
 14

Data Types 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Standard Data Types 
 
Type bit is ( ‘0’, ‘1’ ). 
 
The quotes are essential, because the values are characters. The operators that apply 
to type bit are: 
 

• Logical: not, and, or, nand, nor, xor, xnor               
• Comparison =, /=, <, <=, >, >= 

 
For logical operators the result has the type bit.  Type bit is represented by signal wire, 
with the value ‘0’ represented by logic 0 and the value ‘1’ by logic ‘1’. 
 

CARRY <= (A and B) or (CIN and A) or (CIN and B).  
 

Operator not has a higher precedence, operators not, and, or, nand, nor, xor, xnor   
have the same precedence, so in the expressions: 
 

z <= (a and b) or (c and d); 
y <= a or (b and c); 

 
the brackets are necessary.  
 

architecture STRUCT of FULLADD is
signal I1, I2, I3 : bit; 
component HALFADD 

port(A,B : in bit; 
     SUM, CARRY : out bit); 

end component; 
 

component ORGATE 
port(A,B : in bit; 
     Z : out bit); 

end component; 
 
begin 

u1:HALFADD port map(A,B,I1,I2); 
u2:HALFADD port map(I1,CIN,SUM,I3); 
u3:ORGATE port map(I3,I2,CARRY); 

end STRUCT; 
 
configuration CFG_STR of FULLADD is 

for STRUCT 
end for; 

end CFG_STR; 

library IEEE; 
use IEEE.std_logic_1164.all; 
 
entity FULLADD is 
   port (A, B, CIN : in bit; 
         SUM, CARRY : out bit); 
end FULLADD; 

VHDL is referred to as a strong – typed 
language. Each object in VHDL (signal, 
variable or constant) must have a data 
type defined during an object 
declaration. Such a data type presents 
the set of values for a signal, variable or 
constant. 

SUM <= CIN xor A xor B;
 

In each assignment, the types at the 
both side of assignment operator 
should be the same. 



 15

&
B

A

&
A

CIN

&
B

CIN

1 CARRY

 
 

Figure 1. Intermediate signals in bit expressions. 

 
In practice, type bit is very rarely used.  Typically at least four logic levels are required 
(‘0’, ‘1’, ‘Z’ – high impedance and ‘X’ – unknown).   
 
The nine value type std – logic is usually used instead of bit. 
 
Type Boolean is (true, false) 
 
The operators that apply to type Boolean are: 

• Logical: not, and, or, nand, nor, xor, xnor               
• Comparison =, /=, <, <=, >, >= 

 
Type Boolean is usually used for comparison between two values of any other types.  
 
a = b   The result is a Boolean value for any data type of a, b. 
 
 

xor

b

a result

 
 

Figure 2. Logic mapping of Boolean equality. 

 
The result with Boolean type as a rule is used in such a constructions: 
 
 
 
 
 
 
 

Integer type 
 
Built in numeric type. This type is range  -2147483648 to  +2147483647  (-231 to 231 –1) 
 
Operators: 
 

• Comparison =, /=, <, <=, >, >= 
• Arithmetic sign +, sign -, abs, +, -, *, /, mod, rem, ** 
 

 
 

if a = b then
 result <= ‘1’; 
else 
 result <= ‘0’; 
end if; 



 16

User – Defined Integers 
 
type short is range –128 to 127; 
 
In integer expression it is not possible to mix different integer types (strong types). It is 
not a good practice to define a lot of unique types for each signal in a design. If we use  
type short, defined above, the result of integer calculation must be within the range of 
the type (-128 to 127). Otherwise – the error will occur during simulation. When an 
integer type is defined, the following operators can be applied to the new type: 
comparison =, /=, <, <=, >, >= 
arithmetic sign +, sign -, abs, +, -, *, /, mod, rem, ** 
 
Integer Subtypes 
 
subtype natural is integer range 0 to integer’high; 
 
subtype positive is integer range 1 to integer’high; 
 
integer’high = 231 –1  
 
When, for example, type natural is used in calculation, the calculation are carried out 
using the base type, integer, and then checked to ensure that they fit to natural. This 
check is not carried out until an assignment is made (even for subtypes). 
 
 
 
 
 
 
 
 
Character type 
 
type character is (-- ascii set); 
 
Time type 
 
time is a special data type as it consists out of a numerical value and a physical unit. It 
is used to delay the execution of statements for a certain amount of time, e.g. in test 
benches or to model gate and propagation delays. Signals of data type time can be 
multiplied or divided by integer and real values. The result of these operations remains 
of data type time. 
 
 
 
 
 
 
 
 
 
 
 
Available time units: fs, ps, ns, us, ms, sec, min, hr. 

 
 

Example: 
 Subtype nat4 is natural range 0 to 15; 
 w, x, y, z: nat4; 
 w <= x – y + z;   -- x = 3; y = 4; z = 5 
 3 – 4 = -1, but at the end w = -1 + 5 = 4 (nat4).

signal clk: bit; 
constant clk_period: time := 10 ns; 
. . . 
wait for clk_period; 
. . . 
wait for clk_period * 4; 
. . . 
clk <= not clk after clk_period;  



 17

Enumeration type 

Enumeration type is a type composed of  a set of names. 
Example: 
 
 type opcode is (add, sub, mult, div, shl, shr); 
 signal instruction : opcode; 
 
Synthesis tools encode such values add, …, shr by binary vectors with a minimal 
number of components – three in this example: 
 
 add =  “000”  div = “011” 
 sub =  “001”  shl = “100” 
 mult = “010”  shr = “101” 
 
At the beginning of simulation signal instruction is equal to add – to the leftmost value 
in the type definition. If we would like to use other encoding we should change the 
object order in the type definition. For example, for such an encoding: 
 
 add =  “001”  div = “100” 
 sub =  “011”  shl = “111” 
 mult = “000”  shr = “110” 
 
the corresponding type definition is: 
  
 type opcode is (mult, add, empty1, sub, div, empty2, shr, shl). 
 
We will not use emty1 and empty2 as instructions in our design. It is forbidden to use 
the same name in the enumeration type. 
 
Only comparison operators are predefined for an enumeration type: 
 
comparison =, /=, <, <=, >, >= 
 
The comparison operators are defined in terms of the position values. The first (or left) 
literal in the type is regarded as the smallest value and the last (or right) as the largest 
one. 
  
Types Bit (‘0’, ‘1’) and Boolean (true, false) are the two standard enumeration types.  
 
 

Multi - values logic type - std_logic  
 
Type std_logic is  
 

(   
‘U’,  - - Uninitialized 
‘X’,  - - Forcing Unknown 
‘0’,  - - Forcing 0 

 ‘1’,  - - Forcing 1 
‘Z’,  - - High Impedance 

 ‘W’,  - - Weak Unknown 
 ‘L’,  - - Weak 0 
 ‘H’,  - - Weak 1 
  ‘-‘   - -  Don’t care 

); 
 

std_logic is not part of  VHDL, but it is an IEEE standard extension to the language 
under standard number 1164. It exists in a library called IEEE in a package called 
std_logic_1164.all. 
 



 18

Place this before entity or architecture where this type is used: 
 
library ieee; 
use ieee.std_logic_1164.all; 
 
For synthesis only three values {‘0’, ‘1’, ‘Z’} are used. ‘Z’ – high impedance value which 
is used in tristates. Some synthesis tools used ‘-‘ (don’t care) for optimization. 
 

Arrays 
 
Array is a collection of multiple elements with the same type.  
 
Syntax: type type_name is array (range) of element type; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Two predefined arrays are in VHDL: 
 

• bit_vector – array of bits; 
• string – array of characters. 

 
signal bus1: bit_ vector (3 downto 0); 
constant message1 : string := "Test 1 Completed"; 
 
signal a: std_logic_ vector (3 downto 0); 
signal b: std_logic_vector (1 to 4); 
signal c: std_logic_vector (0 downto 3); NOT CORRECT 
signal d: std_logic_vector (1 downto 4); NOT CORRECT 
 
 
A signal assignment with array is made element by element from left to right. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the assignment, two arrays should have the same size (but maybe the different 
ranges). 

signal up: std_logic_vector (1 to 4);
signal down: std_logic_vector (4 downto 1); 

. . . 
 

-- up  <=  down means: 
 

up(1) <= down(4); 
up(2) <= down(3); 
up(3) <= down(2); 
up(4) <= down(1);

type nibble is array (3 downto 0) of std_logic;
 
type mem is array (0 to 7) of nibble; 
 
signal a_bus : nibble; 
 
signal mem0 : mem; 

An array type should be declared 
before declaration of an object. 

type three_val is (‘0’, ‘1’, ‘x’); 
 
type my_vector is array (natural range <>) of three_val; 
 
signal my_byte : my_vector (7 downto 0);

Unconstrained array type allow 
to declare different-size objects 
and use these objects through 
each other.   



 19

 
Use of slices:  
 
up(2 to 3) <= down(4 downto 3); 
 
 
Concatenations and Aggregates 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

signal z_bus, a_bus, b_bus : 
                      bit_vector(3 downto 0); 
signal a, b, c, d : bit; 
signal byte : bit_vector(7 downto 0); 
 
z_bus <= a & b & c & d; 
byte <= a_bus & b_bus; 

Concatenation can be used only at the right 
side of assignment. The concatenation 
operator (&) allows to construct a long array 
from smaller arrays and elements. 

signal z_bus : bit_vector(3 downto 0);
signal a, b, c, d : bit; 
 

z_bus <= (a, b, c, d); 
 
It is equivalent to  
 

z_bus(3) <= a; 
z_bus(2) <= b; 
z_bus(1) <= c; 
z_bus(0) <= d; 

One more method of assignment to the 
elements of array is an aggregate. 
Aggregate is written in the parenthesis. 
Assignments to each element are separated 
by comma.  

signal x : bit_vector(3 downto 0);
signal a, b, c, d : bit; 
 
x <= (3 => '1', 1 downto 0 => '0', 2 => b); 
 
x <= (3 => '1', 2 => b, others => ‘0’); 
 
-- reset of x: 
 

x <= (others => ‘0’); 

Assignment by name. The same value 
can be assign in the range. 

1. a <= “1000” 
2. a <= (3 => ‘1’, 2 => ‘0’, 1 => ‘0’, 0 => ‘0’); 
3. a <= (3 => ‘1’, 2|1|0 => ‘0’); 
4. a <= (3 => ‘1’, others => ‘0’); 
5. a <= (3 => ‘1’, 2 downto 0 => ‘0’); 
6. a <= (‘1’, ‘0’, ‘0’, ‘0’); 
7. a <= (“1000”); 

7 methods for the same assignment



 20

 
comparison =, /=, <, <=, >, >= 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Logical operators: not, and, or, nand, nor, xor, xnor               
 
 
 
 
 
 
 

If such a comparison is undesired 
then we can use right alignment 
for arrays with the same length: 
 

‘0’ & “111” < “1011”

signal a, b, z : std_logic_vector (3 downto 0);
 
-- Assignment: 
 

z <= a and b; 
 

-- means: 
 

z(3) <= a(3) and b(3); 
z(2) <= a(2) and b(2); 
z(1) <= a(1) and b(1); 
z(0) <= a(0) and b(0); 

Logical operations can be apply to 
arrays with the same type and with the 
same length. The operator is matching 
elements by position returning an array 
of the same length. 


