
HOPLA - PLA OPTINIZATION AND SYNTHESIS

S. Wimer, N. Sharfman

NATION~L SEMICONDUCTOR INC.
P.O. Box 30~7, Hertzeliya B 46104, ISRAEL

ABSTRACT

A system that automates Programmable Logic
Array optimization and synthesis for VLSI
design is described. PLA logic is defined via
a high level Hardware Definition Language.
After translation to table representation
comes the logic optimization phase, carried
out according to a user defined optimization
cr i ter ion. The geometrical optimization
phase follows, supplemented by a manual inter-
active graphic PLA editor. The system out-
puts symbolic Layout of the PLA which can be
translated into polygon-level layout.

INTRODUCTION

While the ultimate Silicon Compiler solution
for design automation in VLSI is being pursued
by the academic community, the industry cannot
afford to wait until such tools are economically
feasible for general purpose, high volume
VLSI chips. Seeking an interim solution, we
are faced with alternatives, such as:

Automatic parts of the design process.
Achieve fu l l automation for a selective
"breed" of logic.

Natural condidates for al l -out automation
are regular structures : Micro-code ROM imple-
mentations lend themselves easily to automation,
from high level definit ion (via microcode
assemblers) down to the final layout. Next in
line are Programmable Logic Arrays (PLA's).
Those however, due to their greater f l e x i b i l i t y ,
present a grander challenge - primarily in
logic and geometrical optimization.

Recent past trends clearly indicate that an
increasing percentage of VLSI chip area is
occupied by PLA's. Design by means of those
structures is easier, faster and less error
prone along the whole l i f e cycle of a VLSI chip
i .e. - logic design, layout, debug and possible
upgrades.

HOPLA is an integrated system for PLA o~ti-
mization and synthesis. Figurel presentsits
block diagram : The user specifies his logic
thru the high level Hardware Definition
Language. The translation phase generates a
Logic Array which serves as input to the Expan-
sion Module. The Logic Array is then pre-
processed to resolve ambiguities and add

information. At the Logic Optimization phase
which follows, the user selects a "cost function"
which defines the optimization cr i ter ion. The
Geometric Optimization module deals with the actual
implementation of the PLA. I t provides an inter-
active graphic PLA editor thru which the layout
of the PLA can be manipulated at the symboliclevel.
An automatic opt!imization algorithm can be applied
in addition to manual functions.

The output of the Geometry phase is a
symbolic layout data base. I t is a straight -
forward task to convert this format to polygon-
level layout.

We shall now describe the various phases of the
system in more detai l .

SYSTEM INPUT

The primary input to HOPLA is the specifica-
tion of the logic thru a Hardware Definition
Language. This language also serves as input to
our simulation fac i l i t y . This enables the user to
simulate his logic, within i ts environment prior
to implementation. After he verif ies i t , the
same description is used for HOPLA.

The following example for logic description
via the Hardware Definition Language, was origin-
al ly specified in terms of a Logic Array~
BLOCK ADDER
; Perform two b i t addition Z : = X++Y

DEFINE REG 2 X "FIRST 2 BIT OPERAND"
DEFINE REG 2 Y "SECOND 2 BIT OPERAND"
DEFINE REG 3 Z "3 BIT RESULT"
DEFINE LOCAL C IN, C OUT
; The local vaTiables serve to store the carry
; bits
; Define b i t 0
Z(O) : = X(O) # Y (0)
; Handle carry
C-OUT(O) : = X (0) * Y (0)
C IN(1) : = C OUT (0)
;-Define b i t T
Z(1) : = X (1) # Y (1) # C IN (I)
; Handle carry
C OUT(1) : = 'C_IN(1) *X(1) *Y(1) +

C-IN(1)* (X(1) +Y(1))
C IN (2) : :C OUT(1)
;--Define b i t
Z (2) : : C IN (2)
END BLOCK

As can be seen from the above example, the
operators that can be used in logic specification
are:

Paper 47.5
790

20th Design Automation Conference

0738-100X/83/0000/079051.00 © 1983 IEEE

+ (or), *(and), #(xor), '(complement) and
parentheses.

Intermediate variables may be used to en-
hance readability. Those are defined as LOCAL
variables. They wi l l not be implemented as PLA
input/output.

As an alternative to the symbolic HDL speci-
f ication of logic, i t is possible to input a
Logic Array directly to HOPLA.

TRANSLATION AND PREPROCESSING

The f i r s t phase of HOPLA translates the HDL
specification of the logic to table format~ This
table represents a "Sum of Products (SOP)" real-
ization of the logic.

The 2 b i t adder example specified in the
previous section thru the Hardware Definition
Language, assumes the following table represent-
ation after translation.
(Don't care situations for inputs are denoted
by X) :

X(O) Y(O) X (1) Y (1) Z(O) Z(1) Z(2)
0 l X X l 0 0
l 0 X X l 0 0
l l l l 0 l 0
l l 0 0 0 l 0
0 X 0 l 0 l 0
l 0 0 l 0 l 0
0 X l 0 0 l 0
l 0 l 0 0 l 0
l l l X 0 0 l
l l 0 l 0 0 l
0 X l l 0 0 l

Note that the equations or the SOP table do
not always include the fu l l description Of the
logic. This is the case whenever not all possible
input combinations are specified. In the 2 b i t
adder example, the output for the input combina-
tion 0000 is not specified. Since the table
entries define all cases where at least one of
the outputs is a logical " l " , two possibi l i t ies
exist for such cases:

a) The output values for those input combinations
not defined by the user are logical "0".

b) The output values are "don't cares".

In the preprocessing phase, the user is
asked to determine the output values for those in-
put combinations. I f they are "don't cares" (a
situation that might occur whenever those combina-
tions can never be realized), the subsequent
Logic Optimization can be improved.

LOGIC OPTIMIZATION

This module manipulates the Logic Array
produced in the previous phase in order to opti-
mize i t according to a user defined optimization
cr i ter ion Natural candidates for optimization
cr i ter ia are related to PLA area, power consumpt-
ion, delay considerations and so on. Those
considerations are realized thru minimization of

the number of product terms, l i te ra ls etc.

Considerable efforts have gone into logic
optimization in the past. The prioneering MINI 3
and PRESTO ~ programs, served as a basis for
other PLA optimization systems ~ . These programs
however always use a fixed optimization cri ter ion.
Their algorithm is heuristic. As a result absolute
minimum is not guaranteed.

Our optimization algorithm is non-heuristic,
thus the solution is always the best possible.
This is achieved by using linear and integer pro-
gramming techniques.

In fact, we trade o f f more general and accurate
optimization procedures against execution time.
Since we do not encourage implementation of logic
with very large PLAs, because area ut i l izat ion
becomes inef f ic ient , this price is worth while.
We can rea l is t ica l ly handle tens of input/output
lines an~undredsof implicants.

To i l lust rate some performance characteristics
of HOPLA on VAX 11/780:

The 2 b i t adder optimization on the number of
product terms has taken less than l CPU second.
The resulting table is:

X(O) Y(O) X(1) Y(1) Z (O) Z(1) Z(2)
0 l X X l 0 0
l 0 X X l 0 0
l l 0 0 0 l 0
0 X 0 l 0 l 0
0 X l 0 0 l 0
l l l l 0 l 0
l l l X 0 0 l
X 0 0 l 0 l 0
X 0 l 0 0 l 0
X X l l 0 0 l
l l X l 0 0 l

The Mead and Conway l ight controller example ~
, i n i t i a l l y had 10 product terms, with 5 inputs

and 7 outputs.lt took 2 CPU seconds to reduce
to 9 product terms. The same logic was reported
to have taken I/2 CPU hour on a DEC-IO to achieve
the same result s

Logic requiring 8 inputs, 31 outputs and
49 product terms was reduced to minimum product
terms in 13 seconds and to a minimum l i te ra ls in
44 seconds.

Another table with 13 inputs, 20 outputs and
129 product terms, was optimized in 15 minutes.

Note that the system performance is not a
function of the number of input/outputs and product
terms only, but also depends upon the intr insics of
the logic.

GEOMETRIC PLA MANIPULATION

This phase is aimed specif ical ly at minimizing
the area occupied by the PLA. Its output is a
symbolic layout (Sticks Diagram), which is a high

Paper 47.5
791

level representation of the layout.

The starting point is the classical represent-
ation of PLA, defined by Mead and Conway 7. This
is obtained directly from the Logic Array and is
drawn on screen upon entry to the Geometrical
Reduction phase. A variety of commands to
improve the geometry of the PLA automatically
and/or manually is provided.

Automatic editing commands perform input/output
or impliant folding. Folding is a well known area
reduction technique e. We use heuristic graph
theoretical methods to represent and implement i t .

Manual command repertoire includes informa-
tion commands, such as HELP (get l i s t of
commands) and SIZE (get current area), SAVE
command, PLOT for producing hard copy and so on.
The most important manual commands are MOVE IO
and MOVE IMP. The user is prompted with a
cursor on the screen and is asked to point at an
input, output or product term and i ts destina-
tion. These commands can be used for manual
folding, creating diagonal layout,segmentation,
etc.

The CHECK command performs a symbolic level
design rule check.

Figure 2 displays a symbolic layout for the
Mead and Conway l ight controller. Input, out-
put and product terms folding are demonstrated.
The O's and X's represent transistors in the
AND and OR planes respectively. A 37% area
reduction is achieved on top of the optimized
regular layout, under the constraint of keeping
every input adjacent to its complement.

No command in the Geometric Manipulation
phase can destroy the logic as i t was defined
by the Hardware Def in i t ion Language descript ion.
The only way to change the logic is by going
back to th is descript ion (or edi t the logic
array).

A simple conversion program transforms the
final layout into actual polygon-level represent-
ation in the appropriate format (CIF,CALMA,etc.)

CONCLUSIONS

HOPLA is a "programmable" mini silicon-compiler
for PLA's. I t provides an answer to one of the
more accute problems in Design Automation - inte-
gration. I t is connected to logic simulation
on one hand and to traditional layout systems on
the other. The various modules of HOPLA be-
have like a system, namely the output of one
serves as input to the next.

F lexib i l i ty is provided via user defined opti-
mization cr i ter ia, manual geometrical editing
functions etc.

Logic integrity is preserved throughout the

system. Accidental logic bugs are thus avoided.

The system is not capable of processing huge
PLA's. We do not consider this is a major handi-
cap since such structures tend to be ineff icient.
A future logic segmentation module wil l divide
large logic blocks into loosely coupled sub-blocks.
Each of these sub-blocks wil l in turn serve as in-
put to HOPLA.

REFERENCES

I) H. Fleischer, L.I. Maissel, "An Introudction
toArray Logic", IBM J. Res. Devlop.,Vol 19,
pp. 98-I09, Mar.1975.

2) D.L. Dietmeyer, "Connection Arrays from
Equations", Journal of Design Automation and
Fault-Tolerant Computing, Apri l , 1979, pp.I09-
125.

3) S.J. Hong, R.G. Cain, D.L. Ostapko, "MINI:
A heuristic approach for logic minimization",
IBM J . of Research and Development, Sept.
1974, pp. 443-458.

4) D.W. Brown, "A state machine synthesizer -
SMS", Eighteenth DA Conference, ACM,IEEE,1981,
pp. 301-305.

5) S. Kang, W.M. Van Cleenput, "AutomaticPLA
Synthesis from DDL-p Description", Eighteenth
DA Conference, ACM, IEEE, 1981, pp. 391-397

6) B. Teel, D. Wilde, "A Logic Minimizer for
VLSI PLA Design", Nineteenth DA Conference,
ACM, IEEE 1982, pp. 156-162.

7) C. MEAD, L. CONWAY Introduction to VLSI
systems, Addison Wesley, 1980.

8) G.D. Hachtel, A.R. Newton, A.L. Sangiovanni-
Vincentelli, "An algorithm for optimal PLA
folding", IEEE transactions on CAD of
Integrated Circuits and Systems, Apri l , 1982,
pp.63"77 and "Techniques for Programmable
Logic Arrays Folding'% Nineteenth DA Conference
ACM~IEEE,pp. 147-155.

Paper 47.5
792

SIMULATION
LANGUAGE

EXPANDED
50P

REALIZATION

CS TART)
I

CS TOP ~ ,v J

~S TAR T)

EXPANSION F

()

SoP

REALIZA T/ON

S IMULATION
LANGUAGE

ALL
PRIHE

/MPLICANTS

mINIMAL
SOP

REALIZA TION

FIGURE

Paper 47.5
793

>,. >.. I~ ~ >'. u3

I I

k.J ,,x , ~

,,~#, .%/
I % / '%

C) :<

I
I

u')
I...

S%

% J %

I I

I~-

0 TRANSISTOR ON INPUT LINE

X TRA,/VSI.~TOR ON OUTPUT LINE

F IGURE £

Paper 47.5
794

