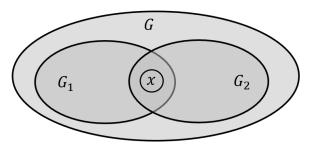
Question 1 (Connectivity 60 Pts).

Prove that a connected bipartite k-regular graph is 2-connected. Hints:

- 1. Prove by contradiction, consider the graph structure below.
- 2. Then consider the degree of x in one of the subgraph and recall that any subgraph is still bipartite.



Question 2 (Coloring 60 Pts).

Let G be (k + 1) critical (every $G' \subset G$ is k-colorable). Prove that G is at least k – edge-connected (deletion of less than k edges leaves G connected).

Hint:

- 1. Prove by contradiction, separate G into two pieces by edge deletion.
- 2. Color each piece and then match the colors of the two pieces such that G is colored properly.

Proof 1: Assume in contrary that *G* is not 2-connected, hence it is 1-connected.

Therefore, *G* can be decomposed into two subgraphs G_1 and G_2 sharing a single vertex $x \in V(G)$, namely, $G = G_1 \cup G_2$, $V(G_1) \cap V(G_2) = \{x\}$, $|V(G_1)| \ge 2$ and $|V(G_2)| \ge 2$.

Since $d_G(x) = k$ and x is a disconnecting vertex, it must have neighbors in both G_1 and G_2 , hence $1 \le d_{G_1}(x) \le k - 1$.

Since G is 1-connected, there is no edge connecting $V(G_1) - \{x\}$ to $V(G_2) - \{x\}$, hence $d_{G_1}(y) = k \ \forall y \in V(G_1) - \{x\}$.

Since *G* is bipartite, let $V(G_1) = R \cup S$, where $R = \{x, u_1, u_2, ..., u_r\}$ and $S = \{v_1, v_2, ..., v_s\}$ are in the two color classes of *G*, namely all $E(G_1)$ connect only vertices of *R* to *S*. Hence $|E(G_1)| = \sum_{y \in R} d_{G_1}(y) = \sum_{y \in S} d_{G_1}(y)$.

 $d_{G_1}(x) + kr = \sum_{y \in R} d_{G_1}(y) = \sum_{y \in S} d_{G_1}(y) = ks.$

It follows that the right hand side is divisible by k whereas the left hand sides does not, hence a contradiction.

Proof 2: Assume in contrary that the deletion of m < k edges $e_1, ..., e_m$ separates G into two components G_1 and G_2 , and let m be the smallest such number.

It follows that $\forall e_i$, $1 \leq i \leq m$, the end vertices of e_i belong to G_1 and G_2 .

Since G is k + 1 critical, G_1 and G_2 are k-colorable. So let $T_1, ..., T_k$ and $S_1, ..., S_k$ be the color classes of G_1 and G_2 , respectively, i.e., $V(G_1) = \bigcup_{1 \le i \le k} T_i$ and $V(G_2) = \bigcup_{1 \le i \le k} S_i$.

We would like to match some T_i with some S_i , such that for none of $e_1, ..., e_m$ the same color appears on its two end vertices, thus ensuring k —proper coloring in contradiction of its k + 1 criticality.

Since m < k, there is an S_i among $S_1,..., S_k$ not connected to T_1 by any edge of $e_1,..., e_m$.

We can certainly select this S_i such that either T_1 or S_i should be incident with some edge of $e_1, ..., e_m$. So let us call this color class S'_1 .

We are left with a matching problem of k - 1 T color classes with k - 1 S color classes and m - 1 < k - 1. The above process can be repeated until all $e_1, ..., e_m$ are consumed.