
 1

Main Language Concepts

Figure 1. Concurrent

Figure 2. Structure

Figure 3. Procedural

Figure 4. Time

 2

Entity

Figure 5. Half adder

Figure 6. Dataflow architecture for half adder

Several Architectures for One Entity

Entity

Architecture
X

Architecture
Y

Architecture
Z

Figure 7. Entity with three architectures

Figure 8. Entity for full adder

A

B

SUM

CARRY

entity HALFADD is
 port(A,B : in bit;
 SUM, CARRY : out bit);
 end HALFADD;

architecture DATAFLOW of HALFADD is
begin
 SUM <= A xor B;
 CARRY <= A and B;
end DATAFLOW;

library IEEE;
use IEEE.std_logic_1164.all;

entity FULLADD is
 port (A, B, CIN : in bit;
 SUM, CARRY : out bit);
end FULLADD;

 3

Table 1. Truth table for full adder

A B CIN SUM CARRY
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

 Figure 9. Karnaugh maps for SUM and CARRY

Figure 10. Dataflow architecture for full adder

Figure 11. Behavioral architecture for full adder

0

1
a

00 01 11 10
b cin

0

1
a

00 01 11 10
b cin

1 1

11 1 11

1

sum carry

architecture BEHAV of FULLADD is
begin
 process (A, B, CIN)
 begin
 if CIN = '0' and A = '0' and B = '0' then
 SUM <= '0';

CARRY <= '0';
 elsif (CIN = '0' and A = '0' and B = '1') or
 (CIN = '0' and A = '1' and B = '0') or
 (CIN = '1' and A = '0' and B = '0') then
 SUM <= '1';
 CARRY <= '0';
 elsif (CIN = '0' and A = '1' and B = '1') or
 (CIN = '1' and A = '0' and B = '1') or
 (CIN = '1' and A = '1' and B = '0') then
 SUM <= '0';
 CARRY <= '1';
 elsif CIN = '1' and A = '1' and B = '1' then
 SUM <= '1';
 CARRY <= '1';
 end if;
 end process;
end BEHAV;

configuration CFG_BEH of FULLADD is
 for BEHAV
 end for;
end CFG_BEH;

architecture DATAFLOW of FULLADD is
begin
 SUM <= CIN xor A xor B;
 CARRY <= (A and B) or (CIN and A) or (CIN and B);
end DATAFLOW;

configuration CFG_DAT of FULLADD is
 for DATAFLOW
 end for;
end CFG_DAT;

 4

Structural architecture

Half
Adder

A

B
Half

Adder

OR

CIN

SUM

CARRY

Figure 12. Full adder

Figure 13. Design entity for half adder

Figure 14. Design entity for OR gate

entity HALFADD is
 port(A,B : in bit;
 SUM, CARRY : out bit);
 end HALFADD;

architecture DATAFLOW of HALFADD is
begin
 SUM <= A xor B;
 CARRY <= A and B;
end DATAFLOW;

entity ORGATE is
 port(A,B : in bit;
 Z : out bit);
 end ORGATE;

architecture DATAFLOW of ORGATE is
begin
 Z <= A or B;
end DATAFLOW;

 5

A

B

SUM

CARRY

HALFADD
A

B

I1

I2

CIN

Full Adderu1

Figure 15. Instantiation of half adder into full adder

Figure 16. Structural architecture for full adder

Configuration

entity A

arch F arch G

entity B

arch H arch I arch J

entity C

arch K arch L

entity D

arch M arch N arch O

Figure 17. Entities with several architectures

architecture STRUCT of FULLADD is
signal I1, I2, I3 : bit;
component HALFADD

port(A,B : in bit;
 SUM, CARRY : out bit);

end component;

component ORGATE
port(A,B : in bit;
 Z : out bit);

end component;

begin

u1:HALFADD port map(A,B,I1,I2);
u2:HALFADD port map(I1,CIN,SUM,I3);
u3:ORGATE port map(I3,I2,CARRY);

end STRUCT;

configuration CFG_STR of FULLADD is

for STRUCT
end for;

end CFG_STR;

Table 2. Correspondence between entity and architecture

 Entity Architecture

A G
B J
C K
D M

 6

Project1 for discussion

Project1

library IEEE;
use IEEE.std_logic_1164.all;

entity proj1 is
 port (x1, x2, x3, x4 : in bit;
 y1, y2 : out bit);
end proj1;

architecture arc_proj1 of proj1 is
begin
 y1 <= (x1 and not x2) or (not x1 and x2);
y2 <= (x1 and x3 and not x4) or (x1 and not x2) or (not x1 and
 x2);
end arc_proj1;

configuration cfg_proj1 of proj1 is
 for arc_proj1
 end for;
end cfg_proj1;

Test bench2 for project1

library IEEE;
use IEEE.std_logic_1164.all;

entity proj1_tb is
end proj1_tb;

architecture arc_proj1_tb of proj1_tb is

 component proj1
 port (x1, x2, x3, x4 : in bit;
 y1, y2 : out bit);
 end component;

 signal x1, x2, x3, x4, y1, y2 : bit;

begin
 design: proj1 port map (x1, x2, x3, x4, y1, y2);

 process
 begin
 x1 <= '0'; x2 <= '0'; x3 <= '0'; x4 <= '0';
 wait for 10 ns;
 assert y1 = '0'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '0'
 report "output y2 is wrong!"
 severity error;

 x1 <= '0'; x2 <= '0'; x3 <= '0'; x4 <= '1';
 wait for 10 ns;
 assert y1 = '0'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '0'
 report "output y2 is wrong!"

 7

 severity error;

 x1 <= '0'; x2 <= '0'; x3 <= '1'; x4 <= '0';
 wait for 10 ns;
 assert y1 = '0'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '0'
 report "output y2 is wrong!"
 severity error;

 x1 <= '0'; x2 <= '0'; x3 <= '1'; x4 <= '1';
 wait for 10 ns;
 assert y1 = '0'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '0'
 report "output y2 is wrong!"
 severity error;

 x1 <= '0'; x2 <= '1'; x3 <= '0'; x4 <= '0';
 wait for 10 ns;
 assert y1 = '1'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '1'
 report "output y2 is wrong!"
 severity error;

 x1 <= '0'; x2 <= '1'; x3 <= '0'; x4 <= '1';
 wait for 10 ns;
 assert y1 = '1'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '1'
 report "output y2 is wrong!"
 severity error;

 x1 <= '0'; x2 <= '1'; x3 <= '1'; x4 <= '0';
 wait for 10 ns;
 assert y1 = '1'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '1'
 report "output y2 is wrong!"
 severity error;

 x1 <= '0'; x2 <= '1'; x3 <= '1'; x4 <= '1';
 wait for 10 ns;
 assert y1 = '1'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '1'
 report "output y2 is wrong!"
 severity error;

 x1 <= '1'; x2 <= '0'; x3 <= '0'; x4 <= '0';
 wait for 10 ns;
 assert y1 = '1'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '1'
 report "output y2 is wrong!"
 severity error;

 8

 x1 <= '1'; x2 <= '0'; x3 <= '0'; x4 <= '1';
 wait for 10 ns;
 assert y1 = '1'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '1'
 report "output y2 is wrong!"
 severity error;

 x1 <= '1'; x2 <= '0'; x3 <= '1'; x4 <= '0';
 wait for 10 ns;
 assert y1 = '1'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '1'
 report "output y2 is wrong!"
 severity error;

 x1 <= '1'; x2 <= '0'; x3 <= '1'; x4 <= '1';
 wait for 10 ns;
 assert y1 = '1'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '1'
 report "output y2 is wrong!"
 severity error;

 x1 <= '1'; x2 <= '1'; x3 <= '0'; x4 <= '0';
 wait for 10 ns;
 assert y1 = '0'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '0'
 report "output y2 is wrong!"
 severity error;

 x1 <= '1'; x2 <= '1'; x3 <= '0'; x4 <= '1';
 wait for 10 ns;
 assert y1 = '0'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '0'
 report "output y2 is wrong!"
 severity error;

 x1 <= '1'; x2 <= '1'; x3 <= '1'; x4 <= '0';
 wait for 10 ns;
 assert y1 = '0'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '1'
 report "output y2 is wrong!"
 severity error;

 x1 <= '1'; x2 <= '1'; x3 <= '1'; x4 <= '1';
 wait for 10 ns;
 assert y1 = '0'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '0'
 report "output y2 is wrong!"
 severity error;
 wait;

 9

 end process;
 end arc_proj1_tb;
configuration cfg_proj1_tb of proj1_tb is
 for arc_proj1_tb
 end for;
end cfg_proj1_tb;

Test bench3 for project1

library IEEE;
use IEEE.std_logic_1164.all;

entity proj1_tb is
end proj1_tb;

architecture arc_proj1_tb of proj1_tb is

component proj1
 port (x1, x2, x3, x4 : in bit;
 y1, y2 : out bit);
 end component;

 signal x1, x2, x3, x4, y1, y2 : bit;

 begin
 design: proj1 port map (x1, x2, x3, x4, y1, y2);

 process
 begin
 x1 <= '0'; x2 <= '0'; x3 <= '0'; x4 <= '0';
 wait for 10 ns;
 assert y1 = '0'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '0'
 report "output y2 is wrong!"
 severity error;

 x4 <= '1';
 wait for 10 ns;
 assert y1 = '0'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '0'
 report "output y2 is wrong!"
 severity error;

 x3 <= '1'; x4 <= '0';
 wait for 10 ns;
 assert y1 = '0'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '0'
 report "output y2 is wrong!"
 severity error;

 x4 <= '1';
 wait for 10 ns;
 assert y1 = '0'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '0'
 report "output y2 is wrong!"

 10

 severity error;

 x2 <= '1'; x3 <= '0'; x4 <= '0';
 wait for 10 ns;
 assert y1 = '1'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '1'
 report "output y2 is wrong!"
 severity error;

 x4 <= '1';
 wait for 10 ns;
 assert y1 = '1'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '1'
 report "output y2 is wrong!"
 severity error;

 x3 <= '1'; x4 <= '0';
 wait for 10 ns;
 assert y1 = '1'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '1'
 report "output y2 is wrong!"
 severity error;

 x4 <= '1';
 wait for 10 ns;
 assert y1 = '1'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '1'
 report "output y2 is wrong!"
 severity error;

 x1 <= '1'; x2 <= '0'; x3 <= '0'; x4 <= '0';
 wait for 10 ns;
 assert y1 = '1'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '1'
 report "output y2 is wrong!"
 severity error;

 x4 <= '1';
 wait for 10 ns;
 assert y1 = '1'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '1'
 report "output y2 is wrong!"
 severity error;

 x3 <= '1'; x4 <= '0';
 wait for 10 ns;
 assert y1 = '1'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '1'
 report "output y2 is wrong!"
 severity error;

 11

 x4 <= '1';
 wait for 10 ns;
 assert y1 = '1'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '1'
 report "output y2 is wrong!"
 severity error;

 x2 <= '1'; x3 <= '0'; x4 <= '0';
 wait for 10 ns;
 assert y1 = '0'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '0'
 report "output y2 is wrong!"
 severity error;

 x4 <= '1';
 wait for 10 ns;
 assert y1 = '0'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '0'
 report "output y2 is wrong!"
 severity error;

 x3 <= '1'; x4 <= '0';
 wait for 10 ns;
 assert y1 = '0'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '1'
 report "output y2 is wrong!"
 severity error;

 x4 <= '1';
 wait for 10 ns;
 assert y1 = '0'
 report "output y1 is wrong!"
 severity error;
 assert y2 = '0'
 report "output y2 is wrong!"
 severity error;
 wait;
 end process;
 end arc_proj1_tb;

configuration cfg_proj1_tb of proj1_tb is
 for arc_proj1_tb
 end for;
end cfg_proj1_tb;

 12

Test bench1 for project1

library IEEE;
use IEEE.std_logic_1164.all;

entity proj1_tb is
end proj1_tb;

architecture arc_proj1_tb of proj1_tb is

 type sample is record
 x1 : bit;
 x2 : bit;
 x3 : bit;
 x4 : bit;
 y1 : bit;
 y2 : bit;
 end record;

 type sample_array is array (natural range <>) of sample;
 constant test_data : sample_array :=
 (
-- x1 x2 x3 x4 y1 y2
 ('0', '0', '0', '0', '0', '0'),
 ('0', '0', '0', '1', '0', '0'),
 ('0', '0', '1', '0', '0', '0'),
 ('0', '0', '1', '1', '0', '0'),
 ('0', '1', '0', '0', '1', '1'),
 ('0', '1', '0', '1', '1', '1'),
 ('0', '1', '1', '0', '1', '1'),
 ('0', '1', '1', '1', '1', '1'),
 ('1', '0', '0', '0', '1', '1'),
 ('1', '0', '0', '1', '1', '1'),
 ('1', '0', '1', '0', '1', '1'),
 ('1', '0', '1', '1', '1', '1'),
 ('1', '1', '0', '0', '0', '0'),
 ('1', '1', '0', '1', '0', '0'),
 ('1', '1', '1', '0', '0', '1'),
 ('1', '1', '1', '1', '0', '0')
);

 component proj1
 port (x1, x2, x3, x4 : in bit;
 y1, y2 : out bit);
 end component;

 signal x1, x2, x3, x4, y1, y2 : bit;

begin
 design: proj1 port map (x1, x2, x3, x4, y1, y2);
 process
 begin
 for i in test_data'range loop
 x1 <= test_data(i).x1;
 x2 <= test_data(i).x2;
 x3 <= test_data(i).x3;
 x4 <= test_data(i).x4;
 wait for 10 ns;
 assert y1 = test_data(i).y1
 report "output y1 is wrong!"
 severity error;
 assert y2 = test_data(i).y2
 report "output y2 is wrong!"
 severity error;

 13

 end loop;
 wait;
 end process;
 end arc_proj1_tb;
configuration cfg_proj1_tb of proj1_tb is
 for arc_proj1_tb
 end for;
end cfg_proj1_tb;

