
Computer Architecture:

Cache Coherence

Prof. Onur Mutlu

Carnegie Mellon University

Readings: Cache Coherence

 Required

 Culler and Singh, Parallel Computer Architecture

 Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305)

 P&H, Computer Organization and Design

 Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.)

 Papamarcos and Patel, “A low-overhead coherence solution for multiprocessors with
private cache memories,” ISCA 1984.

 Laudon and Lenoski, “The SGI Origin: a ccNUMA highly scalable server,” ISCA 1997.

 Recommended

 Censier and Feautrier, “A new solution to coherence problems in multicache systems,”
IEEE Trans. Comput., 1978.

 Goodman, “Using cache memory to reduce processor-memory traffic,” ISCA 1983.

 Lenoski et al, “The Stanford DASH Multiprocessor,” IEEE Computer, 25(3):63-79,
1992.

 Martin et al, “Token coherence: decoupling performance and correctness,” ISCA 2003.

 Baer and Wang, “On the inclusion properties for multi-level cache hierarchies,” ISCA
1988.

2

Cache Coherence

3

Shared Memory Model

 Many parallel programs communicate through shared memory

 Proc 0 writes to an address, followed by Proc 1 reading

 This implies communication between the two

 Each read should receive the value last written by anyone

 This requires synchronization (what does last written mean?)

 What if Mem[A] is cached (at either end)?

4

Proc 0
Mem[A] = 1

Proc 1
…

Print Mem[A]

Cache Coherence

 Basic question: If multiple processors cache the same
block, how do they ensure they all see a consistent state?

5

P1 P2

x

Interconnection Network

Main Memory

1000

The Cache Coherence Problem

6

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

1000

1000

The Cache Coherence Problem

7

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

ld r2, x

1000

1000 1000

The Cache Coherence Problem

8

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

add r1, r2, r4

st x, r1

ld r2, x

1000

1000 2000

The Cache Coherence Problem

9

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

add r1, r2, r4

st x, r1

ld r2, x

1000

1000 2000

ld r5, x

Should NOT

load 1000

Cache Coherence: Whose Responsibility?

 Software

 Can the programmer ensure coherence if caches are invisible to
software?

 What if the ISA provided a cache flush instruction?

 FLUSH-LOCAL A: Flushes/invalidates the cache block containing
address A from a processor’s local cache.

 FLUSH-GLOBAL A: Flushes/invalidates the cache block containing
address A from all other processors’ caches.

 FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.

 Hardware

 Simplifies software’s job

 One idea: Invalidate all other copies of block A when a processor writes
to it

10

A Very Simple Coherence Scheme

 Caches “snoop” (observe) each other’s write/read
operations. If a processor writes to a block, all others
invalidate it from their caches.

 A simple protocol:

11

 Write-through, no-
write-allocate
cache

 Actions: PrRd,
PrWr, BusRd,
BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--

(Non-)Solutions to Cache Coherence

 No hardware based coherence

 Keeping caches coherent is software’s responsibility

+ Makes microarchitect’s life easier

-- Makes average programmer’s life much harder

 need to worry about hardware caches to maintain program
correctness?

-- Overhead in ensuring coherence in software

 All caches are shared between all processors

+ No need for coherence

-- Shared cache becomes the bandwidth bottleneck

-- Very hard to design a scalable system with low-latency cache
access this way

12

Maintaining Coherence

 Need to guarantee that all processors see a consistent
value (i.e., consistent updates) for the same memory
location

 Writes to location A by P0 should be seen by P1
(eventually), and all writes to A should appear in some
order

 Coherence needs to provide:

 Write propagation: guarantee that updates will propagate

 Write serialization: provide a consistent global order seen
by all processors

 Need a global point of serialization for this store ordering

13

Hardware Cache Coherence

 Basic idea:

 A processor/cache broadcasts its write/update to a memory
location to all other processors

 Another cache that has the location either updates or
invalidates its local copy

14

Coherence: Update vs. Invalidate

 How can we safely update replicated data?

 Option 1 (Update protocol): push an update to all copies

 Option 2 (Invalidate protocol): ensure there is only one
copy (local), update it

 On a Read:

 If local copy isn’t valid, put out request

 (If another node has a copy, it returns it, otherwise
memory does)

15

Coherence: Update vs. Invalidate (II)��

 On a Write:

 Read block into cache as before

Update Protocol:

 Write to block, and simultaneously broadcast written
data to sharers

 (Other nodes update their caches if data was present)

Invalidate Protocol:

 Write to block, and simultaneously broadcast invalidation
of address to sharers

 (Other nodes clear block from cache)

16

Update vs. Invalidate Tradeoffs

 Which do we want?

 Write frequency and sharing behavior are critical

 Update

+ If sharer set is constant and updates are infrequent, avoids

the cost of invalidate-reacquire (broadcast update pattern)

- If data is rewritten without intervening reads by other cores,

updates were useless

- Write-through cache policy  bus becomes bottleneck

 Invalidate

+ After invalidation broadcast, core has exclusive access rights

+ Only cores that keep reading after each write retain a copy

- If write contention is high, leads to ping-ponging (rapid

mutual invalidation-reacquire)

17

Two Cache Coherence Methods

 How do we ensure that the proper caches are updated?

 Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984]

 Bus-based, single point of serialization for all requests

 Processors observe other processors’ actions

 E.g.: P1 makes “read-exclusive” request for A on bus, P0 sees this
and invalidates its own copy of A

 Directory [Censier and Feautrier, IEEE ToC 1978]

 Single point of serialization per block, distributed among nodes

 Processors make explicit requests for blocks

 Directory tracks ownership (sharer set) for each block

 Directory coordinates invalidation appropriately

 E.g.: P1 asks directory for exclusive copy, directory asks P0 to
invalidate, waits for ACK, then responds to P1

18

Directory Based

Cache Coherence

19

Directory Based Coherence

 Idea: A logically-central directory keeps track of where the
copies of each cache block reside. Caches consult this
directory to ensure coherence.

 An example mechanism:

 For each cache block in memory, store P+1 bits in directory

 One bit for each cache, indicating whether the block is in cache

 Exclusive bit: indicates that a cache has the only copy of the
block and can update it without notifying others

 On a read: set the cache’s bit and arrange the supply of data

 On a write: invalidate all caches that have the block and reset
their bits

 Have an “exclusive bit” associated with each block in each
cache

20

Directory Based Coherence Example (I)

21

Directory Based Coherence Example (I)

22

Snoopy Cache Coherence

23

Snoopy Cache Coherence

 Idea:

 All caches “snoop” all other caches’ read/write requests and
keep the cache block coherent

 Each cache block has “coherence metadata” associated with it
in the tag store of each cache

 Easy to implement if all caches share a common bus

 Each cache broadcasts its read/write operations on the bus

 Good for small-scale multiprocessors

 What if you would like to have a 1000-node multiprocessor?

24

25

A Simple Snoopy Cache Coherence Protocol

 Caches “snoop” (observe) each other’s write/read
operations

 A simple protocol:

26

 Write-through, no-
write-allocate
cache

 Actions: PrRd,
PrWr, BusRd,
BusWr

PrWr / BusWr

Valid

BusWr

Invalid

PrWr / BusWr

PrRd / BusRd

PrRd/--

A More Sophisticated Protocol: MSI

 Extend single valid bit per block to three states:

 M(odified): cache line is only copy and is dirty

 S(hared): cache line is one of several copies

 I(nvalid): not present

 Read miss makes a Read request on bus, transitions to S

 Write miss makes a ReadEx request, transitions to M state

 When a processor snoops ReadEx from another writer, it
must invalidate its own copy (if any)

 SM upgrade can be made without re-reading data from
memory (via Invalidations)

27

MSI State Machine

28

M

S I

BusRdX/--

[Culler/Singh96]

PrRd/--
BusRd/--

PrRd/BusRd

PrWr/BusRdX

PrWr/BusRdX

BusRdX/Flush

PrRd/--
PrWr/--

BusRd/Flush

ObservedEvent/Action

The Problem with MSI

 A block is in no cache to begin with

 Problem: On a read, the block immediately goes to
“Shared” state although it may be the only copy to be
cached (i.e., no other processor will cache it)

 Why is this a problem?

 Suppose the cache that read the block wants to write to it at
some point

 It needs to broadcast “invalidate” even though it has the only
cached copy!

 If the cache knew it had the only cached copy in the system,
it could have written to the block without notifying any other
cache  saves unnecessary broadcasts of invalidations

 29

The Solution: MESI

 Idea: Add another state indicating that this is the only
cached copy and it is clean.

 Exclusive state

 Block is placed into the exclusive state if, during BusRd, no
other cache had it

 Wired-OR “shared” signal on bus can determine this:
snooping caches assert the signal if they also have a copy

 Silent transition ExclusiveModified is possible on write

 MESI is also called the Illinois protocol
 Papamarcos and Patel, “A low-overhead coherence solution for

multiprocessors with private cache memories,” ISCA 1984.

 30

31

32

MESI State Machine

PrWr/BusRdX

PrRd (S’)/BusRd

PrRd (S)/BusRd

PrWr/BusRdX

PrWr/--

BusRd/ $ Transfer

BusRd/Flush

BusRdX/Flush (all incoming)

MESI State Machine

33

M

E

S

I

[Culler/Singh96]

MESI State Machine from 18-447 Lab 7

34

A transition from a single-owner state (Exclusive or Modified) to Shared is called a

downgrade, because the transition takes away the owner's right to modify the data

A transition from Shared to a single-owner state (Exclusive or Modified) is called an

upgrade, because the transition grants the ability to the owner (the cache which contains

the respective block) to write to the block.

MESI State Machine from 18-447 Lab 7

35

Intel Pentium Pro

36 Slide credit: Yale Patt

Snoopy Invalidation Tradeoffs

 Should a downgrade from M go to S or I?

 S: if data is likely to be reused (before it is written to by another
processor)

 I: if data is likely to be not reused (before it is written to by another)

 Cache-to-cache transfer

 On a BusRd, should data come from another cache or memory?

 Another cache

 may be faster, if memory is slow or highly contended

 Memory

 Simpler: no need to wait to see if cache has data first

 Less contention at the other caches

 Requires writeback on M downgrade

 Writeback on Modified->Shared: necessary?

 One possibility: Owner (O) state (MOESI protocol)

 One cache owns the latest data (memory is not updated)

 Memory writeback happens when all caches evict copies

37

The Problem with MESI

 Shared state requires the data to be clean

 i.e., all caches that have the block have the up-to-date copy
and so does the memory

 Problem: Need to write the block to memory when BusRd
happens when the block is in Modified state

 Why is this a problem?

 Memory can be updated unnecessarily  some other

processor may want to write to the block again while it is
cached

38

Improving on MESI

 Idea 1: Do not transition from MS on a BusRd. Invalidate
the copy and supply the modified block to the requesting
processor directly without updating memory

 Idea 2: Transition from MS, but designate one cache as
the owner (O), who will write the block back when it is
evicted

 Now “Shared” means “Shared and potentially dirty”

 This is a version of the MOESI protocol

39

Tradeoffs in Sophisticated Cache Coherence Protocols

 The protocol can be optimized with more states and
prediction mechanisms to

+ Reduce unnecessary invalidates and transfers of blocks

 However, more states and optimizations

-- Are more difficult to design and verify (lead to more cases to
take care of, race conditions)

-- Provide diminishing returns

40

Revisiting Two Cache Coherence Methods

 How do we ensure that the proper caches are updated?

 Snoopy Bus [Goodman ISCA 1983, Papamarcos+ ISCA 1984]

 Bus-based, single point of serialization for all requests

 Processors observe other processors’ actions

 E.g.: P1 makes “read-exclusive” request for A on bus, P0 sees this
and invalidates its own copy of A

 Directory [Censier and Feautrier, IEEE ToC 1978]

 Single point of serialization per block, distributed among nodes

 Processors make explicit requests for blocks

 Directory tracks ownership (sharer set) for each block

 Directory coordinates invalidation appropriately

 E.g.: P1 asks directory for exclusive copy, directory asks P0 to
invalidate, waits for ACK, then responds to P1

41

Snoopy Cache vs. Directory Coherence
 Snoopy Cache

+ Miss latency (critical path) is short: miss  bus transaction to memory

+ Global serialization is easy: bus provides this already (arbitration)

+ Simple: adapt bus-based uniprocessors easily

- Relies on broadcast messages to be seen by all caches (in same order):

  single point of serialization (bus): not scalable

  need a virtual bus (or a totally-ordered interconnect)

 Directory

- Adds indirection to miss latency (critical path): request  dir.  mem.

- Requires extra storage space to track sharer sets

 Can be approximate (false positives are OK)

- Protocols and race conditions are more complex (for high-performance)

+ Does not require broadcast to all caches

+ Exactly as scalable as interconnect and directory storage

(much more scalable than bus)
42

Revisiting Directory-Based

Cache Coherence

43

Remember: Directory Based Coherence

 Idea: A logically-central directory keeps track of where the
copies of each cache block reside. Caches consult this
directory to ensure coherence.

 An example mechanism:

 For each cache block in memory, store P+1 bits in directory

 One bit for each cache, indicating whether the block is in cache

 Exclusive bit: indicates that the cache that has the only copy of
the block and can update it without notifying others

 On a read: set the cache’s bit and arrange the supply of data

 On a write: invalidate all caches that have the block and reset
their bits

 Have an “exclusive bit” associated with each block in each
cache

44

Remember: Directory Based Coherence

Example

45

Directory-Based Protocols

 Especially desirable when scaling the system past the
capacity of a single bus

 Distributed, but:

 Coherence still requires single point of serialization (for write
serialization)

 Serialization location can be different for every block (striped
across nodes)

 We can reason about the protocol for a single block: one
server (directory node), many clients (private caches)

 Directory receives Read and ReadEx requests, and sends
Invl requests: invalidation is explicit (as opposed to snoopy
buses)

46

Directory: Data Structures

 Key operation to support is set inclusion test

 False positives are OK: want to know which caches may contain
a copy of a block, and spurious invalidations are ignored

 False positive rate determines performance

 Most accurate (and expensive): full bit-vector

 Compressed representation, linked list, Bloom filters are all
possible

47

0x00
0x04
0x08
0x0C
…

Shared: {P0, P1, P2}

Exclusive: P2

Directory: Basic Operations

 Follow semantics of snoop-based system

 but with explicit request, reply messages

 Directory:

 Receives Read, ReadEx, Upgrade requests from nodes

 Sends Inval/Downgrade messages to sharers if needed

 Forwards request to memory if needed

 Replies to requestor and updates sharing state

 Protocol design is flexible

 Exact forwarding paths depend on implementation

 For example, do cache-to-cache transfer?

48

MESI Directory Transaction: Read

49

P0 Home

1. Read

2. DatEx (DatShr)

Culler/Singh Fig. 8.16

P0 acquires an address for reading:

P1

RdEx with Former Owner

50

P0 Home

1. RdEx

3b. DatEx

Owner

2. Invl

3a. Rev

Contention Resolution (for Write)

51

P0 Home

1a. RdEx

2a. DatEx

P1

1b. RdEx

2b. NACK

 
3. RdEx 4. Invl

5a. Rev

5b. DatEx



Issues with Contention Resolution

 Need to escape race conditions by:

 NACKing requests to busy (pending invalidate) entries

 Original requestor retries

 OR, queuing requests and granting in sequence

 (Or some combination thereof)

 Fairness

 Which requestor should be preferred in a conflict?

 Interconnect delivery order, and distance, both matter

 Ping-ponging is a higher-level issue

 With solutions like combining trees (for locks/barriers) and
better shared-data-structure design

52

Scaling the Directory: Some Questions

 How large is the directory?

 How can we reduce the access latency to the directory?

 How can we scale the system to thousands of nodes?

 Can we get the best of snooping and directory protocols?

 Heterogeneity

 E.g., token coherence [Martin+, ISCA 2003]

53

Computer Architecture:

Cache Coherence

Prof. Onur Mutlu

Carnegie Mellon University

Backup slides

55

Referenced Readings

 Papamarcos and Patel, “A low-overhead coherence solution for
multiprocessors with private cache memories,” ISCA 1984.

 Laudon and Lenoski, “The SGI Origin: a ccNUMA highly scalable server,”
ISCA 1997.

 Censier and Feautrier, “A new solution to coherence problems in multicache
systems,” IEEE Trans. Comput., 1978.

 Goodman, “Using cache memory to reduce processor-memory traffic,”
ISCA 1983.

 Lenoski et al, “The Stanford DASH Multiprocessor,” IEEE Computer,
25(3):63-79, 1992.

 Martin et al, “Token coherence: decoupling performance and correctness,”
ISCA 2003.

 Baer and Wang, “On the inclusion properties for multi-level cache
hierarchies,” ISCA 1988.

56

Other Recommended Readings (Research)

 Kelm et al., “WAYPOINT: scaling coherence to thousand-
core architectures,” PACT 2010.

 Kelm et al., “Cohesion: a hybrid memory model for
accelerators,” ISCA 2010.

 Martin et al, “Token coherence: decoupling performance
and correctness,” ISCA 2003.

57

Related Videos

 Multiprocessor Correctness and Cache Coherence

 http://www.youtube.com/watch?v=U-VZKMgItDM

 http://www.youtube.com/watch?v=6xEpbFVgnf8&list=PL5PH
m2jkkXmidJOd59REog9jDnPDTG6IJ&index=33

58

http://www.youtube.com/watch?v=U-VZKMgItDM
http://www.youtube.com/watch?v=U-VZKMgItDM
http://www.youtube.com/watch?v=U-VZKMgItDM
http://www.youtube.com/watch?v=6xEpbFVgnf8&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=33
http://www.youtube.com/watch?v=6xEpbFVgnf8&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=33

Related Exam Questions

 Question 5 in

 http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?medi
a=final.pdf

 Question I-11 in

 http://www.ece.cmu.edu/~ece447/s12/lib/exe/fetch.php?medi
a=wiki:18447-final.pdf

59

http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=final.pdf
http://www.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=final.pdf
http://www.ece.cmu.edu/~ece447/s12/lib/exe/fetch.php?media=wiki:18447-final.pdf
http://www.ece.cmu.edu/~ece447/s12/lib/exe/fetch.php?media=wiki:18447-final.pdf
http://www.ece.cmu.edu/~ece447/s12/lib/exe/fetch.php?media=wiki:18447-final.pdf
http://www.ece.cmu.edu/~ece447/s12/lib/exe/fetch.php?media=wiki:18447-final.pdf

Token Coherence – Milo Martin slide 60

Motivation: Three Desirable Attributes

Low-latency cache-to-cache misses

No bus-like interconnect Bandwidth efficient

Dictated by workload and technology trends

Token Coherence – Milo Martin slide 61

Workload Trends

P P P M

1

2

P P P M

2

1

3

Directory

Protocol

Workload trends  snooping protocols

• Commercial workloads

– Many cache-to-cache misses

– Clusters of small multiprocessors

• Goals:

– Direct cache-to-cache misses

(2 hops, not 3 hops)

– Moderate scalability

Token Coherence – Milo Martin slide 62

Workload Trends

Low-latency cache-to-cache misses

No bus-like interconnect Bandwidth efficient

Token Coherence – Milo Martin slide 63

Workload Trends Snooping Protocols

Low-latency cache-to-cache misses

No bus-like interconnect Bandwidth efficient

(Yes: direct
request/response)

(No: requires a “virtual bus”) (No: broadcast always)

Token Coherence – Milo Martin slide 64

Technology Trends

• High-speed point-to-point links

– No (multi-drop) busses

• Desire: low-latency interconnect

– Avoid “virtual bus” ordering

– Enabled by directory protocols

Technology trends  unordered interconnects

• Increasing design integration

– “Glueless” multiprocessors

– Improve cost & latency

Token Coherence – Milo Martin slide 65

Technology Trends

Low-latency cache-to-cache misses

No bus-like interconnect Bandwidth efficient

Token Coherence – Milo Martin slide 66

Technology Trends Directory Protocols

Low-latency cache-to-cache misses

No bus-like interconnect Bandwidth efficient

(No: indirection
through directory)

(Yes: no ordering required) (Yes: avoids broadcast)

Token Coherence – Milo Martin slide 67

Goal: All Three Attributes

Low-latency cache-to-cache misses

No bus-like interconnect Bandwidth efficient

Step#1

Step#2

Token Coherence – Milo Martin slide 68

Token Coherence: Key Insight

• Goal of invalidation-based coherence

– Invariant: many readers -or- single writer

– Enforced by globally coordinated actions

• Enforce this invariant directly using tokens

– Fixed number of tokens per block

– One token to read, all tokens to write

• Guarantees safety in all cases

– Global invariant enforced with only local rules

– Independent of races, request ordering, etc.

Key insight

Token Coherence – Milo Martin slide 69

Token Coherence: Contributions

1. Token counting rules for enforcing safety

2. Persistent requests for preventing starvation

3. Decoupling correctness and performance

in cache coherence protocols

– Correctness Substrate

– Performance Policy

4. Exploration of three performance policies

