Prove that for every <u>directed</u> graph G(V, E) there is an independent set $S \subseteq V$ such that $\forall v \in V$ there is $d(v, S) \leq 2$.

In other words, every $v \in V$ has some $s(v) \in S$ such that the distance (length of shortest <u>directed</u> path) from s(v) to v has at most two arcs.

Hints:

- 1. Use induction on *V*.
- 2. Let $x \in V$ and $T = \{ t \in V \mid \vec{e}(x, t) \in E \}$
- 3. Consider G'(V', E'), where $V' = V \setminus \{T \cup \{x\}\}$, and apply induction.

Solution

Let $x \in V$ and $T = \{ t \in V \mid \vec{e}(x, t) \in E \}$.

Consider G'(V', E'), where $V' = V \setminus \{T \cup \{x\}\}$.

Assume by induction that there is an independent vertex set $S' \subseteq V'$ such that $\forall v \in V' \setminus S'$ there is $d(v, S') \leq 2$.

There are two cases:

- If S' ∪ {x} is independent set S = S' ∪ {x}. Then by induction all the vertices of V'\S' have distance at most 2 from S, and all v ∈ T have distance 1 from S (in fact from x).
- 2. $S' \cup \{x\}$ is not independent, i.e., $\exists z \in S'$ adjacent to x. Since $z \notin T$ there is $\vec{e}(z, x) \in E$.

Now set S = S'. If $y \in V' \setminus S'$ then by induction hypothesis its distance from S' is at most 2.

If $y \in T$ it can be reached from S' by $\vec{e}(z, x)$ and $\vec{e}(x, y)$.

<u>שאלה 2 (60 נק')</u>

Prove that a tournament T(V, E) is **<u>strongly connected</u>** if and only if it has a Hamiltonian cycle.

Reminder: A tournament *T* is a directed complete graph (all edges are directed).

Reminder: A Hamiltonian cycle traverses all the vertices of T (direction preserved along the cycle).

Hints:

- 1. For "only if" assume there is maximum cycle $C: (v_1, v_2, ..., v_k)$ but not Hamiltonian.
- 2. Let $x \notin C$, and $\vec{e}(v_1, x) \in E$. Conclude the directions of all the arcs involving x and $v_i \in C$.
- 3. Let X be all varices as x in 2. Prove that there is a vertex neither in X nor in C and conclude the consequences on C.

Solution

The proof of "if" is trivial. If the tournament T(V, E) has a Hamiltonian cycle then all the vertices are connected along the cycle.

For "only if", suppose that T is strongly connected. T therefore has cycles.

Let $C: (v_1, v_2, ..., v_k)$ be maximum cycle but not Hamiltonian.

Let $x \notin C$, and $\vec{e}(v_1, x) \in E$. If there is $\vec{e}(x, v_2) \in E$, $C': (v_1, x, v_2, ..., v_k)$ is a longer cycle than C, a contradiction. Hence $\vec{e}(v_2, x) \in E$. And similarly $\vec{e}(v_i, x) \in E$ for i = 1, 2, ..., k.

Let $X \subset V$ be all such vertices as above x.

Since T is strongly connected X must have an outgoing arc so its vertices could have directed paths to $V \setminus X$.

Let $\vec{e}(x, z) \in E$ be such arc, where $x \in X$ and $z \notin X$. Then $z \notin C$ either.

Since $z \notin X$, there is $\vec{e}(z, v_j) \in E$. There is also $\vec{e}(v_{j-1}, x) \in E$. Consequently $\vec{e}(v_{j-1}, x)$, $\vec{e}(x, z)$ and $\vec{e}(z, v_j)$ yield longer cycle $(v_1, v_2, \dots, v_{j-1}, x, z, v_j, \dots, v_k)$, so C could not be maximum cycle.