
 41

Arithmetic operators

Operands for arithmetic operations are presented in 2’s complement form and the result
is presented in the same form as well.

+ addition

- subtraction

* multiplication

** exponentiation

/ division

mod modulo

abs absolute value

rem remainder

Operands of the same type

Predefined for

o integer

o real (except mod and rem)

o physical types (e.g. time)

Not defined for bit_vector

'+' and '-' may also be used as unary operators

 42

2's COMPLEMENT ADDITION RULES

Augend Addend Rule

+

-

+

-

+

-

-

+

Add magnitudes, ignore end-around carry.
The sign of the result is the sign found by
the result of addition operation.

Figure 1. Addition in 2's complement form

+13

+11

+24

+
001101

001011

+

011000

(-11) in 2's complement

-13

-11

-24

+
110011

110101

+

101000

(-13) in 2's complement

(-24) in 2's complement

'0' means (+) sign

'1' means (-) sign

1.

2.

(+11) in ordinary form

(+13) in ordinary form

(+24) in ordinary form

-11

+13

+2

+
110101

001101

+

000010

(-13) in 2's complement

+11

-13

-2

+
001011

110011

+

111110

(+11) in ordinary form

(-2) in 2's complement

'0' means (+) sign

'1' means (-) sign

3.

4.

(+13) in ordinary form

(-11) in 2's complement

(+2) in ordinary form

=

=

=

=

 43

2's COMPLEMENT SUBTRACTION RULES

Minuend Subtrahend Rule

+

-

+

-

+

-

-

+

Complement all bits of the subtrahend to
2's complement, add to minuend, ignore
end-around carry. The sign of the result is
the sign found by the result of addition
operation.

Figure 2. Subtraction in 2's complement form

Overflow

+13

+11

+2

-
001101

110101
+

000010

'0' means (+) sign

1.

(-11) in 2's complement

(+13) in ordinary form

(+2) in ordinary form

+13

-11

+2

+
==

-13

-11

+2

-
110011

001011
+

111110

'1' means (-) sign

2.

(+11) in ordinary form

(-13) in 2's complement

(-2) in 2's complement

-13

+11

-2

+
==

-11

+13

-24

-
110101

110011
+

101000

'1' means (-) sign

3.

(-13) in 2's complement

(-11) in 2's complement

(-24) in 2's complement

-11

-13

-24

+
==

+11

-13

+24

-
001011

001101
+

011000

'0' means (+) sign

4.

(+13) in ordinary form

(+11) in ordinary form

(+24) in ordinary form

+11

+13

+24

+
==

Overflow Rules

 No overflow when adding a positive and a negative number
 No overflow when signs are the same for subtraction
 Overflow occurs:

1. when adding two positives yields a negative;
2. adding two negatives gives a positive
3. subtract a negative from a positive and get a negative
4. subtract a positive from a negative and get a positive

 44

0110

0101
+

1011

'1' means (-) sign

1. Both operands are positive

(+ 5) in 2's complement

(+ 6) in 2's complement

(+11) unsigned
0

'0' means carry

+ 6

+ 5

+ 11

+ =

1010

1011
+

0101

'0' means (+) sign

2. Both operands are negative

(+ 5) in 2's complement

(+ 6) in 2's complement

1

'1' means carry

- 6

- 5

- 11

+ =

Addition

Subtraction

1. Minuend is positive but subtrahend is negative. Result negative

+ 6

+ 5

+ 11

+
0110

0101
+

1011

'1' means (-) sign

(+ 5) in 2's complement

(+ 6) in 2's complement

(+11) unsigned

=
0

'0' means carry

+ 6

- 5

+ 11

- =

2. Minuend is negative but subtrahend is positive. Result positive

- 6

- 5

- 11

+
1010

1011
+

0101

'0' means (+) sign

(+ 5) in 2's complement

(+ 6) in 2's complement

=
1

'1' means carry

- 6

+ 5

- 11

- =

Figure 3. Examples of overflow for addition and subtraction

 45

Carry

- 3

- 4

- 7

+
1101

1100
+

1001

'1' means (-) sign

(- 4) in 2's complement

(- 3) in 2's complement

(- 7) in 2's complement

=
1

'1' means carry

- 3

+ 4

+ 1

+
1101

0100
+

0001

'0' means (+) sign

2. First operand is negative but result is positive

(+ 4) in 2's complement

(- 3) in 2's complement

(+ 1) in 2's complement

=
1

'1' means carry

+ 6

- 4

+ 2

+
0110

1100
+

0010

'0' means (+) sign

(- 4) in 2's complement

(+ 6) in 2's complement

(+ 2) in 2's complement

=
1

'1' means carry

1. Both operands are negative

Addition

3. Second operand is negative but result is positive

Figure 4. Illustration carry for addition

 46

- 3

- 4

- 7

+
1101

1100
+

1001

'1' means (-) sign

(- 4) in 2's complement

(- 3) in 2's complement

(- 7) in 2's complement

=
1

'1' means carry

+ 6

- 4

+ 2

+
0110

1100
+

0010

'0' means (+) sign

(- 4) in 2's complement

(+ 6) in 2's complement

(+ 2) in 2's complement

=
1

'1' means carry

- 3

+ 4

- 7

-

+ 6

+ 4

+ 2

-

- 3

+ 4

+ 1

+
1101

0100
+

0001

'0' means (-) sign

(+ 4) in 2's complement

(- 3) in 2's complement

(+ 1) in 2's complement

=
1

'1' means carry

- 3

- 4

+ 1

-

=

=

=

1. Minuend is negative but subtrahend is positive

2. Minuend is negative but result is positive

3. Subtrahend is positive and result is positive

Subtraction

Figure 5. Illustration carry for subtraction

 47

Operations with std_logic_vectors

std_logic_vector

We can make logical operations and
comparision operations with std_logic
array types, but arithmetic operations
are not defined with such arrays.

signal x, y, z : std_logic_vector (3 downto 0);
signal w : Boolean;

x <= “1011” – It is not assignment of (11)10 or (-3)10.
It is assignment of a vector with four components,
each of them has a type std_logic.

z <= x and y; correct

w <= x > y; correct

z <= x + y; is not defined.

signal x, y, z : signed (3 downto 0);

x <= 1011; (-5)10 in 2’s complement form

y <= 0011; (+3)10 in 2’s complement form

z <= x + y; 1110 = (-2)10 in 2’s complement form

if x > y then … correct (false)

signal x, y, z : unsigned (3 downto 0);

x <= 1011; (11)10

y <= 0011; (3)10

z <= x + y; 1110 = (14)10

if x > y then … correct (true)

signed

2’s complement 4-bit vector presents
integers from (-8)10 to (7)10

unsigned

4-bit vector presents positive
integers from (0)10 to (15)10

In a numeric package, three types of arrays of std_logic can be used:
std_logic_vector;
signed;
unsigned.

 48

Conversion between types std_logic_vector, signed, unsigned and
integer

It is a representation of conversion between compatible types std_logic_vector, signed,
unsigned. These types are called compatible because signals or variables of these types
are vectors of std_logic.

T <= < T type > (S)

target type source type

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity numer is
 port (
 a : in std_logic_vector(0 to 3);
 b : in signed(0 to 3);
 c : in unsigned(0 to 3);
 d1, d2 : in natural 0 to 15;
 e1, e2 : in integer -7 to 7;
 s1 : out unsigned(0 to 3);
 t1 : out signed(0 to 3);
 w1, w2 : out integer range -15 to 15;
 x1, x2 : out std_logic_vector(0 to 3);
 y1, y2 : out signed(0 to 3);
 z1, z2 : out unsigned(0 to 3)
);
end numer;

architecture arc_numer of numer is
begin
 x1 <= std_logic_vector(b);
 x2 <= std_logic_vector(c);
 y1 <= signed(a);
 y2 <= signed(c);
 z1 <= unsigned(a);
 z2 <= unsigned(b);
end;

configuration cfg_numer of numer is
 for arc_numer
 end for;
end cfg_numer;

 49

Conversion between types signed, unsigned and integer

UNS <= to_unsigned (INT, Length)

SIG <= to_signed (INT, Length)

INT <= to_integer (UNS)

INT <= to_integer (SIG)

Some operators in numeric_std package

w1 <= to_integer (b);
w2 <= to_integer (c);

s1 <= to_unsigned (d1, 4) + to_unsigned (d2, 4);
t1 <= to_signed (e1, 4) + to_signed (e2, 4);

Comparison operators

Operands: signed, signed; result – Boolean;
signed, integer; result – Boolean;
unsigned, unsigned; result – Boolean;
unsigned, natural; result – Boolean.

Addition and Subtraction

Operands: signed, signed; result – signed;
 signed, integer; result – signed;
 unsigned, unsigned; result – unsigned;
 unsigned, natural; result – unsigned.

Logical operators

Only between operands of the same type:
signed, signed; result – signed;
unsigned, unsigned; result – unsigned.

 50

library IEEE;
use IEEE.std_logic_1164.all;
use ieee.numeric_std.all;

entity pc_counter is
 port
 (
 rsta : in std_logic;
 clk : in std_logic;
 en : in std_logic;
 count : in std_logic;
 din : in std_logic_vector (0 to 15);
 dout : out std_logic_vector (0 to 15)
);
end pc_counter;

architecture arch_pc_counter of pc_counter is
begin

 process (rsta, clk)
 variable tmp : unsigned(0 to 15);
 begin
 if rsta = '1' then
 tmp := x"0000";
 elsif clk'event and clk = '1' then
 if en = '1' then
 tmp := unsigned(din);
 elsif count = '1' then
 if tmp = x"ffff" then
 tmp := x"0000";
 else
 tmp := tmp + 1;
 end if;
 end if;
 end if;
 dout <= std_logic_vector(tmp);
 end process;
end arch_pc_counter;

configuration cfg_pc_counter of pc_counter is
 for arch_pc_counter
 end for;
end cfg_pc_counter;

Exercise: Check operators in numeric_std

--type conversion example
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity numeric is
 port (
 a1, a2 : in std_logic_vector(0 to 3);
 w1, w2 : out std_logic_vector(0 to 3);
 x1, x2 : out signed(0 to 3);
 y1, y2 : out unsigned(0 to 3);
 z1, z2 : out integer range -15 to 15
);
end numeric;

 51

architecture arc_numeric of numeric is
begin
 process (a1, a2)
 variable xx1, xx2 : signed(0 to 3);
 variable yy1, yy2 : unsigned(0 to 3);
 begin
 xx1 := signed (a1) + signed (a2);
 xx2 := signed (a1) - signed (a2);

 z1 <= to_integer (xx1);
 z2 <= to_integer (xx2);

 yy1 := unsigned (a1) + unsigned (a2);
 yy2 := unsigned (a1) - unsigned (a2);

 w1 <= std_logic_vector(yy1);
 w2 <= std_logic_vector(yy2);

 y1 <= yy1;
 y2 <= yy2;
 x1 <= xx1;
 x2 <= xx2;
 end process;

end arc_numeric;

configuration cfg_numeric of numeric is
 for arc_numeric
 end for;
end cfg_numeric;

Test bench

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity test_numeric is
end test_numeric;

architecture arc_test_numeric of test_numeric is
 component numeric
 port (
 a1, a2 : in std_logic_vector(0 to 3);
 w1, w2 : out std_logic_vector(0 to 3);
 x1, x2 : inout signed(0 to 3);
 y1, y2 : out unsigned(0 to 3);
 z1, z2 : out integer range -15 to 15
);
 end component;

 signal a1, a2, w1, w2 : std_logic_vector(0 to 3);
 signal x1, x2 : signed(0 to 3);
 signal y1, y2 : unsigned(0 to 3);
 signal z1, z2 : integer range -15 to 15;

begin
 uut : numeric port map (a1, a2, w1, w2, x1, x2, y1, y2, z1, z2);

 52

 process
 begin
 a1 <= "1011"; a2 <= "0010"; -- a1 = -5; a2 = 3
 wait for 10 ns;

 assert x1 = "1101"
 report "output x1 is wrong!"
 severity error;
 assert x2 = "1001"
 report "output x2 is wrong!"
 severity error;

 assert z1 = -3
 report "output z1 is wrong!"
 severity error;
 assert z2 = -7
 report "output z2 is wrong!"
 severity error;

 assert y1 = "1101"
 report "output y1 is wrong!"
 severity error;
 assert y2 = "1001"
 report "output y2 is wrong!"
 severity error;

 assert w1 = "1101"
 report "output w1 is wrong!"
 severity error;
 assert w2 = "1001"
 report "output w2 is wrong!"
 severity error;

 wait;
 end process;
end arc_test_numeric;

configuration cnf_test_numeric of test_numeric is
 for arc_test_numeric
 end for;
end cnf_test_numeric;

