Processes (cont)

senslist: process (a, b);

begin
<sequential First kind of process - with a
statement>; sensitivity list. It executes from the
<sequential first line and suspends at the last line.
statement>; . . .

end process senslist;

wailtst: process;

begin Second kind of process — without a
sensitivity list. It suspends and re-

executes from the Wait statement.

<sequential
statement>;

<walt statement>

<sequential
statement>;

<walt statement>

The first rule for synthesizing the combinational circuits from the process:
The sensitivity list should be complete. It means that it must contain each
signal which value is read within the process.

31

en

Latches and Registers

Figure 1. Latch

Latch is a memory element which output is
followed its input as long as it is enabled. When
the enable signal is invalid the output retains it’s
last value. We can call a latch as a level sensitive
register. As a rule, latches are accidental in the
design and we should know how avoid them.

en

en q

Figure 2. Latch behavior

o]

o

d q clk
en D 0_o+r_1
clk
d pR—

q

Figure 3. Flip-flop

The output of a flip-flop takes the
input value only on the edge of an
enable signal (on the edge of the
clock).

32

Inferred Latches

Inferred latches are registers described within VHDL code. Usually, a designer may not
want latches and they are a common problem in digital design using HDLSs.

Incomplete Assignment

library ieee;
use ieee.std _logic_1164.all;

entity latch is

port (en, d : in std_logic;

q : out std_logic);
end latch;
architecture beh_ latch of latch
begin
process (en, d)

begin
if (en = "1") then
q <= d;
end if;

end process;
end beh_latch;

en

The process shown in this example
synthesizes a transparent latch.
When en ‘0’, the value of d is
assigned to q, but when en = ‘0’, q
retains it’s last value.

Special care is necessary in order to avoid the generation of latches.

architecture bad_ mux of

latch is
begin
process (a, b, sel)
begin
if (sel = *1%) then
y <= a;
end if;

end process;
end bad_ mux;

architecture goodl_ mux of
latch is
begin
process (a, b, sel)
begin
y <= b;
it (sel
y <= a;
end if;
end process;
end goodl_mux;

*1") then

33

architecture good2_ mux of
latch is
begin
process (a, b, sel) The two last files — good1_ mux and good2_ mux
begin are identical and synthesis tool implements them
if (sel = "1") then as multiplexer. In good1l_ mux if sel = ‘1’ the first
y <= a; assignment y <= b will be overriddenby y <= a
else because signals are updated only at the end of
y <= b; process execution.
end if;
end process;
end good2_ mux;

Incomplete Case Statements

process (in0O, inl, in2, ctr)
begin
case ctr is
when 00" => q <= iIn0
when 01" => q <= iInl;
when 10" => q <= in2;
end case;
end process;

in0
q sel q This piece of code is syntactically
in1 —— 00 in0 correct, but no case branch is included
for sel = 11 so it is incomplete case
in2 —— 01 | in statement.
10 | in2 If sel goes to 11, q will retain its former

value determined by the previous state
of sel and such a behavior corresponds
to our earlier definition of a latch. So the
synthesis tool will infer that a latch is
required.

11 q

sel

Figure 4. Code for bad multiplexer - latch inferred

The second rule for synthesizing the combinational circuits from the
process: Always include a default statement to make sure that incomplete
assignment does not take place.

34

process (x1, x2, ctr)

begin
case ctr
when

end process;

is

0" =>
<= x1;
<= X2;
1t =>
<= X2;

process (X1, x2, ctr)

begin
y2 <= x1
case ctr
when

end case;
end process;

is

0" =>
<= X1;
<= X2;
1 o=~
<= X2;

D flip-flops in VHDL

ctr | y1 y2
0 x1 | x2
1 x2 | y2

When ctr is 1, the output y2 is not assigned and this
is an incomplete assignment as well. The general
description of an incomplete assignment is where
signal is assigned to in some branches of the case
statement but not within the others.

A reliable method is to make
default assignments at the top
of the procedure, so a new
value is assigned to all of the
output variables each time the
case statement is invoke.

d — —— q clk q
4| d

clk D Oor1| q

clk !

d— | i i

q

The output of a flip-flop takes the
input value only on the edge of an
enable signal (on the edge of the
clock).

35

Clock and Clocking

Clock is a signal that:

Synchronizes complete design

. “Tells” individual blocks when to exchange data

Clock is defined by its active edge, frequency, duty cycle, rise/fall time, etc

. On this course we are concerned with the clock active edge — when flops latch data

A A A A

RN -

Figure 5. Clock Active Edge (in this case the rising edge)

Two templates to present D flip flops in VHDL

process (clock)
begin The signal attribute ‘event
if clock"event and clock = "1" then presented the change of a signal.
g <= d; clock'event and clock = 'I'
end if; that the clock was changed and it’s
end process; value became ‘1°.
process
begin
wait until clock®event and clock = "1" then
q <= d;
end if;

end process;

process (clock)
begin

end process; do— —— q0 d1

if clock'event and clock ='1' then
q0 <= do0;
ql <=d1;

end if;

clk

q1

Figure 6. Circuit with two flip-flops

36

library ieee;
use ieee.std logic_1164.all;

entity dff_logic is
port (clk, inl, in2: in std_logic;
q : out std_logic);
end dff_logic;

architecture arc_dff_logic of dff_logic is
begin
process (clk)
begin
if (clk"event and clk="1") then
q <= (not inl) and in2;
end if;
end process;
end arc_dff_logic;

configuration cnf_dff_logic of dff_logic is
for arc_dff_logic end for;
end cnf_dff_logic;

in1 —[>o—T| — .
—1|

in2

clk D cLk

Figure 7. D flip-flop with combinational logic

D flip-flop with asynchronous reset

library ieee;
use ieee.std_logic_1164.all;

entity dff_arst is
port (clk, d, arst: in std_logic;
q : out std_logic);
end dff_ arst;

architecture arc_dff_arst of dff_arst is

begin
process (clk, arst)
begin
if (arst = "1") then
q <= 'O';
elsif (clk"event and clk="1") then
q <= d;
end if;

end process;
end arc_dff_arst;

configuration cnf_dff_arst of dff_arst is

for arc_dff_arst end for;
end cnf_dff_arst;

37

D flip-flop with asynchronous preset

library ieee;
use ieee.std_logic_1164.all;

entity dff_aprst is
port (clk, d, aprst: in std_logic;
g - out std _logic);
end dff_ aprst;

architecture arc_dff_aprst of dff_aprst is

begin
process (clk, aprst)
begin
if (aprst = "17) then
q <= "1%;
elsit (clk"event and clk="1") then
q <= d;
end if;

end process;
end arc_dff_aprst;

configuration cnf_dff_aprst of dff_aprst is

for arc_dff_aprst end for;
end cnf_dff_aprst;

D flip-flop with synchronous reset

library ieee;
use ieee.std_logic_1164.all;

entity dff_srst is
port (clk, d, srst: in std_logic;
q : out std_logic);
end dff_ srst;

architecture arc_dff_srst of dff_srst is
begin
process (clk)
begin
if (clk"event and clk="1") then
if (srst = "17) then

q <= "0";
else
q <= d;
end i1f;
end if;

end process;
end arc_dff_srst;

configuration cnf_dff_srst of dff_srst is

for arc_dff_srst end for;
end cnf_dff_srst;

38

Rules for a clocked process

process

begin
wait until clk"event and CLK="1";
if srst = "1 then
-- synchronous register reset
else -- combinatorics

Wait form:
¢ No sensitivity list;
e Synchronous reset.

end if;
end process;

process (clk, rst)
begin
if (rst = “1”) then
-- asynchronous register reset
elsit (clk"event and CLK="1") then
-- combinatorics
end if;
end process;

If form:
e Only clock and
asynchronous signals
(reset) is in sensitivity
list;
e Synchronous and
asynchronous resets

Clocked Process: Examples

--Eight-bit register with asynchronous clear

library ieee;
use ieee.std_logic_1164.all;

entity reg8 is
port (d : in std_logic_vector(7 downto 0);
reset, clock : in std_logic;
q : out std_logic_vector(7 downto 0));
end reg8;

architecture behavior of reg8 is
begin
process (reset, clock)
begin
if reset = "1 then
g <= "00000000";
elsif clock®event and clock = "1" then
q <= d;
end if;
end process;
end behavior;

39

-—-Four-bit counter with parallel load, using integer

library ieee;
use ieee.std_logic_1164.all;

entity upcount is
port (d : in integer range O to 15;
clock, reset, load : in std_logic;
q : inout integer range 0 to 15);
end upcount;

architecture behavior of upcount is

begin
process (clock, reset)
begin
if reset = "1 then
q <= 0;

elsif (clock"event and clock = "1%) then
if load = 1" then

q <= d;
elsif q = 15 then
q <= 0;
else
qg<=4q+ 1;
end if;
end if;

end process;
end behavior;

40

signals

