involves additional computations. For example, in a read operation we
need to (i) compute the address and store it in the MAR, (ii) copy the contents of the
accessed word in the memory to the MDR, and (iii) copy the contents of the MDR to a
general purpose register. However, from the point of view of the memory, the interaction
with the microprocessor is via the MAR and MDR.

This relatively neat description is incorrect when we consider the task of reading an
instruction from the memory. As we will see later, the address of an instruction is stored
in a register called PC and M[PC] is stored in a register called IR.

Registers. The registers serve as the working space of the microprocessor. They have
three main purposes: (1) to control the microprocessor (e.g., the PC and IR), (2) to
serve as the scratch pad for data (e.g., the GPRs), or (3) an interface with the main
memory (e.g., MAR and MDR). The architectural registers of the simplified DLX are
all 32 bits wide and listed below.� 32 General Purpose Registers (GPRs) index from 0 to 31. Informally, we refer to

these registers as R0 to R31. Loosely speaking, the general purpose registers are
the objects that the program directly manipulates. Register R0 is an exception, as
its contents always equals 032, and cannot be modified.

21.2. INSTRUCTION SET ARCHITECTURE 357� Program Counter (PC). The PC stores the address (i.e., index in memory) of the
instruction that is currently being executed.� Instruction Register (IR). The IR stores the current instruction (i.e., IR =M[PC]).� Special Registers: MAR, MDR. As mentioned above, these registers serve as the
interface between the microprocessor and the memory when data is written and
read. MAR and MDR

Example 21.1 Consider a high level instructions z ∶= x + y. Such an instruction is
implemented by the following sequence of instructions. Suppose that x is stored in M[1],
y is stored in M[2], and z is stored in M[3]. We first need to copy x and y to the GPRs.
Namely, we first need to perform two read operations that copy M[1] to R1 and M[2] to
R2. We then perform the actual addition: R3 ← R1 +R2. Finally, we copy R3 using a
write operation to the memory location M[3].

21.2.2 Instruction Set

The machine language of a processor is often called an instruction set. In general, a
machine language has very few rules and a very simple syntax. In the case of the simplified
DLX, every sequence of instructions constitutes a legal program (is this the case in C
or in Java?). This explains why the machine language is referred to simply as a set of
instructions.

Instruction formats. Every instruction in the instruction set of the simplified DLX
is represented by a single word. There are two instruction formats: I-type and R-type.
The partitioning of each format into fields is depicted in Figure 21.1. The opcode field
encodes the instruction (e.g., load, store, add, jump). The RS1,RS2,RD fields encode
(in binary representation) the indexes of general purpose registers. Since there are 32
general purpose register, their indexes are encoded using 5-bit strings. The immediate
field encodes (in two’s complement representation) a constant. The function field (in an
R-type instruction format) is used to encode the instruction.

I−type:

R−type:

Opcode RS1 RD immediate

6 5 165

Opcode RS1 RDRS2 Function

6 5 65 5 5

Figure 21.1: Instruction formats of the simplified DLX. (Bits are ordered in descending
order; namely, the leftmost bit is in position [31] and the rightmost bit is in position
[0].)

358 CHAPTER 21. THE ISA OF A SIMPLIFIED DLX

Assembly language. Reading and writing instructions as 32-bit binary strings is not
a task for humans. The solution is to write instructions using text and numbers. This
form of writing instructions is called assembly language.

Each instruction in assembly starts with a text that describes the operation (e.g.,
add, shift, jump). This text is an abbreviation that consists of 2-4 letters and is called a
mnemonic. For example, the mnemonic for “load word” is lw. A full list of the mnemonics
appears in Tables 21.1-21.2.

The remaining part of an assembly instruction consists of operands in decimal or
hexadecimal representation. These operands correspond to the contents of the fields
RS1,RS2,RD and the immediate constant. Namely, the operands are either indexes of
general purpose registers or the immediate constant. To ease the task of reading assembly
instructions, we add the prefix “R” to an index of a register.

The order of the fields in an assembly instruction is not the same order of the fields
in the machine code instruction. The order of fields in an assembly instruction is as
follows: (1) a mnemonic that represents the operation, (2) the index of the register where
the result should be stored, and (3) the operands. An operand is either a register or
constant. A constant is represented in decimal or hexadecimal notation. If an operand
is a register, then the index of the register appears as the operand.

Example 21.2 The assembly instruction addi R4 R8 -10 means add (−10) to the con-
tents of register R8 and store the sum in register R4. Note that in this example the
constant is negative.

List of instructions. We list below the instruction set of the simplified DLX. In this
list, imm ∈ {0,1}16 denotes the immediate field in an I-Type instruction and sext(imm) ∈
{0,1}32 denotes a two’s complement sign extension of imm to 32 bits. The semantics of
each instruction are informally abbreviated and are formally explained after each group
of instructions.

Note that every instruction (except for jump instructions and halt), has the side effect
of incrementing the PC. Namely, apart from doing whatever the instructions says, the
microprocessor also performs the operation:

PC← bin(mod(⟨PC⟩ + 1,232)). (21.1)

Informally, Equation 21.1 simply means add one to the binary number represented
by the PC. To be precise, the sum is computed modulo 232, namely, if the sum equals
232, then replace the sum by zero. Note that (unsigned) binary representation is used for
storing the address of the current instruction in the PC.

Load/Store Instructions (I-type). Load and store instructions deal with copying
words between the memory and the GPRs. Below we write the assembly instructions for
load and store instructions. We also write an informal and abbreviated interpretation of
the load and store instruction next to each instruction.

21.2. INSTRUCTION SET ARCHITECTURE 359

Load/Store Semantics
lw RD RS1 imm RD := M[sext(imm)+RS1]
sw RD RS1 imm M[sext(imm)+RS1] := RD

The precise semantics of load and store instructions are rather complicated. We first
define the effective address; informally, the effective address is the index of the memory
word that is accessed in a load or store instruction.

Definition 21.1 The effective address in a load or store instruction is defined as fol-
lows. Let j = ⟨RS1⟩, namely the binary number represented by the 5-bit field RS1 in the
instruction. Let Rj denote the word stored in the register of the GPR whose index is j.
Let ⟨Rj⟩ denote the binary number represented by Rj. Recall that [imm] denotes the
two’s complement number represented by the 16-bit field imm. We denote the effective
address by ea. Then,

ea
△

= mod(⟨Rj⟩ + [imm] ,232).

We point out that the event that ⟨Rj⟩ + [imm] /∈ {0, . . . ,232 − 1} is (most likely)
an indication of a programming error. In certain architectures, such an event creates
a segmentation fault . In the simplified DLX, we do not consider this event to be an
error, and the modulo operation is a side effect of using a simple adder for computing
the effective address (see Questions 21.4- 21.6).

The semantics of load and store instructions are as follows.

Definition 21.2 Let i = ⟨RD⟩, namely i is the number represented in binary represen-
tation by the 5-bit field RD in the instruction. Let Ri denote the word stored in the ith
register in the GPR.

1. A load instruction has the following meaning:

Ri←M[ea].

This means that the word stored in M[ea] is copied to register Ri. Of course, M[ea]
retains its value.

2. A store instruction has the following meaning:

M[ea]←Ri.

This means that the word stored in Ri is copied to M[ea]. Of course, Ri retains
its value.

Note that an implementation of load and store instructions uses the MAR and MDR.
In particular, (i) the effective address is stored in the MAR, and (ii) copying a word from
Ri to M[ea] (or vice-versa) is done indirectly via the MDR.

360 CHAPTER 21. THE ISA OF A SIMPLIFIED DLX

Notation. Following the notation used for load and store instructions, we use the
following notation:� Ri denotes the word stored in the register of the GPR whose index is ⟨RD⟩.� Rj1 denotes the word stored in the register of the GPR whose index is ⟨RS1⟩.� Rj2 denotes the word stored in the register of the GPR whose index is ⟨RS2⟩.

Obviously, ⟨Rj1⟩ denotes the binary number represented by the word Rj1. Similarly,
[Rj2] denotes the two’s complement number represented by the word Rj2.

Example 21.3 The assembly instruction lw R7 R0 15 means copy the word stored in
the memory in address ⟨R0⟩ + 15 to R7. Note that ‘0’ stands for R0, which, as we shall
see later, always stores the value ‘0’. The assembly instruction sw R7 R4 0 means copy
the word stored in register R7 to the memory in address ⟨R4⟩ + 0.

Add Instruction (I-type). There are two add instructions in the ISA. We describe
below the add instruction that belongs to the I-type format. The assembly instruction
for addition appears in the table below with an informal description.

Instruction Semantics
addi RD RS1 imm RD := RS1 + sext(imm)

The precise semantics of an add-immediate instruction are as follows.

Ri← bin(mod([Rj1] + [imm] ,232)). (21.2)

Equation 21.2 is rather terse; we clarify it now. The goal is to add two numbers. The first
addend is the two’s complement number represented by the word stored in the register
whose index is ⟨RS1⟩. The second addend is the two’s complement number represented
by the string stored in the immediate field of the instruction. The addition is modulo
232. The binary representation of the sum is stored in the register whose index is ⟨RD⟩.

This definition is a bit confusing. One might ask why not encode the sum as a two’s
complement number? Namely, why not simply use the definition [Ri] = [Rj1] + [imm]?
The problem with this “simple” specification is what happens if the result overflows.

Question 21.7 shows that if no overflow occurs, then Equation 21.2 is identical to
“ordinary” two’s complement addition.

We remark that if interrupts are considered, then one must define two additional “side-
effects” of addition instructions, namely, the setting of the overflow flag and negative flag.
This is beyond the scope of this chapter.

Example 21.4 The assembly instruction addi R5 R5 1 means increment the contents
of register R5 by 1.

21.2. INSTRUCTION SET ARCHITECTURE 361

Shift Instructions (R-type). The shift instructions perform a logical shift by one
position either to the left or to the right. The input is word Rj1 and the shifted word
is stored in Ri. The assembly instructions for logical shift left and logical shift right are
listed below.

Instruction Semantics
sll RD RS1 RD := RS1 << 1
srl RD RS1 RD := RS1 >> 1

Example 21.5 The assembly instruction sll R4 R8 means: logically shift the contents
of register R8 by one position to the left, and store the shifted word in register R4.

The assembly instruction srl R4 R8 means: logically shift the contents of register R8
by one position to the right, and store the shifted word in register R4.

ALU Instructions (R-type). The R-type arithmetic and logical unit (ALU) instruc-
tions are: add, subtract, and logical bitwise operations (e.g., or, and, xor). The assem-
bly instructions for ALU instructions are listed below with an informal description.

Instruction Semantics
add RD RS1 RS2 RD := RS1 + RS2
sub RD RS1 RS2 RD := RS1 − RS2
and RD RS1 RS2 RD := and(RS1, RS2)
or RD RS1 RS2 RD := or(RS1, RS2)
xor RD RS1 RS2 RD := xor(RS1, RS2)

Formally, the semantics of the add and subtract instructions are:

Ri← bin(mod([Rj1] + [Rj2] ,232))
Ri← bin(mod([Rj1] − [Rj2] ,232)).

The semantics of the bitwise logical instructions are simple. For example, in an and

instruction Ri[ℓ] = and(Rj1[ℓ],Rj2[ℓ]).
Example 21.6 The assembly instruction add R4 R8 R12 means store in R4 the sum
of the contents of registers R8 and R12. The assembly instruction or R1 R2 R3 means
store in R1 the bitwise or the contents of registers R2 and R3. Hence, if R2 = (01)16
and R3 = (10)16, then R1← 132.

Test Instructions (I-type). The test instructions compare the two’s complement
numbers [Rj1] and [imm]. The result of the comparison is stored in Ri.

For example, consider the slti instruction. The semantics of the slti instruction
are:

Ri =

⎧⎪⎪⎨⎪⎪⎩
1 if [Rj1] < [imm]
0 otherwise.

There are six different test instructions: slti, seqi, sgti, slei, sgei, snei.
We summarize there functionality below.

362 CHAPTER 21. THE ISA OF A SIMPLIFIED DLX

Instruction Semantics
sreli RD RS1 imm RD := 1, if condition is satisfied,

RD := 0 otherwise
if rel =lt test if RS1 < sext(imm)
if rel =eq test if RS1 = sext(imm)
if rel =gt test if RS1 > sext(imm)
if rel =le test if RS1 ≤ sext(imm)
if rel =ge test if RS1 ≥ sext(imm)
if rel =ne test if RS1 ≠ sext(imm)

Example 21.7 The assembly instruction slti R4 R8 -12 means store in R4 the value
‘1’ if [R8] < −12, otherwise store in R4 the value ‘0’. The assembly instruction snei R1 R8 9

means store in R1 the value ‘1’ if [R8] ≠ 9, otherwise store in R1 the value ‘0’.

Branch/Jump Instructions (I-type). Branch and jump instructions modify the
value stored in the the PC. Recall that during the execution of every instruction the PC

is incremented. In a branch or jump instruction an additional change is made to the PC.
The simplest instruction in this set is the “jump register” (jr) instruction. It simply

changes the PC so that PC ← Rj1. Hence the next instruction to be executed is the
instruction stored in M[Rj1].

A somewhat more evolved instruction is the “jump and link register” (jalr) instruc-
tion. This instruction saves the incremented PC in R31. The idea is that this instruction
is used for calling a procedure and the return address is stored in R31. Formally, the
semantics of jalr are:

R31← bin(mod(⟨PC⟩ + 1,232))
PC← Rj1.

We also have two branch instructions: “branch if zero” (beqz) and “branch if not zero”
(bnez). In a beqz instruction, if Rj1 = 032 then a branch takes place and the address of
the next instruction is PC + 1 + [imm]. If Rj1 ≠ 032, then the branch is not taken, and
the address of the next instruction is PC + 1. In a bnez instruction, the conditions are
reversed.
We summarize these four instructions in the following table.

Instruction Semantics
beqz RS1 imm PC = PC + 1 + sext(imm), if RS1 = 0

PC = PC + 1, if RS1 ≠ 0
bnez RS1 imm PC = PC + 1, if RS1 = 0

PC = PC + 1 + sext(imm), if RS1 ≠ 0
jr RS1 PC = RS1
jalr RS1 R31 = PC+1; PC = RS1

See Section 21.3 for examples of branch instructions.

21.2. INSTRUCTION SET ARCHITECTURE 363

Miscellaneous Instructions (I-type). There are a few special instructions in the
I-type format. The first special instruction is a the “no operation” (special-nop) in-
struction. This instruction has a null effect, and the only thing that happens during its
execution is that the PC is incremented.

The second special instruction is the “halt” (halt) instruction. This instruction
causes the microprocessor to “freeze” and stop the execution of the program. Halting is
implemented simply by not updating the PC.

21.2.3 Encoding of the Instruction Set

Tables 21.1 and 21.2 suggest binary encoding of the instructions.

IR[31 ∶ 26] Mnemonic Semantics

Data Transfer
100 011 lw RD = M[sext(imm)+RS1]
101 011 sw M[sext(imm)+RS1] = RD

Arithmetic, Logical Operation
001 011 addi RD = RS1 + sext(imm)

Test Set Operation
011 rel s rel i RD = (RS1 rel sext(imm))
011 001 sgti RD = (RS1 > sext(imm))
011 010 seqi RD = (RS1 = sext(imm))
011 011 sgei RD = (RS1 ≥ sext(imm))
011 100 slti RD = (RS1 < sext(imm))
011 101 snei RD = (RS1 ≠ sext(imm))
011 110 slei RD = (RS1 ≤ sext(imm))

Control Operation
000 100 beqz PC = PC + 1 + (RS1 = 0 ? sext(imm) ∶ 0)
000 101 bnez PC = PC + 1 + (RS1 ≠ 0 ? sext(imm) ∶ 0)
010 110 jr PC = RS1
010 111 jalr R31 = PC + 1; PC = RS1

Miscellaneous Instructions
110 000 special NOP no operation
111 111 halt stop program

Table 21.1: I-type Instructions

364 CHAPTER 21. THE ISA OF A SIMPLIFIED DLX

IR[5 ∶ 0] Mnemonic Semantics

Shift Operation
000 000 sll RD = RS1 << 1
000 010 srl RD = RS1 >> 1

Arithmetic, Logical Operation
100 011 add RD = RS1 + RS2
100 010 sub RD = RS1 − RS2
100 110 and RD = RS1 ∧ RS2
100 101 or RD = RS1 ∨ RS2
100 100 xor RD = RS1 ⊕ RS2

Table 21.2: R-type Instructions (in R-type instructions IR[31 ∶ 26] = 06)

21.3. EXAMPLES OF PROGRAM SEGMENTS 365

Variable Register
f R1

g R2

h R3

i R4

j R5

Table 21.3: Register assignment for Example 21.8

C code DLX assembly
if (i==j) xor R6 R4 R5

goto L1; beqz R6 1

f=g+h; add R1 R2 R3

L1: f=f-i; sub R1 R1 R4

Table 21.4: Conversion of the program segment in Example 21.8 to the instruction set of
the DLX.

21.3 Examples of Program Segments

Example 21.8 Convert the C code segment below to a simplified DLX’s machine code.

if (i==j)

goto L1;

f=g+h;

L1: f=f-i;

First, we assign a register to each of the variables in program segment. The register
assignment appears in Table 21.3.

Now, we convert the C code to a DLX’s machine code. The conversion is depicted in
Table 21.4.

In Example 21.8, every C instruction is mapped to a single machine code instruction.
This is not always the case, as we are about to see in the following example.

Example 21.9 Convert the C code segment below to a simplified DLX’s machine code.

LOOP: g=g+A[i];

i=i+j;

if (i!=h) goto LOOP;

Again, we assign a register to each of the variables in program segment. The register
assignment appears in Table 21.5.

The evaluation of the program segment requires temporarily storing some values in
the registers. We assume that these registers are free. In particular, the address of A[0]
(i.e., the address of the first entry of the array A) is held in register R5. We later refer

366 CHAPTER 21. THE ISA OF A SIMPLIFIED DLX

Variable Register
g R1

h R2

i R3

j R4

A R5

A+i R6

A[i] R7

i!=h R8

Table 21.5: Register assignment. The variables below the line are temporary registers
used for evaluating the program segment in Example 21.9.

to this address simply by A. Register R6 is used as a temporary place holder for storing
the value of A + i. This is the address of A[i]. Register R7 is used as a temporary place
holder for A[i]. Finally, register R8 stores the outcome of the comparison i ≠ h.

Now, we convert the C code to a DLX’s machine code. The conversion is depicted in
Table 21.6.

C code DLX assembly
LOOP: g=g+A[i]; add R6 R5 R3

lw R7 R6 0

add R1 R1 R7

i=i+j; add R3 R3 R4

if (i!=h) goto LOOP; xor R8 R3 R2

bnez R8 -6

Table 21.6: Conversion of the program segment in Example 21.9 to the instruction set of
the DLX.

21.4 Summary

In this chapter we described the ISA of the simplified DLX. Even though the ISA is rather
simple, C instructions and programs can be translated to the DLX machine language.
Missing in this description are issues such as: supporting systems calls, distinguishing
between protected mode and user mode, etc. These important issues are beyond the
scope of this chapter.

Problems

21.1 Explain why it is not common anymore for people to program in assembly or ma-
chine code. Consider issues such as: cost of programming in a high level language com-

21.4. SUMMARY 367

pared to assembly or machine code, ease of debugging programs, protections provided by
high level programming, and length and efficiency of final machine code program.

21.2 Parts of the main memory in many computers are nonvolatile and even read-only
memory. Nonvolatile means that the contents are kept even when power is turned off.
Read-only means that the contents cannot be changed. Can you explain why such read-only
nonvolatile memory is required?

21.3 We said that the same memory is used to store operating system programs and data
as well as the user’s program and data. How can we make sure that the user program
does not write to areas in the memory that “belong” to the operating system?

21.4 If we ignore the issue of overflow, then the effective address is simply ⟨Rj⟩+[imm].
Recall that in two’s complement representation the largest representable number is roughly
half the largest representable number in binary representation. Since we have only 16 bits
for the immediate constant, is better to define the effective address by ⟨Rj⟩+ ⟨imm⟩? Do
we need negative immediate constants?

21.5 This question deals with how a binary adder is used to compute the effective ad-
dress.

1. Prove that addition modulo 232 is not sensitive to binary or two’s complement rep-
resentation. Namely, let X[31 ∶ 0] and Y [31 ∶ 0] be two binary strings, then

mod (⟨X⃗⟩ + ⟨Y⃗ ⟩,232) = mod ([X⃗] + ⟨Y⃗ ⟩,232) = mod ([X⃗] + [Y⃗] ,232) .
2. Prove that ea = mod([imm] + [Rj] ,232)] = mod(⟨sext(imm)⟩ + ⟨Rj⟩,232)].
3. Suggest an way to compute the effective address. (Hint: the immediate constant

must be sign-extended before added with ⟨Rj⟩.)

21.6 Consider the computation of the effective address. Suppose that we wish to detect
the event that the computation overflows. Formally,

⟨Rj⟩ + [imm] ≥ 232 or ⟨Rj⟩ + [imm] < 0.

Suggest how to compute the effective address and how to detect overflow.

21.7 Let A⃗ and C⃗ denote 32-bit binary strings. Let B⃗ denote a binary string of any
length. Think of A as the 32 bit two’s complement representation of [X] + [Y] if no
overflow occurs. Think of B as the representation of [X] + [Y] in two’s complement
(using as many bits as required). Suppose that [A⃗] = [B⃗] and that ⟨C⃗⟩ = mod([B⃗] ,232).
Prove that A⃗ = C⃗.

21.8 How is the condition [Rj1] < [imm] computed? Let us return to the negative flag of
the signed adder/subtractor. Is it crucial that the negative flag indicates correctly whether
the sum/difference is negative even in case of an overflow?

368 CHAPTER 21. THE ISA OF A SIMPLIFIED DLX

21.9 Why is the address of the next instruction defined as PC + 1 + [imm] instead of
PC + [imm] when a branch is taken? Does this definition simplify or complicate the
implementation of a branch instruction?

21.10 Can you suggest reasons for using the no-operation and halt instructions?

21.11 Convert the following program segments to equivalent program segments in the
DLX instruction set.� In each example, specify the assignment of registers.� Use the DLX assembly editor and compiler to implement and compile your program.� Use the DLX assembly simulator to verify by yourself that your program is correct.� Submit your annotated program.

1. A[4]:= A[8];

2. A:= B[7];

A:=A+8;

if (A==B[2]) then C:=A+1;

else C:=2*A;

3. for i:=1 to K do

begin

S:=S+A[i];

end

4. A:=A[A];

5. A:=0;

for i:=1 to 13 do

begin

A:=A+B;

end

6. if (A[2]==3) then

C:=1;

else

C:=2;

7. if (A[2]==A[4]) then

A[2]:=A[2]+A[4];

else

A[4]:=A[4]-5;

halt;

Chapter 22

A Simplified DLX: Implementation

Contents
22.1 Datapath . 370

22.1.1 The Outside World: The Memory Controller 370

22.1.2 Registers . 371

22.1.3 ALU Environment . 372

22.1.4 Shifter Environment . 374

22.1.5 The IR Environment . 374

22.1.6 The PC Environment . 375

22.1.7 The GPR Environment . 375

22.2 Control . 376

22.2.1 A High Level View of the Execution Cycle 377

22.2.2 The Control FSM . 377

22.3 RTL Instructions . 379

22.4 Examples of Instruction Execution 380

22.5 Summary . 383

369

370 CHAPTER 22. A SIMPLIFIED DLX: IMPLEMENTATION

In this chapter we show how to implement the simplified DLX. The implementation
consists of two parts: a finite state machine, called the control , and a circuit containing
registers and functional modules, called the datapath. The separation of the design into
a controller and a datapath greatly simplifies the task of designing the simplified DLX.

The datapath contains all the modules needed to execute instructions. These modules
include registers, a shifter, and an arithmetic logic unit, etc. The control is the “brain”
that uses the datapath to execute the instructions.

22.1 Datapath

In this section we outline an implementation of the datapath of a simplified DLX, as de-
picted in Figure 22.1. We outline the implementation by specifying the inputs, outputs,
and functionality of every module in the datapath. The implementation of every module
is done by using the memory modules and the combinational circuits that we have im-
plemented throughout this book. Note that Figure 22.1 is not complete: (1) inputs and
outputs of the control FSM are not presented, (2) Some of the input/output ports, and
their corresponding wires, are not presented. In fact, only wires that are 32-bit wide are
presented in Figure 22.1.

22.1.1 The Outside World: The Memory Controller

We begin with the “outside world”, that is the (external) memory. Recall that both the
executed program and the data are stored in the memory.

The memory controller is a circuit that is positioned between the DLX and the main
memory. It is a synchronous circuit that receives memory access requests from the DLX.
The main problem related to a memory access is that it requires an unpredictable number
of cycles to complete. Accessing a register always takes a single clock cycle, however,
loading or storing in the external memory typically requires several cycles. The reason
that memory accesses are not executed in a fixed number of clock cycles has to do with
the organization of the memory, also called the memory hierarchy. This organization
involves caches, cache misses, page faults, and other issues that are beyond the scope of
this book.

The fact that the number of clock cycles required to complete a memory is not fixed
requires a special signal, called the busy signal. The busy signal is an output of the
memory controller that tells the DLX whether the memory is still executing the previous
memory access. The DLX may issue a new memory access request only if the busy signal
is low.

Recall that M[232−1 ∶ 0] denotes the memory array. Each memory cell M[i] is 32-bit
wide.

Definition 22.1 The Memory Controller is a synchronous circuit specified as follows:

Input: IN[31 ∶ 0],Address[31 ∶ 0] ∈ {0,1}32, MR,MW ∈ {0,1}, and a clock clk.

Output: OUT [31 ∶ 0] ∈ {0,1}32, busy ∈ {0,1}.

22.1. DATAPATH 371

Functionality: 1. The input may change in cycle t only if busy(t) = 0.

2. If busy(t) = 0 and busy(t − 1) = 1, then the output must satisfy the following
conditions:

(a) If MR(t − 1) = 1 then

OUT (t)←M[⟨Address(t − 1)⟩](t − 1).
(b) If MW(t − 1) = 1 then

M[⟨Address(t − 1)⟩](t)← IN(t − 1).

Note that the functionality only refers to the clock cycles in which a memory access
has just completed. These clock cycles are characterized by the condition busy(t) = 0
and busy(t − 1) = 1.

The memory controller is depicted in Fig. 22.2.

1

32

32

32

Controller
Memory

OUT[31:0]

MW

MR

busy

Address[31:0]IN[31:0]

1

1

clk

Figure 22.2: The memory controller.

The busses depicted in Fig. 22.1 are connected to the memory controller as follows.� The bus AO[31 ∶ 0] is connected to the Address[31 ∶ 0] input of the memory con-
troller.� The bus DO[31 ∶ 0] is connected to the IN[31 ∶ 0] input of the memory controller.� The bus DI[31 ∶ 0] is connected to the OUT [31 ∶ 0] input of the memory controller.

The signals MR,MW and busy are connected to the FSM that is called the DLX control.
These signals are discussed in detail in Section 22.2.2.

22.1.2 Registers

All the registers of the simplified DLX datapath are 32-bits wide, and are as follows.

1. There are 32 General Purpose Registers (GPR): R0 to R31. The GPR module is
discussed in Section 22.1.7.

372 CHAPTER 22. A SIMPLIFIED DLX: IMPLEMENTATION

2. The Instruction Register (IR) is, also, a clock enabled parallel load register. This
register is part of the IR environment. The IR environment is discussed in Sec-
tion 22.1.5.

3. The remaining registers: Program Counter (PC), Memory Address Register (MAR),
Memory Data Register (MDR), and registers A,B and C are all clock enabled
parallel load registers. Each of these registers has a distinct clock enable signal
that is computed by an FSM called the DLX control (see Section 22.2). The clock
enable signals are called PCCE, MARCE, MDRCE, ACE, BCE, CCE.

22.1.3 ALU Environment

The ALU is a combinational circuit that supports, addition and subtraction, bitwise
logical instructions, and comparison instructions. A sketch of the ALU is depicted in
Fig. 22.3. The main three subcircuits of the ALU are: (1) 32-bit Adder/subtractor,
add-sub(32), (2) bitwise logical operations, xor,or,and, and (3) a comparator, comp(32).
Note that the comparator is fed by the outputs of the adder/subtractor circuit.

32

32

ALU
5 type[4:0]

Z[31:0]

32

X[31:0] Y[31:0]

or(32)
xor(32)

add-sub(32) comp(32)
and(32)

Figure 22.3: A sketch of the ALU

Definition 22.2 An ALU environment is a combinational circuit specified as follows:

Input: x[31 ∶ 0], y[31 ∶ 0] ∈ {0,1}32, type ∈ {0,1}5.

Output: z[31 ∶ 0] ∈ {0,1}32.

Functionality:
z⃗
△

= ftype(x⃗, y⃗) ,

Table 22.1 lists the functions in the set {ftype ∶ type ∈ {0,1}5}.

22.1. DATAPATH 373

We note the following regarding the functionality of the ALU.

1. The outcome of a comparison is one or zero depending on whether the expression
is true.

2. The logical operations are bitwise.

3. The comparison operations return either 032 or 031 ○ 1.

4. The input type[0] indicates if the function is addition. It is used, for example, to
increment the program counter.

5. The input type[1] indicates if the function is comparison.

The busses depicted in Fig. 22.1 are connected to the ALU as follows.� The bus S1[31 ∶ 0] is connected to the x[31 ∶ 0] input of the ALU.� The bus S2[31 ∶ 0] is connected to the y[31 ∶ 0] input of the ALU.� The bus Z2[31 ∶ 0] is connected to the z[31 ∶ 0] output of the ALU.

The signals type[4 ∶ 0] are outputs of the FSM called the DLX control. These signals are
discussed in detail in Section 22.2.2.

type[4 ∶ 2] type[1] type[0] ftype(x⃗, y⃗)
001 1 0 [x⃗] > [y⃗]
010 0 0 [x⃗] − [y⃗] (mod 232)
010 1 0 [x⃗] = [y⃗]
011 0 0 [x⃗] + [y⃗] (mod 232)
011 1 0 [x⃗] ≥ [y⃗]
100 0 0 xor(x⃗, y⃗)
100 1 0 [x⃗] < [y⃗]
101 0 0 or(x⃗, y⃗)
101 1 0 [x⃗] ≠ [y⃗]
110 0 0 and(x⃗, y⃗)
110 1 0 [x⃗] ≤ [y⃗]
*** * 1 [x⃗] + [y⃗] (mod 232)

Table 22.1: The type input is partitioned into three fields, i.e., type[4 ∶ 2], type[1] , and
type[0]. The values of each of these fields are listed in the left three columns. The symbol
‘*’ denotes a “don’t care”, that is, the corresponding entry can be either, ‘0’ or ‘1’.

374 CHAPTER 22. A SIMPLIFIED DLX: IMPLEMENTATION

22.1.4 Shifter Environment

The shifter is a 32-bit bi-directional logical shifter by one position. Formally, recall that
lls(x⃗, i) denotes the logical left shift of x⃗ by i positions, and that lrs(x⃗, i) denotes the
logical right shift of x⃗ by i positions (see Section 14.3 in page 238).

Definition 22.3 The shifter environment is a combinational circuit defined as follows:

Input: � x[31 ∶ 0] ∈ {0,1}32,� shift ∈ {0,1}, and� right ∈ {0,1}.
Output: y[n − 1 ∶ 0] ∈ {0,1}32.
Functionality: The output y⃗ satisfies

y⃗
△

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x⃗, if shift = 0,

lls(x⃗,1), if shift = 1,right = 0,

lrs(x⃗,1), if shift = 1,right = 1.

The shifter environment also implements the identity function (i.e., no shift at all).
This possibility is used to route a word through the shifter in the execution of some
instructions.

The busses depicted in Fig. 22.1 are connected to the shifter as follows.� The bus S1[31 ∶ 0] is connected to the x[31 ∶ 0] input of the shifter.� The bus Z1[31 ∶ 0] is connected to the y[31 ∶ 0] output of the shifter.

The signals shift and right are outputs of the FSM that is called the DLX control.
These signals are discussed in detail in Section 22.2.2.

22.1.5 The IR Environment

The IR environment holds the 32 bits of the current instruction. Recall that there are two
instruction formats, i.e., I-type and R-type. When executing an I-type instruction, the
IR environment outputs the sign extension of the immediate field, and the indices of RS1
and RD. On the other hand, when executing an R-type instruction, the IR environment
outputs the indices of RS1,RS2 and RD. Note that the RD field is positioned in a
different “places”. Selecting the right bits requires a circuit that computes whether the
instruction is an I-type instruction. We delegate this computation to the DLX control,
and denote the outcome of this computation as the Itype signal.
Formally, the IR environment is, a synchronous circuit defined as follows.

Definition 22.4 The IR environment is a synchronous circuit defined as follows:

22.1. DATAPATH 375

Input: DI[31 ∶ 0] ∈ {0,1}32, IRce,JLINK,Itype ∈ {0,1} and a clock signal clk.

Output: An instruction Inst[31 ∶ 0], sign extension of the immediate constant Imm[31 ∶
0], and the GPR addresses Aadr[4 ∶ 0],Badr[4 ∶ 0],Cadr[4 ∶ 0] ∈ {0,1}5.

Functionality:

Inst(t + 1) =
⎧⎪⎪⎨⎪⎪⎩
Inst(t) if IRce(t) = 0,

DI(t) if IRce(t) = 1.

Imm[31 ∶ 0](t) = sign extension of Inst[15 ∶ 0](t) to 32 bits.

Aadr[4 ∶ 0](t) = Inst[25 ∶ 21](t),
Badr[4 ∶ 0](t) = Inst[20 ∶ 16](t),

Cadr[4 ∶ 0](t) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

11111 if JLINK(t) = 1,

Inst[20 ∶ 16](t), if Itype(t) = 1 and JLINK(t) = 0,

Inst[15 ∶ 11](t), otherwise.

The IR environment is implemented by a parallel load clock enabled register and a 3 ∶ 1-
mux to select the value of Cadr.

Inputs and outputs of IR environment are connected as follows.� The datapath bus DI[31 ∶ 0] is connected to the DI[31 ∶ 0] input of the IR envi-
ronment.� The Imm[31 ∶ 0] output of the IR environment is connected to the S2MUX.� The outputs Aadr,Badr and Cadr are input to the GPR environment, as discussed
in detail in Section 22.1.7.� The output Inst[31 ∶ 0] is input to the FSM called the DLX control.� The inputs Itype, JLINK and IRce are outputs of the DLX control.

22.1.6 The PC Environment

The PC environment is simply a 32-bit clock enabled parallel load register. The PC is
initialized to the value 032.

22.1.7 The GPR Environment

The GPR environment is sometimes called the register file. There are 32 registers in the
GPR Environment, called R0,R1, . . . ,R31. The GPR Environment (or GPR, for short)
can support one of two operations in each clock cycle.

1. Write the value of input C in Ri, where i = ⟨Cadr⟩.

376 CHAPTER 22. A SIMPLIFIED DLX: IMPLEMENTATION

2. Read the contents of the registers Ri and Rj, where i = ⟨Aadr⟩ and j = ⟨Badr⟩.

Formally, the GPR is specified as follows:

Definition 22.5 A GPR is a synchronous circuit specified as follows.

Inputs: GPR addresses (output by the IR environment) Aadr[4 ∶ 0],Badr[4 ∶ 0],Cadr[4 ∶
0] ∈ {0,1}5, a data input C[31 ∶ 0] ∈ {0,1}32, a write-enable signal GPR WE ∈ {0,1}
and a clock signal clk.

Output: A[31 ∶ 0],B[31 ∶ 0] ∈ {0,1}32, and a flag AEQZ ∈ {0,1}.
Functionality : Let R[i] denote the ith register in the GPR. The functionality of a

GPR is specified by the following program:

1. data: array R[31 ∶ 0] of 32-bit wide registers.

2. initialize: ∀i ∶ R[i]← 032.

3. For t = 0 to ∞ do

(a) If GPR WE = 1 and ⟨Cadr⟩ ≠ 0, then

R[⟨Cadr⟩](t + 1)← C⃗(t).

(b) If GPR WE = 0 then

A⃗(t)←R[⟨Aadr⟩](t),
B⃗(t)←R[⟨Badr⟩](t),

AEQZ(t)← ⎧⎪⎪⎨⎪⎪⎩
1 if A⃗(t) = 032,

0 otherwise.

An implementation of the GPR environment is depicted in Figure 22.4. In essence,
it is a dual port RAM (see Question 18.4) that is implemented somewhat inefficiently by
two parallel RAMs.

The GPR input C and two outputs A and B are connected to the datapath registers
with the same names (see Fig. 22.1). The output AEQZ is input to the DLX control. The
input GPR WE is an output of the DLX control.

22.2 Control

The control is an FSM that helps execute a DLX program. Loosely speaking, it “tells”
the datapath what to do in every clock cycle. We begin in Section 22.2.1 with a high
level view of how instructions are executed. We continue in Section 22.2.2 with a detailed
description of the FSM. We then continue in Section 22.3 with a description of how the
control governs the datapath. We conclude in Section 22.4 with examples of instruction
execution.

22.2. CONTROL 377

22.2.1 A High Level View of the Execution Cycle

An execution of a DLX instruction requires multiple clock cycles. It is common to consider
the following steps in the execution of an instruction:

1. Instruction Fetch. In this step the instruction to be executed is copied from the
main memory to the Instruction Register (IR). Formally, in this step the following
operation takes place:

IR ←M[⟨PC⟩].

2. Instruction Decode. In this step the instruction stored in the IR is decoded. De-
coding means that the control decides what actions should take place.

3. Execute. In this step the instruction is executed. For example, in an add instruc-
tion, the additions takes place in this step.

4. Memory Access. In this step load and store instructions access the main memory.

5. Write-back. In this step the result of an instruction that computes a value is stored,
if needed, in the GPR.

22.2.2 The Control FSM

In this section we present a formal description of the FSM that constitutes the control of
the DLX.

States. The FSM has 19 states. We first list the states that correspond to steps in the
execution cycle:

1. Instruction Fetch. The Fetch state is the only state that deals with instruction
fetch.

2. Instruction Decode. The Decode state is the only state that deals with instruction
decode.

3. Execute. The states: Alu, TestI, AluI, and Shift deal with the execute step.

4. Memory Access. The states Load and Store deal with memory access.

5. Write-back. The states WBR and WBI deal with writing back the result in the
GPR.

There are additional states that do not belong to the standard execution steps. These
include the following states:

1. States that deal with the execution of branch and jump instructions. These are the
states: Branch, Btaken, JR, Save PC, and JALR.

378 CHAPTER 22. A SIMPLIFIED DLX: IMPLEMENTATION

2. States that deal with load and store instructions. These are the states: Address-
Computation, CopyMDR2C, and CopyGPR2MDR.

3. A sink state, called Halt, for stopping the execution.

FSM inputs. Each bit of the input alphabet of the FSM is called a control input. We
list the control inputs as follows:

1. The current instruction Inst[31 ∶ 0] that is an output of the IR environment.

2. The AEQZ flag that indicates if A equals zero. This flag is an output of the GPR
environment.

3. The busy flag that is output by the memory controller.

FSM Outputs. Each bit of the output alphabet of the FSM is called an control output.
Table 22.4 summarizes the control outputs of the simplified DLX and their effect. We
elaborate on the control outputs in the following list.

1. IRCE, PCCE, ACE, BCE, CCE, MARCE, MDRCE: clock enable signals of the corre-
sponding registers.

2. S1SEL[1:0], S2SEL[1:0], DINTSEL, MDRSEL, ADSEL: select signals of the S1MUX,
S2MUX, DINTMUX, MDRMUX, and ADMUX selectors in the datapath.

3. ALUF[2:0], ADD, TEST: signals that are input to the ALU environment, as follows:
type[4 ∶ 2] ← ALUF[2 ∶ 0], type[1] ← test, and type[0] ← add. The value of ALUF[2 ∶
0] is computed by

ALUF[2 ∶ 0]←
⎧⎪⎪⎨⎪⎪⎩
opcode[2 ∶ 0] if Inst is an I-type instruction

function[2 ∶ 0] if Inst is an R-type instruction.
(22.1)

Note that the opcode and function strings are fields in the instruction as described
in Fig. 21.1.

4. SHIFT, RIGHT: signals that are input to the Shifter environment.

5. Itype: indicates whether the current instruction is an I-type instruction. The
Itype signal is input to the IR environment.

6. JLINK: This signal is input to the IR environment. The signal equals one if and
only if the current instruction is a jalr instruction.

7. The signals MR,MW are input to the memory controller. These signals indicate
whether a read or write access is performed by the memory controller.

8. The signal GPR WE is the write enable signal of the GPR environment.

22.3. RTL INSTRUCTIONS 379

Output Function. Table 22.3 lists the control outputs that equal one in each state.
The other control outputs equal zero. One often refers to a control output that equals
one as an active signal. Note that in states Alu and TestI the control output ALUF is
computed according to Equation 22.1.

State Diagram. Figure 22.5 depicts a sketch of the state diagram of the control of the
simplified DLX. Note that the contents of the datapath registers is not part of the state
of the FSM of the control. Figure 22.5 does not depict the reset signal. Reset is added
tot he FSM using the transformation described in Section 20.3. The reset signal causes
a transition in the control of the DLX to the “fetch” state.

Transition Function. In Figure 22.5, one can easily see, that the out-degree of most
the control states is one. This means that the FSM transitions to the only “next state”
independent of the input to the FSM. Only six states have an out-degree greater than
one. We elaborate on the transitions from these six states.

1. The Fetch, Load and Store states have a self-loop labeled by busy. This means,
that if the input busy equals one, then the FSM stays in the same state.

2. The Branch state has two possible transitions. The transition to state BTaken is
labeled bt, and the transition back to Fetch is labeled not(bt). The value of bt is
computed by the control and equals one if the condition of a conditional branch is
satisfied. It is computed by

bt = AEQZ⊕ Inst[26].

3. The Address-Computation has two possible transitions. The transition to Copy-
GPR2MDR is labeled is − store, and transition to Load is labeled not(is − store).
The value of is − store is computed by the control and equals one if the current
instruction is a store-word (sw) instruction.

4. The Decode state has 10 possible transitions. These transitions are labeled D1 − D10.
Exactly one of these signals equals one, so that the transition is well defined. Ta-
ble 22.2 describes how the values of D1 − D10 are determined.

22.3 RTL Instructions

The control governs the behavior of the datapath by its outputs called control outputs.
The simplest control signal is a clock enable signal of a register in the datapath. In each
state, the control tells which registers should store new values. We specify this action by
a Register Transfer Language (RTL) instruction. The operands of an RTL instruction are
the datapath registers, and the calculations are performed by the combinational circuits
in the datapath.

380 CHAPTER 22. A SIMPLIFIED DLX: IMPLEMENTATION

condition when does it equal 1?

D1 special NOP
D2 beqz, bnez
D3 jalr
D4 jr
D5 lw, sw
D6 sgti, seqi, sgei, slti, snei, slei
D7 addi
D8 sll, srl
D9 add, sub, and, or, xor
D10 halt

Table 22.2: Determining the transition from the Decode state

We list the RTL instructions in each state of the control in Table 22.3. In this table
we refer to a control signal, the value of which is 1, as an active control signal.

For example, the RTL in the fetch state is:

IR =M[PC],

that is, copy the contents of M[PC] to the IR. Reading from the value stored in M[PC]
is performed by setting a control signal MR to be high. Once the result of the read is ready,
the value is stored in the IR register since the clock enable of the IR register is set to
high. We denote this clock enable signal by IRCE.

22.4 Examples of Instruction Execution

In this section we present the execution of two instructions, load-word (lw) and branch-
equal-zero (beqz). Executing the rest of the instructions in the ISA is done similarly.

Executing the load-word instruction. In this example we follow the execution of
the lw instruction step by step.

We begin by finding out the path of states that are traversed during the execution
of the load-word instruction (see Figure 22.6 for a depiction of this path). This path
begins with a FETCH state and ends when the control re-enters the FETCH state.
After the FETCH state, the control always transitions to the DECODE state. The
current instruction is stored in the instruction register IR. The binary representation of
the instruction determines which of the internal signals D1..D10 equals one. The active
internal signal in the case of a load-word instruction is D5 (see Table 22.2). Thus, the
control transitions from the DECODE state to the ADDRESSCMP. Since the internal
signal is-store equals zero, the next transition is to the LOAD state. Once the busy

signal is low, the control transitions to the COPYMDR2C state. The next state is the

22.4. EXAMPLES OF INSTRUCTION EXECUTION 381

Name RTL Instruction Active Control Outputs

Fetch IR =M[PC] MR, IRce
Decode A = RS1, Ace,

B = RS2 Bce,
PC = PC + 1 S2sel[1], S2sel[0], add, PCce

Alu C = A op B S1sel[0], Cce, active bits in ALUF[2:0]
TestI C = (A rel imm) S1sel[0], S2sel[0], Cce, test, Itype,

active bits in ALUF[2:0]
AluI(add) C = A + imm S1sel[0], S2sel[0], Cce, add, Itype
Shift C = A shift sa S1sel[0], Cce

sa = 1, (−1) DINTsel, shift (,right)
Adr.Comp MAR = A + imm S1sel[0], S2sel[0], MARce, add
Load MDR =M[MAR] MDRce, ADsel, MR, MDRsel
Store M[MAR] =MDR ADsel, MW
CopyMDR2C C =MDR(≫ 0) S1sel[0], S1sel[1], S2sel[1], DINTsel, Cce
CopyGPR2MDR MDR = B(≪ 0) S1sel[1], S2sel[1], DINTsel, MDRce
WBR RD = C (R-type) GPR WE
WBI RD = C (I-type) GPR WE, Itype
Branch branch taken?
Btaken PC = PC + imm S2sel[0], add, PCce
JR PC = A S1sel[0], S2sel[1], add, PCce
Save PC C = PC S2sel[1], add, Cce
JALR PC = A S1sel[0], S2sel[1], add, PCce,

R31 = C GPR WE, jlink

Table 22.3: The output function of the DLX control. The leftmost column lists the
states of the control. The RTL instructions that are executed in each state are listed in
the middle column. The active control outputs in each state are listed in the rightmost
column.

382 CHAPTER 22. A SIMPLIFIED DLX: IMPLEMENTATION

Signal Value Semantics

ALUf[2:0] Controls the functionality of ALU
Rce Register clock enable
S1sel[1:0] 00 PC

01 A
10 B
11 MDR

S2sel[1:0] 00 B
01 IR
10 0
11 1

DINTsel 0 ALU
1 Shifter

MDRsel 0 DINT
1 DI

ADsel 0 PC
1 MAR

shift explicit Shift-Instruction
right Shift to the right
add Forces an addition
test Forces a test (in the ALU)
MR Memory Read
MW Memory Write
GPR WE GPR write enable
itype Itype-Instruction
jlink jump and link

Table 22.4: Summary of the control outputs

22.5. SUMMARY 383

WBI state, and from there the control transitions back to the FETCH state, and the
execution of the load-word instruction is finished.

For each state traversed in the execution of the load-word instruction, we execute
the corresponding RTL instructions (as listed in Table 22.3). Figure 22.7 depicts the
execution of every RTL instruction in every control state in this sequence. For every
state in this sequence, Figure 22.7 depicts the active modules and the wires along which
data is transferred to execute the RTL instruction. For example, in the FETCH state,
the RTL instruction IR =M[PC] is executed as follows:

1. Send the output of the PC to the memory controller.

2. Send the data-in signal DI to the IR-environment.

This is implemented by the active control outputs MR and IRCE (see Table 22.3). The
MR is input to the memory controller and the IRCE is input to the IR register. While
the busy signal is high the FSM stays in the FETCH state. When busy is low the FSM
moves to the next state in the sequence. Note that the IRCE is high during all that time,
hence eventually the IR samples and stores the correct value M[PC], as required.

Executing the ‘beqz’ instruction. The control states that are traversed while exe-
cuting the ‘beqz’ instruction are depicted in Figure 22.8. Indeed, the control’s internal
signal bt is high iff AEQZ ⊕IR[26] = 1. The encoding of ‘beqz’ (see Table 21.1) implies
that IR[26] = 0, hence branch is taken iff AEQZ= 1. The contents of register RS1 is stored
in register A, hence the decision whether to branch or not is correct. Recall that the
signal AEQZ is output by the GPR (see Section 22.1.7).

22.5 Summary

We described every module in the datapath by specifying its inputs, outputs and func-
tionality. We described the control of the DLX by its state machine. We “glued” all these
components by describing which RTL instruction is executed in every step. We conclude
the discussion by following the execution of two DLX instructions step by step.

In this chapter we described all the details of an implementation of the simplified
DLX. There is no need to learn this implementation by heart. It is merely a suggestion
for an implementation. If this is the first time you see such an implementation, try to
understand the underlying principles. The best way to see how the design works is by
executing all the instructions step by step.

384 CHAPTER 22. A SIMPLIFIED DLX: IMPLEMENTATION

Problems

22.1 Follow the execution of each of the following DLX instructions. List the sequence
of control states that are traversed in the execution for each instruction. For each state:
write the RTL and explain how this RTL is executed by the datapath (i.e., active control
outputs, and flow of signals in the datapath).

1. JALR R2

2. SW R1 R2 -5

3. BEQZ R1 12

22.2 The contents of the MDR register is copied to register C by using the SHIFT
environment, as depicted in Figure 22.7e. Suggest how to copy the contents of the MDR
register to register C by using the ALU.

22.3 Suggest an implementation of the DLX (datapath and control) that uses a GPR
with a single RAM.

22.4 Suggest an implementation of the DLX (datapath and control) in which the ALU
environment and the shifter environment are “merged” into a single environment.

22.5 Suggest an implementation of the DLX (datapath and control) in which the WBI
and the WBR states in the DLX control are unified into a single state WB.

22.6 Figure 22.9 depicts a simple datapath that contains clock enabled registers, muxes,
a logical left shifter by one position and a binary adder (without a carry-out).

Suggest how to execute the following RTL segments using as few clock cycles as pos-
sible.

1.

A← shift(A)
D ← B +C.

2.

D ← shift(D)
A ← B +C.

3.

A← B

B ← A.

22.5. SUMMARY 385

22.7 We would like to extend the DLX ISA. Suggest an implementation of the DLX
(datapath and control) that supports the execution of the following new instructions. Note
that the new implementation should support the “old” ISA as well. For every instruction:� Encode the instruction, i.e., choose an instruction format.� List the changes that should be made to the datapath.� List the changes that should be made to the control FSM, in particular list the

new control signals and their semantics, update the state-RTL table (Table 22.3),
and draw the flow of information in the datapath during the execution of the new
instruction.

Instruction Semantics
swap RS1 RS2 Swap the contents of RS1 and RS2.
check17 RD RS1 if RS1[17]=1, then RD := 1, else RD:=0.
beq2 RS1 imm if RS1 = 2, then PC = PC + 1 + sext(imm), else PC:=PC+1.

386 CHAPTER 22. A SIMPLIFIED DLX: IMPLEMENTATION

Env.

Memory Controller

Memory Controller

Z1 Z2

ADMUX

GPR Env.

BPC Env. MDR

00 01 10 111000 01 11

S1MUX S2MUX

DINTMUX

01

MAR

0 1

310032 1

IR Env.

0 1

MDRMUX

C

A

S1 S2

DINT

DI[31:0] DO[31:0]

AO[31:0]

SHIFT

Env.

ALU

Figure 22.1: Datapath of the simplified DLX machine

22.5. SUMMARY 387

ram(25) × 32

clk

R/W

Address[4 : 0]

Din[31 : 0]

clk

R/W

Address[4 : 0]

Din[31 : 0]

ram(25) × 32

5

5

1

5

Cadr

Aadr

Badr

AEQZ A

C

clk clk

Dout[31 : 0]Dout[31 : 0]

Cadr

zero

5

5

3232

32

5

or-tree(5)

1

1

0

0

B

GPR WE

GPR WE

GPR WE GPR WE’ GPR WE’

tester

Figure 22.4: An implementation of the GPR environment

388
C

H
A

P
T

E
R

22.
A

S
IM

P
L
IF

IE
D

D
L
X

:
IM

P
L
E

M
E

N
T
A

T
IO

N

FETCH

DECODE

LOAD

COPYMDR2C

COPYGPR2MDR

STORE

JR SAVEPCADDRESSCMP

JALR

BRANCH

BTAKENTESTI

ALUI

WBI

SHIFTALU

WBR

busy

D5D6D7D9 D8

is−store

busy

busy

bt

D4 D3 D2

HALT

D10

D1

not(busy)

not(bt)

not(is-store)

not(busy)

not(busy)

F
igu

re
22.5:

S
ketch

of
th

e
state

d
iagram

of
th

e
con

trol
of

th
e

sim
p
lifi

ed
D

L
X

m
ach

in
e

22.5. SUMMARY 389

busy

D5

WBI

busy

FETCH

DECODE

ADDRESSCMP

LOAD

COPYMDR2C

not(busy)

not(is-store)

not(busy)

Figure 22.6: The sequence of control states that are traversed in the execution of the lw

instruction.

390 CHAPTER 22. A SIMPLIFIED DLX: IMPLEMENTATION

SHIFT

Env.

ALU
Env.

Memory Controller

Memory Controller

ADMUX

AO[31:0]

GPR Env.

BPC Env. MDR

00 01 10 111000 01 11

S1MUX S2MUX

DINTMUX

1

MAR

0 1

310032 1

IR Env.

0 1

MDRMUX

C

A

S1

0

S2

DINT

DI[31:0] DO[31:0]

(a) FETCH: IR =M[PC]

Env.

ALU
Env.

Memory Controller

Memory Controller

GPR Env.

BPC Env. MDR

00 01 10 111000 01 11

S1MUX S2MUX

DINTMUX

01

MAR

0 1

ADMUX

310032 1

IR Env.

0 1

MDRMUX

C

A

S1 S2

DINT

DI[31:0] DO[31:0]

AO[31:0]

SHIFT

(b) DECODE: A = RS1,B =
RS2, PC = PC + 1

Env.

ALU
Env.

Memory Controller

Memory Controller

ADMUX

GPR Env.

BPC Env. MDR

00 01 10 111000 01 11

S1MUX S2MUX

DINTMUX

01

MAR

0 1

310032 1

IR Env.

0 1

MDRMUX

C

A

S1 S2

DINT

DI[31:0] DO[31:0]

AO[31:0]

SHIFT

(c) ADDRESSCMP: MAR =
A + imm

Env.

Memory Controller

Memory Controller

AO[31:0]

1

GPR Env.

BPC Env. MDR

00 01 10 111000 01 11

S1MUX S2MUX

DINTMUX

01

MAR

0

ADMUX

310032 1

IR Env.

0 1

MDRMUX

C

A

S1 S2

DINT

DI[31:0] DO[31:0]

SHIFT

Env.

ALU

(d) LOAD: MDR =M[MAR]

Memory Controller

Memory Controller

DINT

GPR Env.

BPC Env. MDR

00 01 10 111000 01 11

S1MUX S2MUX

DINTMUX

01

MAR

0 1

ADMUX

310032 1

IR Env.

0 1

MDRMUX

C

A

S1 S2

DI[31:0] DO[31:0]

AO[31:0]

SHIFT

Env.

ALU
Env.

(e) COPYMDR2C: C =MDR

ALU
Env.

Memory Controller

Memory Controller

GPR Env.

BPC Env. MDR

00 01 10 111000 01 11

S1MUX S2MUX

DINTMUX

01

MAR

0 1

ADMUX

310032 1

IR Env.

0 1

MDRMUX

C

A

S1 S2

DINT

DI[31:0] DO[31:0]

AO[31:0]

SHIFT

Env.

(f) WBI: RD = C

Figure 22.7: Executing the RTL instructions in the control states: FETCH, DECODE,
ADDRESSCMP, LOAD, COPYMDR2C, WBI. In every state, the active modules in the
datapath are grayed, and the active 32-bit wide wires are bolded.

22.5. SUMMARY 391

D2

FETCH

DECODE

busy

BRANCH

BTAKEN

bt

not(bt)

not(busy)

Figure 22.8: The sequence of control states that are traversed in the execution of the
‘beqz’ instruction.

DC

S5MUX

S4MUX

S3MUXS2MUXS1MUX

A B

AdderSHIFT

1 0 10

1 0

0001 01 0010

01

320 310 1

Figure 22.9: A simple data path.

392 CHAPTER 22. A SIMPLIFIED DLX: IMPLEMENTATION

Bibliography

[1] D. Cohen. On holy wars and a plea for peace. Computer, 14(10):48–54, 1981.

[2] M.D. Ercegovac and T. Lang. Digital arithmetic. Morgan Kaufmann, 2003.

[3] M.D. Ercegovac, J.H. Moreno, and T. Lang. Introduction to digital systems. John
Wiley & Sons, Inc. New York, NY, USA, 1998.

[4] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to automata theory,
languages, and computation, volume 3. Addison-wesley Reading, MA, 1979.

[5] C. Howson. Logic with Trees: Introduction to Symbolic Logic. Routledge, 1997.

[6] M. Karnaugh. The map method for synthesis of combinational logic circuits. Trans.
AIEE. pt. I, 72(9):593–599, 1953.

[7] Ami Litman. Lecture notes in digital design (in Hebrew). Faculty of Computer
Science, Technion, 2003.

[8] H.F. Mattson. Discrete mathematics with applications. John Wiley & Sons, Inc.
New York, NY, USA, 1993.

[9] E.J. McCluskey. Minimization of boolean functions. Bell Systems Technical Journal,
35(5):1417–1444, 1956.

[10] R.J. McEliece, C. Ash, and R.B. Ash. Introduction to discrete mathematics. Random
House, Inc., 1989.

[11] S.M. Müller and W.J. Paul. The complexity of simple computer architectures.
Springer Lecture Notes In Computer Science, Vol. 995. Springer, 1996.

[12] D.A. Patterson and J.L. Hennessy. Computer Organization and Design: The Hard-
ware/Software Interface. Morgan Kaufmann, 1994.

[13] W. V. Quine. The problem of simplifying truth functions. The American Mathe-
matical Monthly, 59(8):pp. 521–531, 1952.

[14] W. V. Quine. A way to simplify truth functions. The American Mathematical
Monthly, 62(9):pp. 627–631, 1955.

393

394 BIBLIOGRAPHY

[15] J.E. Savage. Models of computation: Exploring the power of computing. Addison-
Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1997.

[16] S.A. Ward and R.H. Halstead. Computation structures. The MIT Press, 1990.

Index

adder
binary, 246
Compund Adder, 253
Conditional Sum Adder, 251
Ripple Carry Adder, 247
sequential, 339
two’s complement adder, 272
two’s complement subtractor, 273

addition, 245
3-bit carry, 16
signed, 261

arbitration, 285
arc, 44
arithmetic logic unit (ALU), 372
arithmetic series, 22
arity, 78
assembler, 355
assembly language, 358
asymptotic behavior, 107

balanced partition, 198
balanced tree, 199
big endian, 120
binary operation, 16

idempotent, 132
binary representation, 59
binary string, 10, 60
bit, 10, 15, 60

carry bit, 247, 249
least significant (LSB), 62
most significant (MSB), 62
weight, 62

Boolean formula, 77, 78
atoms, 81, 105
contradiction, 106
logically equivalent, 86
normal forms, 124

satisfiable, 86
subformula, 79

bus, 210
byte, 65

Cartesian product, 5
Central Processing Unit (CPU), 65
circuit, 174

functionality, 187
synchronous, see synchronous circuits

clock, 282
closure, 81
combinational circuit, 175

delay, 187
delay analysis, 178
depth, 187
simulation, 178

combinational gate, 166
compiler, 355
conjunctive normal form (CNF), 128
connective

binary connectives, 78
complete set of connectives, 94
equivalence, 89
implication, 89
unary connective, 78

constant, 77
counter, 343
critical segment, 284

D-latch, 295
DAG, 45

longest path, 49
De Morgan’s dual, 100
De Morgan’s laws, 10, 23, 100, 102
decoder, 212, 213, 231
design rules, 152, 188

395

396 INDEX

digit, 60
digital abstraction, 152
digital circuit, 152
disjunctive normal form (DNF), 124
division, 59, 212

quotient, 59, 60

electronic devices, 152
encoder, 219, 220

priority encoder, 244

factorial function, 25
fan-in, 170
fan-out, 171
Fibonacci sequence, 25, 107, 111, 117
finite state machine, see FSM
flip-flop

clock enabled, 296
edge triggered, 283
edge triggered with reset, 321

FSM, 312, 323
analysis, 330, 337
initialization, 342
synthesis, 330, 337

function, 10
associative, 17, 192
bijection, 27
Boolean function, 15
commutative, 17
composition, 11
cone, 200, 204
constant function, 13
domain, 11
identity function, 13, 15
injection, 27
majority, 16
one-to-one, 27
onto, 27
parity function, 16
range, 11
restriction, 11
surjection, 27

functional equivalence, 224

Galois Field, 131

Gauss elimination, 132
giga-bit, 65
giga-byte, 65
golden ratio, 26
graph

acyclic, 43
cycle, 45
directed acyclic graph, 45
directed edge, 44
directed graph, 44
reversed DAG, 47, 57

Hamming distance, 219
heuristic, 136
hexadecimal

representation, 71, 72

immediate constant, 358
implicant, 137

essential prime, 140
prime implicant, 138

induction
complete induction, 23
induction basis, 22
induction hypothesis, 22
induction step, 22

Instruction Set Architecture (ISA), 354

kilo-byte, 65

leading zeros, 63
least significant bit first, 119
literal, 91, 124
little endian, 120
logical value, 155
LSB, see bit

maxterm, 128
mega-bit, 65
mega-byte, 65
memory, 357

dual port RAM, 309
controller, 370
effective address, 359
microprocessor, 356
RAM, 304, 345

INDEX 397

ROM, 307
microprocessor

control, 370, 377
datapath, 370
execution cycle, 377

minimum depth tree, 196
minterm, 125
mnemonic, 358
modulo, 59

remainder, 60
monomial, 134
most significant bit first, 119
MSB, see bit
multiplexer, 230
multiplication table, 12

negation, 78
negation normal form, 102
net, 171
netlist, 174
node, 44
noise, 155, 157

additive noise, 159
bounded-noise model, 159

one’s complement, 262
order of growth rates, 107
ordered pair, 5
overflow, 270

Pólya, 24
parallel edges, 175
parse tree, 78
path, 44

closed, 45
critical, 187
interior vertex, 45
open, 45
self-loop, 45
simple, 45

permutation, 47
personal computer, 65
polynomial, 134
product of sums (POS), 128
product term, 124

simple, 124
product-of-sums, 129
proof by contradiction, 82, 99
propagation delay, 168
propositional logic, 77

rate of growth, 107
recurrence, 111
redundant representation, 256
register, 303

program counter (PC), 375
register file, 375
shift register, 304
architectural, 355
instruction register (IR), 374
instruction register (PC), 357
MAR, 357
MDR, 357
parallel load register, 303
program counter (PC), 357
shift register, 344
simplified DLX, 371

Register Transfer Language (RTL), 379
relation

binary, 10
rooted trees, 53, 54

depth, 56, 195
height, 56
interior vertices, 55
leaves, 55
parent, 55
perfect, 197
subtree hanging, 55

segmentation fault, 359
self-loop, 45, 175
semantics, 187
sequences, 33

arithmetic sequence, 34
finite sequence, 33
geometric sequence, 34
growth, 107
harmonic sequence, 34

series, 35
arithmetic, 35

398 INDEX

geometric, 36
sets

axiomatic set theory, 5
cardinality, 9
complement, 4
difference, 4
disjoint, 7
element, 4
empty set, 4
intersection, 4
pairwise-disjoint, 7
power set, 4
Russell’s Paradox, 6
strict containment, 12
subset, 4
union, 4
universal set, 3

shifter
arithmetic shifter, 241
barrel shifter, 234
cyclic, 234
environment, 374
logical shifter, 238

sign bit, 267
sign extension, 268
sign-magnitude representation, 262
signal

analog, 155
digital, 155
logical, 163
stable, 163

simulation
combinational circuit, 178
synchronous circuit, 329

static transfer function, 157
strings

concatenation, 61, 219
zero based, 61

substitution, 91
subtree, 54
sum of products (SOP), 124–126
sum term, 128
symmetric difference, 142
synchronous circuit, 312

canonic form, 314
initialization, 320
min clock period, 326
simulation, 329
timing, 290
timing analysis, 314, 324
zero delay, 302

syntax, 188

tautology, 86
term

simple, 128
terminals, 174
topological ordering, 43, 47
transistors, 152
truth assignment, 83
truth table, 15
two’s complement, 262

negation, 264

variable, 78
Venn diagrams, 8
vertex, 44

walk, 44
word, 65

	Preface
	I Preliminaries
	Sets and Functions
	Sets
	Relations and Functions
	Boolean Functions
	Truth Tables

	Commutative and Associative Binary Operations

	Induction and Recursion
	Induction
	Recursion
	Application: One-to-one and Onto Functions

	Sequences and Series
	Sequences
	Series

	Directed Graphs
	Definitions
	Topological Ordering
	Longest path in a DAG
	Rooted Trees

	Binary Representation
	Division and Modulo
	Bits and Strings
	Bit Ordering
	Binary Representation
	Computing a Binary Representation
	More on Unique Binary Representation

	Propositional Logic
	Boolean Formulas
	Truth Assignments
	Satisfiability and Logical Equivalence
	Interpreting a Boolean Formula as a Function
	Substitution
	Complete Sets of Connectives
	Important Tautologies
	De Morgan's Laws
	Negation Normal Form

	Asymptotics
	Order of Growth Rates
	Recurrence Equations

	Computer Stories: Big Endian vs. Little Endian

	II Combinational Circuits
	Representation by Formulas
	Sum of Products
	Product of Sums
	The Finite Field GF(2)
	Polynomials over GF(2)

	Satisfiability
	Relation to P vs. NP
	Minimization Heuristics
	Basic Terminology and Properties
	The Implicants' Graph
	Essential Prime Implicants
	Optimality Conditions
	The Quine-McCluskey Heuristic
	Karnaugh Maps

	The Digital Abstraction
	Transistors
	A CMOS inverter
	From analog signals to digital signals
	Transfer functions of gates
	The bounded-noise model
	The digital abstraction in presence of noise
	Input and output signals
	Redefining the digital interpretation of analog signals

	Stable signals
	Summary

	Foundations of combinational circuits
	Combinational gates - an analog approach
	Back to the digital world
	Example

	Combinational gates
	Wires and Nets
	Combinational circuits
	Properties of Combinational Circuits
	Simulation and Delay Analysis
	Completeness
	Cost and propagation delay
	Example: relative gate costs and delay
	Semantics and Syntax
	Summary

	Trees
	Associative Boolean functions
	Trees of associative Boolean gates
	Cost analysis
	Delay analysis

	Optimality of trees
	Definitions
	Lower bound on cost
	Lower bound on delay

	Summary

	Decoders and Encoders
	Buses
	Decoders
	Division in Binary Representation
	Definition of Decoder
	Brute force design
	An optimal decoder design
	Correctness
	Cost and delay analysis
	Asymptotic Optimality

	Encoders
	Hamming Distance and Weight
	Concatenation of Strings
	Definition of Encoder
	Brute Force Implementation
	Implementation and Correctness
	Cost Analysis
	Reducing the Cost
	Cost and delay analysis
	Asymptotic Optimality

	Summary

	Selectors and Shifters
	Multiplexers
	Implementation

	Cyclic Shifters
	Implementation
	Correctness and analysis of cost and delay

	Logical Shifters
	Implementation

	Arithmetic Shifters
	Two's complement
	Arithmetic shifter

	Summary

	Addition
	Definition of a binary adder
	Ripple Carry Adder
	Correctness proof
	Delay and cost analysis

	Lower Bounds
	Carry bits
	Cone of adder outputs
	Lower bounds

	Conditional Sum Adder
	Motivation
	Implementation
	Delay and cost analysis

	Compound Adder
	Implementation
	Correctness
	Delay and cost analysis

	Reductions between sum and carry bits
	Redundant and non-redundant representation
	Summary

	Signed Addition
	Representation of negative integers
	Computing a two's complement representation
	Negation in two's complement representation
	Properties of two's complement representation
	Reduction: two's complement addition to binary addition
	Detecting overflow
	Determining the sign of the sum

	A two's-complement adder
	A two's complement adder/subtractor
	Summary

	III Synchronous Circuits
	Flip-Flops
	The clock
	Edge-triggered Flip-Flop
	Arbitration
	Arbiters - an impossibility result
	Necessity of critical segments
	A Timing Example
	Non-empty intersection of Ci and Ai

	Bounding Instability
	Other types of memory devices
	D-Latch
	Clock enabled flip-flops

	Summary

	Memory Modules
	The Zero Delay Model
	Example: Sequential xor

	Registers
	Parallel Load Register
	Shift Register

	Random Access Memory (RAM)
	A simple Implementation of a RAM

	Read-Only Memory (ROM)
	Summary

	Foundations of Synchronous Circuits
	Definition
	The Canonic Form of a Synchronous Circuit
	Timing Analysis: the canonic form
	An Easy Example
	Input/Output Timing Constraints
	Sufficient Conditions
	Satisfying the Timing Constrains
	Initialization

	Functionality: the canonic form
	Finite State Machines
	Timing analysis: the general case
	Timing Constraints
	Algorithms: feasibility and minimum clock period
	Algorithms: correctness

	Simulation of Synchronous Circuits
	Synthesis and Analysis
	Analysis
	Synthesis

	Summary
	Problems

	Synchronous Modules: Analysis and Synthesis
	Example: a two-state FSM
	Sequential Adder
	Implementation
	Analysis

	Initialization and the Corresponding FSM
	Counter
	Implementation
	Analysis

	Revisiting Shift Registers
	Analysis

	Revisiting RAM
	Analysis
	Synthesis and Analysis

	IV A Simplified DLX
	The ISA of a Simplified DLX
	Why use abstractions?
	Instruction set architecture
	Architectural Registers and Memory
	Instruction Set
	Encoding of the Instruction Set

	Examples of Program Segments
	Summary

	A Simplified DLX: Implementation
	Datapath
	The Outside World: The Memory Controller
	Registers
	ALU Environment
	Shifter Environment
	The IR Environment
	The PC Environment
	The GPR Environment

	Control
	A High Level View of the Execution Cycle
	The Control FSM

	RTL Instructions
	Examples of Instruction Execution
	Summary

	Bibliography
	Index

