
Problem 1 (60 Pts.) 

Given a planar 3-regular 2-connected graph. Prove that its faces are 4-

colorable if and only if its edges are 3-colorable.  

The graph below is an example where the outer face is white (color 4). 

 

 

Hints for face 4-colorable ⇒ edge 3-colorable: 

1. Find all the possible color adjacencies between two faces. 

2. Consider what edges between two faces can assume same color. 

 

Hints for edge 3-colorable ⇒ face 4-colorable: 

1. Define a subgraph   𝐺1−2  by deleting all the edges of color 3 and 

conclude on its planarity and its face coloring. 

2. Define similarly  𝐺1−3  by deleting all the edges of color 2.  

3. Consider the merging (overlapping)  𝐺1−2 and 𝐺1−3 and conclude on 

𝐺 coloring. 

Solution 

Face 4-colorabie ⇒ edge 3-colorable: 



1. Notice that an edge is defined between two faces. 

2. 4 face colors define 6 distinct face adjacencies (1-2, 1-3, 1-4, 2-3, 2-4, 

3-4). 

3. A specific face color (e.g. 1) defines 3 edge colors (1-2, 1-3, 1-4). 

4. The face adjacency 3-4 edge can use the same color as 1-2 face 

adjacency edge. Otherwise all the four faces meet at a vertex forming 

a 4-degree vertex. 

5. Similarly for 2-4 and 1-3. 

6. Similarly for 2-3 and 1-4. 

7. Hence all the 6 edge colors are defined properly. 

 

Edge 3-colorable ⇒ face 4-colorable: 

Define a subgraph  𝐺1−2  by deleting all the  edges of color 3. The degree 

of all the edges in 𝐺1−2 is 2, hence it comprises only disjoint cycles. 

𝐺1−2 is hence planar and face 2-colorable. Assign color A to the interior 

of the cycles and color B to the outer unbounded face. 

Similarly, define a subgraph  𝐺1−3  by deleting all the edges of color 2. 

The degree of all the edges in 𝐺1−3 is 2, hence it comprises only disjoint 

cycles. 

𝐺1−3 is hence planar and face 2-colorable. Assign color C to the interior 

of the cycles and color D to the outer unbounded face.   

Embed 𝐺1−2  and 𝐺1−3  by overlapping each other. The outcome is a 

planar drawing of 𝐺 where the faces are the intersection of the colors A-

C, A-D, B-C, B-D, hence 4-colorable properly. 



 

 

Problem 2 (60 Pts.) 

Let 𝐺 = [𝑋, 𝑌] be a bipartite graph,  𝑆 ⊆ 𝑋 and Γ(𝑆) ⊆ 𝑌 𝑆’s neighbors. 

Let 

𝛿 = max
𝑆⊆𝑋

{|𝑆| − Γ(𝑆)}. 

Prove that  the maximum matching 𝛼′(𝐺) satisfies 

𝛼′(𝐺) = |𝑋| − 𝛿. 

Hints: 

1. Show that minimum vertex cover 𝛽(𝐺) ≤ |𝑋| − 𝛿 by using the cover 

Γ(𝑆) ∪ (𝑋 − 𝑆) , where 𝑆 yields  𝛿. 

2. Use a minimum vertex cover 𝑍  and 𝑆 = 𝑋 − 𝑍  to show |Γ(𝑆)| ≤

|𝑍 ∩ 𝑌|.  

3. Obtain the cover on 𝑌 from 𝑍 by removing its vertices on 𝑋.  

4. Use 2 and 3, and the definition of 𝛿 to show 𝛽(𝐺) ≥ |𝑋| − 𝛿. 

 

Solution 

By Kӧnig’s Theorem there is   𝛼′(𝐺) = 𝛽(𝐺), where 𝛽(𝐺) is a minimum 

vertex over. Hence we prove that  



𝛽(𝐺) = |𝑋| − 𝛿. 

Let 𝑆 ⊆ 𝑋 yielding   

𝛿 = |𝑆| − Γ(𝑆). 

Set a vertex cover  𝑍 = Γ(𝑆) ∪ (𝑋 − 𝑆). Hence  

𝛽(𝐺) ≤ |𝑍| = |Γ(𝑆)| + |𝑋| − |𝑆| = |𝑋| − 𝛿. 

To show the opposite inequality let 𝑍 be a minimum vertex cover and 

𝑆 = 𝑋 − 𝑍. 

𝑆  is the vertices on 𝑋  but out of 𝑍 . Hence their opposite vertices 

(neighbors in 𝑌) must be in the cover 𝑍. Hence 

Γ(𝑆) ⊆ 𝑍 ∩ 𝑌, 

and  

(1)      |Γ(𝑆)| ≤ |𝑍 ∩ 𝑌| 

To obtain the cover on 𝑌 from 𝑍 we need to remove from 𝑍 its vertices 

on 𝑋. Hence  

(2)      |𝑍 ∩ 𝑌| = |𝑍 − (𝑍 ∩ 𝑋)| = |𝑍| − |𝑍 ∩ 𝑋|. 

There is 

(3)      |𝑍 ∩ 𝑋| = |𝑋 − (𝑋 − 𝑍)| = |𝑋| − |𝑋 − 𝑍| = |𝑋| − |𝑆|. 

Substitution of (2) and (3) into (1) yields 

|Γ(𝑆)| ≤ |𝑍| − |𝑋| + |𝑆| = 𝛽(𝐺) − |𝑋| + |𝑆|,  

or 

𝛽(𝐺) ≥ |𝑋| − (|𝑆| − |Γ(𝑆)|) ≥ |𝑋| − max
𝑆⊆𝑋

{|𝑆| − Γ(𝑆)} = |𝑋| − 𝛿. 

 


