
DAP.F96 1

Lecture 18:
Snooping vs. Directory Based

Coherency

Professor David A. Patterson
Computer Science 252

Fall 1996

DAP.F96 2

Review: Parallel Framework

• Layers:
– Programming Model:

» Multiprogramming : lots of jobs, no communication
» Shared address space: communicate via memory
» Message passing: send and recieve messages
» Data Parallel: several agents operate on several data

sets simultaneously and then exchange information
globally and simultaneously (shared or message
passing)

– Communication Abstraction:
» Shared address space: e.g., load, store, atomic swap
» Message passing: e.g., send, recieve library calls
» Debate over this topic (ease of programming, scaling)

=> many hardware designs 1:1 programming model

Programming Model
Communication Abstraction
Interconnection SW/OS
Interconnection HW

DAP.F96 3

Review: Small-Scale MP
Designs

• Memory: centralized with uniform access time
(“uma”) and bus interconnect

• Examples: Sun Enterprise 5000 , SGI Challenge,
Intel SystemPro

DAP.F96 4

Review: Large-Scale MP
Designs

• Memory: distributed with nonuniform access time
(“numa”) and scalable interconnect (distributed memory)

• Examples: T3E: (see Ch. 1, Figs 1-21, page 45 of [CSG96])

Low Latency
High Reliability

1 cycle

40 cycles 100 cycles

DAP.F96 5

Data Parallel Model
• Operations can be performed in parallel on

each element of a large regular data structure,
such as an array

• 1 Control Processsor broadcast to many PEs
(see Ch. 1, Figs 1-26, page 51 of [CSG96])

– When computers were large, could amortize the
control portion of many replicated PEs

• Data distributed in each memory
• Condition flag per PE so that can skip
• Early 1980s VLSI => SIMD rebirth: 32 1-bit PEs

+ memory on a chip was the PE
• Data parallel programming languages lay out

data to processor

DAP.F96 6

Data Parallel Model
• Vector processors have similar ISAs, but no

data placement restriction
• Advancing VLSI led to single chip FPUs and

whole fast µProcs
• SIMD programming model led to Single

Program Multiple Data (SPMD) model
– All processors execute identical program

• Data parallel programming languages still
useful, do communication all at once:
 “Bulk Synchronous” phases in which all
communicate after a global barrier

DAP.F96 7

Convergence in Parallel Architecture

• Complete computers connected to scalable
network via communication assist

– (see Ch. 1, Fig. 1-29, page 57 of [CSG96])

• Different programming models place different
requirements on communication assist

– Shared address space: tight integration with
memory to capture memory events that interact
with others + to accept requests from other nodes

– Message passing: send messages quickly and
respond to incoming messages: tag match, allocate
buffer, transfer data, wait for receive posting

– Data Parallel: fast global synchronization

• HPF shared-memory, data parallel; PVM, MPI
message passing libraries; both work on
many machines, different implementations

DAP.F96 8

Fundamental Issues: Naming
• Naming: how to solve large problem fast

– what data is shared
– how it is addressed
– what operations can access data
– how processes refer to each other

• Choice of naming affects code produced by a
compiler; via load where just remember
address or keep track of processor number
and local virtual address

• Choice of naming affects replication of data;
via load in cache memory hierachy or via SW
replication and consistency

DAP.F96 9

Fundamental Issues: Naming
• Global physical address space: any

processor can generate and address and
access it in a single operation

– memory can be anywhere: virtual addr. translation
handles it

• Global virtual address space: if the address
space of each process can be configured to
contain all shared data of the parallel program

• Segmented shared address space: if
locations are named <process number,
address> uniformly for all processes of the
parallel program

DAP.F96 10

Fundamental Issues:
Synchronization

• To cooperate, processes must coordinate
• Message passing is implicit coordination with

transmission or arrival of data
• Shared address => additional operations to

explicitly coordinate: e.g., write a flag, awaken
a thread, interrupt a processor

DAP.F96 11

Fundamental Issues:
Latency and Bandwidth

• Bandwidth
– Need high bandwidth in communication
– Cannot scale, but stay close
– Make limits in network, memory, and processor match
– Overhead to communicate is a problem in many machines

• Latency
– Affects performance, since processor may have to wait
– Affects ease of programming, since requires more thought

to overlap communication and computation

• Latency Hiding
– How can a mechanism help hide latency?
– Examples: overlap message send with computation,

prefetch

DAP.F96 12

Small-Scale—Shared Memory

• Caches serve to:
– Increase bandwidth

versus bus/memory
– Reduce latency of

access
– Valuable for both

private data and
shared data

• What about cache
consistency?

DAP.F96 13

The Problem of Cache Coherency

DAP.F96 14

What Does Coherency Mean?

• Informally:
– Any read must return the most recent write
– Too strict and very difficult to implement

• Better:
– Any write must eventually be seen by a read
– All writes are seen in proper order (“serialization”)

• Two rules to ensure this:
– If P writes x and P1 reads it, P’s write will be seen by

P1 if the read and write are sufficiently far apart
– Writes to a single location are serialized:

seen in one order
» Latest write will be seen
» Otherewise could see writes in illogical order

 (could see older value after a newer value)

DAP.F96 15

CS 252 Administrivia
• Next reading is Chapter 8 of CA:AQA 2/e and

Sections 1.1-1.4, Chapter 1 of upcoming book by
Culler, Singh, and Gupta:

www.cs.berkeley.edu/~culler/

• Remzi Arpaci will talk Fri. 11/8 on Networks of
Workstations and world record sort

• Dr. Dan Lenowski, architect of SGI Origin, talk in
Systems Seminar Thur. 11/14 at 4PM in 306 Soda

• Next project review: survey due Mon. 11/11; 20 min.
meetings moved to Fri. 11/15; signup Wed. 11/6

DAP.F96 16

Potential Solutions

• Snooping Solution (Snoopy Bus):
– Send all requests for data to all processors
– Processors snoop to see if they have a copy and respond

accordingly
– Requires broadcast, since caching information is at processors
– Works well with bus (natural broadcast medium)
– Dominates for small scale machines (most of the market)

• Directory-Based Schemes
– Keep track of what is being shared in one centralized place
– Distributed memory => distributed directory (avoids

bottlenecks)
– Send point-to-point requests to processors
– Scales better than Snoop
– Actually existed BEFORE Snoop-based schemes

DAP.F96 17

Basic Snoopy Protocols

• Write Invalidate Protocol:
– Multiple readers, single writer
– Write to shared data: an invalidate is sent to all caches

which snoop and invalidate any copies
– Read Miss:

» Write-through: memory is always up-to-date
» Write-back: snoop in caches to find most recent copy

• Write Broadcast Protocol:
– Write to shared data: broadcast on bus, processors

snoop, and update copies
– Read miss: memory is always up-to-date

• Write serialization: bus serializes requests
– Bus is single point of arbitration

DAP.F96 18

Basic Snoopy Protocols

• Write Invalidate versus Broadcast:
– Invalidate requires one transaction per write-run
– Invalidate uses spatial locality: one transaction per block
– Broadcast has lower latency between write and read
– Broadcast: BW (increased) vs. latency (decreased)

tradeoffName Protocol Type Memory-write policy Machines using

Write Once Write invalidate Write back First snoopy protocol.
after first write

Synapse N+1 Write invalidate Write back 1st cache-coherent MPs

Berkeley Write invalidate Write back Berkeley SPUR

Illinois Write invalidate Write back SGI Power and Challenge

“Firefly” Write broadcast Write back private,
Write through shared SPARCCenter 2000

MESI Write invalidate Write back Pentium, PowerPC

DAP.F96 19

Snoop Cache Variations

Berkeley
Protocol

Owned Exclusive
Owned Shared

Shared
Invalid

Basic
Protocol

Exclusive
Shared
Invalid

Illinois
Protocol
Private Dirty
Private Clean

Shared
Invalid

Owner can update via bus invalidate operation
Owner must write back when replaced in cache

If read sourced from memory, then Private Clean
if read sourced from other cache, then Shared
Can write in cache if held private clean or dirty

MESI
Protocol

Modfied (private,≠Memory)
eXclusive (private,=Memory)

Shared (shared,=Memory)
Invalid

DAP.F96 20

An Example Snoopy Protocol

• Invalidation protocol, write-back cache
• Each block of memory is in one state:

– Clean in all caches and up-to-date in memory (Shared)
– OR Dirty in exactly one cache (Exclusive)
– OR Not in any caches

• Each cache block is in one state:
– Shared : block can be read
– OR Exclusive : cache has only copy, its writeable, and

dirty
– OR Invalid : block contains no data

• Read misses: cause all caches to snoop bus
• Writes to clean line are treated as misses

DAP.F96 21

Snoopy-Cache State Machine-I

• State machine
for CPU requests

Invalid
Shared

(read/only)

Exclusive
(read/
write)

CPU Read

CPU Write

CPU Read hit

Place read miss
on bus

Place write miss
on bus

CPU read miss
Write back block

CPU Write
Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

DAP.F96 22

Snoopy-Cache State Machine-II

• State machine
for bus requests

Invalid
Shared

(read/only)

Exclusive
(read/
write)

Write Back
Block; abort
memory access

Write miss
for this block

Read miss
for this block

Write miss
for this block

Write Back
Block; abort
memory access

DAP.F96 23

Snoop Cache: State Machine
Extensions:

– Fourth State:
Ownership

– Clean-> dirty,
need invalidate only
(upgrade request),
don’t read memory
Berkeley Protocol

– Clean exclusive state
(no miss for private
data on write)
MESI Protocol

– Cache supplies data
when shared state
(no memory access)
Illinois Protocol

DAP.F96 24

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

DAP.F96 25

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

DAP.F96 26

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes A1 and A2 map to same cache block

DAP.F96 27

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 10
P2: Write 40 to A2 10

10

Assumes A1 and A2 map to same cache block

DAP.F96 28

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 10

10

Assumes A1 and A2 map to same cache block

DAP.F96 29

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 WrMs P2 A2 10

Excl. A2 40 WrBk P2 A1 20 20

Assumes A1 and A2 map to same cache block

A1

A1

DAP.F96 30

Implementation Complications

• Write Races:
– Cannot update cache until bus is obtained

» Otherwise, another processor may get bus first, and write the
same cache block

– Two step process:
» Arbitrate for bus
» Place miss on bus and complete operation

– If miss occurs to block while waiting for bus, handle miss
(invalidate may be needed) and then restart.

– Split transaction bus:
» Bus transaction is not atomic: can have multiple outstanding

transactions for a block
» Multiple misses can interleave, allowing two caches to grab block

in the Exclusive state
» Must track and prevent multiple misses for one block

• Must support interventions and invalidations

DAP.F96 31

Implementing Snooping Caches
• Multiple processors must be on bus, access to both

addresses and data
• Add a few new commands to perform coherency,

in addition to read and write
• Processors continuously snoop on address bus

– If address matches tag, either invalidate or update

DAP.F96 32

Implementing Snooping Caches
• Bus serializes writes, getting bus ensures no one else

can perform memory operation
• On a miss in a write back cache, may have the desired

copy and its dirty, so must reply
• Add extra state bit to cache to determine shared or not
• Since every bus transaction checks cache tags, could

interfere with CPU just to check:
– solution 1: duplicate set of tags for L1 caches just to allow

checks in parallel with CPU
– solution 2: L2 cache that obeys inclusion with L1 cache

DAP.F96 33

Larger MPs
• Separate Memory per Processor
• Local or Remote access via memory controller
• Cache Coherency solution: non-cached pages
• Alternative: directory per cache that tracks state of every

block in every cache
– Which caches have a copies of block, dirty vs. clean, ...

• Info per memory block vs. per cache block?
– PLUS: In memory => simpler protocol (centralized/one location)
– MINUS: In memory => directory is ƒ(memory size) vs. ƒ(cache size)

• Prevent directory as bottleneck: distribute directory
entries with memory, each keeping track of which Procs
have copies of their blocks

DAP.F96 34

Distributed Directory MPs

DAP.F96 35

Directory Protocol

• Similar to Snoopy Protocol: Three states
– Shared: ≥ 1 processors have data, memory up-to-date
– Uncached (no processor hasit; not valid in any cache)
– Exclusive: 1 processor (owner) has data; memory out-

of-date

• In addition to cache state, must track which
processors have data when in the shared state
(usually bit vector, 1 if processor has copy)

• Keep it simple(r):
– Writes to non-exclusive data => write miss
– Processor blocks until access completes
– Assume messages received and acted upon in order

sent

DAP.F96 36

Directory Protocol

• No bus and don’t want to broadcast:
– interconnect no longer single arbitration point
– all messages have explicit responses

• Terms:
– Local node is the node where a request originates
– Home node is the node where the memory location

of an address resides
– Remote node is the node that has a copy of a cache

block, whether exclusive or shared

• Example messages on next slide:
P = processor number, A = address

DAP.F96 37

Directory Protocol Messages
Message type Source Destination Msg
Read miss Local cache Home directory P, A

– Processor P reads data at address A;
send data and make P a read sharer

Write miss Local cache Home directory P, A

– Processor P writes data at address A;
send data and make P the exclusive owner

Invalidate Home directory Remote caches A

– Invalidate a shared copy at address A.
Fetch Home directory Remote cache A

– Fetch the block at address A and send it to its home directory
Fetch/Invalidate Home directory Remote cache A

– Fetch the block at address A and send it to its home directory;
invalidate the block in the cache

Data value reply Home directory Local cache Data

– Return a data value from the home memory
Data write-back Remote cache Home directory A, Data

– Write-back a data value for address A

DAP.F96 38

State Transition Diagram for an
Individual Cache Block in a

Directory Based System

• States identical to snoopy
case; transactions very
similar.

• Tranistions caused by
read misses, write misses,
invalidates, data fetch req.

• Generates read miss &
write miss msg to home
directory.

• Write misses that were
broadcast on the bus =>
explicit invalidate & data
fetch requests.

Invalid Shared

Exclusive

DAP.F96 39

State Transition Diagram for the
Directory

• Same states &
structure as the
transition diagram for
an individual cache

– 2 actions: update of
directory state & send
msgs to statisfy req.

– Tracks all copies of
memory block.

– Also indicate an action
that updates the
sharing set, Sharers, as
opposed to sending a
message.

Uncached Shared

Exclusive

WrMs

WrBk

WrMs

RdMs

RdMs

Data Value
Reply

Sharers =
Sharers+{P}

Fetch/Invalidate
Sharers={P}

Sharers={}

Data Value Reply
Sharers = Sharers+{P}

DAP.F96 40

Example Directory Protocol
• Message sent to directory causes two actions:

– Update the directory
– More messages to satisfy request

• Block is in Uncached state: the copy in memory is the
current value; only possible requests for that block are:

– Read miss: requesting processor sent data from memory &
requestor made only sharing node; state of block made Shared.

– Write miss: requesting processor is sent the value & becomes the
Sharing node. The block is made Exclusive to indicate that the only
valid copy is cached. Sharers indicates the identity of the owner.

• Block is Shared => the memory value is up-to-date:
– Read miss: requesting processor is sent back the data from

memory & requesting processor is added to the sharing set.
– Write miss: requesting processor is sent the value. All processors

in the set Sharers are sent invalidate messages, & Sharers is set to
identity of requesting processor. The state of the block is made
Exclusive.

DAP.F96 41

Example Directory Protocol
• Block is Exclusive: current value of the block is held in

the cache of the processor identified by the set Sharers
(the owner) => three possible directory requests:

– Read miss: owner processor sent data fetch message, which
causes state of block in owner’s cache to transition to Shared
and causes owner to send data to directory, where it is written to
memory & sent back to requesting processor. Identity of
requesting processor is added to set Sharers, which still
contains the identity of the processor that was the owner (since it
still has a readable copy).

– Data write-back: owner processor is replacing the block and
hence must write it back. This makes the memory copy up-to-
date (the home directory essentially becomes the owner), the
block is now uncached, and the Sharer set is empty.

– Write miss: block has a new owner. A message is sent to old
owner causing the cache to send the value of the block to the
directory from which it is sent to the requesting processor, which
becomes the new owner. Sharers is set to identity of new owner,
and state of block is made Exclusive.

DAP.F96 42

Implementing a Directory

• We assume operations atomic, but they are
not; reality is much harder; must avoid
deadlock when run out of bufffers in network
(see Appendix E)

• Optimizations:
– read miss or write miss in Exclusive: send data

directly to requestor from owner vs. 1st to memory
and then from memory to requestor

DAP.F96 43

Example

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc.AddrValue AddrState {Procs}Value

P1: Write 10 to A1

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

DAP.F96 44

Example

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc.AddrValue AddrState {Procs}Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

DAP.F96 45

Example

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc.AddrValue AddrState {Procs}Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

DAP.F96 46

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc.AddrValue AddrState {Procs}Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar.{P1,P2} 10

10
10

P2: Write 40 to A2 10

DAP.F96 47

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc.AddrValue AddrState {Procs}Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar.{P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 10

DAP.F96 48

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

P1 P2 Bus Directory Memory
step StateAddr ValueStateAddrValueActionProc.AddrValue AddrState {Procs}Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar.{P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 WrMs P2 A2 A2 Excl. {P2} 0

WrBk P2 A1 20 A1 Unca. {} 20
Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2} 0

DAP.F96 49

• 4th C: Conflict, Capacity, Compulsory and Coherency
Misses

• More processors: increase coherency misses while
decreasing capacity misses since more cache memory
(for fixed problem size)

• Cache behavior of Five Parallel Programs:
– FFT Fast Fourier Transform: Matrix transposition +

computation
– LU factorization of dense 2D matrix (linear algebra)
– Barnes-Hut n-body algorithm solving galaxy evolution probem
– Ocean simluates influence of eddy & boundary currents on

large-scale flow in ocean: dynamic arrays per grid

Miss Rates for Snooping Protocol

DAP.F96 50

M
is

s
 R

a
te

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

fft lu barnes ocean volrend

8%

2%

1%

14%

1%

8%

2%

1%

18%

1%

8%

2%

1%

15%

1%

8%

2%

1%

13%

1%

8%

2%

1%

9%

1%

1 2 4 8 16

Miss Rates for Snooping Protocol

– Cache size is 64KB, 2-way set associative, with 32B blocks.
– Misses in these applications are generated by accesses to data

that is potentially shared.
– Except for Ocean, data is heavily shared; in Ocean only the

boundaries of the subgrids are shared, though the entire grid is
treated as a shared data object. Since the boundaries change as
we increase the processor count (for a fixed size problem),
different amounts of the grid become shared. The anamolous
increase in miss rate for Ocean in moving from 1 to 2 processors
arises because of conflict misses in accessing the subgrids.

Big differences
in miss rates
among the
programs

Miss Rate

of processors
Ocean

High Capacity
Misses

DAP.F96 51

Processor Count

M
is

s
 R

a
te

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 4 8 16

fft lu barnes

ocean volrend

% Misses Caused by Coherency
Traffic vs. # of Processors

• % cache misses caused by
coherency transactions typically
rises when a fixed size problem is
run on more processors.

• The absolute number of coherency
misses is increasing in all these
benchmarks, including Ocean. In
Ocean, however, it is difficult to
separate out these misses from
others, since the amount of sharing
of the grid varies with processor
count.

• Invalidations increases significantly;
In FFT, the miss rate arising from
coherency misses increases from
nothing to almost 7%.

80% of misses due to
coherency misses!

FFT

LU

Barnes
Ocean

Volrend

DAP.F96 52

Cache Size in KB

M
is

s
 R

a
te

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

16 32 64 128 256

fft lu barnes

ocean volrend

Miss Rates as Increase Cache
Size/Processor

• Miss rate drops as the cache size is increased, unless the
miss rate is dominated by coherency misses.

• The block size is 32B & the cache is 2-way set-associative.
The processor count is fixed at 16 processors.

FFT

LU

Barnes

Ocean

Volrend

Miss
Rate

Cache Size

Ocean and FFT
strongly influenced
by capacity misses

DAP.F96 53

M
is

s
 R

a
te

0%

2%

4%

6%

8%

10%

12%

14%

fft lu barnes ocean volrend

13%

4%

1%

13%

1%

8%

2%

1%

9%

1%

5%

1%
1%

6%

1%

4%

0% 1%

5%

1%

16 32 64 128

Miss Rate vs. Block Size

• Since cache block hold
multiple words, may get
coherency traffic for
unrelated variables in same
block

• False sharing arises from
the use of an invalidation-
based coherency algorithm.
It occurs when a block is
invalidated (and a
subsequent reference
causes a miss) because
some word in the block,
other than the one being
read, is written into.

miss rates mostly fall with increasing block size

DAP.F96 54

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

16 32 64 128

fft lu barnes

ocean volrend

% Misses Caused by Coherency
Traffic vs. Block Size

• FFT communicates data in large
blocks & communication adapts to
the block size (it is a parameter to
the code); makes effective use of
large blocks.

• Ocean competing effects that favor
different block size

– Accesses to the boundary of
each subgrid, in one
direction the accesses
match the array layout,
taking advantage of large
blocks, while in the other
dimension, they do not
match. These two effects
largely cancel each other
out leading to an overall
decrease in the coherency
misses as well as the
capacity misses.

Barnes

LU

FFT
Ocean

Volrend

Behavior tracks cache size behavior
FFT: Coherence misses reduced faster
than capacity misses!

DAP.F96 55

B
y
te

s
 p

e
r

d
a
ta

 r
e
fe

re
n
c
e

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

16 32 64 128

fft lu barnes

ocean volrend

Bus Traffic as Increase Block Size

• Bus traffic climbs steadily as
the block size is increased.

• The factor of 3 increase in
traffic for Ocean is the best
argument against larger block
sizes.

• Remember that our protocol
treats ownership misses the
same as other misses, slightly
increasing the penalty for large
cache blocks: in both Ocean
and FFT this effect accounts for
less than 10% of the traffic.

Huge Increases in bus traffic
due to coherency!

Bytes per
data ref

Ocean

FFT
LU

Volrend

DAP.F96 56

M
is

s
 R

a
te

0%

1%

2%

3%

4%

5%

6%

7%

fft lu barnes ocean volrend

5%

1%

0%

6%

1%

5%

1%

0%

4%

1%

5%

1%

0%

3%

1%

5%

1%

0%

7%

1%

8 16 32 64

Miss Rates for Directory

– Cache size is 128 KB, 2-way
set associative, with 64B
blocks (cover longer latency)

– Ocean: only the boundaries
of the subgrids are shared.
Since the boundaries change
as we increase the processor
count (for a fixed size
problem), different amounts
of the grid become shared.
The increase in miss rate for
Ocean in moving from 32 to
64 processors arises
because of conflict misses in
accessing small subgrids &
for coherency misses for 64
processors.

Miss Rate

of Processors

Ocean

Use larger cache to circumvent longer latencies to directories

DAP.F96 57

M
is

s
 R

a
te

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

fft lu barnes ocean volrend

9%

2%

1%

18%

1%

8%

2%

1%

13%

1%

7%

2%

0%

9%

1%

5%

1%

0%

7%

1%

4%

1%

0%

5%

1%

32 64 128 256 512

Miss Rates as Increase Cache
Size/Processor for Directory

• Miss rate drops as the
cache size is increased,
unless the miss rate is
dominated by coherency
misses.

• The block size is 64B and
the cache is 2-way set-
associative. The processor
count is fixed at 16
processors.

DAP.F96 58

M
is

s
 R

a
te

0%

2%

4%

6%

8%

10%

12%

14%

fft lu barnes ocean volrend

12%

3%

0%

13%

1%

7%

2%

0%

9%

1%

5%

1%
0%

7%

1%

3%

0% 0%

5%

1%

16 32 64 128

Block Size for Directory
• Assumes 128 KB cache & 64 processors

– Large cache size to combat higher memory latencies than snoop
caches

DAP.F96 59

Summary

• Caches contain all information on state of
cached memory blocks

• Snooping and Directory Protocols similar;
bus makes snooping easier because of
broadcast

• Directory has extra data structure to keep
track of state of all cache blocks

• Distributing directory => scalable shared
address multiprocessor

