
Alin Tomescu | Week 1, Wednesday, March 5th, 2014 | Recitation 8
6.006 Intro to Algorithms | Prof. Srinivas Devadas | Prof. Nancy Lynch | Prof. Vinod Vaikuntanathan

AVL trees height proof
Let 𝑁(ℎ) denote the minimum number of nodes in an AVL tree of height ℎ. Let 𝑟 denote the root node of this tree.

Remember: A single-node tree has height 0, and a complete binary tree on 𝑛 + 1 levels has height 𝑛. See figure below:

Figure 1: A simple binary tree of size 9 and height 3, with a root node whose value is 2. The above tree is unbalanced and not sorted.

Note that AVL trees with a minimum number of nodes are the worst case examples of AVL tree: every node’s subtrees

differ in height by one. You can see examples of such trees below:

If we can bound the height of these worst-case examples of AVL trees, then we’ve pretty much bounded the height of all

AVL trees.

Note that we cannot make these trees any worse / any more unbalanced. If we add a leaf node, we either get a non-AVL

tree or we balance one of the subtrees, which we don’t want. If we remove a leaf node, we either get a non-AVL tree or

we balance one of the subtrees.

Observation 1: If the AVL tree rooted at 𝑟 has a minimum number of nodes, then one of its subtrees is higher by 1 than

the other subtree. Otherwise, if the two subtrees were equal, then the AVL tree rooted at 𝑟 is not minimal: we can

always make it smaller by removing a few nodes from one of the subtrees and making the height difference ±1.

Alin Tomescu | Week 1, Wednesday, March 5th, 2014 | Recitation 8
6.006 Intro to Algorithms | Prof. Srinivas Devadas | Prof. Nancy Lynch | Prof. Vinod Vaikuntanathan
Assume, without loss of generality, that the left subtree is bigger than the right subtree. We can express 𝑁(ℎ) in terms

of:

- 𝑁(ℎ − 1), the minimum number of nodes in the left subtree of r

- 𝑁(ℎ − 2), the minimum number of nodes in the right subtree of 𝑟.

𝑁(ℎ) = 1 + 𝑁(ℎ − 1) + 𝑁(ℎ − 2)

We assumed that 𝑁(ℎ − 1) > 𝑁(ℎ − 2), so we can say that

𝑁(ℎ) > 1 + 𝑁(ℎ − 2) + 𝑁(ℎ − 2) = 1 + 2 ⋅ 𝑁(ℎ − 2) > 2 ⋅ 𝑁(ℎ − 2)

So we have:

𝑁(ℎ) > 2 ⋅ 𝑁(ℎ − 2)

We can try to solve this as a recurrence (note that 𝑁(0) = 1):

𝑁(ℎ) > 2 ⋅ 𝑁(ℎ − 2) > 2 ⋅ 2 ⋅ 𝑁(ℎ − 4) > 2 ⋅ 2 ⋅ 2 ⋅ 𝑁(ℎ − 6) > ⋯ > 2ℎ/2

You can see it’s 2ℎ/2 by checking for a particular ℎ = 6:

𝑁(6) > 2 ⋅ 𝑁(6 − 2) > 2 ⋅ 2 ⋅ 𝑁(4 − 2) > 2 ⋅ 2 ⋅ 2 ⋅ 𝑁(2 − 2) > 23

Now, we can try and bound ℎ:

𝑁(ℎ) > 2ℎ/2
𝑇𝑎𝑘𝑒 log
⇔ log𝑁(ℎ) > log 2ℎ/2⇔ ℎ < 2 log𝑁ℎ

Thus, these worst-case AVL trees have height ℎ = O(log 𝑛).

This means that nicer / more balanced AVL trees will have the same bound on their height. You can think of such trees

as worst-case trees with some of the missing nodes “filled in.”

