Problem 1 (60 Pts.)

Given a planar 3-regular 2-connected graph. Prove that its faces are 4-
colorable if and only if its edges are 3-colorable.

The graph below is an example where the outer face is white (color 4).

Hints for face 4-colorable = edge 3-colorable:
1. Find all the possible color adjacencies between two faces.
2. Consider what edges between two faces can assume same color.

Hints for edge 3-colorable = face 4-colorable:

1. Define a subgraph G;_, by deleting all the edges of color 3 and
conclude on its planarity and its face coloring.

2. Define similarly G;_3 by deleting all the edges of color 2.

3. Consider the merging (overlapping) G;_, and G;_3 and conclude on
G coloring.

Solution

Face 4-colorabie = edge 3-colorable:



1. Notice that an edge is defined between two faces.

2. 4 face colors define 6 distinct face adjacencies (1-2, 1-3, 1-4, 2-3, 2-4,
3-4).

3. A specific face color (e.g. 1) defines 3 edge colors (1-2, 1-3, 1-4).

4. The face adjacency 3-4 edge can use the same color as 1-2 face
adjacency edge. Otherwise all the four faces meet at a vertex forming
a 4-degree vertex.

5. Similarly for 2-4 and 1-3.

6. Similarly for 2-3 and 1-4.

7. Hence all the 6 edge colors are defined properly.

Edge 3-colorable = face 4-colorable:

Define a subgraph G,_, by deleting all the edges of color 3. The degree
of all the edges in G;_, is 2, hence it comprises only disjoint cycles.

G1_, is hence planar and face 2-colorable. Assign color A to the interior
of the cycles and color B to the outer unbounded face.

Similarly, define a subgraph G;_3; by deleting all the edges of color 2.
The degree of all the edges in G;_53 is 2, hence it comprises only disjoint
cycles.

G1_3 is hence planar and face 2-colorable. Assign color C to the interior
of the cycles and color D to the outer unbounded face.

Embed G,_, and G;_3 by overlapping each other. The outcome is a
planar drawing of G where the faces are the intersection of the colors A-
C, A-D, B-C, B-D, hence 4-colorable properly.



Problem 2 (60 Pts.)

Let G = [X, Y] be a bipartite graph, S € X andI'(S) € Y S’s neighbors.
Let

6= rsrlga)?{ISI —T'(S)}.

Prove that the maximum matching a’(G) satisfies
a'(G) = |X| —6.

Hints:

1. Show that minimum vertex cover B(G) < |X| — 6 by using the cover
['(S) U (X —S5), where S yields §.

2. Use a minimum vertex cover Z and S = X — Z to show |I'(S)| <
|Z NnY]|.

3. Obtain the cover on Y from Z by removing its vertices on X.

4. Use 2 and 3, and the definition of § to show B(G) = |X| — 6.

Solution

By Konig’s Theorem thereis a'(G) = B(G), where B(G) is a minimum
vertex over. Hence we prove that



B(G) = |X| 6.
Let S € X yielding
5 =S| = T(S).
Setavertexcover Z =T(S)U (X — S). Hence
B(G) < |Z| = TS| + [X] - IS] = |X] - 6.

To show the opposite inequality let Z be a minimum vertex cover and
S=X-7Z7.

S is the vertices on X but out of Z. Hence their opposite vertices
(neighbors in Y) must be in the cover Z. Hence

rS)czny,
and
(1) TG =<1ZnY|

To obtain the cover on Y from Z we need to remove from Z its vertices
on X. Hence

(2) 1ZnY|=1Z-UZnX)|=|Z|-1ZnX]|.
There is
3) 1ZnX[=|X-X-2)|=IX|-1X-Z| =|X] -S|
Substitution of (2) and (3) into (1) yields

TN < 1Z] = 1X] + 15| = B(G) — |X]| + 1S],
or
p(G) 2 |X| = (S| = [TS)D = 1X] — max{|S| = T($)} = |X] = 4.



