
3.3 Matchings and Factors: Matchings in General 
Graphs 

This copyrighted material is taken from Introduction to Graph 
Theory, 2nd Ed., by Doug West; and is not for further distribution 
beyond this course. 

These slides will be stored in a limited-access location on 
an IIT server and are not for distribution or use beyond Math 
454/553. 
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Overview of Matchings in General Graphs 

!  Section 3.1 used Hall’s Condition to characterize which X,Y-
bigraphs have an X-saturating matching.  We also saw the 
maximum size matching equals the minimum size vertex cover 
for bipartite graphs. 
! Section 3.2 extended this to bipartite matchings and vertex 
covers for weighted edges, via the Hungarian Algorithm which 
finds a maximum weight matching with weight equal to a 
minimum weight cover. 

! Now in Section 3.3 Tutte’s Condition characterizes all graphs 
having a perfect matching, and more generally the size of a 
maximum matching in any graph. 

2 

Contains copyrighted material from Introduction to Graph Theory by Doug West, 2nd Ed. Not for distribution beyond IIT’s Math 454/553.  



Factors 

3.3.1 Definition A factor of a graph G is a spanning subgraph of 
G.  A k-factor is a spanning k-regular subgraph.  An odd 
component of a graph is a component of odd order; the number 
of odd components of H is o(H). 

Perfect matchings precisely correspond to 1-factors by including 
the vertices of the graph with the edges of the matching. 
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William Tutte (1917-2002) (see Wikipedia) proved in 1947 that 
any graph satisfying the following condition has a 1-factor: 

 For all S⊆V(G), o(G–S) ≤ |S|.  (Tutte’s Condition) 

Example 

Tutte’s Condition 
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William Tutte (1917-2002) (see Wikipedia) proved in 1947 that 
any graph satisfying the following condition has a 1-factor: 

 For all S⊆V(G), o(G–S) ≤ |S|.  (Tutte’s Condition) 

Example 

Tutte’s Condition 
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3.3.3 Theorem . (Tutte [1947])  A graph G has a 1-factor if and 
only if o(G–S) ≤ |S| for every S⊆V(G).  
Proof 
(=>)  If G has a 1-factor, the odd components of G–S must have 
at least one vertex each matched to vertices of S. 
(<= by contradiction)  
Assume Tutte’s condition holds and assume to the contrary G 
has no 1-factor.  Without loss of generality we may assume: 
1.  G is simple and has no 1-factor. 
2.  G+e has a 1-factor for every e∉E(G).  
3.  G satisfies Tutte’s condition. 

Next we justify these 3 assumptions. 

Tutte’s 1-Factor Theorem 
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Assume Tutte’s condition holds and assume to the contrary G 
has no 1-factor.  Without loss of generality we may assume: 
1.  G is simple and has no 1-factor: 
Justification   
If G has no 1-factor, neither does any simple subgraph of G. 
Replace G with a simple graph by removing all loops and all 
but one edge incident to any given pair of vertices. 

Note that for every S⊆V(G) o(G–S) does not change under this 
transformation! 

Tutte’s 1-Factor Theorem 
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Assume Tutte’s condition holds and assume to the contrary G 
has no 1-factor.  Without loss of generality we may assume: 
1.  G is simple and has no 1-factor. 
2.  G+e has a 1-factor for every e∉E(G): 
Justification   
We have a simple graph G with no 1-factor.   
There must exist a supergraph of G on vertices V(G) that is 

edge-maximal with respect to having no 1-factor.   
For some e ∉ E(G), if G+e has no 1-factor, we simply replace G 

by G+e and repeat. 
Now we have a simple G with no 1-factor, but G+e has a 1-factor 

for every e ∉ E(G).  

Tutte’s 1-Factor Theorem 
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Assume Tutte’s condition holds and assume to the contrary G 
has no 1-factor.  Without loss of generality we may assume: 
1.  G is simple and has no 1-factor. 
2.  G+e has a 1-factor for every e∉E(G).  
3.  G satisfies Tutte’s condition: 
Justification   
We have a simple graph G with no 1-factor but G+e has a 1-factor for 

every e∉E(G). 
Now let S⊆V(G) be arbitrary.  Step 1 did not change o(G–S). 
Adding edges to G to get to Step 2 did not increase o(G–S): 
G–S contains such an added edge only when both endpoints are within 

G–S, and its number of odd components can only stay the same or 
decrease.  

(joining components: odd-even -> odd, odd-odd -> even, even-even -> even) 

Tutte’s 1-Factor Theorem 
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3.3.3 Theorem . (Tutte [1947])  A graph G has a 1-factor if and 
only if o(G–S) ≤ |S| for every S⊆V(G).  
Proof 
(=>)  If G has a 1-factor, the odd components of G–S must have 
at least one vertex each matched to vertices of S. 
(<= by contradiction)  
Assume Tutte’s condition holds and assume to the contrary G 
has no 1-factor.  Without loss of generality we may assume: 
1.  G is simple and has no 1-factor. 
2.  G+e has a 1-factor for every e∉E(G).  
3.  G satisfies Tutte’s condition. 

We continue proof of (<=) with G satisfying Properties 1-3. 

Tutte’s 1-Factor Theorem 
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Proof of (<=) 
Define U = {v∈V(G) : d(v) = n(G)–1}. 
Case 1  The components of G–U are complete graphs. 

If n(i) is even, then Kn(i) has a perfect matching.  
Define t = |{i : n(i) is odd}|. For odd n(i), Kn(i) has  a matching saturating 
all but 1 vertex.  So far we can match all but t vertices in G–U. 
By Tutte’s Condition, t ≤ |U|.  These t vertices are all adjacent to all 
vertices of U, and can be matched to t vertices of U. 

Tutte’s 1-Factor Theorem 
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Proof of (<=) 
Define U = {v∈V(G) : d(v) = n(G)–1}. 
Case 1  The components of G–U are complete graphs. 

The t last vertices of the odd complete components of G–U are 
matched to t vertices of U. 
Claim  |U| is even, and so G has a 1-factor after all. 
It is easy to see that |U|–t and n(G) have the same parity. 
Also, n(G) must be even.  Otherwise |∅| = 0 < 1 ≤ o(G–∅) = o(G). 
Complete the 1-factor by pairing the remaining |U|–t vertices of U.  

Tutte’s 1-Factor Theorem 
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Proof of (<=) 
Define U = {v∈V(G) : d(v) = n(G)–1}. 
Case 2  Some component of G–U is not complete. 
Therefore G–U has vertices x,y,z ∈ V(G)–U with: 
 (1) dG–U(x,z) = 2 and xz ∉ E(G); 
 (2) xy, yz ∈ E(G–U); and 
 (3) d(y) < n(G) – 1. 

The existence of y follows from the distance-2 condition on x,y. 
This distance is with respect to G–U, so y ∉ U. 
By definition of U, y is adjacent to all vertices of U but not all vertices of 
G.  Therefore G–U has a vertex w with: 
 (4) yw ∉ E(G). 

Tutte’s 1-Factor Theorem 
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Proof of (<=) 
Define U = {v∈V(G) : d(v) = n(G)–1}. 
Case 2  Some component of G–U is not complete. 
Therefore G–U has vertices w,x,y,z ∈ V(G)–U with: 
 (1) dG–U(x,z) = 2 and xz ∉ E(G); 
 (2) xy, yz ∈ E(G–U); and 
 (3) d(y) < n(G) – 1; 
  (4) yw ∉ E(G). 

By assumption that adding any edge to G yields a 1-factor: 
 (5) G+xz has a 1-factor – call it M1; 
 (6) G+yw has a 1-factor – call it M2. 

Tutte’s 1-Factor Theorem 
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Proof of (<=) 
We show it M1 ∪ M2 ∪ {xy,yz} contains a 1-factor avoiding {xz,yw}.   
Define F =M1ΔM2, which contains both xz and yw. 
Fact  The components of F are even cycles and isolated 
vertices, because the degree of a vertex in M1ΔM2 is 0 or 2. 
Define C to be the cycle of F containing xz. 
Case A  C does not contain yw. 
Define a 1-factor on all of G by selecting: 
! The edges of M2 on C 
! The edges of M1 everywhere not on C.      

Tutte’s 1-Factor Theorem 
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Proof of (<=) 
We show it M1 ∪ M2 ∪ {xy,yz} contains a 1-factor avoiding {xz,yw}.   
Define F =M1ΔM2, which contains both xz and yw. 
Define C to be the cycle of F containing xz. 
Case B  C contains yw. 
When traveling around C in the direction from v to w, 
if z is reached first, define a 1-factor of G by: 
! Selecting M1 between v and z on this side; 
! Selecting the edge yz; 
! Selecting M2 on the other side of C; and 
! Selecting exactly one of M1, M2 off of C. 

If x is encountered first instead of z,  
 replace yz with xz above.  

Tutte’s 1-Factor Theorem 
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