Energy Efficient Deeply Fused Dot-Product
Multiplication Architecture

Shmuel Wimer, Member, IEEE, and Israel Koren, Fellow, I[EEE

Abstract—Dot-product is frequently used in many signal
processing applications, and for this reason digital signal
processors (DSPs) commonly include hardware units to speed up
its calculation. In this paper, we propose a new circuit
architecture for dot-product hardware units. This design fuses all
the steps of the dot-product computation into a unit called a
fused dot-product multiplier (FDPM), resulting in enhancements
in performance, power and area vs. designs such as multiply-
accumulate (MAC) units. We designed and implemented the
FDPM in 28-nanometer and 65-nanometer technologies.
Comparison of the fused unit to an implementation by an EDA
design compiler showed that our architecture consumed 38% less
power and 30% less area for the same clock cycle. Comparison to
a previously proposed FDPM architecture showed a per-bit 1.9X
-4.7X energy reduction. Analysis of the dependence of the per-bit
power consumption on vector length and word-width indicated a
good match between theory and practice.

Index Terms—Computer arithmetic, dot-product, multipliers.

[. INTRODUCTION
OT-products are commonly used in many signal
Dprocessing applications such as FFT. Given two vectors
with positive fixed-point operands x=(x;.....x,,) and

Y=(.-ees¥y), their dot-product z=xly (also called the
scalar product) is given by

m

=)%Y, . (1
i=1

The basic x;y; operation requires an 7 -bit multiplier
where 7 is the number of bits in each operand. If a radix-4
Booth encoding is used, a carry-save array (CSA) summation
of n/2 partial products (PPs) is required [1]. Fig. 1 depicts a
dot diagram of the PPs in (a) with their final sum and carry
partial products (FPPs) in (b), for which a final addition (not
shown) produces the result z = xly . For high performance, the
nf2 PPs can be added by using a Wallace-tree with 4:2

compressors. This can be followed by a prefix-tree adder (not
shown) to add the 2 -bit sum and carry FPPs.

The time complexity of computing the multiplication x;y;
is
T=log,n. (@)

978-1-5090-1503-0/16/$31.00 © 2016 IEEE

The area 4 of the multiplier includes the area Ay, ;.. of the

Wallace-tree and the area A4 q of the prefix-tree adder,

prefix_ad

A= AWallace + Apreﬁxiadd s 3)

n/2

l Carry-save + Prefix tree adder

(c) 2n+logym

I Accumulator

[
Fig. 1. A radix-4 multiplication dot diagram (a) and (b), within a MAC (c).

Radix-4 Booth encoding produces nxn/2:n2/2 dots at

the first level of the Wallace-tree, as shown in Fig.1 (a). This
is reduced by a factor of 2 from one level to the next with the
use of 4:2 compressors. The area of the entire Wallace-tree is
obtained by summing over all the tree levels yielding

log, n—2 nZ 9 1’12

2

AWallace = Z // <2—=n". 4)
=0 2 2
The area of the prefix-tree adder which adds two 2 -bit
numbers can be estimated by summing the dots over all the
levels of the adder tree as follows

logp n M

Apreﬁxiadd = Z Y <4n. (5)
=0 2
Ignoring smaller orders of magnitude it follows from (2)-(5)
that the area and the area-time product complexities for
multiplication are, respectively,

A=n*, AT =n’log,n. (6)

The final adder can be fused with the array of the PPs to form
a fused multiply-add (FMA) [2]. This, however, does not
change the area and time complexities.

To obtain the dot-product, multiplication must be performed
m times whereas the summation can be built up incrementally
with an accumulator for which a multiply accumulate (MAC)
unit can be used by adding stage (c) in Fig. 1. Hence the area-
time product complexity for a dot-product MAC
implementation is

115 ASAP 2016

AT = mn® log, n. 7

The MAC design described in [3] uses a CSA that has a
delay of order n. Fig. 2(a), taken from [4], illustrates the 2-
stage pipelined MAC proposed in [3], which requires 2m
clock cycles to compute the dot-product in (1). It was
modified and improved in [4] which, as shown in Fig. 2(b),
takes the final addition out of the MAC loop, thus reducing the
number of clock cycles required to compute (1) to m+1.

| , [
nlly H a
=0 . (a)
1
— 1
1
" 1 1
e 1
o
! P[n-2:0]
:
o
<
- 2mn-l
< " P[2n:n-1]
%}
o
Clock 1 Clock2 Clock 3 Clock 4 Clock S Clock 6
1
St 1 Booth Encoding | Booth Encoding 2 Booth Encoding 3
[328e 1|~ cswacc CSNACC2 CSA/ACC3
| Stage 2 Final Addition 1 Final Addition 2 Final Addition 3 !
Lo\
1 1 1
L
1 1
| : (b)
1 Tn 1
1 1
1 1
1 1 1
1 3 1 1
Lo 2
5 = Z[n-1:0]
X—+{R| - ER R | Pln-1:0]
v
| H | 1
Poel) g g
s il R < :
Y E § =1 & < P(2n-1:n)
n 2l U R El
1 [Q =]
1 n* L] 1
: | |
1
! Stage 1 ! Stage 2 1
H 1
Clock 1 Clock2 Clock3 Clock 4 Clock s Clock6 |
1
Stage 1 | Booth Encoding 1 | Booth Encoding 2 | Booth Encoding 3 | Booth Encoding 4 | Booth Encoding § | Booth Encoding 6
| Sage b | csaacc CSA/ACC2 | CSAACC3 | CSA/ACC4 | CSA/ACCS CSA/ACC6
Stage 2 Final Addition | | Final Addition2 | Final Addition3 | Final Addition 4 | Final Addition $

‘ Fig. 2. MAC architecture: (a) proposed in [3], (b) modified in [4].

(a)

Fusion of the multiplication and addition steps into a single
combinational circuit was proposed in [5] for a dot-product of
two 2-element vectors. This type of operation is very common
in FFT butterfly operations. We elaborate on this circuit since
we will use it later for comparison with our implementation.
Fig. 3(a) shows a conventional parallel dot-product unit, and
Fig. 3(b) shows a 32-bit floating-point fused dot-product
multiplier (FDPM) unit. The fusion proposed in [5] results in
a single combinational circuit comprising the two multipliers
and the adder, and operating in a single clock cycle.

As shown in Fig. 3(c), the encircled circuits of the
multipliers and adder in Fig. 3(b) were implemented as
individual entities by the physical synthesis compiler. We
propose a deeper fusion of the multipliers and the adder at the
bit-level that yields a better power-delay product with
considerably higher efficiency at high clock speeds. The
authors of [5] presented the implementation in a 45-nanometer
technology, reporting the power consumption and the
propagation delay of the combinational logic. Their results are
compared to our implementation in the experimental result
section. Another fused dot-product hardware implementation
of vectors comprising four elements is mentioned in [6], in the
context of a reconfigurable architecture tailored for matrix
operations. The implementation is similar to [5].

Since this paper deals with both circuit architecture and its
physical implementation, a few words on the custom layout of
the Wallace-tree are in order. The authors in [7] presented a
notably efficient implementation, where they eliminated the
natural dead area arising from inherent Wallace-tree expansion
of the partial products from # -bit at the top of the tree to 2z -
bit at the bottom. As shown in Fig. 4(a), the authors split the
parallelogram dot diagram of Fig. 1 around its center into
lower bits on the right part and upper bits on the left part, and
then applied a Wallace-tree summation to each part in
opposite directions. Fig. 4(b) shows how the two opposite
triangles fit nicely to form a rectangle, yielding an area-
efficient layout.

[o_me[[SNIE] I

[A_r.no;][B_[310]]

(Mutiplier Tree

———

h—+ Operation

(b)

und
& Post-Normalize

FMMA_tosul[31 0]

Fig. 3. FDPM [5]: (a) conventional two 2-tuple vectors parallel dot-product, (b) 32-bit floating-point FDPM unit, (c) layout generated by physical compiler.

116

(a) (b)

Adding
Direction

i
Lower-Bit
Group

Upper-Bit JIL

:Booth selector
Adding [:1st4-10-2 Co
Direction :20d 4-10-2C
:3rd 4-t0-2 Compressor
BB :Final 4-to-2 Compressor

Fig. 4. Folding the Wallace-tree parallelogram into a rectangle [7].

The rest of the paper is organized as follows. Section II
presents acceleration by deep fusion, whose power and energy
are analyzed in Section III. Section IV presents the
experimental results of various hardware implementations, and
Section V concludes the discussion.

II. ACCELERATING THE DOT-PRODUCT BY FUSING THE
WALLACE-TREES

In an effort to consume less power and area for the same
speedup, we propose a combinational, modified Wallace-tree
architecture. It speeds up the dot-product computation by a
factor of m. The largest vectors and word sizes studied in this
paper are m =64 and n =64, respectively. Since each dot-
product operation requires two vectors, the largest case
requires a 2x2°x2° =8k bits cache-bus width. Such buses
are feasible, and a larger cache-bus width of 2'% =16k bits
was reported in [8]. The internal cache architecture must of

course support the read of such number of bits in a single
access.

PPy PP, (b) PPp/a

PPoj2a PPrj22 PPajam

3
3
£
3
3
~
¢
S
.
3
g
3
S
§

o
>~

o

oo

0000 coececocee
0000000 OOOGOIOOS
000000 OOGOIOGOIOOIOINV
eececcscccccccse
0000000000000 000,
000000 OOOOOIOOIOON
0000000 OOOIOOIOS
9000000000 OCOIOGISIS
900000000 0COOCOIOIINY

0

x4 xal T

Fig. 5. (a) All the PPs involved in a dot-product of m n-bit operands, and (b)
reorganization of dot-product summands and PPs.

Though our FDPM uses a Wallace-tree, a Dadda-tree can be
used instead. The work in [9] concluded that the latter has
about 10% lower delay and uses 5% less area. These
advantages stem from the parallelogram shape of the partial
product array. This is less relevant for our implementation
which reorders the partial products in rectangles rather than
parallelograms.

Fig. 5(a) illustrates the PPs of the m summands involved in
(1), where the ith dot parallelogram corresponds to the
product x;y;. These are

]

PR, = {PPI,J} o] <i<nf2, as shown in Fig. 5(b). By using

reorganized in groups

4:2 compressors, an (log, m—1)-level Wallace-tree will
reduce the PP, of Fig. 5(b) to two (n+log, m)-bit sum and
carry FPPs of weight 4", as shown in Fig. 6. The weight of
the sum and carry FPPs are shown on their left side, and FPP,,
1<i <nf2 are aligned accordingly.

n+logom
0000000000000000000 PP
L] L X] 1

xa"/21 0000000000000000000
000000000000 0000000 n/2

2n+logym

Fig. 6. Collecting the sum and carry FPPs of the PP groups of Fig. 7(b).
By using 4:2 compressors, another (log,n—2)-level

Wallace-tree can sum the dot parallelogram in Fig. 6, resulting
in the (27+log, m)-bit final sum and carry PPs shown at the

bottom of Fig. 6. A prefix-tree adder can add them in
log, (2n+log, m)~log, n time complexity. The total time

complexity of the FDPM architecture comprising Fig. 5(b) and
Fig. 6 has the following components:

1. log, m, the time to obtain the FPPs of the PP, groups
shown in Fig. 7(b) (whose corresponding weights are 4
, 1<i<nf2).

2. log,n, the time to sum them and obtain the final
(2n+1og, m) -bit sum and carry PPs in Fig. 6.

3. log, n, the time to add them to get the final result of the
dot-product.

By adding the above components we obtain a log, m+log, n

time complexity. This is consistent with the total of mn/2 PPs

involved in the dot-product, which would have required a
log, (mn/2) ~ log, (m)+log,n computation time

117

complexity if a Wallace-tree had been applied directly to the

—

PP, ..PPn
4

9000000 OCOOIOOOIOOTS
eeccccccccccccce
ecccccccccscccee
900000000000 0000
eeccccccccccccce
eececcccccccccce
9000000OCOOIOOOIONNNDS
Ty
eeccc0ccccccccce
wlBoj+uz

PPs array in Fig. 5(a).

2%« PPn_ ..PPn .
N = -
S & 4 2
e o
2
LX) .
eees 0 o o o ol o
ee 00 oo . oo . oo o
*9°c0 00 (X ° (X ° L4 o
TR (X . X . (X3 °
oo 00 oo . (X4 ° oo °
3 ee e oo ° oo ° oo .
o e ° oo o oo [e [X4 .o
0] ° oo . oo ° oo .
Noe . oo ° oo . o0 .
S ee e 4 ° (X3 ° oo .
oo o0 (3.3 o (X} . (X] (]
ee o0 X 3 o0 ° oo .
| B "
:::: oo . X . o0 °
o o
-
33
I

Fig. 7. Floorplan of the proposed FDPM architecture.

Compared to Fig. 5(a), the dot-product time complexity
was not changed by the architecture in Fig. 5(b) and Fig. 6.
However, there is a major difference in regard to their physical
layout. Consider the straightforward Wallace-tree
implementation of the dot diagram in Fig. 5(a). Its area

(number of dots) is w’m, but the application of the Wallace-
tree to each of the m dot parallelograms faces layout
challenges due to an unutilized area. The squeeze of a
parallelogram into a rectangle in the layout positions bits of
the same weight in successive rows diagonally. Their
summation in 4:2 compressors requires layout jumpers, using
two metal layers and two vias each, which has a considerable
physical layout and performance penalty.

The architecture proposed in Fig. 5(b), and its layout shown
in Fig. 7, is more regular, and yields shorter interconnects and
higher layout density. Summation of bits of the same weight
as in Fig. 5(b) by 4:2 compressors uses a single metal layer
bit-to-bit connection, thus avoiding metal jumpers and vias.
This is made possible by the identical weights within each of
the PP,PP,,....PP,, groups in Fig. 5(b). Their

corresponding Wallace-tree layout can be implemented in a
rectangular area without the area deficiencies of Fig. 5(a). The
proper weighting by 4" of the various PP, 1<i<n/2,
takes place by positioning their FPPs in a single
parallelogram as illustrated in Fig. 6. Though these are
summed by another Wallace-tree that suffers from the routing
deficiency problem of jumpers given the parallelogram

squeeze, the number of dots involved is of the n” order

compared to the n’m order in Fig. 5(a). The fusion of the
partial products is reminiscent of the bit-heap concept which
has been used in [10] for FPGA arithmetic core generation.
Fig. 7 shows the floorplan of the proposed FDPM
architecture. Half of the sum and carry FPPs are produced on
the left side and the other half on the right side. Their
accumulation occurs at the center. The interconnection wires
must cross over n/4 Wallace-trees expanding m PPs each,

where the size of the corresponding tree is also of order m.
That brings the order of the interconnect length to mn, which
requires the insertion of repeaters to avoid an excessive
propagation delay.

I1I. PER-BIT POWER AND ENERGY ANALYSIS

Speeding up computation by the FDPM comes at a cost.
The large amount of hardware involved consumes power,
which obviously increases with an increase in m and n. The
really interesting measure is therefore how the per-bit power
and energy depend on m and n. To see this, let p,,,;. be the
power consumption charged to a logic element (bit)
represented by a single dot in the dot diagrams. The power
consumed by each of the Wallace-trees generating
PP.PP,.....PP,, in Fig. 5(b) is obtained by summing the
dots over all its Wallace-trees levels, yielding

log, m—1
—i+1
(2 nm) Plogic ® 2nm- Plogic *

(8)
i=1
The factor 27" nm in (8) counts the number of dots (bits)

involved at level i of a Wallace-tree, 1<i<log, m—1. Since

S1

there are n/2 such trees, the total power Rogic consumed by

the Wallace-trees at the first stage is

SI 2
Plogic =nm: Py -)
Similarly, the power consumption aﬁéc of the single

Wallace-tree at the second stage located at the center of Fig. 7,
summing PP,PP,.....PP, s

logy n-2

Z |:2_’+I n(n+10g2 m):| p]ogic ~

i=1

2n(n+log, m) Plogic

pS2 _

logic

(10)

S3
ogic

The power consumption A of the prefix-tree adder at the

third stage, summing the final (2n +log, m) -bit sum and carry
results, is

log, (2n-+logy m)

2

i=l

2 (21’1 + lng m) Progic

logic

27! (2n+logy m) Progic an

118

loglc / ogic >0 and A loglc / logic —> 0 for sufficiently large

m and n. For the purpose of the trend analysis we can ignore
smaller order terms and conclude that

(12)

2
Rogic A NMm: Piogic -

To get the per-bit power A log]c, (12) is divided by mxn
problem’s size, yielding

bit
Rogic ~ 1 Progic »

(13)

which is independent of .

The logic only contributes partially to the power
consumption. In today’s VLSI technologies, interconnection
(wires) consume comparable and even more power than the
logic, so wires must be accounted for. Local interconnections
within the trees can be charged to the logic power p, ; hence

we focus on the global interconnection. The floorplan in Fig. 7
shows that a wire connecting the sum and carry FPPs of each
PP group must cross over other PP groups to accumulate in
the second-level Wallace-tree positioned at the center. This
yields a length of mn complexity, stemming from the n/4

Wallace-trees at the first level, whose width is of order .

To avoid an excessive propagation delay, repeaters are
inserted along these wires. One common practice is to insert
repeaters at fixed distances, that are dictated solely by the
process technology parameters. Denoting by p,... the power

consumed by a fixed-length interconnection driven by a

repeater, the total power consumed by the global
interconnections is
Bire =mn (n +log, }’l) " Pwire ¥ n’m- Puiire - (14)

The expression in (14) involves wires of length mn
expanding the height n+log, m of a PP group in Fig. 7.

percent of power consumption n=8

m: 64 32 16 8 a4

= 1%'stage

"
8
®

TEYEEEREEGE

= 2"stage w 39stage

percent of power consumption n=32
100%

90%
70%
50%
0%
30%
2
10%
0%
m: &4 32 16 8 4

 2"dstage

§

§

)

u 1%stage = 3stage

Similarly to the logic power calculation, to get the per-bit

power P2 (14) is divided by mxn, yielding
P»E:;e_n'pwire9 (15)

which is independent of m . It follows from (13) and (15) that
the FDPM per-bit theoretical power consumption is
independent of the vector length m and grows linearly with
the word width ». This agrees with the experimental results
presented in Section IV.

Fig. 8 shows the power portions consumed by the various
stages of the FDPM architecture as measured for hardware
implementation in a 65-nanometer technology. Unlike the
custom 28-nanometer design studied in Section IV, this one
was fully synthesized with a vendor RTL compiler, which
may explain some minor deviations in the power portions
from those nominally expected. The trend, however, is very
clear. The portion of the first-stage Wallace-trees grows with
increase in vector-length from m=4 to m=64, validating
(12) and (14).

IV. EXPERIMENTAL RESULTS
We denote by (n,m) an n-bit word and an m2 -entry vector

FDPM. A (16,16) architecture with the floorplan shown in

Fig. 7 was designed such that all its building blocks, from 4:2
compressors, through Booth encoders and Wallace-trees
stages, were custom built using a Verilog HDL code. The final
adder to sum the final 2n+log, m sum and carry words at the

center of Fig. 7 was obtained using Cadence’s design-ware,
since there is no point in designing fast adders that are
available commercially. We used a 28-nanometer TSMC
technology low-leakage cell library. An implementation of the
entire architecture with Cadence design-ware served as a
reference for comparison. The Verilog HDL code described
the dot-product operation in high-level, letting the Cadence
tool pick the best library modules to deliver the target clock
speed with minimum power.

percent of power consumption n=16

-
8
*®

90%
80%
70%
60%
50%
40%
30%
20%
10%
0%
m: 64 32 16 8 a
= 1%stage = 2"stage » 3'stage
percent of power consumption n=64
100%
90%
80%
70%
60%
s0%
40%
30%
20%
10%
o%
m: ea 32 16 8 a

u 1%stage m 2"dstage » 3stage

Fig. 8. Distribution of the power consumed by the FDPM architecture logic stages for various (m,n) .

119

Three clock frequencies were tested: 200MHz, 500MHz
and the maximum frequency that the proposed FDPM
architecture in Fig. 7 could deliver, which was found to be
1.08GHz. Fig. 9(a) shows the power consumption comparison.
The power estimation was done by simulating with the
SpyGlass tool an extensive dot-product test bench comprising
a wide variety of DSP applications made available by the
CEVA Corporation. The most impressive improvement was
observed at 1.08GHz, where our custom FDPM design
consumes 26.03 mWatt, compared to a 41.83 mWatt for the
Cadence design-ware implementation, which is 38% power
reduction. Fig. 9(d) compares the energy per operation in
pJoule. It shows that the energy per operation hardly changes
between 200MHz and 500MHz, but jumps significantly for
1.08GHz. By definition the FDPM energy improvement over
the reference design is identical to that of the power
improvement.

The area and cell count comparison for the two designs is
also of interest. Fig. 9(b) shows the area comparison. For a
clock speed of 1.08 GHz it shows a 30% improvement, slightly
smaller than the power improvement, but still considerable.

as

0
- 35
£ 30 (a)
2 P4
E
g 20
15
o
. 10
5
0 e —
1.08 GHz 500 MHz 200 MHz
= our 26.03 495 194
u reference 4183 534 194
a5
40
35
T ()
=
2 P
= 20
g
E 15
10
’ -
0
1.08GHz 500 MHz 200 MHz
®our 241 9.9 9.7
u reference 38.73 10.68 9.7

The cell count comparison is shown in Fig. 9(c), indicating
that for a 1.08GHz frequency the design-ware required 28%
more cells than our custom design.

Due to its large dimensions, the 1.08GHz design could not
be sped up as is, and internal pipelining is a natural solution.
To this end, its critical delay paths are analyzed below. Table
1 shows how the delay is accumulated from inputs to outputs.
Such information is critical for obtaining a balanced timing
allocation to the pipeline stages. The table shows the five
stages involved in the combinational FDPM: input registers,
the radix-4 Booth encoding, the first stage Wallace-trees
producing PP,,...,PP; (see Fig. 7), the second stage Wallace-

tree to sum them, and finally, a high-performance prefix-tree
adder.

If the clock speed needs to double to 2.0GHz, the table
shows that the pipeline registers should be inserted between
the first and second PP generation stages, so that the
accumulated delay would be evenly divided. While the
throughput would be doubled, there would still be some power
and area penalty due to the insertion of the pipeline registers.

60000

50000
40000
30000

i BN

20000
10000

1.08 GHz 500 MHz 200 MHz
37130 14824 14674
53246 15283 13944

Area [sq. micron]

™ our
® reference

25000
20000
15000

I (c)

Cell count

10000
5000
1.08GHz 500 MHz 200 MHz
18952 9526 9225
24322 9144 8716

®our
W reference

Fig. 9. Comparison of the 28nm FDPM custom and design-ware implementations, power (a), area (b), cell count (¢) and energy (d).

TABLE I
TIMING ANALYSIS OF THE FDPM CRITICAL DELAY PATHS
Stage Module Delay [stage delay |Cumulative
(nSec) (nSec) (nSec)
Clock - Q (input registers) 0.06 0.06 0.06
" . input - single 0.05 0.11
Radix-4 Booth encoding e o 0.07 0.12 0.18
4:2 compressor (in - fast carry) | 0.04 0.22
1% PP stage - 1 tree-level =1 009
S it 4:2 compressor (€, = Couy) 0.05 0.27
1% PP stage - 2" tree-level [4:2 compressor (in - sum) 0.09 0.09 0.36
4:2 compressor (in - fast carry) | 0.05 0.1 0.41
1% PP stage - 3" tree-level
g 4:2 compressor (C;, = sum) 0.05 0.46
2"’ PP stage - 1" tree-level |4:2 compressor (in> Coy,;) 0.06 0.06 0.52
4:2 compressor (in - fast carry) | 0.04 0.1 0.56
2" PP stage - 2™ tree-level
Siage ree-leve 4:2 compressor (C;, = sum) 0.06 0.62
4:2 compressor (in - fast carry) | 0.03 0.08 0.65
"d pp -3 tree-level
2 stage- 3T Uee-love 4:2 compressor (C;, = sum) 0.05 0.7
2" PP stage - 4™ tree-level [4:2 compressor (in = sum) 0.08 0.08 0.78
Final prefix tree adder 0.15 0.15 0.93

120

&

4,000
500 S0 (b)
N — 3,000
=
400 ¥
E. = 2500
E 300 .E. 2,000
g]
1,500
T 3L
o 200 o
fr 2 1000
100 -
. oM
8-entry 32-entry 64-entry 4-entry 8-entry 16-entry 32-entry B64-entry
u8-bit 550 483 416 375 326 = 8-bit 6 12 24 46 81
u16-bt 453 384 348 312 277 = 16-bit 21 42 79 149 249
u32-bt 384 333 300 271 247 m32-bt 86 144 386 512 1,000
m64-bit 315 279 259 231 214 = 654-bit 278 517 1,051 1,902 3,775

Fig. 10. Maximum frequency and the corresponding power of 65nm FDPM implementations.

To further explore the (n,m) design space for word sizes of
n=238,16,32,64 and vector length m=4,8,16,32,64, 65-
nanometer TSMC technology FDPM implementations were
physically compiled and simulated. Fig. 10(a) shows the
maximum frequency that could be achieved for each (n,m)

combination. Note the linear decrease in clock speed with the
doubling of the number of bits » and the doubling of the
vector length m. This is not surprising, since as shown in
Table 1, the first and second PPs stages constitute the lion’s
share of the overall delay and these are implemented using
Wallace-trees of depth log, » and log, m, respectively.

The power is expected to grow faster than linearly with
increased frequency, as indicated in Fig. 9 for the 28nm
design. For the 65nm implementation we measured the power
consumption using the Cadence design tool. The results are
shown in Fig. 10(b). The figure shows that there is a nearly
quadratic growth in power w.r.t. the bit count » and a nearly
linear growth w.r.t. the vector length m, in line with (12) and
(14).

We next compared the performance of our 28-nanometer
16x16 FDPM implementation with that of the 45-nanometer
implementation in [S]. Since our dot-product is for integers,
whereas [5] is for floating points, we only considered the
mantissa logic. The different word widths, vector lengths and
implementation technologies were also accounted for by
normalizing the reported power and energy accordingly.

For fairness, the comparisons were per-bit power and
energy consumption. The following normalizations were done.
Firstly, our design involves 16-bit integers, whereas the
reference had 32-bit floating-point operands with a 24-bit
mantissa (IEEE Std-754). Secondly, we targeted 16-entry
vectors, whereas the reference targeted AxB+CxD
operation; i.e., only 2-entry vectors. Thirdly, as shown in Fig.
3(c), the floating point dot-product, besides the multiplication
and addition operations, also included alignment,
normalization and exponent addition. Therefore for the
reference design in [S5] we only counted the circuits related to
mantissa multiplication and addition, which consumed nearly
70% of the entire circuit. To eliminate the effect of different
process technologies, the power of the reference design was
decreased by a factor of 28/45=0.62, which is roughly the

scaling factor of the per-device capacitance [11] (Ch. 7.4). The
per-bit power R was calculated as

121

_ total power x realtive area

o i x scaling ratio . 16
Pt Vector length x word width = (16)
The total power reported in [S] was 7.2 mWatt. The

calculated per-bit power is therefore
[(7.2x0.7)/(24x2) |x0.62=65.3uWatt . The

latency was 2,721 pSec, corresponding to a 367 MHz clock
frequency. As shown in Fig. 9, our 16x16 design consumed,
for frequencies of 200, 500 and 1080 MHz, 1.94, 4.94 and
26.03 mWatt, respectively. Summarized in Table II, the
respective per-bit power consumption of our design was 7.57,
19.3 and 101 gWatt, thus showing a considerable power

improvement over [5].

reported

TABLE II
POWER AND ENERGY COMPARISON OF FDPM IMPLEMENTATION
Clock frequency [MHz]
200 367 500 1080
Phit our | 757 | - | 193 | 101
[MWatt] Ref[5] | -~ | 653 | - | -
Epit our |[0.212 0.217 | 0.525
[normalized] | pef (5] - 1.0 o o
TABLE IIT

PER-BIT POWER CONSUMPTION IN uWatt (A) , AND ITS DEPENDENCE ON
VECTOR LENGTH m AND WORD-WIDTH n (B)

m=4 m=28 m =32 m = 64
n=28 26.9 32.0 38.4 39.4
(a) n=16 56.5 62.0 69.6 711
n=32 118 124 133 134
n = 64 233 239 260 265
m=4 m=28 m =32 m = 64
n=28 1.0 1.0 1.19 1.0 1.20 1.0 1.02 1.0
(b) n=16 1.0 | 210 | 1.09 | 193 | 1.12 | 1.81 | 1.02 | 1.80
n =32 1.0 2.08 | 1.05 | 2.00 | 1.07 | 1.91 | 1.01 | 1.88
n =64 1.0 (197 | 103 | 193 | 1.09 | 1.95 | 1.02 | 1.98

To compensate for the different operation speeds, it is also
important to compare the per-bit energy E,; obtained by

1

By = By x———— .
bt Clock frequency

(a7

The energy comparison was normalized to per-bit energy of
the reference design. Our implementation delivers normalized

per-bit energies of 0.212, 0.217 and 0.525 for 200, 500 and
1080 MHz, respectively. These represent respective

improvements 0f1.0/0.212=4.7X, 1.0/0.217=4.6X and
1.0/0.525=1.9X.

Our analysis of the per-bit power consumption, based on
(13) and (15) shows that the FDPM is independent of the
vector length m and grows linearly with the word width » . To
validate this conclusion, Table Ill(a) presents the per-bit
power consumption in pWatt of a 65-nanometer FDPM,
designed for a 100MHz clock speed. Table III(b) shows the
per-bit power growth of successive entries as a function of m
in red and as a function of » in blue. The analysis showed that
these values should theoretically be 1.0 and 2.0, respectively,
corresponding to the independence of m and the doubling
with »n. The table shows that the real design behavior agrees
nicely with the theoretical analysis.

V. CONCLUSION

We proposed a new circuit architecture, dubbed FDPM, for
a hardware implementation of a dot-product by fusing all the
computational steps. This architecture exhibits considerable
improvements in power and energy efficiency compared to
previous proposals and an EDA vendor design-ware. A wide
range of bit lengths and vector lengths was implemented and
analyzed. For a 28-nanometer technology we observed a limit

of 1.08 GHz for a (16,16) FDPM but a straightforward

pipelining could double the operating frequency. Future work
could consider deriving the optimal pipeline depth to achieve
acceleration with minimum per-bit power and energy.

ACKNOWLEDGMENT

This work was supported in part by the MAGNET Program
of the Israel Ministry of Industry, HiPer consortium, and in
part by the Israel Science Foundation under Grant Number
1678/13. The authors are thankful to CEVA corporation for
providing simulation data, to Elad Margalit of CEVA for
implementing the 28nm design, and to Ishai Alouche for
implementing the 65nm design. The authors wish also to

122

acknowledge the helpful comments and suggestions made by
the anonymous reviewers.

REFERENCES
(1
[2]

1. Koren, Computer arithmetic algorithms, A.K. Peters Press, 2002.

B. Parhami, Computer arithmetic: algorithms and hardware designs,
Oxford University Press, Inc., 2009.

[3] F. Elguibaly, "A fast parallel multiplier-accumulator using the modified
Booth algorithm," /EEE Transactions on Circuits and Systems 11I: Analog

and Digital Signal Processing, vol. 47, no. 9, pp. 902-908, 2000.

Y.-H. Seo and D.-W. Kim, "A new VLSI architecture of parallel
multiplier—accumulator based on Radix-2 modified Booth algorithm,"
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.
18, no. 2, pp. 201-208, 2010.

[4]

[5] H. H. Saleh and E. E. Swartzlander Jr, "A floating-point fused dot-
product unit," in /[EEE International Conference on Computer Design,

2008.

F. Merchant, A. Maity, M. Mahadurkar, K. Vatwani, I. Munje, M.
Krishna, S. Nalesh, N. Gopalan, S. Raha, S. K. Nandy and R. Narayan,
"Micro-architectural Enhancements in Distributed Memory CGRAs for
LU and QR Factorizations," in Proc. of VLSI Design (VLSID), 2015 28th
International Conference on, 2015.

N. Itoh, Y. Naemura, H. Makino, Y. Nakase, T. Yoshihara and Y.
Horiba, "A 600-MHz 54x 54-bit multiplier with rectangular-styled
Wallace tree," IEEE Journal of Solid-State Circuits, vol. 36, no. 2 , pp.
249-257,2001.

[6]

[7

[8] F.Hameed, L. Bauer and J. Henkel, "Simultaneously optimizing DRAM
cache hit latency and miss rate via novel set mapping policies," in
Proceedings of the 2013 International Conference on Compilers,

Architectures and Synthesis for Embedded Systems, 2013.
[9]

W. J. Townsend, E. E. Swartzlander and J. A. Abraham, "A comparison
of Dadda and Wallace multiplier delays," in Proc. of Optical Science and

Technology, SPIE's 48th Annual Meeting, 2003.

[10] N. Brunie, F. De Dinechin, M. Istoan, G. Sergent, K. Illyes and B. Popa,
"Arithmetic core generation using bit heaps," in Proc. of Field
Programmable Logic and Applications (FPL), 2013 23rd International
Conference on, 2013.

[11] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems
Perspective, 4th ed., Addion-Wesley, 2010.

[12] CEVA, 2014. [Online]. Available: http://www.ceva-dsp.com/CEVA-
XC4000/.

