
Parallel Computer Architecture and Programming

CMU 15-418/15-618, Spring 2019

Lecture 13:

Directory-Based
Cache Coherence

CMU 15-418/618,

Spring 2019

Today you will learn…

▪ What limits the scalability of snooping-based

approaches to cache coherence

▪ How a directory-based scheme avoids these

problems

▪ How the storage overhead of the directory structure

be reduced (and at what cost)

▪ How the interconnection network (bus, point-to-

point, ring) affect scalability and design choices

CMU 15-418/618,

Spring 2019

Implementing cache coherence

Processor

Local Cache

Processor

Local Cache

Processor

Local Cache

Processor

Local Cache

Interconnect

Memory I/O

The snooping cache coherence

protocols from the last lecture

relied on broadcasting

coherence information to all

processors over the chip

interconnect.

Every time a cache miss

occurred, the triggering cache

communicated with all other

caches!

CMU 15-418/618,

Spring 2019

Scaling problems with snoopy coherence

▪ How does performance scale with number of processors?

▪ Communication limited to one message at a time

▪ Even a scalable point-to-point interconnect requires P

messages per memory request (occupying each cache)

Fundamentally, all-to-all broadcast will not scale.

Processor

Local Cache

Processor

Local Cache

Processor

Local Cache

Processor

Local Cache

Interconnect

Memory I/O

Processor

Local Cache

Processor

Local Cache

Processor

Local Cache

Processor

Local Cache

CMU 15-418/618,

Spring 2019

Scaling cache coherence to large machines

Processor

Local Cache

Memory

Processor

Local Cache

Memory

Processor

Local Cache

Memory

Processor

Local Cache

Memory

Interconnect

Recall non-uniform memory access (NUMA) shared memory systems

Idea: locating regions of memory near the processors increases scalability: it yields

higher aggregate bandwidth and reduced latency (especially when there is locality in

the application)

But... efficiency of NUMA system does little good if the coherence protocol can’t also

be scaled!

Consider this case: processor accesses nearby memory (good...), but to ensure

coherence still must broadcast to all other processors it is doing so (bad...)

Some terminology:

▪ cc-NUMA = “cache-coherent, non-uniform memory access”

▪ Distributed shared memory system (DSM): cache coherent, shared address

space, but architecture implemented by physically distributed memories

CMU 15-418/618,

Spring 2019

Scaling cache coherence in current multicores

▪ ccNUMA typically refers to supercomputing/clusters

▪ Same issues appear in multicores

- NUMA: Memory controllers distributed around chip

- NUCA (non-uniform cache access): L3 banks distributed

around the chip too

Mem
Ctrl

Mem
Ctrl

Mem
Ctrl

Mem
Ctrl

Core L3 Cache Bank

CMU 15-418/618,

Spring 2019

Why did we need a bus?

▪ Ordering

- Bus serializes requests, ordering some before others

- BUT: Coherence does not require ordering of requests

to different addresses

- (More on this when we discuss consistency)

▪ Communication

- Simple, fast (but not scalable) broadcast medium

- BUT: Coherence does not require broadcast

- Only need to communicate with sharers

- Most data is not shared by every cache

CMU 15-418/618,

Spring 2019

One possible solution: hierarchical snooping

Processor

Local Cache

Processor

Local Cache

Processor

Local Cache

Processor

Local Cache

Interconnect

Processor

Local Cache

Processor

Local Cache

Processor

Local Cache

Processor

Local Cache

Interconnect

Interconnect

Use snooping coherence at each level

Memory

Advantages

▪ Relatively simple to build (already must deal with similar issues due to multi-level

caches)

Disadvantages

▪ The root of the network can become a bottleneck

▪ Larger latencies than direct communication

▪ Does not apply to more general network topologies (meshes, cubes)

CMU 15-418/618,

Spring 2019

Scalable cache coherence using directories

▪ Snooping schemes broadcast coherence messages to

determine the state of a line in the other caches

▪ Alternative idea: avoid broadcast by storing

information about the status of the line in one place:

a “directory”

- The directory entry for a cache line contains information about the

state of the cache line in all caches.

- Caches look up information from the directory as necessary

- Cache coherence is maintained by point-to-point messages between

the caches on a “need to know” basis (not by broadcast

mechanisms)

CMU 15-418/618,

Spring 2019

A very simple directory

Scalable Interconnect

Processor

Local Cache

Directory

Memory

.
.
.

One line of memory

One directory

entry per line of

memory

P presence bits: indicate whether

processor P has line in its cache

Dirty bit: indicates line is

dirty in one of the

processors’ caches

Line: A region of memory that

would be cached as a single

block (e.g., 64 bytes)

CMU 15-418/618,

Spring 2019

So we’ve traded a bus bottleneck for a

memory bottleneck?

▪ Not quite; directories distributed across memory banks

- Different ordering points for different addresses

▪ Can cache directory entries + avoid memory access

- Caches are much faster + higher bandwidth than

memory

CMU 15-418/618,

Spring 2019

A distributed directory in ccNUMA

Scalable Interconnect

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

▪ “Home node” of a line: node with memory holding the

corresponding data for the line

Example: node 0 is the home node of the yellow line, node 1 is the home node of the blue line

▪ “Requesting node”: node containing processor requesting line

Example: directory partition is co-located with memory it describes

CMU 15-418/618,

Spring 2019

A distributed directory in a multicore

▪ As we shall see, directories really live in each L3 bank

Mem
Ctrl

Mem
Ctrl

Mem
Ctrl

Mem
Ctrl

Core L3 Cache Bank

Dir

Dir

Dir

Dir

Dir Dir Dir Dir

Dir Dir Dir Dir

Dir Dir Dir Dir

Dir Dir Dir Dir

CMU 15-418/618,

Spring 2019

Example 1: read miss to clean line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is not dirty

▪ Read miss message sent to home node of the requested line

▪ Home directory checks entry for line

1. Request: read miss msg

Scalable Interconnect

CMU 15-418/618,

Spring 2019

Example 1: read miss to clean line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is not dirty

▪ Read miss message sent to home node of the requested line

▪ Home directory checks entry for line

- If dirty bit for cache line is OFF, respond with contents from memory, set

presence[0] to true

(to indicate line is cached by processor 0)

2. Response (line of data from memory)

1. Request: read miss msg

Scalable Interconnect

CMU 15-418/618,

Spring 2019

Example 2: read miss to dirty line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contents in P2’s

cache)

▪ If dirty bit is ON, then data must be sourced by another processor (with the most up-to-

date copy of the line)

▪ Home node must tell requesting node where to find data

- Responds with message providing identity of line owner (“get it from P2”)

2. Response: owner id

1. Request: read miss msg

Scalable Interconnect

CMU 15-418/618,

Spring 2019

Example 2: read miss to dirty line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contents in P2’s

cache)

1. If dirty bit is ON, then data must be sourced by another processor

2. Home node responds with message providing identity of line owner

3. Requesting node requests data from owner

4. Owner changes state in cache to SHARED (read only), responds to requesting node

2. Response: owner id

1. Request: read miss msg

3. Request: data

4. Response: data

Scalable Interconnect

CMU 15-418/618,

Spring 2019

Example 2: read miss to dirty line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contents in P2’s

cache)

1. If dirty bit is ON, then data must be sourced by another processor

2. Home node responds with message providing identity of line owner

3. Requesting node requests data from owner

4. Owner responds to requesting node, changes state in cache to SHARED (read only)

5. Owner also responds to home node, home clears dirty, updates presence bits, updates

memory

2. Response: owner id

1. Request: read miss msg

3. Request: data

4. Response: data

5. Response: data+dir revision

Scalable Interconnect

CMU 15-418/618,

Spring 2019

Example 3: write miss

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Write to memory by processor 0: line is clean, but resident in P1’s and P2’s caches

1. Request: write miss msg

Scalable Interconnect

CMU 15-418/618,

Spring 2019

Example 3: write miss

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Write to memory by processor 0: line is clean, but resident in P1’s and P2’s caches

1. Request: write miss msg

2. Response: sharer ids + data

Scalable Interconnect

CMU 15-418/618,

Spring 2019

Example 3: write miss

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Write to memory by processor 0: line is clean, but resident in P1’s and P2’s caches

1. Request: write miss msg

3. Request: invalidate (2 msgs)

2. Response: sharer ids + data

Scalable Interconnect

CMU 15-418/618,

Spring 2019

Example 3: write miss

Scalable Interconnect

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Memory

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Write to memory by processor 0: line is clean, but resident in P1’s and P2’s caches

1. Request: write miss msg

3. Request: invalidate (2 msgs)

2. Response: sharer ids + data

4a. Response: ack from P2

4b. Response: ack from P1

After receiving both invalidation acks, P0 can perform write

CMU 15-418/618,

Spring 2019

Advantage of directories

▪ On reads, directory tells requesting node exactly where to

get the line from
- Either from home node (if the line is clean)

- Or from the owning node (if the line is dirty)

- Either way, retrieving data involves only point-to-point

communication

▪ On writes, the advantage of directories depends on the

number of sharers

- In the limit, if all caches are sharing data, all caches must be

communicated with (just like broadcast in a snooping

protocol)

CMU 15-418/618,

Spring 2019

Cache invalidation patterns
64 processor system

Barnes-Hut

LU

Ocean

0 1 2 3 4 5 6 7

8
 t

o
 1

1

1
2

 t
o

 1
5

1
6

 t
o

 1
9

2
0

 t
o

 2
3

2
4

 t
o

 2
7

2
8

 t
o

 3
1

3
2

 t
o

 3
5

3
6

 t
o

 3
9

4
0

 t
o

 4
3

4
4

 t
o

 4
7

4
8

 t
o

 5
1

5
2

 t
o

 5
5

5
6

 t
o

 5
9

6
0

 t
o

 6
3

Graphs plot histogram

of number of sharers of

a line at the time of a

write

In general only a few

processors share the line

(only a few processors

must be told of writes)

Not shown here, but the

expected number of

sharers typically

increases slowly with P

(good!)

Number of sharers ➔

CMU 15-418/618,

Spring 2019

In general, only a few sharers during a write

▪ Access patterns

- “Mostly-read” objects: lots of sharers but writes are infrequent, so

minimal impact on performance (e.g., root node in Barnes-Hut)

- Migratory objects (one processor reads/writes for while, then another,

etc.): very few sharers, count does not scale with number of processors

- Frequently read/written objects: frequent invalidations, but sharer count

is low because count cannot build up in short time between invalidations

(e.g, shared task queue)

- Low-contention locks: infrequent invalidations, no performance problem

- High-contention locks: can be a challenge, because many readers present

when lock released

▪ Implication 1: directories are useful for limiting coherence traffic
- Don’t need a broadcast mechanism to “tell everyone”

▪ Implication 2: lets us limit directory storage overhead (how?)

CMU 15-418/618,

Spring 2019

Very simple directory storage requirements

Scalable Interconnect

Processor

Local Cache

Directory

Memory

.
.
.

One line of

memory

One directory

entry per line

of memory

P presence bits: indicate whether

processor P has line in its cache

Dirty bit: indicates line

is dirty in one of the

processors’ caches

Assume

64 bytes / line

P = 256 processors

M = main memory size (bytes)

How big is directory?

CMU 15-418/618,

Spring 2019

Full-map directory representation

▪ Recall: one presence bit per

node

▪ Storage proportional to P x M
- P = number of nodes (e.g., processors)

- M = number of lines in memory

- # dir entries = M / 64B

- # bytes / dir entry = P / 8

- ➔ Dir size = P * M / 8

▪ Storage overhead rises with P
- Assume 64 byte cache line size (512 bits)

- 64 nodes (P=64) →12% overhead

- 256 nodes (P=256) → 50% overhead

- 1024 nodes (P=1024) → 200% overhead

.
.
.

P

M

. . .

CMU 15-418/618,

Spring 2019

Reducing storage overhead of directory

▪ Optimizations on full-map directory scheme
- Increase cache line size (reduce M term)

- What are the downsides of this approach?

(consider graphs from last lecture)

- Group multiple processors into a single directory “node”

(reduce P term)

- Need only one directory bit per node, not one bit per

processor

- Hierarchical: could use snooping protocol to maintain

coherence among processors in a node

- But hierarchical coherence is very complicated + adds

latency

▪ We will now discuss two alternative schemes

- Limited pointer schemes (reduce P)

- Sparse directories

CMU 15-418/618,

Spring 2019

Limited directory

Most data has few sharers

➔ Idea: Store only a few pointers in directory

(we only need a list of the nodes holding a valid copy of the line!)

Ocean

Example: 1024 processor system

Full bit vector scheme needs 1024 bits per line

Instead, we can track most accesses with a few pointers to sharers

Each pointer is log𝟐 1024 = 10b, so anything <100 pointers is a win!

(E.g., >99% of writes with just a five sharers in Ocean)

0 1 2 3 4 5 6 7

8
 t

o
 1

1

1
2

 t
o

 1
5

1
6

 t
o

 1
9

2
0

 t
o

 2
3

2
4

 t
o

 2
7

2
8

 t
o

 3
1

3
2

 t
o

 3
5

3
6

 t
o

 3
9

4
0

 t
o

 4
3

4
4

 t
o

 4
7

4
8

 t
o

 5
1

5
2

 t
o

 5
5

5
6

 t
o

 5
9

6
0

 t
o

 6
3

CMU 15-418/618,

Spring 2019

Managing overflow in limited pointer schemes

▪ Fallback to broadcast

▪ Replaces an existing sharer (invalidating its cache) with

the new sharer

▪ Coarse bit-vector

- Revert to bit vector representation

- Each bit corresponds to a cluster of K processors

- On write, invalidate all processors in the cluster

Many possible approaches

CMU 15-418/618,

Spring 2019

Limited pointer schemes are a great

example of understanding and

optimizing for the common case:

1. Workload-driven observation: in general the number of

cache line sharers is low

2. Make the common case simple and fast: array of pointers

for first N sharers

3. Uncommon case is still handled correctly, just with a

slower, more complicated mechanism (the program still

works!)

4. Extra expense of the complicated solution is tolerable,

since it happens infrequently

CMU 15-418/618,

Spring 2019

Limited pointer schemes: summary

▪ Limited pointer schemes reduce

directory storage overhead caused

by large P

▪ Most lines have few sharers, so

this works well

▪ But do we really even need to

maintain a list of sharers for each

line of data in memory?

P ➔ k log P

M

. . .

Directory

CMU 15-418/618,

Spring 2019

Limiting size of directory: sparse directories

Key observations:

1) The coherence protocol only needs sharing information for

lines in some cache.

2) Most memory is NOT resident in cache.

➔ Almost all directory entries are empty

▪ E.g., 1 MB cache, 1 GB memory → ≥ 99.9% of entries are empty

Interconnect

Processor

Local Cache

Directory

Memory

.
. .
One line of memory

One directory entry

per line of memory

CMU 15-418/618,

Spring 2019

Sparse directories: Reducing directory entries

Key observations:

1) The coherence protocol only needs sharing information for

lines in some cache.

2) Most memory is NOT resident in cache.

➔ Almost all directory entries are empty

▪ E.g., 1 MB cache, 1 GB memory → ≥ 99.9% of entries are empty

Interconnect

Processor

Local Cache

Directory

Memory

One line of memory

One directory entry

per line of cache

Tag

Scaling:

- Each cache holds C lines

- P * C bits / processor

- Directory scales with cache (not memory) size

CMU 15-418/618,

Spring 2019

Sparse directories: Reducing directory entries

Key observations:

1) The coherence protocol only needs sharing information for

lines in some cache.

2) Most memory is NOT resident in cache.

➔ Almost all directory entries are empty

▪ E.g., 1 MB cache, 1 GB memory → ≥ 99.9% of entries are empty

Interconnect

Processor

Local CacheDirectory

Memory

One line of memory

One directory entry

per line of cache

Tag

Scaling:

- Each cache holds C lines

- P * C bits / processor

- Directory scales with cache (not memory) size

CMU 15-418/618,

Spring 2019

Sparse directories: Limiting entry size

Idea: Store sharers as a linked list

Directory at home node stores only 1 pointer to

head of the list (not the full list)

Pointer to next node in list is stored with cache

line (alongside the line’s tag, dirty bits, etc)

M

Processor cache: node 0

(last reader)

prev ptr

line data

Directory (home node for

line)

Processor cache: node 1

next ptr

Processor cache: node 2

(last reader)

On read miss: add requesting node to head of list

On write miss: walk list to invalidate each sharer

One directory entry per

cache line of memory

held in some cache

On evict: need to patch up list (linked list removal)

Scaling:

- Directory has C entries

- Each entry is one pointer, or total = 𝐂 𝐥𝐨𝐠 𝑷 bits

- Two pointers × C cache lines = 𝟐𝑪 𝐥𝐨𝐠 𝑷 bits

- Total: 𝟑𝑪 𝐥𝐨𝐠 𝑷 bits / processor

CMU 15-418/618,

Spring 2019

Sparse directories: scaling properties

Good:

M

Processor cache: node 0

prev

ptr

line data

Directory (home node for line)

Processor cache: node 1

next

ptr

Processor cache: node 2

Bad:

• Low memory storage overhead

• Traffic on write is proportional to number

of sharers (no broadcast fallback)

• Latency of write proportional to number

of sharers (invalidation of lines is serial)

• Higher implementation complexity

CMU 15-418/618,

Spring 2019

In-cache directories

▪ In-cache directory: Add

directory entries to shared L3

cache

▪ Sparse directory: Add

separately tagged structure

to track L2 contents

▪ In-cache directories are

common in multicores today

Core

L1 Data Cache

L2 Cache

Shared L3 Cache

(One bank per core)

Interconnect

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Recall: Coherence implemented at shared-

private boundary

Memory

Tag Sharers Data
▪ 𝑪𝑳𝟑 × 𝑷 add’l bits

▪ L3 must be inclusive

▪ 𝑷 × 𝑪𝑳𝟐 × (𝑻 + 𝑷) add’l bits

▪ L3 need not be inclusive

▪ In-cache dir smaller if:
𝑪𝑳𝟑
𝑪𝑳𝟐

< 𝑻 + 𝑷

CMU 15-418/618,

Spring 2019

Optimizing directory-based coherence

▪ Reducing storage overhead of directory data structure

- Limited pointer schemes

- Sparse directories

▪ Reducing number of messages sent to implement

coherence protocol

CMU 15-418/618,

Spring 2019

Memory

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contained in P2’s

cache)

1. Request: read miss msg

Recall: read miss to dirty line

Scalable Interconnect

CMU 15-418/618,

Spring 2019

Memory

Recall: read miss to dirty line

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contained in P2’s

cache) (Note: figure below shows final state of system after operation is complete)

Five network transactions in total

Four of the transactions are on the “critical path” (transactions 4 and 5 can be done in parallel)

- Critical path: sequence of dependent operations that must occur to complete operation

2. Response: owner id

1. Request: read miss msg

3. Request: data

4. Response: data

5. Response: data+dir revision

Scalable Interconnect

CMU 15-418/618,

Spring 2019

Memory

Intervention forwarding

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contained in P2’s

cache)

1. Request: read miss msg

Scalable Interconnect

CMU 15-418/618,

Spring 2019

Memory

Intervention forwarding

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contained in P2’s

cache)

1. Request: read miss msg

3. Response: data+dir revision

2. Request: intervention read

2. Home node requests data from owner node (processor 2)

3. Owning node responds

Scalable Interconnect

CMU 15-418/618,

Spring 2019

Memory

Intervention forwarding

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contained in P2’s

cache)

1. Request: read miss msg

3. Response: data+dir revision

2. Request: intervention read

4. Response: data

4. Home node updates directory, and responds to requesting node with data

Four network transactions in total (less traffic)

But all four of the transactions are on the “critical path.” Can we do better?

Scalable Interconnect

CMU 15-418/618,

Spring 2019

Memory

Request forwarding

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contained in P2’s

cache)

1. Request: read miss msg

Scalable Interconnect

CMU 15-418/618,

Spring 2019

Memory

Request forwarding

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contained in P2’s

cache)

1. Request: read miss msg
2. Request: send data to requestor

Scalable Interconnect

CMU 15-418/618,

Spring 2019

Memory

Request forwarding

Processor 0

Local Cache

Memory

Directory

. . .

Processor 1

Local Cache

Directory

. . .

Processor 2

Local Cache

Memory

Directory

. . .

Read from main memory by processor 0 of the blue line: line is dirty (contained in P2’s

cache)

1. Request: read miss msg
2. Request: send data to requestor

3/4. Response: data

(2 msgs: sent to both home node and requestor)

Four network transactions in total

Only three of the transactions are on the critical path (transactions 3 and 4 can be done in parallel)

Note: system is no longer pure request/response (since P0 sent request to P1, but receives response

from P2)

Scalable Interconnect

CMU 15-418/618,

Spring 2019

Directory coherence in Intel Core i7 CPU

▪ L3 hosts in-cache directory (and is

inclusive)

▪ Directory maintains list of L2

caches containing line

▪ Instead of broadcasting coherence

traffic to all L2’s, only send

coherence messages to L2’s that

contain the line

(Core i7 interconnect is a ring, it is not a bus)

▪ Directory dimensions:

- P=4

- M = number of L3 cache lines

Core

L1 Data Cache

L2 Cache

Shared L3 Cache

(One bank per core)

Ring Interconnect

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

Core

L1 Data Cache

L2 Cache

CMU 15-418/618,

Spring 2019

Coherence in multi-socket Intel systems

Core

L1

L2

L3 Cache

Core

L1

L2

Core

L1

L2

Core

L1

L2

Core

L1

L2

L3 Cache

Core

L1

L2

Core

L1

L2

Core

L1

L2

Cache Agent Cache Agent

Memory Controller Memory Controller

Home Agent Home AgentQuickPath

Interconnect

(QPI)

to DRAM…

(with in memory

directory)

Dir cache (16KB) Dir cache (16KB)

to DRAM…

(in memory directory) ▪ L3 directory reduces on-

chip coherence traffic

(previous slide)

▪ In-memory directory

(cached by home

agent/memory controller)

reduces coherence traffic

between cores

CMU 15-418/618,

Spring 2019

Xeon Phi
▪ Intel’s NUMA on a chip

▪ Many (50+) x86 cores

▪ Ours have 61

▪ “Knight’s Corner”

▪ 4-way hyper threading

▪ Each with 1–2 vector units

▪ Cache-coherent memory system

▪ Knight’s Corner overall system:

▪ Max. 8GB memory

▪ Max. 2 TFLOPS

▪ 0.004 bytes/flop

▪ not balanced

▪ 300 Watts

Prototype / internal names

include:

Larrabee, Knight’s Ferry, Knight’s

Corner, Knight’s Landing,

Knight’s Hill

China’s Tianhe-2 has 48,000

Knight’s Corner chips

CMU 15-418/618,

Spring 2019

Knight’s Corner Xeon Phi Cache Coherence

▪ 512KB L2 caches

▪ 8 memory controllers

▪ Total 8GB max.

Prototype / internal names include:

Larrabee, Knight’s Ferry, Knight’s

Corner, Knight’s Landing, Knight’s

Hill

CMU 15-418/618,

Spring 2019

KC Xeon Phi Ring Communication

▪ Messages sent around bidirectional ring

- Having everything on single chip enables very wide communication

paths

- Can get effect of broadcast by circulating message around entire

ring

- Advantage over point-to-point

CMU 15-418/618,

Spring 2019

KC Xeon Phi Directory Structure

▪ Directory keeps track of which lines are resident in local L2

- Same as with single-node system

▪ Worst-case memory read or write by P:

1. Check local cache

2. Circulate request around ring for line in some cache

3. Send request around ring to memory controller

CMU 15-418/618,

Spring 2019

Next Generation Xeon Phi

▪ “Knight’s Landing”

▪ 72 cores

▪ Each with 4-way

hyper threading

▪ Each with 2 vector

units

▪ Grouped into pairs to

give 36 compute nodes

▪ Peak 6 SP TFLOPS

▪ 16 GB on package RAM

▪ Access to up to 384 GB

off-package RAM

CMU 15-418/618,

Spring 2019

Knight’s Landing Xeon Phi Cache Coherence

▪ Nodes organized as 2-D

mesh

▪ Some for computation

▪ Some for memory

interfaces

▪ Use X/Y routing to send

messages

▪ Must use more traditional

directory-based scheme

CMU 15-418/618,

Spring 2019

Summary: directory-based coherence

▪ Primary observation: broadcast doesn’t scale, but luckily we

don’t need to broadcast to ensure coherence because often the

number of caches containing a copy of a line is small

▪ Instead of snooping, just store the list of sharers in a

“directory” and check the list as necessary

▪ One challenge: reducing overhead of directory storage

- Use hierarchies of processors or larger line sizes

- Limited pointer schemes: exploit fact the most processors

not sharing line

- Sparse directory schemes: exploit fact that most lines are

not in cache

▪ Another challenge: reducing the number of messages sent

(traffic) and critical path (latency) of message chains needed to

implement coherence operations

▪ Ring-based schemes can be much simpler than point-to-point

communication

