3.3 Matchings and Factors: Matchings in General

Graphs
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Overview of Matchings in General Graphs

= Section 3.1 used Hall’s Condition to characterize which X, Y-
bigraphs have an X-saturating matching. We also saw the
maximum size matching equals the minimum size vertex cover
for bipartite graphs.

=Section 3.2 extended this to bipartite matchings and vertex
covers for weighted edges, via the Hungarian Algorithm which
finds a maximum weight matching with weight equal to a
minimum weight cover.

*Now in Section 3.3 Tutte’s Condition characterizes all graphs
having a perfect matching, and more generally the size of a
maximum matching in any graph.
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Factors

3.3.1 Definition A factor of a graph G is a spanning subgraph of
G. A k-factor is a spanning k-regular subgraph. An odd
component of a graph is a component of odd order; the number
of odd components of H is o(H).

1-factor
Perfect @ @
matching M
(wx, yz) Y—@@

Perfect matchings precisely correspond to 1-factors by including
the vertices of the graph with the edges of the matching.

Contains copyrighted material from Introduction to Graph Theory by Doug West, 2" Ed. Not for distribution beyond IIT’s Math 454/553.



Tutte’s Condition

William Tutte (1917-2002) (see Wikipedia) proved in 1947 that
any graph satisfying the following condition has a 1-factor:

For all SCV(G), o(G-S) =< |S]. (Tutte’s Condition)

Example

Is there a 1-factor?

()
y \_/ Z
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Tutte’s Condition

William Tutte (1917-2002) (see Wikipedia) proved in 1947 that
any graph satisfying the following condition has a 1-factor:

For all SCV(G), o(G-S) =< |S]. (Tutte’s Condition)

Example
' o(G-S)=6 4 @ A

/ @ No 1-factor:
® O o, 0(G-S)=6

> |S| = 4
W

\ O / N < D
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Tutte’s 1-Factor Theorem

3.3.3 Theorem . (Tutte [1947]) A graph G has a 1-factor if and
only if o(G-S) = |S| for every SCV(G).
Proof

(=>) If G has a 1-factor, the odd components of G—S must have
at least one vertex each matched to vertices of S.

(<= by contradiction)

Assume Tutte’s condition holds and assume to the contrary G
has no 1-factor. Without loss of generality we may assume:

1. G is simple and has no 1-factor.
2. G+e has a 1-factor for every eZE(G).
3. G satisfies Tutte’s condition.

Next we justify these 3 assumptions.
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Tutte’s 1-Factor Theorem

Assume Tutte’s condition holds and assume to the contrary G
has no 1-factor. Without loss of generality we may assume:

1. G is simple and has no 1-factor:

Justification

If G has no 1-factor, neither does any simple subgraph of G.
Replace G with a simple graph by removing all loops and all
but one edge incident to any given pair of vertices.

Note that for every SCV(G) o(G-S) does not change under this
transformation!
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Tutte’s 1-Factor Theorem

Assume Tutte’s condition holds and assume to the contrary G
has no 1-factor. Without loss of generality we may assume:

7. G is simple and has no 1-factor.

2. G+e has a 1-factor for every eZE(G):
Justification

We have a simple graph G with no 1-factor.

There must exist a supergraph of G on vertices V(G) that is
edge-maximal with respect to having no 1-factor.

For some e & E(G), if G+e has no 1-factor, we simply replace G
by G+e and repeat.

Now we have a simple G with no 1-factor, but G+e has a 1-factor
for every e & E(G).
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Tutte’s 1-Factor Theorem

Assume Tutte’s condition holds and assume to the contrary G
has no 1-factor. Without loss of generality we may assume:

7. G is simple and has no 1-factor.

2. G+e has a 1-factor for every eZE(G).

3. G satisfies Tutte’s condition:

Justification

We have a simple graph G with no 1-factor but G+e has a 1-factor for
every eZE(G).

Now let SCV(G) be arbitrary. Step 1 did not change o(G-S).

Adding edges to G to get to Step 2 did not increase o(G-S):

G-S contains such an added edge only when both endpoints are within

G-S, and its number of odd components can only stay the same or
decrease.

(joining components: odd-even -> odd, odd-odd -> even, even-even -> even)
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Tutte’s 1-Factor Theorem

3.3.3 Theorem . (Tutte [1947]) A graph G has a 1-factor if and
only if o(G-S) = |S| for every SCV(G).
Proof

(=>) If G has a 1-factor, the odd components of G—S must have
at least one vertex each matched to vertices of S.

(<= by contradiction)

Assume Tutte’s condition holds and assume to the contrary G
has no 1-factor. Without loss of generality we may assume:

1. G is simple and has no 1-factor.
2. G+e has a 1-factor for every eZE(G).
3. G satisfies Tutte’s condition.

We continue proof of (<=) with G satisfying Properties 1-3.
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Tutte’s 1-Factor Theorem

Proof of (<=)
Define U = {v&eV(G) : d(v) = n(G)-1}.
Case 1 The components of G—U are complete graphs.

If n(i) is even, then K, ;) has a perfect matching.
Define t = [{i : n(/) is odd}|. For odd n(i), K,,; has a matching saturating
all but 1 vertex. So far we can match all but t vertices in G-U.

By Tutte’s Condition, t < |U|. These t vertices are all adjacent to all
vertices of U, and can be matched to ¢ vertices of U.
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Tutte’s 1-Factor Theorem

Proof of (<=)
Define U = {v&eV(G) : d(v) = n(G)-1}.
Case 1 The components of G—-U are complete graphs.

The t last vertices of the odd complete components of G-U are
matched to f vertices of U.

Claim |U| is even, and so G has a 1-factor after all.

It is easy to see that |U|-t and n(G) have the same parity.

Also, n(G) must be even. Otherwise |J| =0 <1 < 0o(G—J) = o(G).
Complete the 1-factor by pairing the remaining |U|-t vertices of U.
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Tutte’s 1-Factor Theorem

Proof of (<=)

Define U = {v&eV(G) : d(v) = n(G)-1}. y
Case 2 Some component of G—U is not complete.

Therefore G—-U has vertices x,y,z € V(G)-U with: A

(1) dg_i(x,2) = 2 and xz & E(G); X 7
(2) xy, yz € E(G-U); and
(3) d(y) < n(G) — 1. non-edge

The existence of y follows from the distance-2 condition on x,y.
This distance is with respect to G-U, so y & U.

By definition of U, y is adjacent to all vertices of U but not all vertices of
G. Therefore G-U has a vertex w with:

(4) yw & E(G).
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Tutte’s 1-Factor Theorem

Proof of (<=)

Define U = {v&eV(G) : d(v) = n(G)-1}. y W
Case 2 Some component of G—U is not complete.

Therefore G-U has vertices w,x,y,z € V(G)-U with: E

(1) dg_(x,2) = 2 and xz & E(G); X  z
(2) xy, yz € E(G-U); and

(3) d(y) < n(G) - 1; non-edge
(4) yw & E(G).

By assumption that adding any edge to G yields a 1-factor:
(5) G+xz has a 1-factor — call it M,;
(6) G+yw has a 1-factor — call it M,.
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Tutte’s 1-Factor Theorem

Proof of (<=)
We show it M, U M, U {xy,yz} contains a 1-factor avoiding {xz,yw}.
Define F =M,AM,, which contains both xz and yw.

Fact The components of F are even cycles and isolated

vertices, because the degree of a vertex in M;AM, is 0 or 2.

Define C to be the cycle of F containing xz.

Case A C does not contain yw. M, —
Define a 1-factor on all of G by selecting: y w M, —
*The edges of M, on C

*The edges of M, everywhere not on C.
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Tutte’s 1-Factor Theorem

Proof of (<=)
We show it M, U M, U {xy,yz} contains a 1-factor avoiding {xz,yw}.
Define F =M,AM,, which contains both xz and yw.

Define C to be the cycle of F containing xz.

Case B C contains yw.

When traveling around C in the direction from v to w,

if z is reached first, define a 1-factor of G by:

=Selecting M, between vand zon this side; /~ ™ y w
=Selecting the edge yz; :
=Selecting M, on the other side of C;and |
=Selecting exactly one of M,, M, off of C. %"

If x iIs encountered first instead of z,
replace yz with xz above.

Contains copyrighted material from Introduction to Graph Theory by Doug West, 2" Ed. Not for distribution beyond IIT’s Math 454/553.



