Arithmetic operators

*%

mod

abs

rem

addition
subtraction
multiplication
exponentiation
division
modulo
absolute value

remainder

Operands of the same type

Predefined for
o integer
o real (except mod and rem)

o physical types (e.g. time)

Not defined for bit_vector

'+ and '-' may also be used as unary operators

Operands for arithmetic operations are presented in 2's complement form and the result
is presented in the same form as well.

41




2's COMPLEMENT ADDITION RULES

'l' means (-) sign

4

Augend Addend Rule
+ + . .
Add magnitudes, ignore end-around carry.
- - The sign of the result is the sign found by
+ ) the result of addition operation.
- +
1. +13 001101 +13) in ordinary form
+ 4—' (+13) y
+11 N 001011 4—' (+11) in ordinary form
+24 011000 4—‘ (+24) in ordinary form
‘0" means (+)sign }J
2. -13 110011 -13) in 2's complement
+ . 4—0 (-13) p
-11 N 110101 4—‘ (-11) in 2's complement
-24 101000 4—4 (-24) in 2's complement
'l' means (-) sign }J
3. -11 110101 -11) in 2's complement
+ . 4—4 (-11) p
+13 001101 4—' (+13) in ordinary form
+2 000010 4—4 (+2) in ordinary form
'0' means (+)sign }J
4. +11 001011 +11) in ordinary form
. . -« (1 y
-13 = 110011 4—4 (-13) in 2's complement
-2 111110 4—4 (-2) in 2's complement

42




2's COMPLEMENT SUBTRACTION RULES

Minuend Subtrahend Rule
+ + Complement all bits of the subtrahend to
2's complement, add to minuend, ignore
- - end-around carry. The sign of the result is
+ R the sign found by the result of addition
operation.
- +
+13 +13 001101 +13) in ordi f
i . 4—{ (+13) in ordinary form ‘
+11 -11 - 110101 «+—— (-11) in 2's complement |
+2 +2 000010 4—{ (+2) in ordinary form ‘
'0" means (+)sign }—f
-1 -1 110011 -13) in 2 | t
i 3 . 3 4—{ (-13) in 2's complemen ‘
11 +11 - 001011 4—{ (+11) in ordinary form ‘
+2 2 111110 «+—— (-2) in2's complement |
'1l' means (-) sign }—f
- - 110101 -11) in 2' I t
i 11 . 11 4—{ (-11) in 2's complemen ‘
+13 -13 - 110011 4—{ (-13) in 2's complement ‘
-24 -24 101000 4—{ (-24) in 2's complement ‘
'1l' means (-) sign }—f
+11 +11 001011 +11) in ordi f
i . 4—{ (+11) in ordinary form ‘
-13 +13 B 001101 <«—— (+13) in ordinary form |
+24 +24 011000 4—{ (+24) in ordinary form ‘

'0" means (+)sign }—f

Overflow

® No overflow when adding a positive and a negative number
® No overflow when signs are the same for subtraction

® Overflow_occurs:

1. when adding two positives yields a negative;

Overflow Rules

adding two negatives gives a positive

2.
3. subtract a negative from a positive and get a negative
4. subtract a positive from a negative and get a positive

43




Addition

1. Both operands are positive

11 in2'
N +6 ~ . 0110 4—4 (+ 6) in2's complement ‘
+5 - 0101 4—‘ (+ 5) in 2's complement ‘

0 .
+11 — 1011 4—4 (+11) unsigned
'‘0' means carry ‘

'"l' means (-) sign

2. Both operands are negative

- 1010 + in2'

N 6 N 4—‘ (+ 6) in 2's complement ‘
-5 - 1011 4—' (+5) in2's complement ‘
11 L > 0101

‘ '"1' means carry ‘
'0' means (+) sign

Subtraction

1. Minuend is positive but subtrahend is negative. Result negative

0110 +6) in2
+6 . +6 . 4—‘ (+ 6) in 2's complement ‘

-5 +5 0101 4—4 (+5) in 2's complement ‘

0 ,
+11 +11 ¥~ 1011 4—‘ (+11) unsigned ‘
‘ '0' means carry ‘
'"1' means (-) sign
2. Minuend is negative but subtrahend is positive. Result positive

- - 1010 +6) in 2"
6 N 6 N 4—‘ (+ 6) in 2's complement

+5 - -5 - 1011 4—' (+5) in 2's complement

- - e
S11 -11 ¥~ o101

‘ '"l' means carry

‘0" means (+) sign

Figure 3. Examples of overflow for addition and subtraction

44



Carry

Addition

1. Both operands are negative

- 1101 - in2'
N 3 ~ N 4—‘ (- 3) in 2's complement ‘
-4 - 1100 4—4 (- 4) in 2's complement ‘

-7 i 1001 4—4 (- 7) in 2's complement ‘

‘ "1' means carry ‘
'"1' means (-) sign

2. First operand is negative but result is positive

- 1101 -3) in2
3 N 4—4 (- 3) in 2's complement

+4 0100 4—4 (+4) in 2's complement

+1 1~ o001 4—4 (+ 1) in 2's complement
‘ "1' means carry ‘
'0' means (+) sign

3. Second operand is negative but result is positive

+

+6 N 0110 4—‘ (+ 6) in 2's complement \
-4 - 1100 4—4 (- 4) in 2's complement ‘

1 .
+2 ¥~ 0010 4—4 (+ 2) in 2's complement ‘

‘ '"1' means carry ‘
'0' means (+) sign

Figure 4. lllustration carry for addition

45



Subtraction

1. Minuend is negative but subtrahend is positive

- - 1101
- 3 + 3 +

+4 -4 1100

S - A —
-7 -7 ¥~ 1001

‘ '1' means carry ‘

1" means (-) sign

2. Minuend is negative but result is positive

- - 1101
- 3 + 3 +

4 +4 0100

- - e
+1 +1 ¥~ 0001

‘ '1' means carry ‘

'0' means (-) sign

3. Subtrahend is positive and result is positive

in 2's complement

in 2's complement

in 2's complement

-« (-3

in 2's complement

4—‘ (+4)

in 2's complement

-« (+1)

in 2's complement

+ 0110 + in 2'
6 + 6 N 4—' (+ 6) in 2's complement ‘

+4 -4 1100 <—‘ (-4) in2's complement ‘

1 :
+2 +2 ¥~ 0010 <«—— (+2) in2'scomplement |

‘ '"1' means carry ‘
'0' means (+) sign

Figure 5. lllustration carry for subtraction

46




Operations with std_logic_vectors

In a numeric package, three types of arrays of std_logic can be used:

std_logic_vector;
signed,;
unsigned.

signal x, y, z : std_logic_vector (3 downto 0);
signal w : Boolean;

X <= “1011" — It is not assignment of (11)10 or (-3)1o.
It is assignment of a vector with four components,
each of them has a type std_logic.

z<=xandy; correct
W <=X>Yy, correct
Z<=X+Y; is not defined.

signal x,y, z : signed (3 downto 0);

X <=1011; (-5)109in 2’s complement form

y <= 0011; (+3)0in 2's complement form
z<=x+y; 1110=(-2)pin 2's complement form

if x >y then ... correct (false)

signal x, y, z : unsigned (3 downto 0);
X <=1011; (11)49

y <=0011; (3)10

z<=x+y; 1110=(14)1

if x >y then ... correct (true)

47

std_logic_vector

We can make logical operations and
comparision operations with std_logic
array types, but arithmetic operations
are not defined with such arrays.

signed

2's complement 4-bit vector presents
integers from (-8)19 t0 (7)1

unsigned

4-bit vector presents positive
integers from (0)1o to (15)19




Conversion between types std_logic_vector, signed, unsigned and
integer

T<=<Ttype > (S)

/ N

target type source type

It is a representation of conversion between compatible types std_logic_vector, signed,
unsigned. These types are called compatible because signals or variables of these types
are vectors of std_logic.

library ieee;
use leee.std logic_1164._all;
use ieee.numeric_std.all;

entity numer is

port (
a - in std_logic vector(0 to 3);
b : in signed(0 to 3);
Cc : in unsigned(0 to 3);

dl, d2 : in natural O to 15;

el, e2 : in integer -7 to 7;

sl : out unsigned(0 to 3);

tl : out signed(0 to 3);

wl, w2 : out integer range -15 to 15;
x1, x2 : out std logic_vector(0 to 3);
yl, y2 : out signed(0 to 3);

z1, z2 : out unsigned(0 to 3)

):

end numer;

architecture arc_numer of numer is
begin
x1 <= std_logic_vector(b);
x2 <= std_logic_vector(c);
yl <= signed(a);
y2 <= signed(c);
z1l <= unsigned(a);
z2 <= unsigned(b);
end;

configuration cfg_numer of numer is
for arc_numer
end for;

end cfg_numer;

48



Conversion between types signed, unsigned and integer

INT <=to_integer (UNS)

INT <=to_integer (SIG)

UNS <=to_unsigned (INT, Length)
SIG <=to_signed (INT, Length)

wl <= to_integer (b);
w2 <= to_integer (c);

sl <= to_unsigned (dl1, 4) + to_unsigned (d2, 4);
tl <= to_signed (el, 4) + to_signed (e2, 4);

Some operators in numeric_std package

Comparison operators

Operands: signed, signed; result — Boolean;
signed, integer; result — Boolean;

unsigned, unsigned; result — Boolean;
unsigned, natural; result — Boolean.

Addition and Subtraction

Operands: signed, signed; result — signed;
signed, integer; result — signed;
unsigned, unsigned; result —unsigned,;
unsigned, natural; result —unsigned.

Logical operators

Only between operands of the same type:
signed, signed; result — signed;
unsigned, unsigned; result —unsigned.

49



library IEEE;
use IEEE.std logic_1164._all;
use ieee.numeric_std.all;

entity pc_counter is

port

(

rsta : in std_logic;

clk : in std_logic;

en : in std_logic;

count : in std logic;

din : in std_logic_vector (0 to 15);
dout : out std_logic _vector (0 to 15)
):

end pc_counter;
architecture arch_pc_counter of pc_counter is
begin

process (rsta, clk)
variable tmp : unsigned(O0 to 15);
begin
if rsta = "1° then
tmp := x"0000";
elsif clk"event and clk = "1" then
if en = "1 then
tmp := unsigned(din);
elsif count = "1 then
it tmp = X"FFFF" then
tmp = x"0000";
else
thp = tmp + 1;
end if;
end if;
end if;
dout <= std_logic_vector(tmp);
end process;
end arch_pc_counter;
configuration cfg_pc_counter of pc_counter is
for arch_pc_counter
end for;
end cfg_pc_counter;

Exercise: Check operators in numeric_std

-—type conversion example
library ieee;

use ieee.std logic _1164.all;
use ieee.numeric_std.all;

entity numeric is

port (
al, a2 : in std_logic vector(0 to 3);
wl, w2 : out std_logic_vector(0O to 3);
x1, x2 : out signhed(0 to 3);
yl, y2 : out unsignhed(0 to 3);

z1l, z2 out integer range -15 to 15
)

end numeric;

50



architecture arc_numeric of numeric is

begin

process (al, a2)
variable xx1, xx2
variable yyl, yy2

begin
xx1

z1
z2

yyl
yy2

wl
w2

yl
y2
x1
X2

<=
<=

<=
<=

<=
<=
<=
<=

signed(0 to 3);
unsigned(0 to 3);

= signed (al) + signed (a2);
xx2 := signed (al) - signed (a2);

to_integer (xx1);
to_integer (xx2);

unsigned (al) + unsigned (a2);
unsigned (al) - unsigned (a2);

std_logic_vector(yyl);
std_logic_vector(yy2);

yyl;
yy2;
Xx1;
XX2;

end process;

end arc_numeric

configuration cfg _numeric of numeric is
for arc_numeric

end for;
end cfg_numeric

Test bench

library ieee;

use leee.std logic_1164._all;

use leee.numeric_std.all;

entity test numeric is

end test numeri

C;

architecture arc_test numeric of test numeric is
component numeric

a2
w2
X2
y2
z2

in std_logic_vector(0 to 3);

out std_logic vector(0 to 3);

inout signed(0 to 3);
out unsigned(0 to 3);
out integer range -15

a2, wl, w2 : std _logic _vector(0
signed(0 to 3);
unsigned(0 to 3);

port (
al
wl
x1
yl
z1
):
end component;
signal ail,
signal x1, x2
signal y1, y2
signal z1, z2

begin

uut : numeric port map (al, a2, wl, w2, x1, x2, yl, y2, z1, z2)

integer range -15 to 15;

51

to 15

to 3);



process
begin
al <=

"1011"; a2 <= "0010"; -- al = -5;

wait for 10 ns;

assert x1 = "1101"
report "output x1
severity error;

assert x2 = "1001"
report "output x2
severity error;

assert z1 = -3
report "output z1
severity error;
assert z2 = -7
report "output z2
severity error;

assert yl = "1101"
report "output yl
severity error;

assert y2 = "1001"
report "output y2
severity error;

assert wl = "1101"
report "output wl
severity error;

assert w2 = "1001"
report “output w2
severity error;

wailt;

end process;
end arc_test_numeric;

wrong!"'

wrong!"'

wrong!"'

wrong!"'

wrong!"'

wrong!"'

wrong!"'

wrong!"'

configuration cnf_test numeric of test_numeric
for arc_test _numeric

end for;

end cnf_test_numeric;

52

a2



