Data Types

library I1EEE;
use IEEE.std_logic_1164._all;

VHDL is referred to as a strong - typed

entity FULLADD 1Is i i language. Each object in VHDL (signal,
port (A, B, CIN - in bit; variable or constant) must have a data
SUM, CARRY : out bit); type defined during an object

end FULLADD; declaration. Such a data type presents

the set of values for a signal, variable or

architecture STRUCT of FULLADD is constant.

signal 11, 12, 13 : bit;

component HALFADD
port(A,B : in bit;

SUM, CARRY : out bit); SUM <= CIN xor A xor B;

end component; _
In each assignment, the types at the

component ORGATE both side of assignment operator
port(A,B : in bit; should be the same.

Z - out bit);
end component;

begin
ul:HALFADD port map(A,B,11,12);
u2:HALFADD port map(11,CIN,SUM,13);
u3:0RGATE port map(13,12,CARRY);
end STRUCT;

configuration CFG_STR of FULLADD is
for STRUCT
end for;

end CFG_STR;

Standard Data Types

Type bitis (0", ‘7).

The quotes are essential, because the values are characters. The operators that apply
to type bit are:

e Logical: not, and, or, nand, nor, xor, xnor
e Comparison =, /=,<,<=,>, >=

For logical operators the result has the type bit. Type bit is represented by signal wire,
with the value ‘O’ represented by logic 0 and the value ‘1’ by logic ‘1'.

CARRY <= (A and B) or (CIN and A) or (CIN and B).

Operator not has a higher precedence, operators not, and, or, nand, nor, xor, xnor
have the same precedence, so in the expressions:

z<=(aand b) or (c and d);
y <=aor (b and c);

the brackets are necessary.

14

A—]&]
B —
o] 1
CIN — & CARRY
A —
CIN — &
B p—

Figure 1. Intermediate signals in bit expressions.

In practice, type bit is very rarely used. Typically at least four logic levels are required
(‘0’, ‘1", *Z' — high impedance and ‘X’ —unknown).

The nine value type Std — logic is usually used instead of bit.

Type Boolean is (true, false)

The operators that apply to type Boolean are:
e Logical: not, and, or, nand, nor, xor, xnor
e Comparison =, /=,<,<=,>,>=

Type Boolean is usually used for comparison between two values of any other types.

a=b Theresultis aBoolean value for any data type of a, b.

a xor result

Figure 2. Logic mapping of Boolean equality.

The result with Boolean type as arule is used in such a constructions:

if a=D>b then
result <= “17;
else
result <= “07;
end if;

Integer type
Built in numeric type. This type is range -2147483648 to +2147483647 (-2*!to 2°' -1)
Operators:

e Comparison =, /=,<,<=,>,>=
e Arithmetic sign +, sign -, abs, +, -, *, /, mod, rem, **

15

User — Defined Integers

type short is range —128 to 127;

In integer expression it is not possible to mix different integer types (strong types). It is
not a good practice to define a lot of unique types for each signal in a design. If we use
type short, defined above, the result of integer calculation must be within the range of
the type (-128 to 127). Otherwise — the error will occur during simulation. When an
integer type is defined, the following operators can be applied to the new type:
comparison =, /=, <, <=, >, >=

arithmetic sign +, sign -, abs, +, -, *,/, mod, rem, **

Integer Subtypes

subtype natural is integer range 0 to integer’high;

subtype positive is integer range 1 to integer’high;

integer’high = 2% -1

When, for example, type natural is used in calculation, the calculation are carried out

using the base type, integer, and then checked to ensure that they fit to natural. This
check is not carried out until an assignment is made (even for subtypes).

Example:
Subtype nat4 is natural range 0 to 15;
w, X, Y, Z: nat4,
W<=x-y+2z; -x=3;y=4;,z=5
3—-4=-1, but at the end w =-1 + 5 = 4 (nat4).

Character type
type character is (-- ascii set);

Time type

time is a special data type as it consists out of a numerical value and a physical unit. It
is used to delay the execution of statements for a certain amount of time, e.g. in test
benches or to model gate and propagation delays. Signals of data type time can be
multiplied or divided by integer and real values. The result of these operations remains
of data type time.

signal clk: bit;
constant clk_period: time := 10 ns;

Wéit for clk_period;
Wéit for clk_period * 4;

clk <=not clk after clk_period,;

Available time units: fs, ps, ns, us, ms, sec, min, hr.

16

Enumeration type

Enumeration type is a type composed of a set of names.
Example:

type opcode is (add, sub, mult, div, shl, shr);
signal instruction : opcode;

Synthesis tools encode such values add, ..., shr by binary vectors with a minimal
number of components —three in this example:

add = “000” div ="011"
sub = “001” shl =*100"
mult =*010" shr =+101"

At the beginning of simulation signal instruction is equal to add — to the leftmost value
in the type definition. If we would like to use other encoding we should change the
object order in the type definition. For example, for such an encoding:

add = “001” div =“100"
sub = “011” shl =#111"
mult = “000” shr =“110"

the corresponding type definition is:
type opcode is (mult, add, emptyl, sub, div, empty2, shr, shl).

We will not use emtyl and empty2 as instructions in our design. It is forbidden to use
the same name in the enumeration type.

Only comparison operators are predefined for an enumeration type:
comparison =, /=, <, <=, >, >=
The comparison operators are defined in terms of the position values. The first (or left)

literal in the type is regarded as the smallest value and the last (or right) as the largest
one.

Types Bit (‘0’, ‘1) and Boolean (true, false) are the two standard enumeration types.

Multi - values logic type - std logic

Type std_logic is
(

‘U’, --Uninitialized

‘X', --Forcing Unknown
‘0", --Forcing O

‘1, --Forcing 1

‘Z', - -High Impedance
‘W', - -Weak Unknown

‘L', --Weak 0
‘H', --Weak 1

‘-* -- Don’t care
)

std_logic is not part of VHDL, but it is an IEEE standard extension to the language
under standard number 1164. It exists in a library called IEEE in a package called
std_logic_1164.all.

17

Place this before entity or architecture where this type is used:

library ieee;
use ieee.std_logic_1164.all;

For synthesis only three values {0, ‘'1’, ‘Z'} are used. ‘Z' — high impedance value which
is used in tristates. Some synthesis tools used ‘- (don’t care) for optimization.

Arrays

Array is a collection of multiple elements with the same type.

Syntax: type type_name is array (range) of element type;

type nibble is array (3 downto 0) of std_logic;
type mem is array (0 to 7) of nibble;

signal a_bus : nibble;

signal memO : mem;

An array type should be declared
before declaration of an object.

type three_val is (‘0’, ‘1’, ‘'x’);

type my_vector is array (natural range <>) of three_val;

signal my_byte : my_vector (7 downto 0);

Unconstrained array type allow
to declare different-size objects
and use these objects through
each other.

Two predefined arrays are in VHDL:

e bit_vector — array of bits;
e string — array of characters.

signal bus1: bit_ vector (3 downto 0);
constant messagel : string :="Test 1 Completed";

signal a: std_logic_ vector (3 downto 0);

signal b: std_logic_vector (1 to 4);

signal c: std_logic_vector (0 downto 3); NOT CORRECT
signal d: std_logic_vector (1 downto 4); NOT CORRECT

A signal assignment with array is made element by element from left to right.

signal up: std_logic_vector (1 to 4);
signal down: std_logic_vector (4 downto 1);

--up <= down means:

up(1) <= down(4);
up(2) <= down(3);
up(3) <=down(2);
up(4) <= down(1);

In the assignment, two arrays should have the same size (but maybe the different

ranges).

18

Use of slices:

up(2 to 3) <= down(4 downto 3);

Concatenations and Aggregates

signal z_bus, a_bus, b_bus:
bit_vector(3 downto 0);

signal a, b, c, d : bit;

signal byte : bit_vector(7 downto 0);

Z bus<=a&bé&cé&d;
byte <=a _bus & b_bus;

signal z_bus : bit_vector(3 downto 0);
signal a, b, ¢, d : bit;

z bus<=(a, b, c, d);
It is equivalent to
z_bus(3) <=a;
z_bus(2) <= b;

z_bus(1) <=c;
z_bus(0) <=d;

signal x : bit_vector(3 downto 0);
signal a, b, c, d : bit;

X <=(3=>'1", 1downto 0 =>"'0", 2 =>b);
X <=(3=>"'1", 2 =>Db, others =>"'0);

-- reset of x:

x <= (others =>‘0");

a <=*“1000"

a <: (3 :> 511’ 2 :> LOI, l :> lol, 0 :> lo!);
a<=(3=>'1,2|1|0=>"0);
a<=(3=>'1, others =>'0");
a<=(3=>'1, 2downto 0 =>‘0);

a <: (ll!, 501’ lol’ lo!);

a <= (“1000");

NogprwdbPE

19

Concatenation can be used only at the right
side of assignment. The concatenation
operator (&) allows to construct a long array
from smaller arrays and elements.

One more method of assignment to the
elements of array is an aggregate.
Aggregate is written in the parenthesis.
Assignments to each element are separated
by comma.

Assignment by name. The same value
can be assign in the range.

7 methods for the same assignment

comparison =, /=, <, <=, >, >=

arrays of different lengths:

Align |eft@3

—— - Compare to right

1011

111 |1 [Greatest!

Logical operators: not, and, or, nand, nor, xor, xnor

signal a, b, z : std_logic_vector (3 downto 0);
-- Assignment:
z<=aand b;
-- means:
z(3) <= a(3) and b(3);
z(2) <= a(2) and b(2);

z(1) <= a(1) and b(1);
z(0) <= a(0) and b(0);

20

If such a comparison is undesired
then we can use right alignment
for arrays with the same length:

‘0 & “111” <“1011”

Logical operations can be apply to
arrays with the same type and with the
same length. The operator is matching
elements by position returning an array
of the same length.

