Arithmetic operators

*%

mod

abs

rem

addition
subtraction
multiplication
exponentiation
division
modulo
absolute value

remainder

Operands of the same type

Predefined for
o integer
o real (except mod and rem)

o physical types (e.g. time)

Not defined for bit_vector

'+ and '-' may also be used as unary operators

Operands for arithmetic operations are presented in 2's complement form and the result
is presented in the same form as well.
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2's COMPLEMENT ADDITION RULES

'l' means (-) sign

4

Augend Addend Rule
+ + . .
Add magnitudes, ignore end-around carry.
- - The sign of the result is the sign found by
+ ) the result of addition operation.
- +
1. +13 001101 +13) in ordinary form
+ 4—' (+13) y
+11 N 001011 4—' (+11) in ordinary form
+24 011000 4—‘ (+24) in ordinary form
‘0" means (+)sign }J
2. -13 110011 -13) in 2's complement
+ . 4—0 (-13) p
-11 N 110101 4—‘ (-11) in 2's complement
-24 101000 4—4 (-24) in 2's complement
'l' means (-) sign }J
3. -11 110101 -11) in 2's complement
+ . 4—4 (-11) p
+13 001101 4—' (+13) in ordinary form
+2 000010 4—4 (+2) in ordinary form
'0' means (+)sign }J
4. +11 001011 +11) in ordinary form
. . -« (1 y
-13 = 110011 4—4 (-13) in 2's complement
-2 111110 4—4 (-2) in 2's complement
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2's COMPLEMENT SUBTRACTION RULES

Minuend Subtrahend Rule
+ + Complement all bits of the subtrahend to
2's complement, add to minuend, ignore
- - end-around carry. The sign of the result is
+ R the sign found by the result of addition
operation.
- +
+13 +13 001101 +13) in ordi f
i . 4—{ (+13) in ordinary form ‘
+11 -11 - 110101 «+—— (-11) in 2's complement |
+2 +2 000010 4—{ (+2) in ordinary form ‘
'0" means (+)sign }—f
-1 -1 110011 -13) in 2 | t
i 3 . 3 4—{ (-13) in 2's complemen ‘
11 +11 - 001011 4—{ (+11) in ordinary form ‘
+2 2 111110 «+—— (-2) in2's complement |
'1l' means (-) sign }—f
- - 110101 -11) in 2' I t
i 11 . 11 4—{ (-11) in 2's complemen ‘
+13 -13 - 110011 4—{ (-13) in 2's complement ‘
-24 -24 101000 4—{ (-24) in 2's complement ‘
'1l' means (-) sign }—f
+11 +11 001011 +11) in ordi f
i . 4—{ (+11) in ordinary form ‘
-13 +13 B 001101 <«—— (+13) in ordinary form |
+24 +24 011000 4—{ (+24) in ordinary form ‘

'0" means (+)sign }—f

Overflow

® No overflow when adding a positive and a negative number
® No overflow when signs are the same for subtraction

® Overflow_occurs:

1. when adding two positives yields a negative;

Overflow Rules

adding two negatives gives a positive

2.
3. subtract a negative from a positive and get a negative
4. subtract a positive from a negative and get a positive
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Addition

1. Both operands are positive

11 in2'
N +6 ~ . 0110 4—4 (+ 6) in2's complement ‘
+5 - 0101 4—‘ (+ 5) in 2's complement ‘

0 .
+11 — 1011 4—4 (+11) unsigned
'‘0' means carry ‘

'"l' means (-) sign

2. Both operands are negative

- 1010 + in2'

N 6 N 4—‘ (+ 6) in 2's complement ‘
-5 - 1011 4—' (+5) in2's complement ‘
11 L > 0101

‘ '"1' means carry ‘
'0' means (+) sign

Subtraction

1. Minuend is positive but subtrahend is negative. Result negative

0110 +6) in2
+6 . +6 . 4—‘ (+ 6) in 2's complement ‘

-5 +5 0101 4—4 (+5) in 2's complement ‘

0 ,
+11 +11 ¥~ 1011 4—‘ (+11) unsigned ‘
‘ '0' means carry ‘
'"1' means (-) sign
2. Minuend is negative but subtrahend is positive. Result positive

- - 1010 +6) in 2"
6 N 6 N 4—‘ (+ 6) in 2's complement

+5 - -5 - 1011 4—' (+5) in 2's complement

- - e
S11 -11 ¥~ o101

‘ '"l' means carry

‘0" means (+) sign

Figure 3. Examples of overflow for addition and subtraction
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Carry

Addition

1. Both operands are negative

- 1101 - in2'
N 3 ~ N 4—‘ (- 3) in 2's complement ‘
-4 - 1100 4—4 (- 4) in 2's complement ‘

-7 i 1001 4—4 (- 7) in 2's complement ‘

‘ "1' means carry ‘
'"1' means (-) sign

2. First operand is negative but result is positive

- 1101 -3) in2
3 N 4—4 (- 3) in 2's complement

+4 0100 4—4 (+4) in 2's complement

+1 1~ o001 4—4 (+ 1) in 2's complement
‘ "1' means carry ‘
'0' means (+) sign

3. Second operand is negative but result is positive

+

+6 N 0110 4—‘ (+ 6) in 2's complement \
-4 - 1100 4—4 (- 4) in 2's complement ‘

1 .
+2 ¥~ 0010 4—4 (+ 2) in 2's complement ‘

‘ '"1' means carry ‘
'0' means (+) sign

Figure 4. lllustration carry for addition
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Subtraction

1. Minuend is negative but subtrahend is positive

- - 1101
- 3 + 3 +

+4 -4 1100

S - A —
-7 -7 ¥~ 1001

‘ '1' means carry ‘

1" means (-) sign

2. Minuend is negative but result is positive

- - 1101
- 3 + 3 +

4 +4 0100

- - e
+1 +1 ¥~ 0001

‘ '1' means carry ‘

'0' means (-) sign

3. Subtrahend is positive and result is positive

in 2's complement

in 2's complement

in 2's complement

-« (-3

in 2's complement

4—‘ (+4)

in 2's complement

-« (+1)

in 2's complement

+ 0110 + in 2'
6 + 6 N 4—' (+ 6) in 2's complement ‘

+4 -4 1100 <—‘ (-4) in2's complement ‘

1 :
+2 +2 ¥~ 0010 <«—— (+2) in2'scomplement |

‘ '"1' means carry ‘
'0' means (+) sign

Figure 5. lllustration carry for subtraction
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Operations with std_logic_vectors

In a numeric package, three types of arrays of std_logic can be used:

std_logic_vector;
signed,;
unsigned.

signal x, y, z : std_logic_vector (3 downto 0);
signal w : Boolean;

X <= “1011" — It is not assignment of (11)10 or (-3)1o.
It is assignment of a vector with four components,
each of them has a type std_logic.

z<=xandy; correct
W <=X>Yy, correct
Z<=X+Y; is not defined.

signal x,y, z : signed (3 downto 0);

X <=1011; (-5)109in 2’s complement form

y <= 0011; (+3)0in 2's complement form
z<=x+y; 1110=(-2)pin 2's complement form

if x >y then ... correct (false)

signal x, y, z : unsigned (3 downto 0);
X <=1011; (11)49

y <=0011; (3)10

z<=x+y; 1110=(14)1

if x >y then ... correct (true)
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std_logic_vector

We can make logical operations and
comparision operations with std_logic
array types, but arithmetic operations
are not defined with such arrays.

signed

2's complement 4-bit vector presents
integers from (-8)19 t0 (7)1

unsigned

4-bit vector presents positive
integers from (0)1o to (15)19




Conversion between types std_logic_vector, signed, unsigned and
integer

T<=<Ttype > (S)

/ N

target type source type

It is a representation of conversion between compatible types std_logic_vector, signed,
unsigned. These types are called compatible because signals or variables of these types
are vectors of std_logic.

library ieee;
use leee.std logic_1164._all;
use ieee.numeric_std.all;

entity numer is

port (
a - in std_logic vector(0 to 3);
b : in signed(0 to 3);
Cc : in unsigned(0 to 3);

dl, d2 : in natural O to 15;

el, e2 : in integer -7 to 7;

sl : out unsigned(0 to 3);

tl : out signed(0 to 3);

wl, w2 : out integer range -15 to 15;
x1, x2 : out std logic_vector(0 to 3);
yl, y2 : out signed(0 to 3);

z1, z2 : out unsigned(0 to 3)

):

end numer;

architecture arc_numer of numer is
begin
x1 <= std_logic_vector(b);
x2 <= std_logic_vector(c);
yl <= signed(a);
y2 <= signed(c);
z1l <= unsigned(a);
z2 <= unsigned(b);
end;

configuration cfg_numer of numer is
for arc_numer
end for;

end cfg_numer;
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Conversion between types signed, unsigned and integer

INT <=to_integer (UNS)

INT <=to_integer (SIG)

UNS <=to_unsigned (INT, Length)
SIG <=to_signed (INT, Length)

wl <= to_integer (b);
w2 <= to_integer (c);

sl <= to_unsigned (dl1, 4) + to_unsigned (d2, 4);
tl <= to_signed (el, 4) + to_signed (e2, 4);

Some operators in numeric_std package

Comparison operators

Operands: signed, signed; result — Boolean;
signed, integer; result — Boolean;

unsigned, unsigned; result — Boolean;
unsigned, natural; result — Boolean.

Addition and Subtraction

Operands: signed, signed; result — signed;
signed, integer; result — signed;
unsigned, unsigned; result —unsigned,;
unsigned, natural; result —unsigned.

Logical operators

Only between operands of the same type:
signed, signed; result — signed;
unsigned, unsigned; result —unsigned.
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library IEEE;
use IEEE.std logic_1164._all;
use ieee.numeric_std.all;

entity pc_counter is

port

(

rsta : in std_logic;

clk : in std_logic;

en : in std_logic;

count : in std logic;

din : in std_logic_vector (0 to 15);
dout : out std_logic _vector (0 to 15)
):

end pc_counter;
architecture arch_pc_counter of pc_counter is
begin

process (rsta, clk)
variable tmp : unsigned(O0 to 15);
begin
if rsta = "1° then
tmp := x"0000";
elsif clk"event and clk = "1" then
if en = "1 then
tmp := unsigned(din);
elsif count = "1 then
it tmp = X"FFFF" then
tmp = x"0000";
else
thp = tmp + 1;
end if;
end if;
end if;
dout <= std_logic_vector(tmp);
end process;
end arch_pc_counter;
configuration cfg_pc_counter of pc_counter is
for arch_pc_counter
end for;
end cfg_pc_counter;

Exercise: Check operators in numeric_std

-—type conversion example
library ieee;

use ieee.std logic _1164.all;
use ieee.numeric_std.all;

entity numeric is

port (
al, a2 : in std_logic vector(0 to 3);
wl, w2 : out std_logic_vector(0O to 3);
x1, x2 : out signhed(0 to 3);
yl, y2 : out unsignhed(0 to 3);

z1l, z2 out integer range -15 to 15
)

end numeric;
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architecture arc_numeric of numeric is

begin

process (al, a2)
variable xx1, xx2
variable yyl, yy2

begin
xx1

z1
z2

yyl
yy2

wl
w2

yl
y2
x1
X2

<=
<=

<=
<=

<=
<=
<=
<=

signed(0 to 3);
unsigned(0 to 3);

= signed (al) + signed (a2);
xx2 := signed (al) - signed (a2);

to_integer (xx1);
to_integer (xx2);

unsigned (al) + unsigned (a2);
unsigned (al) - unsigned (a2);

std_logic_vector(yyl);
std_logic_vector(yy2);

yyl;
yy2;
Xx1;
XX2;

end process;

end arc_numeric

configuration cfg _numeric of numeric is
for arc_numeric

end for;
end cfg_numeric

Test bench

library ieee;

use leee.std logic_1164._all;

use leee.numeric_std.all;

entity test numeric is

end test numeri

C;

architecture arc_test numeric of test numeric is
component numeric

a2
w2
X2
y2
z2

in std_logic_vector(0 to 3);

out std_logic vector(0 to 3);

inout signed(0 to 3);
out unsigned(0 to 3);
out integer range -15

a2, wl, w2 : std _logic _vector(0
signed(0 to 3);
unsigned(0 to 3);

port (
al
wl
x1
yl
z1
):
end component;
signal ail,
signal x1, x2
signal y1, y2
signal z1, z2

begin

uut : numeric port map (al, a2, wl, w2, x1, x2, yl, y2, z1, z2)

integer range -15 to 15;
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process
begin
al <=

"1011"; a2 <= "0010"; -- al = -5;

wait for 10 ns;

assert x1 = "1101"
report "output x1
severity error;

assert x2 = "1001"
report "output x2
severity error;

assert z1 = -3
report "output z1
severity error;
assert z2 = -7
report "output z2
severity error;

assert yl = "1101"
report "output yl
severity error;

assert y2 = "1001"
report "output y2
severity error;

assert wl = "1101"
report "output wl
severity error;

assert w2 = "1001"
report “output w2
severity error;

wailt;

end process;
end arc_test_numeric;

wrong!"'

wrong!"'

wrong!"'

wrong!"'

wrong!"'

wrong!"'

wrong!"'

wrong!"'

configuration cnf_test numeric of test_numeric
for arc_test _numeric

end for;

end cnf_test_numeric;
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