BAR-ILAN UNIVERSITY

הפקולטה להנדסה

Engineering Faculty

תורת הגרפים ושימושיה 83-652 תשע"ז סמסטר ב' מועד ב'

שם הקורס	תורת הגרפים ושימושיה			
מספר הקורס	83-652			
שם המרצה	פרופ' שמואל וימר			
	תשע"ז	סמסטר ב'	מועד ב'	
משך הבחינה	שלש שעות			
חומר עזר	כל חומר אסור בשימוש.			
	יש לצרף את שאלוני הבחינה למחברת.			
	יש לענות על כל השאלות. כל תשובה יש לנמק ולהסביר הייטב.			
	סה"כ הנקודות האפשריות 110. ציון הבחינה לא יעלה על 100.			
	יש לכתוב בעט בלבד. כתיבה בעפרון לא תיבדק.			

בהצלחה!

Show that for a connected nontrivial graph with 2k odd vertices, the minimum number of pairwise edge disjoint trails covering the edges is $\max\{1, k\}$.

Hints:

- 1. Show that for k=0 at least one trail must exist.
- 2. If there are odd vertices, match pairs of these by a new edge.

שאלה 3 (35 נק')

Denote by $\alpha(G)$ the size of the largest independent set of G. Show that the vertices of a graph G(V,E) can be covered by no more than $\alpha(G)$ vertex-disjoint paths.

Hints:

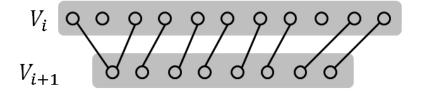
- 1. Let V_1 be a maximum independent set of G, and let V_{i+1} be the maximum independent set of $G V_1 V_2 \cdots V_i$.
- 2. Show that $G[V_i, V_{i+1}]$ is bipartite.
- 3. Use König's theorem to show that V_{i+1} has a matching into V_i covering V_{i+1} .

<u>פתרון:</u>

Proof: Let V_1 be a maximum independent set of G, and let V_{i+1} be the maximum independent set of $G - V_1 - V_2 - \cdots - V_i$.

There is $|V_{i+1}| \leq |V_i|$ by construction.

Since V_i and V_{i+1} are independent sets, for any $e(x,y) \in G[V_i \cup V_{i+1}]$ there is $x \in V_i$ and $y \in V_{i+1}$. Hence $G[V_i \cup V_{i+1}]$ is bipartite, denoted $G[V_i, V_{i+1}]$.



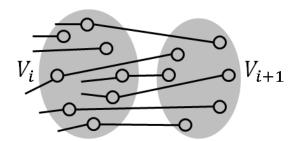
We show that the minimum vertex cover satisfies $\beta(G[V_i, V_{i+1}]) = |V_{i+1}|$.

Firstly, for any $v \in V_i$ there is $d(v) \leq 1$. Otherwise V_i would not be maximal by its choice since it could be enlarged by replacing $v \in V_i$ by few vertices of V_{i+1} .

Hence, the minimum vertex cover may consist of V_{i+1} vertices alone.

It must include all the vertices of V_{i+1} , as otherwise V_i could be enlarged, hence not maximal by its choice. Consequently $\beta(G[V_i, V_{i+1}]) = |V_{i+1}|$.

By König's theorem there is $\beta(G[V_i \cup V_{i+1}]) = \alpha'(G[V_i \cup V_{i+1}])$. Hence there is a matching F_{i+1} of V_{i+1} into V_i .



 $F_2 \cup F_3 \cup \cdots$ consists of $|V_2|$ vertex-disjoint paths covering V(G), except $|V_1| - |V_2|$ vertices of V_1 .

Taking these as one-point paths, we obtain $|V_1| = \alpha(G)$ vertex-disjoint paths covering V(G).