Processes

section

of code |7

—_— execution

fl iy

Figure 1. Sequential execution flow in a processor

mux: process (a, b, sel)

begin
if sel = '1l' then
z <= a;
else
z <= b;
end if;

end process mux;

Process is invoked whenever there is an
event on any signal in the sensitivity list.

= |

Process

|

Process

FProcess

Figure 2. Multiple processor interaction

architecture a of e is
begin
—— concurrent statements
Pl : process
begin
-—- sequential statements
end process pl;
—— concurrent statements
P2 : process
begin

--sequential statements

end process p2;
—— concurrent statements
end a;

The processes in the same architecture are
working concurrently. One process can
produce an event in the sensitivity list of
the other processor to awake it.

Pay attention - if the process has a label
it should be repeated at the end of this
processor.

Figure 3. Concurrent statements within the architecture

21

Two kinds of processes

senslist: process (a, b);
begin
<sequential statement>;
<sequential statement>;

end process senslist;

waitst: process;

begin
<sequential statement>;
<wait statement>
<sequential statement>;
<wait statement>

end process waitst;

Decoder 2x4 with sensitivity list

library IEEE;
use IEEE.std logic_1164.all;

entity decod2x4 is
port (a, b, en : in std_logic;
y : out std _logic_vector (0 to 3));
end decod2x4;

architecture behav_if of decod2x4 is
begin
process (a, b, en)
variable na, nb : std_logic;

begin

na := not a;

nb := not b;

if en = 'l' then
y(0) <= na and nb;
y(1l) <= na and b;
y(2) <= a and nb;
y(3) <= a and b;

else
y <= uoooou;

end if;

end process;
end behav_if;

configuration cfg _behav_if of decod2x4 is
for behav_if
end for;

end cfg_behav_if;

22

First kind of process - with a
sensitivity list. It executes from the
first line and suspends at the last line.

Second kind of process - without a
sensitivity list. It suspends and re-

executes from the wait statement.

na o |
&
° > | — v
en
b S
b >01— -
L &
—)
&]
— (@)
&]
— y@)

Figure 4. Decoder 2x4 - logic circuit

Decoder 2x4 with wait statement

architecture behav _wait of decod2x4 is

begin
process
variable na, nb : std_logic;
begin
na := not a;
nb := not b;
if en = 'l' then

y(0) <= na and nb;
y(1l) <= na and b;
y(2) <= a and nb;
y(3) <= a and b;
else
y <= "0000";
end if;
wait on a, b, en;
end process;
end behav_wait;

configuration cfg_behav_wait of decod2x4 is
for behav_wait
end for;

end cfg_behav_wait;

architecture concurr of twodrives is

signal z, a, b, ¢, d : std_logic; Such assignments need two drivers.
begin Signal z needs resolution function to
z <= a and b; determine the final value.
z <= ¢ and d;
end concurr; Don’t use such assignments!
a —]8&]
b —|
z
c — &

Figure 5. Two drivers in the architecture

architecture sequential of multiple is
signal z, a, b, ¢, d : std _logic;
begin
process (a, b, c, d)

begin
z <= a and b;
z <= ¢ and d;
end process;
end sequential;

Signals assigned within the process
are updated when the process
suspends. So, z will be equal ¢ and d
and is never updated with a and b.

Figure 6. Two drivers in the process

23

Sensitivity list

mux: process (a, b, sel)

begin
if sel = 'l' then
z <= a;
else
z <= b;
end if;

end process mux;

The same process without sel
in sensitivity list:

mux: process (a, b)

begin
if sel = 'l' then
z <= a;
else
z <= b;
end if;

end process mux;

Sel——J____—I
ol L
ch I e I
2] L1 L
sel———[____—I
a_l L
b4 o
e I e IR

The first rule for synthesizing the combinational circuits from the process:

The sensitivity list should be complete. It means that it must contain each
signal which value is read within the process.

If statement

if condition then
-—- sequential statements
end if;

if condition then

—— sequential statements
else

-—- sequential statements
end if:

Always only one branch executed.

process (a, b, c, x)

begin

if (x = "0000") then
z <= a;

elsif (x <= "0101") then
z <= b;

else
z <= ¢c;

end if;

end process;

24

if condition then

-—- sequential statements
elsif condition then

-- sequential statements
elsif condition then

—— sequential statements
else

—— sequential statements
end if;

Here the conditions are overlapped: if x =
"0000" then both conditions are true. But
because the condition x = "0000" is written
first, then the assignment z <= a will be
implemented. Operator if has a built in
priority.

Case statement

ObJeCt@. expression
eq AandB di “@
case OBJECT is
when YALUE 1 = case EXPRESSION is
. —— stat;ments constant when VALUE 1 =>
possible when VALUE 2 =i values -- statements
valles -- statements when YALUE 2 =X
Kgg:: when YALUE 3 =X -- statements
-—-statements when VALUE 3 =>
--statements
-—eto. ..
end case; -—etc. ..
end case:

case sel is
when "00" =>

whenf ,.<0_1.,a’=> All possible values of the object must
£ <= b; be covered by the when branches.
when "10" => The others clause covers all other
f <=c; possible values of sel that have not
when "11" => been specified, for example, covers
f<=d; the cases including ‘X’, ‘U’, ‘Z’, etc of
when others => std_logic.
f <= 'x';
end case;

case sel is
when "00" =>
f <= a;
when "01" =>
f <= b;
when "01" =>
f <= ¢c;
when "10" =>
£f <= d;
when "11" =>
f <= ¢;
end case;

case address is

Error, each expression can be covered
only once.

when 0 to 7 => —-- values presented as a range

a <= '1"';
when 8 to 15
b <= "'1";
when 16 | 20

=> —— values presented as a range

| 24 | 28 => —— the pipe ‘|’ symbol
—— is treated here as OR

a <= 'l'; -- any number of sequential statements
b <= 'l'; —-- can be here
when others => null; -- empty operator
end case;

25

if SEL(1)

elsif SEL(0)

when

when

sel

o o0 T o

Figure 7. MUX 4x1

'Il'l

FE < B:

E - Bs

else

B < (:

end if:

e SEL 1o
when

i
E -— As

il
FE < B:

ul
E «— B:

when others =>

B < (:

end case;

111

then

then
SEL(0)

]_SEL(z)

Synthesis tools implement case
statement as a multiplexer

The conditions in an if statement are
tested in sequence according priory
inputs. The choices in case statement

C |
B

SEL(1) has
priority

> om0

Figure 8. If versus case

are tested in parallel, which make
simulation faster.

A E
Good ASIC synthesis tools can optimize
of| both implementations very well. For
FPGAs elsif and nested if statements
2 can result in more logic levels and a non-
optimal implementation.
F

26

4(8bit) — to — 1(8bit) line multiplexer in VHDL presentation using “IF” form

LIBRARY IEEE;
USE IEEE.std logic_1164.all;

entity MUX4x8 is
port (inl,in2,in3,in4 : in std_logic_vector (7 downto 0);
cntrl : in std _logic_vector (1 downto 0);
qg: out std_logic_vector (7 downto 0));
end MUX4x8 ;

architecture arc_MUX4x8 of MUX4x8 is

begin
process (inl, in2, in3, in4, cntrl)
begin
if cntrl = "00" then g <= inl;
elsif cntrl = "01" then g <= in2;
elsif cntrl = "10" then g <= in3;
elsif cntrl = "11" then gq <= in4;
else q <= "00000000"; -— g <= (others => '0');
end if;

end process ;
end arc_MUX4x8;

configuration cfg MUX4x8 of MUX4x8 is
for arc_MUX4x8
end for;

end cfg MUX4x8;

4(8bit) — to — 1(8bit) line multiplexer in VHDL presentation using “CASE” form

LIBRARY IEEE;
USE IEEE.std logic 1164.all;

entity MUX4x8 is
port (inl, in2, in3, ind4 : in std_logic_vector (7 downto 0);
cntrl : in std _logic_vector (1 downto 0);
q: out std_logic_vector (7 downto 0));
end MUX4x8 ;

architecture arc_MUX4x8 of MUX4x8 is

begin
process (inl, in2, in3, in4, cntrl)
begin
case cntrl is

when "00" => q <= inl;--mux output := inl
when "01" => g <= in2;--mux output := in2
when "10" => q <= in3;--mux output := in3
when "11" => q <= in4;--mux output := in4

when others => q <= "00000000";
--when others => g<=(others => '0');
end case;
end process ;
end arc_MUX4x8;

configuration cfg MUX4x8 of MUX4x8 is
for arc_MUX4x8
end for;

end cfg MUX4x8;

27

Loop statement

for i in 0 to 3 loop
f(i) <= a(i) and b(3-i);
v v xor a(i);

end loop;

for i in 3 downto 0 loop
f(i) <= a(i) and b(3-i);
v v xor a(i);

end loop;

for i in 0 to 3 loop
£(i) <= a(i) and b(3-i);

i is a loop parameter. Two ranges are
available — ascending and descending,
but the loop parameter can decrement
or increment only by 1.

A loop parameter cannot be changed

v := v xor a(i); by assignment.
if v = 'x' then

i := 4; —- It is illegal
end if;

end loop;

process (a, b)
variable i: std_logic;
begin
for i in 0 to 3 loop
f(i) <= a(i) and b(3-i);
v v xor a(i);
end loop;
i not i;
end process;

-— It is legal

B)
i

process (A,
variable Std logic;
M= e
for T in 0 €o 3 loop

F({I) <= A(I) and B(3-I):
V :=V xor A(I):
end loop:
G <= V;
end process:

AQ)
5G) :>ﬂg)
A1)
AQ)

51) :>az)
A(3)
so P

The iin the last but one row is not a
loop parameter. The loop parameter is
hidden within the loop and cannot be
watched outside the loop.

While synthesized loops make multiple
copies of logic inside the loop, one copy for
each possible value of the loop parameter.
It is the reason why the borders of a range
must be constant.

Figure 9. How loops are synthesized

28

For parameter in loop_range loop

end loop;

while condition loop
end loop;

loop

end loop;

loop
exit;
exit when condition;

end loop;

11: for i in 0 to 7 loop

12: for j in 0 to 7 loop
c :=c + 1;
exit 12 when a(j) = b(i);
exit 11 when b(c) = 'u'

end loop 12;
end loop 11;

main: for i in 0 to 15 loop

next main when reset = '0';

end loop main;

ClockGenerator 1: process

begin

for I in 1 Eto 1000 lobp
Glock <— '0’';
wait fFar 5 NS;
cleek += 11
wait for 10 NS;

end loop:

wait;

end process ClockGenerator 1;

There are three different kinds of
loops in VHDL. The while loop is
implemented while a condition is
true. The unbounded lop statement
loops forever. Only the for loop with
constant bounds is synthesizable.
The other loops are useful in test
benches.

The exit statement is a sequential
statement that controls the jump to
the statement following the loop.

Loops can be labeled to indicate
which loop to exit

The next statement causes control
to pass back to the top of the loop.
The loop parameter takes the next
value in its range.

Clock ,

| | | | | |
0 5ns 10ns 15ns 20ns 25ns

Figure 10. Clock generator (for loop)

30ns

29

ClockGenerator 2: process
begin
while NOW < 15 US loop
Clock <= '0!;
wait for 5 NS;
Clock <= '1';
wait for 10 NS:
end loop:
wait;
end process ClockGenerator 2;

Clock _I]_l |_
| |

| | | | |
0 5ns 10ns 15ns 20ns 25ns 30ns

Figure 11. Clock generator (while loop)

ClockGenerator 3: process
begin
loop
Clock <= '0';
wait for 5 NS;
Clock <= '1";
wait for 10 NS;
exit when NOW >= 15 US;
end loop:
wait:
end process ClockGenerater 3:

Clock _l |_| |_

| | | | |
0 5ns 10ns 15ns 20ns 25ns 30ns

Figure 12. Clock generator (unbounded loop)

30

