Main Language Concepts

A—
s—t | [
Z
—1 L]
D
Figure 1. Concurrent
A STM
ul uz
E |
CIN ’7 —[
u3 —— CARRY
Figure 2. Structure
section
of code [T
— execution
flon
- ¥
Figure 3. Procedural
| L
L
time

Figure 4. Time



Entity

A—» ——— SUM

B —» —— CARRY

Figure 5. Half adder

entity HALFADD is
port(A,B : in bit;
SUM, CARRY : out bit);
end HALFADD;

architecture DATAFLOW of HALFADD is
begin

SUM <= A xor B;

CARRY <= A and B;
end DATAFLOW;

Figure 6. Dataflow architecture for half adder

Several Architectures for One Entity

—> —>
Entity
—> —>
Architecture Architecture Architecture
X Y

Figure 7. Entity with three architectures

library I1EEE;
use IEEE.std_logic_1164.all;

entity FULLADD is
port (A, B, CIN : in bit;
SUM, CARRY : out bit);
end FULLADD;

Figure 8. Entity for full adder



Table 1. Truth table for full adder

A B CIN SUM | CARRY

0 0 0 0 0 b cin b ci
cin

8 2 é 1 8 00 01 11 10 00 01 11

0 1 1 0 1 0 ! ! 0 '

1 0 0 1 0 a 2

1 0 1 0 1 1 1 1 1 1 1

1 1 0 0 1

1 1 1 1 0 sum carry

Figure 9. Karnaugh maps for SUM and CARRY

architecture DATAFLOW of FULLADD is
begin

SUM <= CIN xor A xor B;

CARRY <= (A and B) or (CIN and A) or (CIN and B);
end DATAFLOW;

configuration CFG_DAT of FULLADD is
for DATAFLOW
end for;

end CFG_DAT;

Figure 10. Dataflow architecture for full adder

architecture BEHAV of FULLADD is

begin
process (A, B, CIN)
begin
if CIN = 0" and A = "0" and B = "0 then
SUM <= "0";
CARRY <= "0%;
elsif (CIN = "0" and A = "0" and B = "1%) or
(CIN = "0 and A = "1° and B = "0") or
(CIN = "1 and A = "0" and B = "0") then
SUM <= "1°7;
CARRY <= "0%;
elsif (CIN = "0" and A = "1 and B = "1%) or
(CIN = "1 and A = "0" and B = "1%) or
(CIN = "1 and A = "1 and B = "0") then
SUM <= "0";

CARRY <= "1°%;
elsif CIN = "1" and A = "1 and B = "1" then
SUM <= "1°%;
CARRY <= "1°7;
end i1f;
end process;
end BEHAV;

configuration CFG_BEH of FULLADD is
for BEHAV
end for;

end CFG_BEH;

Figure 11. Behavioral architecture for full adder



CIN

Structural architecture

Half Half
Adder Adder

OR

>

Figure 12. Full adder

entity HALFADD is
port(A,B : in bit;
SUM, CARRY : out bit);
end HALFADD;

architecture DATAFLOW of HALFADD
begin

SUM <= A xor B;

CARRY <= A and B;
end DATAFLOW;

is

Figure 13. Design entity for half adder

entity ORGATE is
port(A,B : in bit;
Z - out bit);
end ORGATE;

architecture DATAFLOW of ORGATE
begin

Z <= A or B;
end DATAFLOW;

is

Figure 14. Design entity for OR gate

SUM

CARRY



ul Full Adder

A A SUM
HALFADD

B B CARRY

CIN

Figure 15. Instantiation of half adder into full adder

architecture STRUCT of FULLADD is
signal 11, 12, 13 : bit;
component HALFADD
port(A,B : in bit;
SUM, CARRY : out bit);
end component;

component ORGATE
port(A,B : in bit;
Z : out bit);
end component;

begin
ul:HALFADD port map(A,B,I11,12);
u2:HALFADD port map(11,CIN,SUM,I13);
u3:0RGATE port map(13,12,CARRY);
end STRUCT;

configuration CFG_STR of FULLADD is
for STRUCT
end for;

end CFG_STR;

Figure 16. Structural architecture for full adder

Configuration

| entity A |

| arch F || arch G |

A Y Y

entity B | | entity C | | entity D

| arch H || arch | || arch J | | arch K || arch L | | arch M || arch N

|| arch O |

Figure 17. Entities with several architectures

Table 2. Correspondence between entity and architecture

Entity | Architecture
A G
B J
C K
D M




Projectl for discussion

Projectl

library IEEE;
use IEEE.std_logic_1164.all;

entity projl is
port (x1, x2, x3, x4 - iIn bit;
yl, y2 : out bit);
end projl;

architecture arc_projl of projl is
begin
yl <= (x1 and not x2) or (not x1 and x2);
y2 <= (x1 and x3 and not x4) or (x1 and not x2) or (not x1 and
X2);
end arc_projl;

configuration cfg_projl of projl is
for arc_projl
end for;

end cfg_projl;

Test bench?2 for projectl

library IEEE;
use IEEE.std_logic_1164.all;

entity projl _tb is
end projl_tb;

architecture arc_projl tb of projl _tb is

component projl
port (x1, x2, x3, x4 : in bit;
yl, y2 : out bit);
end component;

signal x1, x2, x3, x4, yl, y2 : bit;

begin
design: projl port map (x1, x2, x3, x4, yl, y2);

process
begin
X1 <= "0"; X2 <= "0"; x3 <= "0"; x4 <= "0%;
wait for 10 ns;
assert yl = "0°
report "output yl is wrong!"
severity error;
assert y2 = "0°
report "output y2 is wrong!"
severity error;

X1l <= "0"; X2 <= "0"; x3 <= "0"; x4 <= "1*°;
wait for 10 ns;
assert yl = 0"
report "output yl is wrong!"
severity error;
assert y2 = 0"
report "output y2 is wrong!"



severity error;

X1l <= "0"; X2 <= "0"; x3 <= "1°; x4
wait for 10 ns;
assert yl = 0"
report "output yl is wrong!"
severity error;
assert y2 = "0°
report "output y2 is wrong!"
severity error;

X1l <= "0"; X2 <= "0"; x83 <= "1"; x4
wait for 10 ns;
assert yl = 0"
report "output yl is wrong!"
severity error;
assert y2 = 0"
report "output y2 is wrong!"
severity error;

X1l <= "0"; X2 <= "1"; x3 <= "0"; x4
wait for 10 ns;
assert yl = "1*
report "output yl is wrong!"
severity error;
assert y2 = *"1°
report "output y2 is wrong!"
severity error;

X1l <= "0"; X2 <= "1"; X3 <= "0"; x4
wait for 10 ns;
assert yl = "1°
report "output yl is wrong!"
severity error;
assert y2 = "1°
report "output y2 is wrong!"
severity error;

X1 <= "07; X2 <= "17; x3 <= "17; x4
wait for 10 ns;
assert yl = *1°
report "output yl is wrong!"
severity error;
assert y2 = "1°
report "output y2 is wrong!"
severity error;

X1 <= "0%; x2 <= "1%"; x3 <= "17; x4
wait for 10 ns;
assert yl = "1*
report "output yl is wrong!"
severity error;
assert y2 = "1°
report "output y2 is wrong!"
severity error;

X1l <= "1"; X2 <= "0"; X3 <= "0"; x4
wait for 10 ns;
assert yl1 = "1°
report "output yl is wrong!"
severity error;
assert y2 = "1*
report "output y2 is wrong!"
severity error;

"0":

"1v-

"0":

"1t

"0":

"1t

"0":



X1l <= "1"; X2 <= "0"; x3 <= "0"; x4
wait for 10 ns;
assert yl = *"1°
report "output yl is wrong!"
severity error;
assert y2 = "1°
report "output y2 is wrong!"
severity error;

X1l <= "1"; X2 <= "0"; x3 <= "1"; x4
wait for 10 ns;
assert yl = "1*
report "output yl is wrong!"
severity error;
assert y2 = °"1°
report "output y2 is wrong!"
severity error;

X1l <= "1"; X2 <= "0"; X3 <= "1"; x4
wait for 10 ns;
assert yl = "1°
report "output yl is wrong!"
severity error;
assert y2 = "1°
report "output y2 is wrong!"
severity error;

X1 <= "1%; x2 <= "17; x3 <= "07; x4
wait for 10 ns;
assert yl = 0"
report "output yl is wrong!"
severity error;
assert y2 = 0"
report "output y2 is wrong!"
severity error;

X1 <= "1%; x2 <= "17; x3 <= "0"; x4
wait for 10 ns;
assert yl = "0°
report "output yl is wrong!"
severity error;
assert y2 = 0"
report "output y2 is wrong!"
severity error;

X1l <= "1"; X2 <= "1"; X3 <= "1"; x4
wait for 10 ns;
assert yl = 0"
report "output yl is wrong!"
severity error;
assert y2 = "1°
report "output y2 is wrong!"
severity error;

X1 <= "17; x2 <= "17; x3 <= "17; x4
wait for 10 ns;
assert yl = 0"
report "output yl is wrong!"
severity error;
assert y2 = 0"
report "output y2 is wrong!"
severity error;
wait;

"1v-

"0":

"1t

"0":

"1t

"0":

"1v-



end process;
end arc_projl_tb;
configuration cfg_projl tb of projl _tb is
for arc_projl_tb
end for;
end cfg_projl tb;

Test bench3 for projectl

library IEEE;
use IEEE.std_logic_1164.all;

entity projl tb is
end projl_tb;

architecture arc_projl tb of projl tb is

component projl
port (x1, x2, x3, x4 : in bit;
yl, y2 : out bit);
end component;

signal x1, x2, x3, x4, yl, y2 : bit;

begin
design: projl port map (x1, x2, x3, x4, yl, y2);

process
begin
X1l <= "0"; X2 <= "0"; x3 <= "0"; x4 <= "07;
wait for 10 ns;
assert yl = 0"
report "output yl is wrong!"
severity error;
assert y2 = "0°
report "output y2 is wrong!"
severity error;

x4 <= "17;
wait for 10 ns;
assert yl = 0"
report "output yl is wrong!"
severity error;
assert y2 = "0*
report "output y2 is wrong!"
severity error;

X3 <= "1"; x4 <= "07;
wait for 10 ns;
assert yl = 0"
report "output yl is wrong!"
severity error;
assert y2 = "0°
report "output y2 is wrong!"
severity error;

x4 <= "1°%;
wait for 10 ns;
assert yl = 0"
report "output yl is wrong!"
severity error;
assert y2 = 0"
report "output y2 is wrong!"

9



severity error;

X2 <= "1%; X3 <= "0"; x4 <= "0°;
wait for 10 ns;
assert yl = "1°
report "output yl is wrong!"
severity error;
assert y2 = "1"
report "output y2 is wrong!"
severity error;

x4 <= "1%;
wait for 10 ns;
assert yl = *1°
report "output yl is wrong!"
severity error;
assert y2 = "1°
report "output y2 is wrong!"
severity error;

x3 <= "1"; x4 <= "0%;
wait for 10 ns;
assert yl = "1*
report "output yl is wrong!"
severity error;
assert y2 = *"1°
report "output y2 is wrong!"
severity error;

x4 <= "1%;
wait for 10 ns;
assert yl = "1°
report "output yl is wrong!"
severity error;
assert y2 = "1°
report "output y2 is wrong!"
severity error;

X1l <= "1"; X2 <= "0"; x3 <= "0"; x4 <= "0";
wait for 10 ns;
assert yl = *1°
report "output yl is wrong!"
severity error;
assert y2 = "1°
report "output y2 is wrong!"
severity error;

x4 <= "1%;
wait for 10 ns;
assert yl = "1*
report "output yl is wrong!"
severity error;
assert y2 = "1°
report "output y2 is wrong!"
severity error;

X3 <= "1%; x4 <= "0";
wait for 10 ns;
assert yl1 = "1°
report "output yl is wrong!"
severity error;
assert y2 = "1*
report "output y2 is wrong!"
severity error;

10



X4 <= "1%;
wait for 10 ns;
assert yl = *"1°
report "output yl is wrong!"
severity error;
assert y2 = "1°
report "output y2 is wrong!"
severity error;

X2 <= "1%; X3 <= "0"; x4 <= "0°;
wait for 10 ns;
assert yl = "0°
report "output yl is wrong!"
severity error;
assert y2 = 0"
report "output y2 is wrong!"
severity error;

X4 <= "17;
wait for 10 ns;
assert yl = 0"
report "output yl iIs wrong!"
severity error;
assert y2 = "0°
report "output y2 is wrong!"
severity error;

X3 <= "1"; x4 <= "07;
wait for 10 ns;
assert yl = 0"
report "output yl is wrong!"
severity error;
assert y2 = "1°
report "output y2 is wrong!"
severity error;

X4 <= "1°%;
wait for 10 ns;
assert yl = "0°
report "output yl is wrong!"
severity error;
assert y2 = 0"
report "output y2 is wrong!"
severity error;
wait;
end process;
end arc_projl_tb;

configuration cfg_projl tb of projl tb i
for arc_projl_tb
end for;

end cfg_projl_tb;

(72}

11



Test benchi for projectl

library IEEE;
use IEEE.std_logic_1164.all;

entity projl tb is
end projl_tb;

architecture arc_projl tb of projl tb is

type sample is record

X1 : bit;
X2 : bit;
X3 - bit;
x4 : bit;
yl : bit;
y2 : bit;

end record;

type sample_array is array (natural range <>) of sample;
constant test_data : sample_array :=
¢
- x1 X2 x3 x4 yl y2
(*0", *0", "0*, "0, "0", "0%),
("0, 0%, 0%, "1, 0%, 0%),
(70", "0, *1*, 0", "0". "0%).
(70", "0", "1°., 1. 0", "0),
('0', Il', IOI, 'O', Il', IlI)’
¢o®, ®17, ®0", "1%, *"17, "1%),
(-o%, 1%, t1*, 07, 17,
(r0". "1, "1°, "1, 1=, *
("1*, t0, *0%, 07, 1%,
(Il', 'O', IOI, Il', Il',
("1, "0*. "1-, "o, "1,
¢1i-, =0, *17, *"1*, -"1°, *©
(*1". *1*. "0*, "0, -O". °
("17, "1, to*, "1", "0%, "O°
("17. *1". "1*, 0", "0=. "1%),
("17. *1%, "1°., "1". "0". "0%)
);

component projl
port (x1, x2, x3, x4 : in bit;
yl, y2 : out bit);
end component;

a L ]
ORRRRRLRPR
NN

signal x1, x2, x3, x4, yl, y2 : bit;

begin
design: projl port map (x1, x2, x3, x4, yl, y2);
process
begin
for i1 in test_data®"range loop
x1l <= test _data(i).x1;
X2 <= test_data(i).x2;
x3 <= test_data(i).x3;
x4 <= test_data(i).x4;
wait for 10 ns;
assert yl = test data(i).yl
report "output yl is wrong!"
severity error;
assert y2 = test_data(i).y2
report "output y2 is wrong!"
severity error;

12



end loop;
wait;
end process;
end arc_projl tb;
configuration cfg_projl tb of projl_tb
for arc_projl_tb
end for;
end cfg_projl tb;

13



