
 31

Processes (cont)

First kind of process – with a
sensitivity list. It executes from the
first line and suspends at the last line.

Second kind of process – without a
sensitivity list. It suspends and re-
executes from the wait statement.

senslist: process (a, b);
begin
 <sequential
statement>;
 <sequential
statement>; . . .
end process senslist;

waitst: process;
begin
 <sequential
statement>;
 <wait statement>
 <sequential
statement>;
 <wait statement>

The first rule for synthesizing the combinational circuits from the process:
The sensitivity list should be complete. It means that it must contain each
signal which value is read within the process.

 32

Latches and Registers

d q

en

 Figure 1. Latch

 Figure 2. Latch behavior

d q

en

clk

d

q

qclk
d
q0 or 1

 Figure 3. Flip-flop

d

en

q

Latch is a memory element which output is
followed its input as long as it is enabled. When
the enable signal is invalid the output retains it’s
last value. We can call a latch as a level sensitive
register. As a rule, latches are accidental in the
design and we should know how avoid them.

The output of a flip-flop takes the
input value only on the edge of an
enable signal (on the edge of the
clock).

qen

d
q

1
0

 33

 Inferred Latches

Incomplete Assignment

Special care is necessary in order to avoid the generation of latches.

The process shown in this example
synthesizes a transparent latch.
When en = ‘1’, the value of d is
assigned to q, but when en = ‘0’, q
retains it’s last value.

Inferred latches are registers described within VHDL code. Usually, a designer may not
want latches and they are a common problem in digital design using HDLs.

library ieee;
use ieee.std_logic_1164.all;

entity latch is
port (en, d : in std_logic;
 q : out std_logic);
end latch;

architecture beh_ latch of latch is
begin
process (en, d)
 begin
 if (en = '1') then
 q <= d;
 end if;
 end process;
end beh_latch;

qen

d
q

1
0

architecture bad_ mux of
latch is
begin
process (a, b, sel)
 begin
 if (sel = '1') then
 y <= a;
 end if;
 end process;
end bad_ mux;

architecture good1_ mux of
latch is
begin
process (a, b, sel)
 begin
 y <= b;
 if (sel = '1') then
 y <= a;
 end if;
 end process;
end good1_ mux;

 34

Incomplete Case Statements

qsel

in000
01

q
10
11

in1
in2

sel

in0

in1

in2

q

 Figure 4. Code for bad multiplexer - latch inferred

This piece of code is syntactically
correct, but no case branch is included
for sel = 11 so it is incomplete case
statement.
If sel goes to 11, q will retain its former
value determined by the previous state
of sel and such a behavior corresponds
to our earlier definition of a latch. So the
synthesis tool will infer that a latch is
required.

architecture good2_ mux of
latch is
begin
process (a, b, sel)
 begin
 if (sel = '1') then
 y <= a;
 else
 y <= b;
 end if;
 end process;
end good2_ mux;

The two last files – good1_ mux and good2_ mux
are identical and synthesis tool implements them
as multiplexer. In good1_ mux if sel = ‘1’ the first
assignment y <= b will be overridden by y <= a
because signals are updated only at the end of
process execution.

The second rule for synthesizing the combinational circuits from the
process: Always include a default statement to make sure that incomplete
assignment does not take place.

process (in0, in1, in2, ctr)
begin
 case ctr is
 when "00" => q <= in0;
 when "01" => q <= in1;
 when "10" => q <= in2;
 end case;
end process;

 35

D flip-flops in VHDL

d q

clk

clk

d

q

qclk
d
q0 or 1

When ctr is 1, the output y2 is not assigned and this
is an incomplete assignment as well. The general
description of an incomplete assignment is where
signal is assigned to in some branches of the case
statement but not within the others.

process (x1, x2, ctr)
begin

case ctr is
 when '0' =>
 y1 <= x1;
 y2 <= x2;
 when '1' =>
 y1 <= x2;
 end case;
end process;

y1ctr
x1

y2

y2
0
1

x2
x2

process (x1, x2, ctr)
begin

y2 <= x1;
case ctr is

 when '0' =>
 y1 <= x1;
 y2 <= x2;
 when '1' =>
 y1 <= x2;
 end case;
end process;

A reliable method is to make
default assignments at the top
of the procedure, so a new
value is assigned to all of the
output variables each time the
case statement is invoke.

The output of a flip-flop takes the
input value only on the edge of an
enable signal (on the edge of the
clock).

 36

Clock and Clocking

Clock is a signal that:
• Synchronizes complete design
• “Tells” individual blocks when to exchange data
• Clock is defined by its active edge, frequency, duty cycle, rise/fall time, etc
• On this course we are concerned with the clock active edge – when flops latch data

Figure 5. Clock Active Edge (in this case the rising edge)

Two templates to present D flip flops in VHDL

process (clock)
begin
 if clock'event and clock = '1' then
 q0 <= d0;
 q1 <= d1;
 end if;
end process;

 Figure 6. Circuit with two flip-flops

process (clock)
begin

if clock'event and clock = '1' then
 q <= d;
 end if;
end process;

process
begin
 wait until clock'event and clock = '1' then
 q <= d;
 end if;
end process;

The signal attribute 'event is
presented the change of a signal.
clock'event and clock = '1' means
that the clock was changed and it’s
value became ‘1’.

d0 q0

clk

d1 q1

 37

library ieee;
use ieee.std_logic_1164.all;

entity dff_logic is
 port (clk, in1, in2: in std_logic;

q : out std_logic);
end dff_logic;

architecture arc_dff_logic of dff_logic is
begin
 process (clk)
 begin
 if (clk'event and clk='1') then
 q <= (not in1) and in2;
 end if;
 end process;
end arc_dff_logic;

configuration cnf_dff_logic of dff_logic is
 for arc_dff_logic end for;
end cnf_dff_logic;

 Figure 7. D flip-flop with combinational logic

D flip-flop with asynchronous reset

library ieee;
use ieee.std_logic_1164.all;

entity dff_arst is
 port (clk, d, arst: in std_logic;

q : out std_logic);
end dff_ arst;

architecture arc_dff_arst of dff_arst is
begin
 process (clk, arst)
 begin
 if (arst = '1') then
 q <= '0';
 elsif (clk'event and clk='1') then
 q <= d;
 end if;
end process;
end arc_dff_arst;

configuration cnf_dff_arst of dff_arst is
for arc_dff_arst end for;
end cnf_dff_arst;

in2

&in1
q

clk

D

CLK

Q

 38

D flip-flop with asynchronous preset

library ieee;
use ieee.std_logic_1164.all;

entity dff_aprst is
 port (clk, d, aprst: in std_logic;

q : out std_logic);
end dff_ aprst;

architecture arc_dff_aprst of dff_aprst is
begin
 process (clk, aprst)
 begin
 if (aprst = '1') then
 q <= '1';
 elsif (clk'event and clk='1') then
 q <= d;
 end if;
end process;
end arc_dff_aprst;

configuration cnf_dff_aprst of dff_aprst is
for arc_dff_aprst end for;
end cnf_dff_aprst;

D flip-flop with synchronous reset

library ieee;
use ieee.std_logic_1164.all;

entity dff_srst is
 port (clk, d, srst: in std_logic;

q : out std_logic);
end dff_ srst;

architecture arc_dff_srst of dff_srst is
begin
 process (clk)
 begin
 if (clk'event and clk='1') then
 if (srst = '1') then
 q <= '0';
 else

q <= d;
 end if;
 end if;
end process;
end arc_dff_srst;

configuration cnf_dff_srst of dff_srst is
for arc_dff_srst end for;
end cnf_dff_srst;

 39

Rules for a clocked process

process
begin
 wait until clk'event and CLK='1';
 if srst = '1' then
 -- synchronous register reset
 else -- combinatorics
 end if;
end process;

process (clk, rst)
begin
 if (rst = ‘1’) then
 -- asynchronous register reset
 elsif (clk'event and CLK='1') then
 -- combinatorics
 end if;
end process;

Clocked Process: Examples

--Eight-bit register with asynchronous clear

library ieee;
use ieee.std_logic_1164.all;

entity reg8 is
 port (d : in std_logic_vector(7 downto 0);
 reset, clock : in std_logic;
 q : out std_logic_vector(7 downto 0));
end reg8;

architecture behavior of reg8 is
begin
 process (reset, clock)
 begin
 if reset = '1' then
 q <= "00000000";
 elsif clock'event and clock = '1' then
 q <= d;
 end if;
 end process;
end behavior;

Wait form:
• No sensitivity list;
• Synchronous reset.

If form:
• Only clock and

asynchronous signals
(reset) is in sensitivity
list;

• Synchronous and
asynchronous resets

 40

--Four-bit counter with parallel load, using integer signals

library ieee;
use ieee.std_logic_1164.all;

entity upcount is
 port (d : in integer range 0 to 15;
 clock, reset, load : in std_logic;
 q : inout integer range 0 to 15);
end upcount;

architecture behavior of upcount is
begin
 process (clock, reset)
 begin
 if reset = '1' then
 q <= 0;
 elsif (clock'event and clock = '1') then
 if load = '1' then
 q <= d;
 elsif q = 15 then
 q <= 0;
 else
 q <= q + 1;
 end if;
 end if;
 end process;
end behavior;

