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Abstract

The MIN algorithm is an offline strategy for deciding which item to replace
when writing a new item (o a cache. Tts optimality was first established by Mattson,
Gecsei, Slutz, and Traiger [2] through a lengthy analysis. We provide a short and
elementary proof based on a dynamic programming argument.
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1 The MIN Algorithm

Consider the management of a cache over 7" time periods given advance knowl-
edge of requests wg, w1, . .., wr—1 from a set ) of items stored in slower memory.
Let S; C € denote the set of items stored in the cache just before w; is requested.
If wy € St then Si41 = St. Otherwise, a decision must be made to evict one item
from the cache, which is replaced by w:. The objective is to maximize the number
of hits: 3:01 L{ws € S%).

The MIN algorithm chooses to evict an item in the cache whose next request
occurs furthest in the future. If there are multiple items that will never again be
requested one of them is chosen arbitrarily. Mattson, Gecsei, Slutz, and Traiger [2]
establish that this algorithm is optimal.! However, their proof is somewhat long
and complicated. The textbook Rundomized Algorithms [3] offers an excellent ac-
count of several cache replacement algorithms and their analyses. In the case of the
MIN algorithm, the authors cite the optimality result of [2] without providing the
proof, which they mention to be “nontrivial.” Here we offer a short and elementary
proof based on a dynamic programming argument.

2 Proof of Optimality

Recall that, when a requested item is not in S;, one item must be evicted. Another
way of thinking about the decision to be made at time ¢ is in terms of what the next

"Tn [2], this algorithm is referred to as the OPT algorithm. Tn that work, the term MIN identifies another
algorithm originally proposed in [1].



cache state S; 1 will be. In particular, the set of feasible decisions can be written
as
Ue(S:) = {S C St Uwe s wr € 5,]5] =S|}

Note that, if w; € S then U(S:) = {S;}. Otherwise, Uy (.S:) is the set of cache
states that can be arrived at by replacing an existing item with the newly requested
item wy.

Let J;(S:) denote the maximum over feasible sequences of cache states of the
number of future hits starting with the ¢th request. The functions Jo, ..., Jr can
be computed via a dynamic programming recursion:

Jr(St) = 0

J (S 1(c S : J. S
+(St) (wr € t>+st+f2dU)f(st) 11 (Se41),

for all So,...,S7 € . If the state at time ¢ is S3, the state Syy1 € U(S:) is
an optimal choice of next state if and only if it attains the dynamic programming
recursion.

Denote the time of an item’s next request by 7 (w) = min{t < 2 < T 1w, =
w}. (The minimum of an empty set is taken to be c0.) Consider two cache states
5,8 C Q with | S| = |S’|. A matching is a bijection h : S — 5. Let

d}(S,8") = {w € Slm(w) > 7 (h(w))}.

This represents the number of items in S requested after matched items in S/, Let
the minimum value over matchings be denoted by
de(S, 8"y = _min_ d}(S,S).
hcmatchings

The MIN algorithm evicts the item to be requested furthest in the future.
Hence, if S¢41 is chosen by the MIN algorithm and Z € U,(S:) is some other
feasible choice then dit1(St4+1,5") < dir1(Z, ") for any cache state S'. In
other words, S¢41 € argming.r;, 5,y di+1(Z, S") for all 7.

The following lemma shows how d, can be used to bound differences among
values of cache states.

Lemma 1. J,(8") — J.(S) < d/(S,8) forallt < T and S,5" C € with
S| = 157].

Proof: Since Jr(S) = Jr(S") = 0 and dr(5,S’) = 0, the result holds for
t = T. We proceed by weak induction. Fix £ < T and assume Jyy1(9") —
Jep1(S) < dpya (S, 9 forall 8, 8" C Q with |S] = |S7|.

Let S = Sand S = &', Let Si;1 € U:(S}) be chosen by an optimal
strategy. Let Se41 € Uy(St) be chosen by the MIN algorithm, and note that this
implies S¢y1 € argminggp, s,y di+1(Z, Siq1). We study the relationship be-
tween d¢(S4, S7) and dy11(Se41, Sty 1) in four cases:

Case 1: Both S; and S} are hit by w;. Neither cache state changes, s0 dyy1(S141, Staq) =
d+(St, 57).

Case 2: Neither S; nor S; are hit by w;. If S} evicts an item, S; can evict the same

item. It follows that dy11 (Se41, St11) < de(St, S1).

Case 3: Only S; is hit by wy. .S} evicts an item and at best this improves its relative
standing by 1; that is, dt+1 (St+1, 5’;_’_1) S dt(St, S{;) + 1.

Case 4: Only S, is hit by w;. S; was previously disadvantaged relative to S} by



not holding w; but now by replacing the item to be requested furthest in the future
with wy, this disadvantage vanishes. Hence. dii1 (Sey1, Siqg1) < die(S, S7) — 1.
These four relations together imply that

dey1(Ser1, St1) < de(Se, Sp) + wr € S¢) — 1(we € Sp).

Using this relation, the dynamic programming recursion, and our inductive hy-
pothesis, we obtain

]f(St/) wr € St) + Jf+1(St+])
we € S} )+ der1 (S, A5t+1) + Jeg1(St41)
wr € Sf) + df(sf, St) -+ Jf+1(Sf+1)

S : Ji4q di(Sy, St
we € )+Zé;}?(>fgt) 141(Z) + de(St, Sp)
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= Ju(S0) + du(Si, S).

O

Given S;, let 5,41 be a successive cache state selected by the MIN algo-

rithm and let S7,, be a successive cache state selected by an optimal strategy.

Since Se41 minimizes dy41(Sey1, ity ) over the set Uy (Se) which contains Sty 4,
di11(Se41,5t41) = 0. By the optimality of Si,; and Lemma I,

0 < Jer1(Shi1) — Jer1(Seq1) < degr(Ser1, Siga)-

1t follows that Jy11(S]11) = Jeg1(Si41), and therefore, a decision made by the
MIN algorithm is optimal.

Acknowledgments

Balaji Prabhakar introduced the author to the MIN algorithm, its history, and the
interest in obtaining a simpler proof of optimality.

References
[1] L. A.Belady. A study of replacement algorithms for virtual storage computers.
IBM Systems Journal, 5(2):78-101, 1966.

[2] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques
for storage hierarchies. IBM Systems Journal. 9(2):78-117, 1970.

[3]1 R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.



