
 21 

Processes 
 

 

 

Figure 1. Sequential execution flow in a processor 

 

mux: process (a, b, sel) 

begin 

   if sel = '1' then 

      z <= a; 

   else 

      z <= b; 

   end if; 

end process mux; 

 

 

 

Figure 2. Multiple processor interaction 

 

architecture a of e is 

begin 

   -- concurrent statements 

   p1 : process 

    begin 

      -- sequential statements 

   end process p1; 

   -- concurrent statements 

   p2 : process 

    begin 

--sequential statements 

end process p2; 

-- concurrent statements 

end a; 

Figure 3. Concurrent statements within the architecture 

Process is invoked whenever there is an 

event on any signal in the sensitivity list. 

The processes in the same architecture are 
working concurrently. One process can 
produce an event in the  sensitivity list  of 
the other processor to awake it.    

Pay attention – if the process has a label 
it should be repeated at the end of  this 
processor. 



 22 

Two kinds of processes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Decoder 2x4 with sensitivity list 
 

library IEEE; 

use IEEE.std_logic_1164.all; 

 

entity decod2x4 is  

 port (a, b, en : in std_logic; 

  y : out std_logic_vector(0 to 3)); 

end decod2x4; 

 

architecture behav_if  of decod2x4 is 

begin 

   process (a, b, en) 

  variable na, nb : std_logic;  

   begin 

     na := not a; 

     nb := not b; 

  if en = '1' then   

   y(0) <= na and nb; 

   y(1) <= na and b; 

   y(2) <= a and nb; 

   y(3) <= a and b; 

  else 

   y <= "0000"; 

  end if; 

 end process; 

end behav_if; 

 

configuration cfg_behav_if of decod2x4 is 

 for behav_if 

 end for; 

end cfg_behav_if; 

 

 

 

 

 

 

 

 

 

 

Figure 4. Decoder 2x4 - logic circuit 

First kind of process - with a 
sensitivity list. It executes from the 

first line and suspends at the last line. 

senslist: process (a, b); 

begin  

 <sequential statement>; 

 <sequential statement>;

 . . . 

end process senslist; 

  

waitst: process; 

begin  

 <sequential statement>; 

 <wait statement> 

 <sequential statement>; 

 <wait statement> 

 . . . 

end process waitst; 

Second kind of process - without a 
sensitivity list. It suspends and re-

executes from the wait statement. 

 



 23 

Decoder 2x4 with wait statement 
 

architecture behav_wait of decod2x4 is 

begin 

   process 

  variable na, nb : std_logic;  

   begin 

     na := not a; 

     nb := not b; 

  if en = '1' then   

   y(0) <= na and nb; 

   y(1) <= na and b; 

   y(2) <= a and nb; 

   y(3) <= a and b; 

  else 

   y <= "0000"; 

  end if; 

  wait on a, b, en; 

 end process; 

end behav_wait; 

 

configuration cfg_behav_wait of decod2x4 is 

 for behav_wait 

 end for; 

end cfg_behav_wait; 

 

 

architecture concurr of twodrives is 

   signal z, a, b, c, d : std_logic; 

begin 

      z <= a and b; 

      z <= c and d; 

end concurr; 

 

&

&

a

b

c

d

? z

 

 

Figure 5. Two drivers in the architecture 

 

architecture sequential of multiple is 

   signal z, a, b, c, d : std_logic; 

begin 

   process (a, b, c, d) 

   begin 

      z <= a and b; 

      z <= c and d; 

   end process; 

end sequential; 

 

&c

d
z

 

 

Figure 6. Two drivers in the process 

Such assignments need two drivers. 
Signal z needs resolution function to 
determine the final value. 
 

Don’t use such assignments! 

Signals assigned within the process 
are updated when the process 
suspends. So, z will be equal c and d 
and is never updated with a and b.    



 24 

Sensitivity list 
 
mux: process (a, b, sel) 

begin 

   if sel = '1' then 

      z <= a; 

   else 

      z <= b; 

   end if; 

end process mux; 

 

 

 

 

The same process without sel 

in sensitivity list: 

 

 

mux: process (a, b) 

begin 

   if sel = '1' then 

      z <= a; 

   else 

      z <= b; 

   end if; 

end process mux; 

 

 

 

 

 

 

 

 

 
If statement 
 
 

 

 

 

 

 

 

 

 

 

 

 

Always only one branch executed. 
 
process (a, b, c, x) 

begin 

   if (x = "0000") then 

      z <= a; 

   elsif (x <= "0101") then 

      z <= b; 

   else 

       z <= c; 

   end if; 

end process; 

 

a

b

z

sel

a

b

z

sel

The first rule for synthesizing the combinational circuits from the process: 
The sensitivity list should be complete. It means that it must contain each 
signal which value is read within the process. 

if condition then 

   -- sequential statements 

elsif condition then 

    -- sequential statements 

elsif condition then 

   -- sequential statements 

else 

   -- sequential statements 

end if; 

if condition then 

   -- sequential statements 

end if; 

if condition then 

   -- sequential statements 

else 

   -- sequential statements 

end if; 

Here the conditions are overlapped: if x = 
"0000" then both conditions are true. But 
because the condition x = "0000" is written 
first, then the assignment z <= a will be 
implemented. Operator if has a built in 

priority. 



 25 

Case statement 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

case sel is 

when "00" => 

    f <= a; 

when "01" => 

    f <= b; 

when "10" => 

    f <= c; 

when "11" => 

    f <= d; 

when others =>  

    f <= 'x'; 

end case; 

 

 

case sel is 

when "00" => 

    f <= a; 

when "01" => 

    f <= b; 

when "01" =>   

    f <= c; 

when "10" => 

    f <= d; 

when "11" => 

    f <= e; 

end case; 

 

 

case address is 

when 0 to 7 => -- values presented as a range 

    a <= '1'; 

when 8 to 15 => -- values presented as a range 

    b <= '1';    

when 16 | 20 | 24 | 28 => -- the pipe ‘|’ symbol  

                          -- is treated here as OR 

    a <= '1'; -- any number of sequential statements  

       b <= '1'; -- can be here 

when others => null; -- empty operator 

end case; 

 

 

All possible values of the object must 

be covered by the when branches. 

The others clause covers all other 

possible values of sel that have not 

been specified, for example, covers 
the cases including ‘X’, ‘U’, ‘Z’, etc of 
std_logic. 

Error, each expression can be covered 

only once. 

 

 



 26 

 

 

 
 
 
 

                                                                           

 
 

      Figure 7. MUX 4x1 

 
 
 

 
 

Figure 8. If versus case  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

b

c

sel

d

2

f

 

Synthesis tools implement case 
statement as a multiplexer 

The conditions in an if statement are 

tested in sequence according priory 

inputs. The choices in case statement 
are tested in parallel, which make 
simulation faster. 
 
Good ASIC synthesis tools can optimize 
both implementations very well. For 

FPGAs elsif and nested if statements 

can result in more logic levels and a non-

optimal implementation. 



 27 

4(8bit) – to – 1(8bit) line multiplexer  in VHDL presentation using “IF” form 

 

LIBRARY  IEEE; 

USE IEEE.std_logic_1164.all; 

 

entity MUX4x8 is 

 port (in1,in2,in3,in4 : in std_logic_vector (7 downto 0);  

          cntrl : in std_logic_vector (1 downto 0);  

          q: out std_logic_vector (7 downto 0));  

end MUX4x8 ; 

 

architecture arc_MUX4x8 of MUX4x8 is   

begin 

 process (in1, in2, in3, in4, cntrl) 

  begin 

   if cntrl = "00" then q <= in1; 

         elsif cntrl  = "01" then q <= in2; 

         elsif cntrl  = "10" then q <= in3; 

         elsif cntrl  = "11" then q <= in4; 

         else q <= "00000000"; -- q <= (others => '0');                

        end if;      

 end process ; 

end arc_MUX4x8; 

 

configuration cfg_MUX4x8 of MUX4x8 is  

 for arc_MUX4x8 

    end for; 

end cfg_MUX4x8; 

 

 

4(8bit) – to – 1(8bit) line multiplexer  in VHDL presentation using “CASE” form 
 
LIBRARY  IEEE; 

USE IEEE.std_logic_1164.all; 

 

entity MUX4x8 is 

port(in1, in2, in3, in4 : in std_logic_vector (7 downto 0);  

     cntrl : in std_logic_vector (1 downto 0);  

         q: out std_logic_vector (7 downto 0));  

end MUX4x8 ; 

 

architecture arc_MUX4x8 of MUX4x8 is   

begin 

process (in1, in2, in3, in4, cntrl) 

    begin 

     case cntrl is 

           when "00" => q <= in1;--mux output := in1 

           when "01" => q <= in2;--mux output := in2 

           when "10" => q <= in3;--mux output := in3 

           when "11" => q <= in4;--mux output := in4 

           when others => q <= "00000000"; 

--when others => q<=(others => '0');            

       end case;      

end process ; 

end arc_MUX4x8; 

 

configuration cfg_MUX4x8 of MUX4x8 is  

 for arc_MUX4x8 

    end for; 

end cfg_MUX4x8; 

 

 



 28 

 
Loop statement 
 
for i in 0 to 3 loop 

  f(i) <= a(i) and b(3-i); 

  v := v xor a(i); 

end loop; 

 

for i in 3 downto 0 loop 

  f(i) <= a(i) and b(3-i); 

  v := v xor a(i); 

end loop; 

 

 

for i in 0 to 3 loop 

  f(i) <= a(i) and b(3-i); 

  v := v xor a(i); 

  if v = 'x' then 

    i := 4; -- It is illegal 

  end if; 

end loop; 

 

 

 

 

process (a, b) 

  variable i: std_logic; 

    ... 

begin 

  for i in 0 to 3 loop 

    f(i) <= a(i) and b(3-i); 

    v := v xor a(i); 

  end loop; 

  i := not i; -- It is legal 

end process; 

 

 

 

 

 

Figure 9. How loops are synthesized 

 

 

 

 

 

i is a loop parameter. Two ranges are 
available – ascending and descending, 
but the loop parameter can decrement 
or increment only by 1. 

A loop parameter cannot be changed 

by assignment.  

The i in the last but one row is not a 
loop parameter. The loop parameter is 
hidden within the loop and cannot be 
watched outside the loop.  

While synthesized loops make multiple 
copies of logic inside the loop, one copy for  
each possible value of the loop parameter. 
It is the reason why the borders of a range 
must be constant. 



 29 

For parameter in loop_range loop 
 . . . 

end loop; 

 

 

while condition loop 
 . . . 

end loop; 

 

 

loop 

 . . . 

end loop; 

 

 

 

loop 

  ... 

  exit; 

  ... 

  exit when condition; 

  ... 

end loop; 

 

 

 

 

l1: for i in 0 to 7 loop 

  l2: for j in 0 to 7 loop 

    c := c + 1; 

    exit l2 when a(j) = b(i); 

    exit l1 when b(c) = 'u'; 

  end loop l2; 

end loop l1; 

 

 

main: for i in 0 to 15 loop 

  ... 

  next main when reset = '0'; 

  ... 

end loop main; 

 

 

 

 

Figure 10. Clock generator (for loop) 

 

There are three different kinds of 
loops in VHDL. The while loop is 
implemented while a condition is 
true. The unbounded lop statement 
loops forever. Only the for loop with 
constant bounds is synthesizable. 
The other loops are useful in test 

benches. 

The exit statement is a sequential 
statement that controls the jump to 

the statement following the loop. 

Loops can be labeled to indicate 

which loop to exit  

The next statement causes control 
to pass back to the top of the loop. 
The loop parameter takes the next 
value in its range.  



 30 

 

 

 

Figure 11. Clock generator (while loop) 

 

 

 

 

Figure 12. Clock generator (unbounded loop) 


