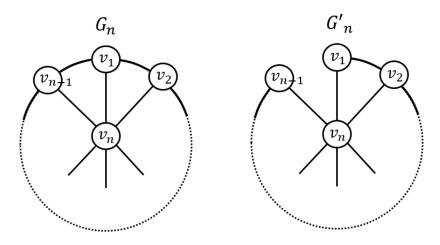
Question 1 (Chromatic polynomial 40 Pts).

Consider the following *n*-vertex wheel graphs G_n and G'_n , where $d(v_n) = n - 1$ and G'_n is obtained by removing an edge of G_n .



Prove the following:

- 1. (5Pts) $P_{G_{ln}}(k) = k(k-1)(k-2)^{n-2}$
- 2. (10Pts) $P_{G_n}(k) = P_{G'_n}(k) P_{G_{n-1}}(k)$
- 3. (15Pts) $P_{G_n}(k) = k(k-2)[(k-2)^{n-2} + (-1)^{n-1}]$ for $n \ge 4$ (use induction).

Let $P_G(k) = k^4 - 4k^3 + 5k^2 - 2k$.

- 4. (5Pts) How many vertices and edges G has?
- 5. (5Pts) Is G bipartite?

Question 2 (Graph connectivity 40 Pts).

- 1. (25 Pts.) Let G be connected such that its longest paths contain n vertices. Let P_1 and P_2 be such longest paths in G and $P_1 \neq P_2$. Prove that P_1 and P_2 must have a common vertex.
- 2. (15 Pts.) Let G be connected and e an edge of G. Suppose that every spanning tree of G contains e. Show that $G \setminus e$ (e deleted) is disconnected.

Question 3 (Cliques and independent sets 40 Pts).

Let G(V, E) be such that $|V| = \binom{k+l}{k}$. Show that either $K_{k+1} \subset G$ (k+1) vertex clique) or $K_{l+1} \subset \overline{G}$ (l+1) vertex independent set).

Proof 3: By induction on k + l.

For k = 1 or l = 1 the assertion is obvious.

Suppose that k, l > 1. Let $v \in V$. There is

$$d_G(v) + d_{\bar{G}}(v) = |V| - 1 = {\binom{k+l}{k}} - 1.$$

There is

$$\binom{k+l}{k} = \frac{(k+l)!}{k!\,l!} = \frac{(k+l-1)!}{k!\,l!} \times (k+l) = \frac{(k+l-1)!}{(k-1)!\,l!} + \frac{(k+l-1)!}{k!\,(l-1)!} = \binom{k+l-1}{k-1} + \binom{k+l-1}{k}.$$

Substitution yields

$$d_{G}(v) + d_{\bar{G}}(v) = \binom{k+l-1}{k-1} + \binom{k+l-1}{k} - 1$$

Hence either

(a)
$$d_G(v) \ge \binom{k+l-1}{k-1}$$
 or (b) $d_{\bar{G}}(v) \ge \binom{k+l-1}{k}$.

If case (a) $d_G(v) \ge \binom{k+l-1}{k-1}$ holds, let $G_1 \subset G$ be induced the neighbors of v. By induction hypothesis either $K_k \subset G_1$ or $K_{l+1} \subset \overline{G_1}$.

For $K_{l+1} \subset \overline{G_1} \subset \overline{G}$ we are done.

For $K_k \subset G_1$, the vertex set $V(K_k) \cup \{v\} \subset V$ spans K_{k+1} in G hence $K_{k+1} \subset G$. Same conclusions follow if case (b) $d_{\bar{G}}(v) \ge \binom{k+l-1}{k} = \binom{k+l-1}{l-1}$ holds.