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Arithmetic operators  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Operands for arithmetic operations are presented in 2’s complement form and the result 
is presented in the same form as well. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

+ addition 
 
- subtraction 

 
* multiplication  
 
** exponentiation 
 
/ division 
 
mod modulo 
 
abs absolute value 
 
rem remainder 

Operands of the same type  

Predefined for  

o integer  

o real (except mod and rem)  

o physical types (e.g. time)  

Not defined for bit_vector 

  
'+' and '-' may also be used as unary operators 
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2's COMPLEMENT ADDITION RULES

Augend Addend Rule

+

-

+

-

+

-

-

+

Add magnitudes, ignore end-around carry.
The sign of the result is the sign found by
the result of addition operation.

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Addition in 2's complement form 
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2's COMPLEMENT SUBTRACTION RULES

Minuend Subtrahend Rule

+

-

+

-

+

-

-

+

Complement all bits of the subtrahend to
2's complement, add to minuend, ignore
end-around carry. The sign of the result is
the sign found by the result of addition
operation.

 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Subtraction in 2's complement form 

 
 
 

Overflow 
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Overflow Rules 
 

 No overflow when adding a positive and a negative number 
 No overflow when signs are the same for subtraction 
 Overflow occurs: 

1. when adding two positives yields a negative; 
2. adding two negatives gives a positive 
3. subtract a negative from a positive and get a negative 
4. subtract a positive from a negative and get a positive 
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0110
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+
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'1'  means  (-) sign

1. Both operands are positive

(+ 5)  in 2's complement

(+ 6)  in 2's complement

(+11)  unsigned
0

'0'  means  carry
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2. Both operands are negative
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1. Minuend is positive but subtrahend is negative. Result negative
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2. Minuend is negative but subtrahend is positive. Result positive
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Figure 3. Examples of overflow for addition and subtraction 
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Carry 
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Addition

3. Second operand is negative but result is positive

 
Figure 4. Illustration carry for addition 



 46

- 3

- 4

- 7

+
1101

1100
+

1001

'1'  means  (-) sign

(- 4)  in 2's complement

(- 3)  in 2's complement

(- 7)  in 2's complement

=
1

'1'  means  carry

+ 6

- 4

+ 2

+
0110

1100
+

0010

'0'  means  (+) sign

(- 4)  in 2's complement

(+ 6)  in 2's complement

(+ 2)  in 2's complement

=
1

'1'  means  carry

- 3

+ 4

- 7

-

+ 6

+ 4

+ 2

-

- 3

+ 4

+ 1

+
1101

0100
+

0001

'0'  means  (-) sign

(+ 4)  in 2's complement

(- 3)  in 2's complement

(+ 1)  in 2's complement

=
1

'1'  means  carry

- 3

- 4

+ 1

-

=

=

=
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Figure 5. Illustration carry for subtraction 
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Operations with std_logic_vectors 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

std_logic_vector 
 
We can make logical operations and 
comparision operations with std_logic 
array types, but arithmetic operations 
are not defined with such arrays.  

signal x, y, z : std_logic_vector (3 downto 0);  
signal w : Boolean; 
 
x <= “1011” – It is not assignment of (11)10 or (-3)10. 
It is assignment of a vector with four components, 
each of them has a type std_logic. 
 
z <= x and y;         correct 
 
w <= x > y;             correct 
 
z <= x + y;              is not defined. 

signal x, y, z : signed (3 downto 0); 
 
x <= 1011;   (-5)10 in 2’s complement form 
 
y <= 0011;   (+3)10 in 2’s complement form 
 
z <= x + y;    1110 = (-2)10 in 2’s complement form 
  
if x > y then …            correct (false) 

signal x, y, z : unsigned (3 downto 0); 
 
x <= 1011;   (11)10  
 
y <= 0011;    (3)10  
 
z <= x + y;    1110 = (14)10  
  
if x > y then …            correct (true) 

signed 
 
2’s complement 4-bit vector presents 
integers from (-8)10 to (7)10 

unsigned 
 

4-bit vector presents positive 
integers from (0)10 to (15)10 

In a numeric package, three types of arrays of std_logic can be used: 
std_logic_vector; 
signed; 
unsigned. 
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Conversion between types std_logic_vector, signed, unsigned and 
integer 

 
 
 
 
 
 
 
 
It is a representation of conversion between compatible types std_logic_vector, signed, 
unsigned. These types are called compatible because signals or variables of these types 
are vectors of std_logic. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

T <= < T type > (S)

target type source type

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
 
entity numer is  
  port ( 
     a : in std_logic_vector(0 to 3); 
        b : in signed(0 to 3); 
        c : in unsigned(0 to 3); 
        d1, d2 : in natural 0 to 15; 
   e1, e2 : in integer -7 to 7; 
   s1 : out unsigned(0 to 3); 
   t1 : out signed(0 to 3);   
        w1, w2 : out integer range -15 to 15; 
        x1, x2 : out std_logic_vector(0 to 3); 
        y1, y2 : out signed(0 to 3); 
        z1, z2 : out unsigned(0 to 3) 
        ); 
end numer; 
 
architecture arc_numer of numer is       
begin  
 x1 <= std_logic_vector(b);  
 x2 <= std_logic_vector(c);        
 y1 <= signed(a); 
 y2 <= signed(c); 
 z1 <= unsigned(a); 
 z2 <= unsigned(b); 
end; 
 
configuration cfg_numer of numer is 
  for arc_numer 
  end for; 
end cfg_numer; 
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Conversion between types signed, unsigned and integer 
 

UNS   <= to_unsigned (INT, Length)

SIG   <= to_signed (INT, Length)

INT   <= to_integer (UNS)

INT   <= to_integer (SIG)

 
 

 
 
 
 

 
 
 
 
 
 

Some operators in numeric_std package 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

w1 <= to_integer (b);
w2 <= to_integer (c); 
 
s1   <= to_unsigned (d1, 4) + to_unsigned (d2, 4); 
t1   <= to_signed (e1, 4) + to_signed (e2, 4); 

Comparison operators 
 
Operands: signed, signed; result – Boolean; 
signed, integer; result – Boolean; 
unsigned, unsigned; result – Boolean; 
unsigned, natural; result – Boolean. 

Addition and Subtraction  
 
Operands: signed, signed; result – signed; 
       signed, integer; result – signed; 
       unsigned, unsigned; result – unsigned; 
                   unsigned, natural; result – unsigned. 

Logical operators 
 
Only between operands of the same type: 
signed, signed; result – signed; 
unsigned, unsigned; result – unsigned. 
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----------------------------------------------- 
library IEEE; 
use IEEE.std_logic_1164.all; 
use ieee.numeric_std.all; 
----------------------------------------------- 
entity pc_counter is 
    port 
  ( 
  rsta : in std_logic; 
  clk : in std_logic; 
  en : in std_logic; 
  count : in std_logic; 
  din : in std_logic_vector (0 to 15); 
  dout : out std_logic_vector (0 to 15) 
  ); 
end pc_counter; 
----------------------------------------------- 
architecture arch_pc_counter of pc_counter is 
begin 
 
   process (rsta, clk) 
   variable tmp : unsigned(0 to 15); 
   begin 
       if rsta = '1' then  
        tmp := x"0000"; 
       elsif clk'event and clk = '1' then 
        if en = '1' then 
         tmp := unsigned(din); 
        elsif count = '1' then 
         if tmp = x"ffff" then 
          tmp := x"0000"; 
         else 
          tmp := tmp + 1; 
         end if; 
        end if; 
       end if;  
  dout <= std_logic_vector(tmp); 
   end process; 
end arch_pc_counter; 
----------------------------------------------- 
configuration cfg_pc_counter of pc_counter is 
 for arch_pc_counter 
 end for; 
end cfg_pc_counter; 
----------------------------------------------- 
 
Exercise: Check operators in numeric_std 
 
--type conversion example 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
 
entity numeric is  
  port ( 
     a1, a2 : in std_logic_vector(0 to 3); 
        w1, w2 : out std_logic_vector(0 to 3); 
        x1, x2 : out signed(0 to 3); 
        y1, y2 : out unsigned(0 to 3); 
        z1, z2 : out integer range -15 to 15         
        ); 
end numeric; 
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architecture arc_numeric of numeric is       
begin 
 process (a1, a2) 
  variable xx1, xx2 : signed(0 to 3); 
  variable yy1, yy2 : unsigned(0 to 3); 
 begin 
  xx1 := signed (a1) + signed (a2); 
  xx2 := signed (a1) - signed (a2); 
 
  z1 <= to_integer (xx1); 
  z2 <= to_integer (xx2);   
 
  yy1 := unsigned (a1) + unsigned (a2); 
  yy2 := unsigned (a1) - unsigned (a2); 
 
  w1 <= std_logic_vector(yy1); 
  w2 <= std_logic_vector(yy2); 
   
  y1 <= yy1; 
  y2 <= yy2; 
  x1 <= xx1; 
  x2 <= xx2; 
 end process; 
 
end arc_numeric; 
 
configuration cfg_numeric of numeric is 
  for arc_numeric 
  end for; 
end cfg_numeric; 
 
 
 
 
 
Test bench 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
 
entity test_numeric is 
end test_numeric; 
 
 
architecture arc_test_numeric of test_numeric is 
 component numeric 
  port ( 
     a1, a2 : in std_logic_vector(0 to 3); 
          w1, w2 : out std_logic_vector(0 to 3); 
          x1, x2 : inout signed(0 to 3); 
          y1, y2 : out unsigned(0 to 3); 
          z1, z2 : out integer range -15 to 15  
          ); 
  end component; 
 
 signal a1, a2, w1, w2 : std_logic_vector(0 to 3); 
 signal x1, x2 : signed(0 to 3);    
 signal y1, y2 : unsigned(0 to 3); 
 signal z1, z2 : integer range -15 to 15; 
 
begin 
    uut : numeric port map (a1, a2, w1, w2, x1, x2, y1, y2, z1, z2); 
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    process 
    begin 
     a1 <= "1011"; a2 <= "0010"; -- a1 = -5; a2 = 3 
  wait for 10 ns; 
   
  assert x1 = "1101" 
   report "output x1 is wrong!" 
   severity error; 
  assert x2 = "1001" 
   report "output x2 is wrong!" 
   severity error; 
 
  assert z1 = -3 
   report "output z1 is wrong!" 
   severity error; 
  assert z2 = -7 
   report "output z2 is wrong!" 
   severity error; 
 
  assert y1 = "1101" 
   report "output y1 is wrong!" 
   severity error; 
  assert y2 = "1001" 
   report "output y2 is wrong!" 
   severity error;   
    
  assert w1 = "1101" 
   report "output w1 is wrong!" 
   severity error; 
  assert w2 = "1001" 
   report "output w2 is wrong!" 
   severity error;     
       
  wait; 
 end process; 
end arc_test_numeric; 
 
configuration cnf_test_numeric of test_numeric is 
  for arc_test_numeric 
  end for; 
end cnf_test_numeric; 
 
 
 


