
 Table 3. Function 
NOT 

a not a 
0 1 
1 0 

Chapter 1 Boolean functions and combinational circuits 
 

1.1 Short introduction into Boolean functions 
 
1.1.1 Basic Boolean functions. There are two classes of digital circuits – 
combinational circuits and sequential circuits. In the first Chapter we will talk about 
combinational circuits. In such circuits, outputs at a time t depend only on the inputs 
in this time t and do not depend on the prehistory, that is, on what was at their 
inputs at the preceding times t-1, t-2, etc. Boolean functions are used to describe the 
behavior of combinational circuits. These functions can have only two values (we will 
use 0 and 1 for these values) and they depend on the variables with two values as 
well. First of all, we will discuss three basic Boolean functions – AND, OR and NOT. 
 
Function AND with two variables is presented in the truth Table 1. In the left part of 
such a table we write all possible different vectors with components 0 and 1. In 
general, a truth table has 2n rows for a function with n variables (only four rows in 
our case). In the right part of such a table, in each row we write a value of a function 
at the corresponding vector. Function AND is equal to one when both variables are 
equal to one (the fourth row of Table 1), otherwise (rows from the first to the third) it 
is equal to zero. 

Table 1. Function AND 

a b a and b 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

 
Table 2 presents the truth table for function OR. This function is equal to zero only 
when both variables are equal to zero (the first row), otherwise it is equal to one. 
Function NOT (Table 3) has only two rows since it always has only one variable. 
 
 
 
 
 
 
 

 

Any Boolean function can be realized by a combinational circuit containing logic 
gates. The simplest basic logic gates implementing Boolean function AND, OR and 
NOT are presented in Fig. 1–3. Gates AND and OR have two images each –  
rectangular and semi-oval. In our logic circuits we will use the former.  
 
 
 
 
 
 
 
 

 
 

Table 2. Function OR 

a b a or b 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

 

 
 

 
 

     Figure 3. NOT-gate 

 
Figure 2. OR - gates 

 
Figure 1. AND - gates 



Chapter 1 Boolean functions and combinational circuits – 2 
 

1.1.2 The main laws and theorems of Boolean algebra 
 
Operations with 0 and 1: 
 
1. A + 0 = A;  A·1 = A 
2. A + 1 = 1;   A·0 = 0 
 
Idempotent theorem: 
 
3. A + A = A;  A·A = A 
 
Involution theorem: 
 
4. (A')' = A 
 
Theorem of complementarity: 
 
5. A + A' = 1;  A·A' = 0 
 
Commutative law: 
 
6. A + B = B + A; A·B = B·A 
 
Associative law: 
 
7. (A + B) + C = A + (B + C) = A + B + C; (AB)C = A(BC) = ABC 
 
Distributive law: 
 
8. A(B + C) = AB + AC ; A + (BC) = (A + B)(A + C) 
 
Simplification theorems: 
 
9.   AB + AB' = A;  (A + B)(A + B') = A 
10. A + AB = A;   A(A + B) = A 
11. (A + B')B = AB; (AB') + B = A + B 
 
It is easy to define the functions AND and OR with three and more variables. We 
illustrate it in Table 4 for three variable functions. This table contains 23 = 8 rows. 

Table 4. Truth table for AND and OR with three variables 

a b c abc a + b + c 
0 0 0 0 0 
0 0 1 0 1 
0 1 0 0 1 
0 1 1 0 1 
1 0 0 0 1 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 

 
Truth tables can be used to prove laws and theorems of Boolean algebra. Let us show 
this for the distributive law a + bc = (a + b)(a + c) in Table 5. The first column of this 
table contains all possible combinations of values a, b and c. In the next two columns 



Chapter 1 Boolean functions and combinational circuits – 3 
 

we constructed the left part of an expression for the distributive law – the product bc 
and the sum a + bc.  In the same way we constructed the right part (a + b) (a + c).  
 
To prove the equation a + bc = (a + b)(a + c) we should compare the grey columns of 
Table 5. Two functions are equivalent if they have the same values at the same bit-
vectors. Thus, the distributive law a + bc = (a + b) (a + c) is proven. 
 
However, if two functions are equivalent their circuit implementations may have 
different costs. Let us take it that the cost of a gate is equal to the number of inputs 
into this gate and that the cost of a circuit is equal to the sum of costs of gates in this 
circuit (to the total number of inputs into all gates in the circuit). 

Table 5. Example of proving a + bc = (a + b)(a + c) 

a b c bc a + bc a + b a + c (a + b)(a + c) 
0 0 0 0 0 0 0 0 
0 0 1 0 0 0 1 0 
0 1 0 0 0 1 0 0 
0 1 1 1 1 1 1 1 
1 0 0 0 1 1 1 1 
1 0 1 0 1 1 1 1 
1 1 0 0 1 1 1 1 
1 1 1 1 1 1 1 1 

 
The logic circuits corresponding to the left (f1) and to the right (f2) parts of the proven 
law are drawn in Fig. 4. These circuits are equivalent because they realize the 
equvalent functions (in reality, this is the same function presented by different 
expressions) but the costs of these circuits are different. Here for the first time, we 
have met the problem of logic circuit minimization. It is evident that some circuit is 
more minimized than the other one if the cost of the first of them is lower than the 
cost of the second one. 

 

 

 

Figure 2. Equivalent circuits with different costs 

 

 
 
1.1.3 DeMorgan’s theorems. The complement of the sum of two variables is equal to 
the product of complements of these variables: 
 

(a + b)' = a'b'    ( 1 ) 
 
The complement of the product of two variables is equal to the sum of complements of 
these variables: 

(ab)' = a' + b'   ( 2 ) 
 
It is very simple to expand these laws to any number of variables. Here we show that 
for three variables: 

(a + b + c)' = ((a + b) + c)' = (a + b)'c' = a'b'c' 
(abc)' = ((ab)c)' = (ab)' + c' = a' + b' + c' 

 
Figure 4. Two circuits for two parts of the distributive law 



Chapter 1 Boolean functions and combinational circuits – 4 
 

Formula (3) presents DeMorgan’s theorem in the general form: to complement 
function f with variables x1, . . ., xm  and operators AND, OR and NOT, we must 
complement each variable (replace each xp by x'p and each x'q by xq) and replace each 
operator AND by OR and each operator OR by AND. 
 

f '(x1, . . ., xm, &, +) = f(x1', . . ., xm', +, &)    ( 3 ) 
Examples: 
 
f1 = x'y + w'z;  f1' = (x + y')(w + z'). 
 
f2 = x1'(x3' + x4'x5x7 + x7'(x4 + x5'x6' + x5x6)); 
 
f2' = x1 + x3(x4 + x5' + x7')(x7 + x4'(x5 + x6) (x5' + x6')). 
 
1.1.4 Canonical forms. Let us look at the Table 6. This table describes Boolean 
function f with three variables a, b and c. In the column Minterm, we constructed 
minterms – the products containing all three variables, in the following way. If in the 
column abc, some variable is equal to zero, this variable is complemented in the 
corresponding product. Otherwise (variable is equal to one), this variable is written 
without inversion.  

 

 

 

 

 

 

 

 

 

 
 f = a'b'c + a'bc' + ab'c' + abc' + abc      ( 4 ) 

 
 

It is easy to show that we can immediately get the expression for Boolean function 
from its truth table. For this, we must write a sum of minterms written in the rows 
where the function f is equal to one (expression (4) under Table 6 in our example). We 
name such expression a canonical sum-of-products. The logic circuit corresponding to 
this expression is presented in Fig. 5. 

The last column of Table 6 contains function f ' – the inversion of function f. Let us 
construct the canonical sum-of-product for this function using the “ones” in the last 
column:  

f ' = a'b'c' + a'bc + ab'c. 

Using De-Morgan’s law, we can return to the initial function f presented as a product-
of-sums where each sum contains all variables or their inversions: 

f = (f ')' = (a + b + c)( a  + b' + c')( a' + b + c') 

 
Figure 5. The circuit for 

canonical sum-of-products (4) 

      Table 6. Function f with three variables 

a b c Minterm f f′′ 
0 0 0 a'b'c' 0 1 
0 0 1 a'b'c 1 0 
0 1 0 a'bc' 1 0 
0 1 1 a'bc 0 1 
1 0 0 ab'c' 1 0 
1 0 1 ab'c 0 1 
1 1 0 abc′ 1 0 
1 1 1 abc 1 0 

 



Chapter 1 Boolean functions and combinational circuits – 5 
 

As above, for a sum-of-products, we can get this expression immediately from the 
truth table of function f  (Table 7). For this, we write a product of maxterms 

f = (a + b + c)( a  + b' + c')( a' + b + c')   ( 5 ) 

 

 

 

 

 

 

 

 

 

 

 

written in the rows where the function f is equal to zero (equation (5) in our example). 
In the column Maxterm in this table, we constructed the sums containing all three 
variables, in the following way. If in column abc some variable is equal to zero, this 
variable is not complemented in the corresponding sum. Otherwise (variable is equal 
to one) this variable is written with inversion. We name such expression a canonical 
product-of-sums. The logic circuit for this expression is presented in Fig. 6. 
 
The costs of circuits in Fig. 5 and Fig. 6 are equal to 20 and 12 respectively. Of 
course, looking at these two circuits, you should not think that the circuit 
corresponding to the product-of-sums is always better than the circuit for the sum-of-
products. First of all, these circuits are not minimized. Second, it is reasonable to 
begin from sum-of-products if the number of “ones” in the column for function value 
is less than the number of “zeroes”, and vice versa.  
 
1.1.5 Cover of Boolean function. Let us discuss one more example of the function f 
presented in Table 8. Really, we can at once construct its logic circuit from this truth 
table. For this, we should go along the column f, and each time when the function is 
equal to one in some row, we construct an AND-gate implementing a minterm for this 
row (there are six AND-gates in this circuit because Table 8 has six “ones” in the 
column f). Our last step is to construct a six-input OR-gate, each its input is 
connected with one of the outputs of AND-gates (see the logic circuit in Fig. 7). 
In such a design we use only rows with ‘1’ in the last column of Table 8, so we do not 
need columns with ‘0’ for this procedure. Let a cover of function f be a set of input 
vectors where function f is equal to one. Fig. 8 contains an initial cover for function f 
from Table 8. We call it an initial cover because it was obtained directly from the truth 
table of this function. Of course, we can construct the circuit in Fig. 7 immediately 
from the cover in Fig. 8. 
 
 
 
 
 

Table 7. The same function f 

a b c Maxterm f 
0 0 0 a + b + c 0 
0 0 1 a + b + c' 1 
0 1 0 a  + b' + c 1 
0 1 1 a + b' + c' 0 
1 0 0 a' + b + c 1 
1 0 1 a' + b + c' 0 
1 1 0 a' + b' + c 1 
1 1 1 a' + b' + c' 1 

  
 

  
 

Figure 6. The circuit for a canonical 
product-of-sums 



Chapter 1 Boolean functions and combinational circuits – 6 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 x1 x2 x3 x4 

 0 1 0 0 
 0 1 1 0 
f = 1 0 0 1 
 1 0 1 1 
 1 1 0 1 
 1 1 1 1 

Figure 8. Initial cover for the function in Table 8 

 
Now let us construct sum-of-products of function f from the initial cover in Fig. 8 and 
make some trivial transformations. We take common terms from pairs of minterms 
and use theorem 5 (A + A' = 1) and theorem1 (A·1 = A) from the list of main laws and 
theorems of Boolean algebra found in the beginning of this Chapter.  
 

f = x'1x2x'3x'4 + x'1x2x3 x'4  + x1x'2x'3x4 + x1x'2x3x4 + x1x2 x'3x4 + x1x2x3x4 = 
   = x'1x2x'4(x'3 + x3) + x1x'2x4(x'3 + x3) + x1x2x4(x'3 + x3) = 
   = x′1x2x'4 + x1x'2x4 + x1x2x4 = x'1x2x'4 + x1x4(x'2 + x2). 

 
The result of these transformations is presented in expression (6) and the 
corresponding logic circuit – in Fig. 9. The cost of this circuit is equal to 7; this is 
much lower than the cost of the circuit in Fig. 7. 
 

f = x'1x2x'4 + x1x4.    ( 6 ). 
 

 
Figure 7. Circuit for the function in 

Table 8 

Table 8. Function f with four variables 

x1 x 2 x 3 x 4 f 
0 0 0 0 0 
0 0 0 1 0 
0 0 1 0 0 
0 0 1 1 0 
0 1 0 0 1 
0 1 0 1 0 
0 1 1 0 1 
0 1 1 1 0 
1 0 0 0 0 
1 0 0 1 1 
1 0 1 0 0 
1 0 1 1 1 
1 1 0 0 0 
1 1 0 1 `1 
1 1 1 0 0 
1 1 1 1 1 

 



Chapter 1 Boolean functions and combinational circuits – 7 
 

 
Figure 9. The circuit for expression (6) 

Let us think, whether it is possible to construct the circuit in Fig. 9 without 
transformations of Boolean expressions. In the first two vectors (0100 and 0110) all 
components except one are equal. We can replace these two vectors by one (01x0) 
where symbol x takes the place of non-equal components in the initial vectors. We call 
x a free component and ‘0’ or ‘1’ – bound components. We can immediately return from 
vector 01x0 to the initial vectors replacing the free component with ‘0’ and ‘1’: 
 

001
0110
0100

x
⎭
⎬
⎫

 

 
For the next four vectors in the cover we can make two steps: 
 

11
111

1111
1101

110
1011
1001

xx
x

x

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎭
⎬
⎫
⎭
⎬
⎫

 

 
After the first step we get two vectors with one free component (10x1 and 11x1). These 
vectors also contain all equal components except the third bound component, and we 
replace two vectors by one vector 1xx1 with two free components. As before, it is easy 
to return from vector 1xx1 to the four initial vectors 1001, 1011, 1101 and 1111 
replacing free components with all possible combinations of “zeroes” and 
“ones” (00, 01, 10 and 11). 
 
Let us define a vector as an m-cube (or as having rank m), if this vector contains m 
free components. So, the cube 1xx1 is a 2-cube, vectors 01x0, 10x1 and 11x1 are 1-
cubes and all vectors in the initial cover are 0-cubes. Since cubes 01x0 and 1xx1 
present all 0-cubes in the initial cover we can construct a new cover for function f 
containing only these two cubes: 

 x1 x2 x3 x4 
f = 0 1 x 0 
 1 x x 1 

 
For this minimized cover we can get the minimized sum-of-product (6). Each product 
in this expression corresponds to one cube. Here we have two products: x'1x2x'4 for 
cube 01x0 and x1x4 for cube 1xx1. In such product, a variable is non-complemented if 
the corresponding bound component is equal to one. Otherwise, the variable is 
complemented. There are no variables in the product for free components.  
 



Chapter 1 Boolean functions and combinational circuits – 8 
 

Moreover, to build a circuit such as in Fig. 9 we do not need a Boolean expression. We 
must construct as many AND-gates as the number of cubes in the cover, and connect 
the outputs of these AND-gates to the inputs of OR-gate. In such a design there exists 
some exceptions – if a cube contains only one bound component (the second cube in 
cover y): 

 x1 x2 x3 x4 x5 
 1 x 0 x 1 

y = x x x 1 x 
 0 x 1 x 0 

 
AND-gate for this cube is not constructed but OR-gate has input x4 for this bound 
component: 

 
From the examples above it is evident that to construct a minimal logic circuit we 
must get the cover with the minimal number of maximal cubes – cubes with the 
maximal number of free components. We did not show yet how to do it. It will be the 
topic of the next item. 
 

1.2 Minimization with Karnaugh maps 
 

1.2.1 Two variable Karnaugh maps. If we have two cubes of rank m (each contains 
m free components) with all equal components except for one bound component, we 
can combine these two cubes to get one cube with rank m+1. To increase the rank of 
cubes in such a way we will use Karnaugh maps. A Karnaugh map is a graphical 
representation of a truth table. In a Karnaugh map we can easily find cubes to be 
combined to get a cube with a higher rank. We will begin from the simplest Karnaugh 
maps with two variables. 
 
A Karnaugh map with two variables is a square with four cells (Fig. 10). Rows in such 
Karnaugh map correspond to the first variable a, columns – to the second variable b. 
Rows and columns are denoted by zeros and “ones”, and the cell at the intersection of 
row 0 and column 0 corresponds to vector 00 of the truth table, at the intersection of 
row 0 and column 1 – to vector 01, etc.  

 
Figure 10. Correspondence between a Karnaugh map and a truth table 

Let us discuss several examples. Function f1 is presented by its cover in Fig. 11,a. To 
insert this function into the Karnaugh map we put “ones” in the cells for 0-cubes in 
the function cover (Fig. 11,b). The two cells with ones in one row or one column are 
adjacent and can be combined into one 1-cube. To construct such 1-cube we must 
check which variable has the same value in this cube (a = 0 in our example) and 
which variable changes its value (b in our example: b = 0 in cube 00 and b = 1 in cube 
01). Then, in the 1-cube we write a bound component 0 for unchanging variable a and 



Chapter 1 Boolean functions and combinational circuits – 9 
 

a free component x for changing variable b. This cube 0x is written in the minimized 
cover in Fig. 11,c. The similar example with two adjacent cells in the column is shown 
in Fig 12. 
 
 
 
 
 

Figure 11. Function f1: initial cover (a), Karnaugh map (b) and minimized cover (c) 

 
 
 
 
 
 

Figure 12. Function f2: initial cover (a), Karnaugh map (b) and minimized cover (c) 

In Fig. 13, two possible one cube have one common cell 00. Since our goal to get 
maximal cubes, we cover this cell twice.    
    
 
 
 
 

 
Figure 13. Function f3: initial cover (a), Karnaugh map (b) and minimized cover (c) 

In Fig. 14, two zero cubes are not adjacent and cannot be combined. 
 
 
 
 
 
 

 

Figure 14. Function f4: initial cover (a), Karnaugh map (b) and minimized cover (c) 

In Fig. 15, four adjacent cells form 2-cube xx: 
 
 
 
 
 
 
 

Figure 15. Function f5: initial cover (a), Karnaugh map (b) and minimized cover (c) 

1.2.2 Three variable Karnaugh maps. First two examples for three variable 
Karnaugh maps are rather simple. In both cases, four combined cells give 2-cubes. In 

b) 

 
 a b 
f1 min= 0 x 

c) 

 
 a b 

f1 = 0 0 
 0 1  

a) 

 
      b) 

 
 a b 
f2 = 0 0 
 1 0 

a) 

 
 a b 
f2 min= x 0 

c) 

 
 a b 
f3 min= 0 x 
 x 0 

c) 
 

b) 

 
 a b 

 0 0 
f3 = 0 1 
 1 0 

a) 

 
b) 

 
 a b 

f4 = 0 0 
 1 1 

a) 

 
 a b 
f4min = 0 0 
 1 1 

c) 

 
b)    

 
 a b 

 0 0 
f5 = 0 1 
 1 0 
 1 1 

a) 

 
 a b 
f5 min= x x 

c) 



Chapter 1 Boolean functions and combinational circuits – 10 
 

Fig. 16, variables a and c are changed but variable b is equal to 0 in all four of these 
cells (b is not changed). Thus, the final cube contains two free and one bound 
components. In Fig. 17, 2-cube contains two free and one bound components as well. 
 
 
 
 
 
 

 

Figure 16. Function f6: initial cover (a), Karnaugh map (b) and minimized cover (c) 

Fig. 18 illustrates the only specific feature of Karnaugh maps with three variables – 
the “edge effect”. It is clear from the cover of function f8 (Fig. 18, a) that two 0-cubes 
000 and 010 can be combined into one 1-cube 0x0. To find such a combining in a 
Karnaugh map we should combine cells at the opposite edges of the map. 
 
 
 
 
 
 

 

Figure 17. Function f7: initial cover (a), Karnaugh map (b) and minimized cover (c) 

 
 
 
 
 

 

Figure 18. Function f8: initial cover (a), Karnaugh map (b) and minimized cover (c) 

A similar example with a combination of four cells is shown in Fig. 19. Fig. 20 
illustrate closely related example with twice covered two cells. 
 
 
 
 
 
 
 
 
 

Figure 19. Function f9: initial cover (a), Karnaugh map (b) and minimized cover (c) 

 
 
 
 

 a b c 
 0 0 0 

f6 = 0 0 1 
 1 0 0 
 1 0 1 

a)  
b) 

 a b c 
f6min = x 0 x 
       c) 

 
 a b c 

 0 0 0 
f7 = 0 0 1 
 0 0 1 
 0 1 1 

a) 

b) 

 a b c 
f7min = 0 x x 
       c) 

 

           b) 

 
 a b c 
f8 = 0 0 0 
 0 1 0 

a) 

 a b c 
f8min = 0 x 0 
             c) 

 

 a b c 
 0 0 0 

f9 = 0 1 0 
 1 0 0 
 1 1 0 

a) 
        b)   

 a b c 
f9min = x x 0 

 
c) 
 



Chapter 1 Boolean functions and combinational circuits – 11 
 

 
 
 
 
 
 
 
 

Figure 20. Function f10: initial cover (a), Karnaugh map (b) and minimized cover (c) 

 
1.2.3 Four variable Karnaugh maps.  The specific feature of a Karnaugh map with 
four variables is shown in Fig. 21 – it is possible co combine four corner “ones” in one 
2-cube. You can check it yourself if you combine “ones” in each column separately at 
the first step and then get the 2-cube at the second. Of course, we should do it in one 
step, checking which variables are changed (free components correspond to these 
variables) and which variables are not changed (bound components correspond to 
these variables). In our example we get cube x0x0 immediately from Fig. 21,b 
(variables a and c are changed and variables b and d are not changed). 
 
 
 
 
 
 
 
 
 

 

Figure 21. Function f11: initial cover (a), Karnaugh map (b) and minimized cover (c) 

 

In Fig. 22 we have one more example for a four variable Karnaugh map: 

 
 a b c d 

 0 0 0 0 
 0 0 0 1 
 0 0 1 0 
 0 0 1 1 
 1 0 0 0 
f12 = 1 0 0 1 
 1 0 1 0 
 1 0 1 1 

                          a)                                                
 c) 

Figure 22. Function f12: initial cover (a), Karnaugh map (b) and minimized cover (c) 

 

 a b c d 
f12min = x 0 x x 

b)   

 a b c 
 0 0 0 

f10 = 0 0 1 
 0 1 0 
 1 0 0 
 1 0 1 
 1 1 0 

a) 

 a b c 
f10min = x x 0 
 x 0 x 

c) 

 
b) 

 a b c d 
 0 0 0 0 

f11 = 0 0 1 0 
 1 0 0 0 
 1 0 1 0 

a) 

 
 a b c d 
f11min = x 0 x 0 

c) 

 



Chapter 1 Boolean functions and combinational circuits – 12 
 

1.2.4 Five variable Karnaugh maps. A five variable Karnaugh map is formed from 
two four variable Karnaugh maps. The only specific feature of this map is the 
possibility to combine cells which are symmetric along the vertical line which divides 
this map into two four variable maps (along the “main meridian”).  
 
Let us turn to the Karnaugh map in Fig. 23,b. If we combine “four” ones at the left 
side of this map we will get 2-cube x10x1. The same goes for the right four “ones”, 
which will give us 2-cube x11x1, and we can combine these two 2-cubes and get 3-
cube x1xx1. To make this in one step we should find at once that these two figures 
are symmetric along the “main meridian”. Thus, we can get 3-cube x1xx1 immediately 
from Fig. 23,b (variables a, c and d are changed, variables b and e are not changed in 
the combined figure and both are equal to one). 
 
 

 
 
 
 
 
 
 
 
 

 
        a) 
 
           
       c) 

Figure 23. Function f13: initial cover (a), Karnaugh map (b) and minimized cover (c) 

 
In the example in Fig. 24,b two figures on the left and on the right are not symmetric 
so they are not combinable. In our further examples of five variables maps we will 
discuss the same topic – how to find out the symmetry along the “main meridian” and 
at once combine two distant figures in a Karnaugh map into one cube with a higher 
rank. 
 
 a b c d e 

 0 0 0 0 1 
 0 0 1 1 1 
 0 1 0 0 1 
f14 = 0 1 1 1 1 
 1 1 0 0 1 
 1 1 1 1 1 
 1 0 0 0 1 
 1 0 1 1 1 
 
    a) 
 
     
     
           
                                                                          c) 

 

 a b c d e 
 0 1 0 0 1 

 0 1 0 1 1 
 0 1 1 0 1 
f13 = 0 1 1 1 1 
 1 1 0 0 1 
 1 1 0 1 1 
 1 1 1 0 1 
 1 1 1 1 1 

 a b c d e 
f13min = x 1 x x 1 

 a b c d e 
f14min = x x 0 0 1 
 x x 1 1 1 

         b) 

          b) 



Chapter 1 Boolean functions and combinational circuits – 13 
 

Figure 24. Function f14: initial cover (a), Karnaugh map (b) and minimized cover (c) 
 
 
 
 
 
 
 
 

 a b c d e 
 0 0 0 0 1 

 0 0 1 0 1 
 0 1 0 0 1 
f15 = 0 1 1 0 1 
 1 1 0 0 1 
 1 1 1 0 1 
 1 0 0 0 1 
 1 0 1 0 1 

 
     a) 
 

                                          c) 

Figure 25. Function f15: initial cover (a), Karnaugh map (b) and minimized cover (c) 

 
 

 a b c d e 
 0 1 0 1 1 
f16 = 0 1 1 1 1 
 1 1 0 1 1 
 1 1 1 1 1 

 
      a) 
 
 
 
     
     
     
                
      c) 

Figure 26. Function f16: initial cover (a), Karnaugh map (b) and minimized cover (c) 

 
 
 a b c d e 
f17 = 0 1 0 0 1 
 0 1 1 0 1 
 
     a) 
 

 
 

 a b c d e 
f15min = x x x 0 1 

 a b c d e 
f16min = x 1 x 1 1 

 a b c d e 
f17min = 0 1 x 0 1 

 b)   

 

     b)   

 
 

b)   



Chapter 1 Boolean functions and combinational circuits – 14 
 

 
      c)      
             

Figure 27. Function f17: initial cover (a), Karnaugh map (b) and minimized cover (c) 

 
 
 
 
 
 
 

 a b c d e 
 0 0 0 0 0 

 0 0 0 1 0 
 0 0 1 0 0 
f18 = 0 0 1 1 0 
 1 0 0 0 0 
 1 0 0 1 0 
 1 0 1 0 0 
 1 0 1 1 0 

     a) 
 
 
 
 
           
           c) 

Figure 28. Function f18: initial cover (a), Karnaugh map (b) and minimized cover (c) 

 
1.2.5 Karnaugh maps with don’t care. To explain what don’t care is, let us 
suppose that the circuit at Fig. 29 is used in decimal arithmetics, i.e. only the vectors 
corresponding to the decimal digits from zero to nine can appear at its input. Thus, 
the vectors from 1010 to 1111 will never come to the input of this circuit. This means 
that this function is not defined at these vectors and we use term “don’t care” to name 
this set of inputs. We can define the value of function y as one or zero at don’t care 
and use it to enlarge cubes in the minimized cover. The symbol Ø will be used to 
mark the cell in a Karnaugh map where a function is not defined. 
 

 
 
 
 
 

Figure 29. Circuit in decimal arithmetic 

 
Two rules should be used in minimization with don’t care: 
 

1. We must cover only “ones” in Karnaugh maps, not don’t cares Ø; 
2. We can use the cell with Ø as the cell with ‘1’ if we construct a larger cube in 

the minimized cover. 

 a b c d e  
f18min = x 0 x x 0 

 b)   

 



Chapter 1 Boolean functions and combinational circuits – 15 
 

 
Let us illustrate this by the example of the cover in Fig. 30,a. In this cover, the 
function f19 is equal to one at the vectors written over the dotted line, and it is not 
defined (domain of don’t care) at the vectors under the dotted line. The covering 
process is shown in Fig. 30,b. As we can see from this Karnaugh map, only cells with 
don’t care, which help us to enlarge the cubes in the final cover, were used to get the 
minimized cover (Fig. 30,c). 
 
 
 
 
 
 a b c d 

 0 0 0 1 
 0 0 1 0 
 0 1 1 0 
 0 1 1 1 
f19 = 1 0 0 0 
 1 1 1 1 
 0 0 0 0 
 0 1 0 0 
              0 1 0 1 
 1 0 1 0 
 1 0 1 1 
 1 1 0 0 
 
   a)              
b)     
 
 
 
 
           
 
                  
c) 

Figure 30. Function f19: initial cover (a), Karnaugh map (b) and minimized cover (c) 

In Fig. 31 we minimized the same function without taking don’t care into 
consideration (function f20). Logic circuits for minimized functions f19min and f20min are 
presented in Fig. 32. The cost of the first of them is equal to 13 (the total number of 
inputs in gates), the cost of the second – 18. We will return to the using of don’t care 
in Chapter 3 where we will show how it can help us to minimize logic circuits of 
simple Finite State Machines (FSM). 
 
Now we will show how to shorten the specification of a Boolean function. Let us 
return to the Boolean function f with four variables x1, …, x4. Its truth table was 
presented in Table 8, we illustrated the minimization of this function in Fig. 9.  
 
 
 

 a b c d 
 0 x 0 x 
f19min = 0 1 x x 
 x 0 x 0 
 x 1 1 1 

 a b c d 
 0 x 1 0 
f20min = x 1 1 1 

00

01

11

10

00 01 11 10

a  b

c  d

1

1

1 1

1

1

 



Chapter 1 Boolean functions and combinational circuits – 16 
 

 
 
 
 
 
 
  
    a)       
    b)   

Figure 31. Function f20: Karnaugh map (a) and minimized cover (b) 

 
We repeated this truth table in Table 9 and added one (the first) column to this table. 
In this column we wrote decimal numbers from 0 to 15 corresponding to the binary 
vectors of variables x1, …, x4 in each row. It is clear that we can define this function 
writing down the sequence of decimal numbers corresponding to the vectors where 
Boolean function is equal to one (these vectors should be in the cover of this 
function):    

f(x1, x2, x3, x4) = Σ(4, 6, 9, 11, 13, 15). 
 
Here Σ means that we used sum-of-products for our function. We will use such 
function description in many our examples. 

 
Figure 32. Logic circuits after minimization with don't care (a) and without it (b) 

 
Table 9. Truth table of function f 

 0 0 0 1 
 1 0 0 0 

# x1 x 2 x 3 x 4 f12 

0 0 0 0 0 0 
1 0 0 0 1 0 
2 0 0 1 0 0 
3 0 0 1 1 0 
4 0 1 0 0 1 
5 0 1 0 1 0 
6 0 1 1 0 1 



Chapter 1 Boolean functions and combinational circuits – 17 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
1.2.6 Examples. In this section we will discuss several examples of Boolean function 
minimization using Karnaugh maps.  
 
Example 1. The function in this example  
 

f21(x1, x2, x3, x4) = Σ(3, 4,  7,  9, 13, 14) 
 

is defined as a list of decimal numbers. We begin with the initial cover (Fig. 34,a) 
writing vectors (0-cubes) for each decimal number in the function representation. The 
next steps of minimization are the same as above. 
 

 x1 x2 x3 x4 
 0 0 1 1 

 0 1 0 0 
f21 = 0 1 1 1 
 1 0 0 1 
 1 1 0 1 
 1 1 1 0 

 
    a)       
       
 
 
 
 
 
 
 
 
 
                              b)   
 
 

7 0 1 1 1 0 
8 1 0 0 0 0 
9 1 0 0 1 1 

10 1 0 1 0 0 
11 1 0 1 1 1 
12 1 1 0 0 0 
13 1 1 0 1 `1 

 14 1 1 1 0 0 
15 1 1 1 1 1 

 x1 x2 x3 x4 
 0 x 1 1 

 x1 x2 x3 x4 
 0 1 0 0 

 0 1 1 0 
f = 1 0 0 1 

 1 0 1 1 
 1 1 0 1 
 1 1 1 1 

Figure 33. Function f – initial cover 

 
                    d)   

 



Chapter 1 Boolean functions and combinational circuits – 18 
 

 
 
 
 
 
                                c)  

 
Figure 34. Function f21: initial cover (a), Karnaugh map (b), minimized cover (c) and minimized 

logic circuit (d) 
 
Example 2. The function in this example  
 

f22(a, b, c) =a'b + bc' + b'c′ 
 
has three input variables and is defined as a Boolean expression. To construct the 
initial cover (Fig. 35,a) we must present each product in this expression as a 
corresponding cube (1-cube for each product in our example because products 
contain two variables). Then we insert these cubes into Karnaugh map and find the 
minimized cover (Fig. 35,c). The logic circuit implementing this function is shown in 
(Fig. 35,d). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                            
                 

Figure 35. Function f22: initial cover (a), Karnaugh map (b), minimized cover (c) and minimized 
logic circuit (d) 

           
   
Example 3. The function in this example is also presented as Boolean expression: 
 

f23 = w'z + xz + x'y + wx'z 
 

As above, we can present each product in this expression as a corresponding cube in 
the initial cover (Fig. 36,a). Here we have three 2-cubes and one 1-cube. If, for some 
reason, it is difficult to insert this cover in Karnaugh map immediately, it is possible 
to construct an initial cover f023 with 0-cubes only. For this, we must replace free 
components in each cube in the previous cover by all possible combinations of zeroes 
and ones (Fig. 36,b). Repeating 0-cubes (grey color in this figure) can be deleted. 
Karnaugh map, minimized cover and minimized logic circuit are presented in Fig. 36, 
c – e. 

f21min = 1 x 0 1 
 0 1 0 0 
 1 1 1 0 

 a b c 
f22min = x x 0 
 0 1 x 

b) 

 a b c 
 0 1 x 
f22 = x 1 0 
 x 0 0 

          a) 

                     c) 
 

      d) 
 



Chapter 1 Boolean functions and combinational circuits – 19 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           
   

Figure 36. Function f23: initial cover (a), initial cover with 0-cubes (b), Karnaugh map (c),  
  minimized cover (d) and minimized logic circuit (e)  

 
Example 4. The function with five variables in this example  
 

f24(a, b, c, d, e) = Σ(0, 1, 6, 7, 14 – 17, 19, 20, 24, 27). 
 

is defined as a list of decimal numbers. The sequence of operations to minimize a logic 
circuit for this function is the same as in Example 1. 
 

 a b c d e 
 0 0 0 0 0 

 0 0 0 0 1 
 0 0 1 1 0 
 0 0 1 1 1 
 0 1 1 1 0 
f24 = 0 1 1 1 1 
 1 0 0 0 0 
 1 0 0 0 1 
 1 0 0 1 1 
 1 0 1 0 0 
 1 1 0 0 0 
 1 1 0 1 1 

                                                                                
          a)       
       
 

 w x y z 
 0 x x 1 

f23 = x 1 x 1 
 x 0 1 x 
 1 0 x 1 

a) 
 

 w x y z 
 0 0 0 1 

 0 0 1 1 
 0 1 0 1 
 0 1 1 1 
 0 1 0 1 
f023 = 0 1 1 1 
 1 1 0 1 
 1 1 1 1 
 0 0 1 0 
 0 0 1 1 
 1 0 1 0 
 1 0 1 1 
 1 0 0 1 
 1 0 1 1 
    b) 

 

c) 

 
    e) 

 
 w x y z 
f23min = x x x 1 
 x 0 1 x 
                     d) 



Chapter 1 Boolean functions and combinational circuits – 20 
 

 
 
 
 
 
 
 
 
 
                       

 
 
 
 
 
 

                                     
                                  c) 

Figure 37. Function f24: initial cover (a), Karnaugh map (b), minimized cover (c) and minimized 
logic circuit (d) 

 
Example 5. The function with five variables and don’t care (Fig. 38)   

f25(a,b,c,d,e) = Σ(0, 1, 2, 8, 9,[10, 13, 16 – 19, 24, 25]) 
 

is defined as a list of decimal numbers. The decimal number, corresponding to vectors 
in don’t care are enclosed into square brackets. The “care” and “don’t care” cubes in 
the initial cover are separated by the dotted line.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

a)         
        

 
 
 
 
 

 a b c d e 
 x 0 0 0 x 

f24min = 0 x 1 1 x 
 1 x 0 0 0 
 1 x 0 1 1 
 1 0 x 0 0 

 a b c d e 
 0 0 0 0 0 

 0 0 0 0 1 
 0 0 0 1 0 
 0 1 0 0 0 
f25 = 0 1 0 0 1 
 0 1 0 1 0 
 0 1 1 0 1 
 1 0 0 0 0 
 1 0 0 0 1 
 1 0 0 1 0 
 1 0 0 1 1 
 1 1 0 0 0 
 1 1 0 0 1 

 a b c d e 
f25min = x x 0 0 x 
 0 x 0 x 0 

 
b) 

 



Chapter 1 Boolean functions and combinational circuits – 21 
 

    c)       
         

Figure 38. Function f25: initial cover (a), Karnaugh map (b), minimized cover (c) and minimized 
logic circuit (d) 

 
1.3 Logic circuits with NORs and NANDs 

 
In this section we will discuss the synthesis of logic circuits with NOR and NAND 
gates. Such gates are more popular in logic synthesis. Moreover, it is possible to say 
that most VLSI (Very Large Scale Integrated) circuits are constructed from these 
gates. However, people are used to think on the basis AND-OR-NOT, it is impossible to 
think on the basis NOR-NAND. The simplest methods to construct logic circuits from a 
truth table, a Karnough map or a cubical cover give us an expression in sum-of-
products or product-of-sums form, which can be implemented as a two-level circuit. 
All the known methods for minimization of logic circuits use circuits on the AND-OR-
NOT basis and produce results on the same basis. Only after this the special mapping 
algorithms are used to cover circuit by librarian elements, NOR and NAND gates as 
well. 
 
We will discuss very simple algorithms for transformation of any multilevel circuit into 
the circuit with NOR gates, with NAND gates and with NOR and NAND gates together. 
Let us start with the circuits with NOR gates. 
1.3.1 Circuits with NOR gates. Table 10 presents the truth table for function NOR. 
This function is equal to one only when both variables are equal to zero (the first row), 
otherwise it is equal to zero. The logic gate NOR is shown in Fig. 39. 

 

 

 

 

 
Implementation of functions OR and AND with NOR gates is evident from Fig. 40. 
Thus, to realize OR-function f = x1 + x2 with NOR gates we must use the same inputs 
x1, x2 as inputs for NOR gate and invert its output (mnemonics: Cover – Invert). To 
realize AND-function f = x1x2 with NOR gates we must use the inverted inputs x1, x2 
for NOR gate (mnemonics: Invert – Cover).  
 
 
 
 
 
 
 
 
As the first example, we will discuss mapping of a logic circuit in Fig. 41 with NOR 
gates. Here we will use gate by gate transformation. Thus, gate OR1 in this figure is 
replaced by gates NOR and INV1 in Fig. 42 (Cover – Invert). Gate AND2 in Fig. 41 is 
replaced by one gate NOR2 in Fig. 42 (Invert – Cover) etc. In the circuit thus 

Table 10. Function NOR 

x1 x2 x1 + x2 (x1 + x2)' 
0 0 0 1 
0 1 1 0 
1 0 1 0 
1 1 1 0 

 

1
x2

x1 (x1 + x2)'

 
Figure 39. Gate NOR 

 
Figure 40. Implementation of OR and AND with NOR gates 



Chapter 1 Boolean functions and combinational circuits – 22 
 

constructed, two sequential inverters may be found (such cases are dotted in Fig. 42). 
The final step consists of deleting such pairs of inverters (Fig. 43).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 42. Gate by gate mapping of the circuit in Fig. 41 with NOR gates 

 
Figure 43. Final step of mapping with NOR gates 

 
1.3.2 Circuits with NAND gates. Table 11 presents the truth table for function 
NAND. This function is equal to zero only when both variables are equal to one (the 
last row), otherwise it is equal to one. The logic gate NAND is shown in Fig. 44. 
 

 
Figure 41. Example 1 with AND and OR gates 



Chapter 1 Boolean functions and combinational circuits – 23 
 

Implementation of functions AND and OR with NAND gates is evident from Fig. 45. 
Thus, to realize AND-function f = x1x2 with NAND gates we must use the same inputs 
x1, x2 as inputs for NAND gate and invert its output (mnemonics: Cover – Invert). To 
realize OR-function f = x1 + x2 with NAND gates we must use the inverted inputs x1, x2 
for NAND gate (mnemonics: Invert – Cover).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As an example we will discuss the mapping of the same logic circuit (Fig. 41) with 
NAND gates. Once again, here we use a gate by gate transformation. Thus, gate OR1 in 
this figure is replaced by gate NAND1 in Fig. 46 (Invert – Cover). Gate AND2 in Fig. 41 
is replaced by two gates NAND and INV2 in Fig. 46 (Cover – Invert) etc. As above, in the 
circuit thus constructed, two sequential inverters may be found (such cases are 
dotted in Fig. 46). The final step consists of deleting such pairs of inverters (Fig. 47).  
 
We can generalize the rule for mapping of AND-OR circuits by NOR (NAND) gates. Let 
us say that gates AND and NAND (OR and NOR) are consonant (with similarly 
articulated gates in both occurences). At the same time, gates AND and NOR (OR and 
NAND) are not consonant with. Then, in a gate by gate transformation, the consonant 
gates are replaced by the rule Cover – Invert, the non-consonant gates are replaced 
according with the rule Invert – Cover. 

Table 11. Function NAND 

x1 x2 x1x2 (x1x2)' 
0 0 0 1 
0 1 0 1 
1 0 0 1 
1 1 1 0 

 

 
Figure 44. Gate NAND 

 
Figure 45. Implementation of AND and OR with gates NAND 



Chapter 1 Boolean functions and combinational circuits – 24 
 

 
Figure 46. Gate by gate mapping of the circuit in Fig. 46 with NAND  gates 

 
Figure 47. Example 1 with NAND gates  

 
1.3.3 Circuits with NOR and NAND gates. Before we define the rules for 
transformation of any logic circuit into the circuit with NOR and NAND gates, let us 
first conduct some experiments. In Fig. 48,a we have four copies of the same two-level 
circuit implementing function f1. In these circuits we numbered gates by all possible 
combinations 0-0, 0-1, 1-0 and 1-1 of zeroes and ones. Then, in Fig. 48,b we have 
implemented these circuits with NOR and NAND gates according the rules in Fig. 40 



Chapter 1 Boolean functions and combinational circuits – 25 
 

and Fig. 45. To decide what gate (NOR or NAND) should cover the gates OR and AND 
on the left side of this figure, we have used the following very simple rules: 

1. We realized AND gate by NAND gate (consonant gates: NAND for AND) if the 
AND gate is marked by 1; 

2. We realized OR gate by NOR gate (consonant gates: NOR for OR) if the OR gate 
is marked by 1; 

3. We realized AND gate by NOR gate (non-consonant gates: NOR for AND) if the 
AND gate is marked by 0; 

4. We realized OR gate by NAND gate (non-consonant gates: NAND for OR) if the 
OR gate is marked by 0. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It follows immediately from Fig. 48 that: 

1. If two gates in the sequence are marked by different numbers (0-1 in the 
second circuit and 1-0 in the third circuit) there is no inverter between NOR 
and NAND gates; 

2. If two gates in the sequence are marked by the same numbers (0-0 in the first 
circuit and 1-1 in the last one) there is an inverter between NOR and NAND 
gates; 

3. If the right (last gate) in the AND-OR circuit is marked by one (the second and 
the fourth circuits in our example) there is an inverter at the output of the 
NOR-NAND circuit. 

If you repeat our experiment for three other possible combinations of two-level circuits 
(Fig. 49) you will get the same results. 

 
Figure 49. Three other possible two-level circuits 

The rules for transformation of any logic circuits with AND-OR gates into the circuit 
with NAND-NOR gates can be briefly formulated in the following way: 

 
  a)        b) 
Figure 48. Four implementation of  the same circuit with NOR – NAND gates 



Chapter 1 Boolean functions and combinational circuits – 26 
 

Step1 – Marking. At this step we go from right to left in the OR-AND circuit and mark 
each gate by 1 or 0, minimizing the number of cases in which two connected gates are 
marked by the same number. If we consider the circuit as a graph with gates as its 
vertices, it would be equivalent to the coloring of this graph by two colors (0 and 1) 
with minimization of the number of failures in such coloring – with minimization of 
the number of cases in which two connected vertices are colored by the same colors. 
One of the possible markings for the circuit in Fig. 41 is presented in Fig. 50. 
 

 
 

Figure 50. Example 1 with AND and OR gates – the first version of marking 

 
Step2 – Mapping. At this step we go from left to right. Each gate marked by 1, should 
be replaced with the consonant gate (OR by NOR, AND by NAND) in accordance with 
the rule Cover – Invert. Each gate marked by 0, should be replaced with the non-
consonant gate (OR by NAND, AND by NOR) in accordance with the rule Invert – 
Cover. In such a mapping, inverters can appear only between gates marked by the 
same numbers (0-0 or 1-1). The circuit in Fig. 51 with NOR and NAMD gates is the 
result of mapping of the circuit with AND and OR gates in Fig. 50. 

y3

3

2

7
10

9

y2

y1

1

x8
x2 1

x3
x7

1

1

&x1
x10

&x2
x10

x6

& &x4

x3
x6
x9
x1 1

1x5

1

x1
x2

1

1

1

 
 

Figure 51. Example 1 with NOR and NAND gates (the first version) 
 
Since we do not have violations in the marking of the circuit in Fig. 50, there are no 
inverters between gates in Fig. 51. However, we have three inverters at the outputs 
because y1, y2 and y3 are the outputs of gates marked by 1 (do you remember the rule 
Cover – Invert?).  



Chapter 1 Boolean functions and combinational circuits – 27 
 

 

In Fig. 52, we used the marking beginning from 0 for the same circuit with AND – OR 
gates. The corresponding logic circuit with NAND and NOR gates is shown in Fig. 53. 

 

 
Figure 52. Example 1 with AND and OR gates – the second version of marking 

 

 
Figure 53. Example 1 with NOR and NAND gates (the second version) 

 
In the circuit in Fig. 54 (Example 2), we could not avoid a violation in marking (two 
connected gates AND4 andAND7 are marked by 0) so we have an inverter in the circuit 
with NOR and NAND gates in Fig. 55. 
 
 
 
 
 
 
 
 
 



Chapter 1 Boolean functions and combinational circuits – 28 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
Figure 55. Example 2 with NOR and NAND gates 



Chapter 1 Boolean functions and combinational circuits – 29 
 

 
 



 
 

Chapter 2 Abstract Automata 
 
In the first Chapter, we presented the elements of Boolean algebra as a tool for 
description of combinational circuits. In such circuits, the output at a cirtain time 
depends only on the inputs at the same time and does not depend on what was at the 
inputs of these circuits at the previous time. 
 
This chapter deals with models for description of sequential circuits whose behavior 
depends not only on their present inputs, but, generally, on a prehistory, including 
past inputs. In the first section, we will introduce such a model – abstract automaton 
or a finite state machine (FSM) and will discuss the main automaton models – Mealy, 
Moore and their combined model. Then we will talk about the transformations 
between Mealy and Moore models and their minimization. 
 

2.1 Behavior of abstract automaton 
Let us consider the unit with one input and one output (Fig. 1) working at discrete 
times t = 0, 1, 2 … We suppose that at each point in time t input zf (a letter of input 
alphabet Z = {z1, … , zF}) appears at the unique input of the unit. 
 

 
Figure 1. Unit S 

Output symbol wg (a letter of output alphabet W = {w1, … , wG}) appears as a response 
to the input zf at the same point in time t at the unique output of the unit. Assume, 
for example, that Z = {z1, z2, z3} and W = { w1, w2, w3, w4} and the output word ω(t) = 
w1w3w4w2w1w3 is the reply to the input word ξ(t) = z2z1z1z3z2z2 (Fig. 2). 
 

 

 

Figure 2. Input-output sequence for unit S 

As seen from Fig. 2, the responses of unit S to the same inputs are sometimes 
different. Really, at times 1 and 2 we have the same input z1 but different outputs w3 
and w4, at times 0 and 5 we have the same input z2 but different outputs w1 and w3 
etc. Thus at any time t, the signal at the output of our unit depends not only on the 
input signal but also on the prehistory; i.e., it depends on the input sequence applied 
to the unit before this time t. Hence, unit S is not a combinational but a sequential 
circuit and we can not use Boolean algebra to describe its behavior; we need another 
model for such a behavior. For this, we will introduce abstract automaton, or simply 
automaton. We use here the term 'abstract' to emphasize that at this level we are 
dealing with idealized models and put aside the real properties of input and output 
signals; we consider them only as letters of some alphabets.  

 
2.2 Mealy and Moore automata 

 
Abstract automaton has a set of states A. In each point in time, the automaton is in 
some state am from this set of states (am∈A). When signal zf appears at the input, the 
automaton produces signal wg at the output according to its output function λ and 
transits into the next state as according to its transition function δ. Thus, to present 
an automaton we must present three sets – the set of inputs Z, the set of outputs W, 

t 0 1 2 3 4 5 
ξ(t) z2 z1 z1 z3 z2 z2 
ω(t) w1 w3 w4 w2 w1 w3 



Chapter 2 Abstract automata – 30 
 
the set of states A and two functions – the transition function δ and the output function 
λ.  
 
Mealy automaton and Moore automaton are the two more popular models now. In 
Mealy automaton, the next state depends on the current state and the current input, 
the current output depends on the current state and the current input as well: 
 

a(t + 1) = δ(a(t), z(t)); 
w(t) = λ (a(t), z(t)). 

 
In Moore automaton, the next state depends on the current state and the current 
input, but the current output depends only on the current state: 

 
a(t + 1) = δ(a(t), z(t)); 
w(t) = λ (a(t)). 

 
2.3 Automaton representation 

2.3.1 Mealy automaton. We use two modes for automata representation – a table 
form and a state diagram (graph) form. Table 1 and Table 2 present Mealy automaton 
S1 in the table form. Columns of these tables correspond to states, and the rows 
correspond to inputs. Mealy automaton S1, thus described, has three states and two 
inputs. The next state as = δ(am,zf)  is written at the intersection of column am and row 
zf in the transition table (Table 1), output wg = λ(am,zf) is written at the intersection of 
column am and row zf in the output table (Table 2). So, if automaton S1 is in state a2 
and its input is equal to z1, the output signal equals to w2 (see intersection of column 
a2 and row z1 in Table 2) and the next state equals to a1 (see the intersection of the 
same column and the same row in Table 1). 
 
 
 
 
 
 
 
Sometimes, the transition and the output tables are combined into one table (Table 
3). In this table, the next state as and the output wg are written together (as/wg) at the 
intersection of the state column am and the input row zf.  

Table 3. The same Mealy automaton S1 

zf a1 a2 a3 
z1 

z2 
a2/w3 

a3/w1 
a1/w2 

a3/w3 
a1/w1 

a3/w1 
 
Thus, in the automaton S1: A = {a1, a2, a3}, Z = {z1, z2}, W= {w1, w2, w3} and the 
transition function δ and the output function λ, defined at the pairs (am, zf), are 
presented in Table 1 and Table 2, or in combined Table 3. If from a practical point of 
view it is necessary to emphasize an initial state – the state of an automaton at the 
initial point of time, we will call it a1 and write it in the left column of such tables.  
 
The state diagram or the graph of the same Mealy automaton S1 is shown in Fig. 3. In 
such a diagram, vertices correspond to the automaton states and arcs correspond to 
the automaton transitions. If there is a transition from state am to state as in Mealy 
automaton, then in the state diagram, there is an arc directed from vertex am to vertex 

Table 1. as = δ(am, zf) 

zf a1 a2 a3 
z1 

z2 
a2 

a3 
a1 

a3 
a1 

a3 
 

Table 2.  wg = λ (am, zf) 

zf a1 a2 a3 
z1 

z2 
w3 

w1 
w2 

w3 
w1 

w1 
 



Chapter 2 Abstract automata – 31 
 
as. The input zf, initiating this transition, and the output wg = λ(am,zf) are written at 
this arc.  

 
Figure 3. The state diagram of Mealy automaton S1 

 
2.3.2 Moore automaton. Table 4 is an example of Moore automaton presented 
in the table form. As the expressions for transition functions of Mealy and 
Moore automata are identical, the next state as = δ(am,zf)  is also written at the 
intersection of the column am and the row zf in the transition table of Moore 
automaton. But the output of Moore automaton depends only on the current 
state (wg = λ(am)), so we should not construct a special output table for Moore 
automaton – it is sufficient to write the output wg over the corresponding state 
am. So, if Moore automaton S2 is in the state a4 and its input is equal to z1, the 
next state is equal to a1 (see the intersection of the column a4 and row z1 in 
Table 4). The output signal is equal to w1 all the time while the automaton is 
in the state a1 (see the output signal over the state a1). 

Table 4. Moore automaton S2 

 
 
 
 
 
 
Thus, in the automaton S2: A = {a1, a2, a3, a4, a5}, Z = {z1, z2}, W= {w1, w2, w3}, the 
transition function δ and the output function λ are presented in Table. 4. Sometimes, 
Moore automaton table like this is called a marked transition table, because output 
marks each corresponding state of this table. 
 
The state diagram of Moore automaton S2 is shown in Fig. 4. As in Mealy automaton, 
the vertices and the arcs correspond to the states and the transitions in Moore 
automaton state diagram. Since the outputs in such an automaton depend only on 
the states, each output is written near the corresponding state (vertex).  The 
transformations from the table representation of the Mealy and Moore automata to 
the state diagrams and vice versa are evident.  
 
2.3.3 Incomplete automaton. Mealy automaton is called complete or completely 
specified, if its transition function δ and output function λ are defined for each pair 
(am,zf). Moore automaton is called complete or completely specified, if its transition 
function δ  is defined for each pair (am,zf) and its output function λ is defined for each 
state am. Automata S1 and S2 are complete. An automaton is incomplete or 
incompletely specified, if it is not complete. The example of incomplete Mealy  

 
zf 

w1 w2 w3 w1 w3 
a1 a2 a3 a4 a5 

z1 

z2 
a3 

a4 
a3 

a4 
a2 

a5 
a1 

a4 
a1 

a4 



Chapter 2 Abstract automata – 32 
 
 

 
Figure 4. Moore automaton S2  

automaton S3 is presented in Tables 5-6 and in Fig. 5. As seen from this example, if a 
transition is not defined for a pair (am,zf) in automaton tables, in the automaton graph 
there is no arc going out from state am with input zf  written on this arc. Thus, the 
following transitions are lacking in the state diagram in Fig. 5: 

1. From the state a1 with the input z1;  
2. From the state a3 with the input z2;   
3. From the state a4 with the input z2. 

 
On the other hand, in Fig. 5 we have the arc from the state a2 with the input z3 
because this transition is defined although the output signal is not defined at the pair 
(a2,z3).                               

 

 

 

 
 

 
Figure 5. The incomplete Mealy automaton S3 

 
2.4 Automata responses to input sequences 

 
To expand our understanding of automaton representation let us conduct two 
experiments – one with Mealy automaton S1 and one with Moore automaton S2.  
 

Table 5. as = δ(am, zf) 

zf a1 a2 a3 a4 
z1 

z2 

z3 

- 
a2 

a3 

a4 

a2 

a3 

a3 

- 
a2 

a1 

- 
a3 

 

Table 6. wg = λ(am, zf)  
zf a1 a2 a3 a4 
z1 

z2 

z3 

- 
w1 

w2 

w1 

w3 

- 

w4 

- 
w5 

w2 

- 
w4 



Chapter 2 Abstract automata – 33 
 
2.4.1 Mealy automaton. Consider the behavior of Mealy automaton S1 (Tables 1-2 or 
Fig. 3) for the given state a1 and the input sequence ξ(t) = z2 z1 z1 z1 z2 z2. The first 
column a1 in these tables corresponds to the beginning of our experiments. The first 
letter in the input sequence ξ equals to z2. From the output table of automaton S1 
(Table 2) we find that w1 = λ(a1, z2) and we write w1 in the first column of Fig. 6. To 
find the next state we turn to the transition table of S1 (Table 1) and find that a3 = 
δ(a1, z2). So, we write a3 in the second column of Fig. 6. Repeating the same for the 
state a3 and the second input z1 (second column) we get w1 = λ(a3, z1), a1 = δ(a3, z1)   
and so on. As a result, we got the output sequence (output word) ω(t) with the same 
length as in ξ(t). Note, that at the last step we got the next state a3 written in the last 
column of Fig. 6. 

 
state sequence a(t) a1 a3 a1 a2 a1 a3 a3 
input sequence ξ(t) z2 z1 z1 z1 z2 z2  
output sequence ω(t)    w1         w1          w3          w2          w1          w1  

Figure 6. Experiment with Mealy automaton S1 

The output sequence ω(t) is a response of Mealy automaton S1 in the state a1 to the 
input sequence ξ(t): 

ω(t)= λ(a1, ξ(t)). 
 
It is evident that for the incomplete automaton the response to some input sequence 
in some state may be undefined. This can happen in two cases: 
 

1. For some state ap and input zf from the input sequence ξ(t),  the output 
function λ(ap, zf) is not specified; 

 
2. For some state ap and input zf from the input sequence ξ(t), the transition 

function δ (ap, zf) is not specified. 

For example, the response of the incomplete Mealy automaton S3, presented in Tables 
5-6 or Fig. 5, is   

λ(a2, z1, z1, z2, z1, z3, z3)= w1, w2, w1, w1, w4, w5. 

However, the responses λ(a2, z1, z1, z2, z3, z3, z3) and λ(a2, z1, z3, z3, z1, z2, z1) are not 
defined since, in the first case, λ(a2,z3)  is not defined:  

a(t) a2 a4 a1 a2 a3 a2 a3 
ξ(t) z1 z1 z2 z3 z3 z3  
ω(t) w1 w2 w1 - w5 -  

In the second case, δ(a4,z2) is not defined: 

a(t) a2 a4 a3 a2 a4 - 
ξ(t) z1 z3 z3 z1 z2 z1 
ω(t) w1 w4 w5 w1 -  

 
2.4.2 Moore automaton. The response of Moore automaton S2 (Table 4 or Fig.4) in 
the state a1 to the same input sequence ξ(t) = z2 z1 z1 z1 z2 z2 (we used it for Mealy 
automaton S1) may be defined in a similar way (Fig. 7): 
 

state sequence a(t) a1 a4 a1 a3 a2 a4 a4 
input sequence ξ(t) z2 z1 z1 z1 z2 z2  
output sequence ω(t)    w1         w1         w1          w3          w2           w1         w1 

Figure 7. Experiment with Moore automaton S2 



Chapter 2 Abstract automata – 34 
 
As seen from Fig. 7, the length of the output sequence ω(t) is equal to seven, whereas 
the length of the input sequence ξ(t) is equal to six. Note, however, that the first 
output w1 in ω(t) does not depend on the input sequence ξ(t). Really, w1 does not 
depend on the first input z2 in this sequence, w1 is defined only by the first state a1. 
Therefore, we do not include the first output symbol w1 in Moore automaton 
response. We call the output sequence ω(t) = λ(a1, ξ(t)), shifted right one place, a 
response of Moore automaton S2 to the input sequence ξ(t) in the state a1. This 
response is underlined in Fig. 7. 
 

2.5 Transformations between Mealy and Moore models 
 
Two automata S and S' are equivalent if their responses to any input sequence in their 
initial states are equal. Let us return to the experiments with Mealy automaton S1 
(Fig. 6) and Moore automaton S2 (Fig. 7). Their underlined responses to the input 
sequence ξ(t) = z2 z1 z1 z1 z2 z2 are equal. Does this mean that these automata are 
equivalent? Of course, not, it is possible that there exists such an input sequence ξ'(t), 
to which the responses of these automata in their initial states would be different. 
However, from this example, the question arises: is it possible to construct Mealy 
automaton that would be equivalent to the given Moore automaton?  And vice versa, 
is it possible to construct Moore automaton that would be equivalent to the given 
Mealy automaton? We will show that there are the positive answers to these 
questions. Now we will consider the transformations between these automata models.   
 
2.5.1 Moore to Mealy. To transform a graph of Moore automaton to the graph of 
Mealy automaton, it is sufficient to carry the output (wg in our example) written near 
the state of Moore automaton to all the arcs incoming to the same state of Mealy 
automaton (Fig. 8).  
 

 
Figure 8. Subgraphs of Moore (a) and Mealy (b) automata 

Automaton Mealy S4, thus constructed for Moore automaton S2 (Fig. 4) is presented in 
Fig. 9. 
 
In a general case, let us have Moore automatonSA with the set of states AA  = { a1, … , 
aM}, the set of inputs ZA = { z1, … , zF}, the set of outputs WA = { w1, … , wG}, the 
transition function δA and the output function λA. Mealy automaton SB that is 
equivalent to SA, has the same set of states (AB = AA = { a1, … , aM}), the same set of 
inputs ZB = ZA = { z1, … , zF}, the same set of outputs WB = WA = { w1, … , wG} and the 
same transition function δB = δA but their output functions are different.  
 
 Let Moore automatonSA transit from the state am to the state as with the input signal 
zf and its output in the state as equal to wg:   
 

δA (am,zf) = as;  λA(as) = wg. 
 



Chapter 2 Abstract automata – 35 
 

 
Figure 9. Automaton Mealy S4, equivalent to Moore automaton S2 

Then, in Mealy automaton, the same transition takes place and the output at this 
transition is equal to wg:   

δB (am,zf) = as;  λB(am,zf) = wg. 
 
It corresponds to the carrying of the output, written near the state of Moore 
automaton, to all arcs incoming to the same state of Mealy automaton.  
 
If we use a table for representation of Moore automaton SA (Table 7) then the 
transition and output functions of Mealy automaton SB, equivalent to SA, can be 
constructed in the following way. The transition function of SB (Table 8) coincides with 
the transition function of Moore automatonSA. To construct the output function of SB 
(Table 9) we replace the state as in Table 8 by the output signal wg that marks the 
state as in the marked transition table (Table 7) of Moore automatonSA. 

Table 7. Transition table of S2 

 
 
 
 
 
 
 
 
 
 
From the method for the construction of Mealy automaton SB, just considered, it is 
evident that this automaton is equivalent to Moore automaton SA. Really, if some 
input signal zf appears at the input of Moore automaton SA in the state am, then this 
automaton transits to the state as = δ(am,zf) and the output signal wg = λA(as) is 
generated while the automaton SA is in this state as. But Mealy automaton SB also 
transits from the state am to the same state as = δB(am,zf) (δB = δA) with the same 
output signal wg = λB(am,zf). Thus, for an input sequence with the length equal to one 
(for one input signal), the corresponding responses in any state am of the automata SA 
and SB will coincide. By mathematical induction, it is easy to show that any input 
sequence with the length equal to n will produce the same response in the 
corresponding states of the Moore and Mealy automata SA and SB. 
 
2.5.2 Mealy to Moore. Let we have Mealy automaton SB with the set of states AB  = { 
a1, … , aM}, the set of inputs ZB = { z1, … , zF}, the set of outputs WB = { w1, … , wG}, the 
transition function δB and the output function λB. Moore automatonSA that is 

 
zf 

w1 w2 w3 w1 w3 
a1 a2 a3 a4 a5 

z1 

z2 
a3 

a4 
a3 

a4 
a2 

a5 
a1 

a4 
a1 

a4 

Table 8. Transition table of S4 

zf a1 a2 a3 a4 a5 
z1 

z2 
a3 

a4 
a3 

a4 
a2 

a5 
a1 

a4 
a1 

a4 

Table 9. Output table of S4 

zf a1 a2 a3 a4 a5 
z1 

z2 
w3 

w1 
w3 

w1 
w2 

w3 
w1 

w1 
w1 

w1 



Chapter 2 Abstract automata – 36 
 
equivalent to SB, has the same set of inputs ZA = ZB = { z1, … , zF} and the same set of 
outputs WA = WB = { w1, … , wG}. We will illustrate the construction of the set of states 
of Moore automaton by Fig. 10. In this figure, there are four transitions into the state 
as of Mealy automaton with three different outputs wp, wq, and wr.                    

 
Figure 10. Four transitions into the state of Mealy automaton 

Each such state of Mealy automaton generates as many states of Moore automaton, 
as many different outputs are at the transitions into this state. We present such 
states of Moore automaton as pairs (state, output) in Mealy automaton, the state as in 
Fig.10 generates three states  
 

As = {(as, wr), (as, wp), (as, wq)}.  
The whole set of states AA of Moore automaton SA is the union of states generated by 
all states of Mealy automaton SB: 
 

U
M

S
sA AA

1

.
=

=  

The output function λA of Moore automaton SA is defined very simple: for each state 
which is the pair (as, wp), the output is equal to wp – to the second component of this 
pair.          
 
Before we define the transition function of Moore automaton, we will appeal to an 
example. As an example of transformation from the Mealy model to the Moore model, 
we use Mealy automaton S1 (we repeat this automaton here in Fig. 11). In this 
automaton: 

AB = {a1, a2, a3}; 
        ZB = {z1, z2}; 

WB = {w1, w2, w3}. 
 
The transition function δB and the output function λB of S1 are defined in Fig. 11.       
 

 
Figure 11. The state diagram of Mealy automaton S1 

We construct Moore automaton S5. In this automaton:  
 

ZA = {z1, z2}; 
           WA = {w1, w2, w3}. 



Chapter 2 Abstract automata – 37 
 
Three states of Mealy automaton S1 generate the following states of Moore automaton 
S5 (we renamed pairs by b1, …, b5): 
 

A1 = {(a1, w1), (a1, w2)} = {b1, b2}; 
A2 = {(a2, w3)} = { b3}; 
A3 = {(a3, w1), (a3, w3)} = {b4, b5}. 
 

Thus, each state of Moore automaton S5 is a pair (state, output) of Mealy automaton 
S1. In our example: 
 

  b1 = (a1, w1);    b2 = (a1, w2);  b3 = (a2, w3);   
   b4 = (a3, w1);     b5 = (a3, w3).   
 

The set of states of S5 is equal to            
 

AA = A1 U A2 U A3 = {b1, b2, b3, b4, b5}. 
 

To distinguish these states of Moore automaton S5 from the states of Mealy 
automaton S1, we denoted them b1, …, b5. We can now even draw the states of the 
automaton S5 with output signals (Fig.12). It remains only to define the transitions 
between these states – to define the transition function of the automaton S5.                           

 
Figure 12. The states and output function of Moore automaton S5 

Fig. 13 illustrates the definition of function δA of Moore automaton SA. If there is a 
transition from am to as with an input zf and an output wk in Mealy automaton SB, 
then there should be the transitions from all the states Am, generated by the state am 
of Mealy automaton, to the state (as, wk) with the same input zf in Moore 
automatonSA. 

 
Figure 13. Definition of function δA of Moore automaton SA 

Let us return to our example. To illustrate, how to design a graph of Moore automaton 
S5 we will take one of the transitions of Mealy automaton S1 and construct the 
corresponding transitions in Moore automaton S5 (Fig. 14). In the Mealy automaton 
S1, there is a transition from the state a1 to the state a2 with the input z1 and the 



Chapter 2 Abstract automata – 38 
 
output w3. Then, in Moore automaton S5, there should be transitions from all the 
states of A1 = {b1, b2}, generated by a1, with the same input zf to the state (a2, w3) = b3 
(it is the state generated by the state a2 and the output w3 at the discussed 
transition).  

 
Figure 14. One transition in S1 and the corresponding transitions in S5 

Continue in the same way with all other transitions of Mealy automaton S1 we will get 
the state diagram of Moore automaton S5 (Fig. 15). 
 

 
Figure 15. The state diagram of Moore automaton S5 

Let us discuss the case of an incomplete Mealy automaton, where the transition 
function δB is specified at the pair (am, zf) (as = δ(am, zf)), but the output function λB is 
not specified at this transition (see, for example, the transition a3 = δ(a2, z3) in the 
automaton S3 in Fig. 5). Then the set As, generated by as, contains the pair (as, -) with 
unspecified second component. In our example in Fig. 5, the state a3 of the 
automaton S3 generates the set A3 = {(a3, w2), (a3, w4), (a3, -)}. We leave you the 
transformation of this Mealy automaton S3 to Moore automaton as an exercise. 
 
Suppose that we would like to transform Moore automaton S5 (Fig. 15) to some Mealy 
automaton S6. As in such transformation (Moore model → Mealy model), the number 
of states is not changed, Mealy automaton S6 will have five states. As a result, we get 
the chain presented in Fig. 16. Here we ran into the situation of two equivalent 
automata S1 and S6 of the same Mealy type having a different number of states. Thus, 
we came to the problem of the state minimization which we will discuss in the next 
section. 

 
Figure 16. Equivalent Mealy automata S1 and S6 with the different number of states 

 
 



Chapter 2 Abstract automata – 39 
 

2.6 State minimization 
 
2.6.1 Equivalent automata. Two states am and as are said to be equivalent (am ≡  
as), if the responses to any input sequence in these states coincide, i.e. λ(am, ξ) = λ(as, 
ξ) for any input sequence ξ.  If two states are not equivalent, they are distinguishable.  

Two states am and as are said to be k-equivalent (am 
k
≡  as), if their responses to any 

input sequence ξk of the length k in these states coincide, i.e. λ(am, ξk) = λ(as, ξk). If two 
states are not k-equivalent, they are k-distinguishable. 
 
Two automata S and S' of the same type (Mealy or Moore) are equivalent (S≡ S'), if for 
each state am of the automaton S there exists a state as' of the automaton S', 
equivalent to am, and, vice a versa, for each state as' of the automaton S', there exists 
a state am of the automaton S, equivalent to as'.  
 
An automaton S is minimal, if there are no equivalent states in this automaton S (from 
am ≡  as it follows that am = as for the minimal automaton). We will consider here a 
method of the state minimization of complete automata. The main idea of this method 
is illustrated by Fig.17 and consists in: 
 

1. Partition of a set of states into disjoint blocks of equivalent states; 
2. Replacement of each such block with one state.  

 
The minimal automaton, thus constructed, has exactly as many states as the 
number of blocks in this partition. In Fig.17, we have five equivalent blocks 
containing 16 dots (states in non-minimal automaton). The minimal automaton 
will have only five states. 

 
The equivalent and k-equivalent relations, just introduced, allow us to find partitions 
π and πk of the state set A with the blocks of equivalent and k-equivalent states. 
Having used the partition π we can find redundant states in the set A.  

 
Figure 17. Partition of a set of states into equivalent classes 

Let, for example, states am and as be equivalent. This means that these states are 
indistinguishable regarding their responses to any input sequence and it is not 
significant, whether the automaton is in the state am or in the state as. Consequently, 
one of these states can be removed from the set A. If each equivalent block in the 
partition π contains one state, the set A is nonreducible. 
 
2.6.2 Minimization of Mealy automaton. The algorithm for state minimization of 
Mealy automaton consists of the following steps: 
 

1. Find sequential partitions π1, π2, … , πk, πk+1 of the state set A into blocks one, 
two, … , k, (k+1)-equivalent states until πk = πk+1 at (k + 1) step. It is easy to 



Chapter 2 Abstract automata – 40 
 

show, that πk = π in this case, i.e. k-equivalent states are equivalent and k is 
not more than (M - 1), where M is the number of states in set A. 

2. Take one state from each equivalent block and form a state set Amin of the 
minimal automaton Smin that is equivalent to the automaton S. 

3. Define the functions δmin and λmin of the automaton S. For this, delete the 
columns with the states not included in Amin, from the transition and output 
tables of the automaton S. Replace the states not included in Amin by 
equivalent ones from Amin in these tables. 

4. Take one of the states, equivalent to a1 as an initial state a1min of automaton 
Smin. 

 
As an example, let us consider the state minimization for Mealy automaton S7 
presented in Tables 10 and 11. If we combine states with equal columns in Table 11 
we will get the partition of the set of states into blocks of 1-equivalent states: 
 

}.,{,;,,, 214365211 BBaaaaaa ==π  
Table 10. Transition table of S7 

zf a1 a2 a3 a4 a5 a6 
z1 a3 a4 a3 a4 a5 a6 
z2 a5 a6 a5 a6 a1 a2 

Table 11. Output table of S7 

zf a1 a2 a3 a4 a5 a6 
z1 w1 w1 w1 w1 w1 w1 
z2 w1 w1 w2 w2 w1 w1 

 
Indeed, two states am and as are 1-equivalent, if, in these states, an automaton has 
the same responses to any input sequence of the length one (i.e. columns am and as 
must be equal in the output table of this automaton). 
 
Construct a table for the partition π1 (Table 12) replacing the states in the columns of 
Table 10 by their 1-equivalent blocks. Obviously, two 1-equivalent states are 2-
equivalent, if they transit to 1-equivalent states with equal inputs.  

Table 12. Partition 1π  

 B1 B2 
zf a1 a2 a5 a6 a3 a4 
z1 B2 B2 B1 B1 B2 B2 
z2 B1 B1 B1 B1 B1 B1 

 
From Table 12 we get the partition π2 (Table 13), combining equal columns in each 
block in Table 12: 

}.,,{,;,;, 3214365212 CCCaaaaaa ==π  

Table 13. Partition 2π  

 C1 C2 C3 
zf a1 a2 a5 a6 a3 a4 
z1 C3 C3 C2 C2 C3 C3 
z2 C2 C2 C1 C1 C2 C2 

 



Chapter 2 Abstract automata – 41 
 
In exactly the same way, we construct the partition π3 
 

4365213 ,;,;, aaaaaa=π },,{ 321 DDD=   
 

which is equal to π2. Thus, π2 is the partition of the state set A of Mealy automaton S7 
into blocks of equivalent states.  
 
To construct a minimal automaton Smin (Tables 14 and 15) we take any state from 
each block of the partition π2 to form the state set Amin of this automaton. Let, for 
example, Amin = {a1, a4, a5}. After this, we remove the columns with states a2, a3, a6 not 
included in Amin, from the transition and output tables of automaton S7. Inside these 
tables, we replace states not included in Amin by equivalent ones from Amin. For 
example, we replace a3 by a4 at the intersection of column a1 and row z1 and a6 by a5 
at the intersection of column a4 and row z2.  
 
 
 
 
 
 
 
2.6.3 Minimization of Moore automaton. To minimize Moore automaton, in the 
first step, we should find the partition of the state set into 0-equivalent blocks. Two 

states am and as of Moore automaton are said to be 0-equivalent (am 
0
≡  as), if they are 

marked by equal outputs. Two 0-equivalent states are 1-equivalent, if they transit to 
0-equivalent states under equal inputs. All the next k-equivalent blocks for Moore 
automaton can be constructed in exactly the same way as for Mealy automaton. As a 
result of minimization of Moore automaton S8 in Table 16 with 12 states, we get the 
minimal Moore automaton S9 with 4 states (Table 17). We give here only a sequence of 
partitions without the corresponding tables. 

Table 16. Moore automaton S8 
 

zf 
w1 w1 w3 w3 w3 w2 w3 w1 w2 w2 w2 w2 
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 

z1 

z2 
a10 

a5 
a12 

a7 
a5 

a6 
a7 

a11 
a3 

a9 
a7 

a11 
a3 

a6 
a10 

a4 
a7 

a6 
a1 

a8 
a5 

a9 
a2 

a8 
 

};,,{,,,,;,,,;,, 3211211109675438210 BBBaaaaaaaaaaaa ==π  

};,,,{,;,,;,,,;,, 43211210119675438211 CCCCaaaaaaaaaaaa ==π  

}.,,,{,;,,;,,,;,, 43211210119675438212 DDDDaaaaaaaaaaaa ==π  

.12 ππ =  

Table 17. Minimal Moore automaton S9 

 
zf 

w1 w3 w2 w2 
a1 a3 a6 a10 

z1 

z2 
a10 

a3 
a3 

a6 
a3 

a6 
a1 

a1 
 

Table 14. Transition table of Smin 

zf a1 a4 a5 
z1 

z2 
a4 

a5 
a4 

a5 
a5 

a1 

Table 15. Output table of Smin 

zf a1 a4 a5 
z1 

z2 
w1 

w1 
w1 

w2 
w1 

w1 
 



Chapter 2 Abstract automata – 42 
 
2.6.4 Minimization of combined automaton. In some applications, it is interesting 
to use the automaton that combines the properties of Mealy and Moore automata. We 
call it Combined automaton (C-automaton). We can describe the behavior of C-
automaton as follows: 

a(t + 1) = δ(a(t), z(t)); 
w(t) = λ1(a(t), z(t)); 
u(t) = λ2(a(t)). 
 

Thus, C-automaton has two output functions – one as in the Mealy model and the 
second one – as in the Moore model. It is possible to think about this in this way: the 
output uh = λ2(am) is generated every time when automaton is in the state am, whereas 
the output wg = λ1(am,zf) is generated in the state am when the input zf is present. For 
C-automata representation, it is also possible to use tables and state diagrams. To 
present C-automaton in a tabular form we use a transition table and an output table. 
The transition table of C-automaton S10 (Table 18) is similar to the transition table in 
the Mealy model, while, in the output table (Table 19), states are marked by the 
outputs from the set of outputs U. 

Table 18. Transition table of C-automaton S10 
zf a1 a2 a3 a4 a5 
z1 

z2 
a5 

a3 
a3 

a2 
a2 

a2 
a5 

a2 
a1 

a4 

Table 19. Output table of C-automaton S10 
 

zf 

u1 u2 u1 u1 u3 

a1 a2 a3 a4 a5 
z1 

z2 
w1 

w2 
w2 

w1 
w1 

w2 
w1 

w2 
w2 

w1 
 
In the state diagram (Fig. 18), the outputs from the set W are written on the arcs, the 
outputs from the set U are written near the corresponding states. Of course, it is 
possible to transform C-automaton to Mealy automaton or to Moore automaton just 
as we have transformed the Mealy model to the Moore model and vice versa.  

 
Figure 18. State diagram (graph) of C-automaton S10 

For the purpose of state minimization of a complete C-automaton, we can use the 
algorithm for Mealy automaton minimization from the previous section, if we assume 
that two states am and as of C-automaton are 1-equivalent, if they are marked by the 
equal outputs and have the equal columns in the output table. As an example we 
provide the state minimization of C-automaton S11 (Tables 20-21). The minimization 
process, presented in Tables 22-23, corresponds to the following sequence of 
partitions: 



Chapter 2 Abstract automata – 43 
 

};,,{,;,,,,;,,,, 3211210119643875211 BBBaaaaaaaaaaaa ==π  

};,,,,{,;,,,,;;,;, 543211210119643875212 CCCCCaaaaaaaaaaaa ==π  

}.,,,,{,;,,,,;;,;, 543211210119643875213 DDDDDaaaaaaaaaaaa ==π  

.23 ππ =  

Table 20. Transition table of nonminimal C-automaton S11 

zf a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 
z1 

z2 
a10 

a5 
a12 

a7 
a5 

a9 
a5 

a4 
a3 

a6 
a5 

a6 
a9 

a11 
a10 

a4 
a7 

a9 
a2 

a8 
a7 

a11 
a1 

a8 

 

Table 21. Output table of nonminimal C-automaton S11 
 

zf 
u1 u1 u2 u2 u1 u2 u1 u1 u2 u3 u2 u3 

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 
z1 

z2 
w1 

w2 
w1 

w2 
w2 

w1 
w2 

w1 
w1 

w2 
w2 

w1 
w1 

w2 
w1 

w2 
w2 

w1 
w2 

w1 
w2 

w1 
w2 

w1 

 

Table 22. Partition 1π  

 
zf 

B1 B2 B3 
a1 a2 a5 a7 a8 a3 a4 a6 a9 a11 a10 a12 

z1 

z2 
B3 

B1 
B3 

B1 
B2 

B2 
B2 

B2 
B3 

B2 
B1 

B2 
B1 

B2 
B1 

B2 
B1 

B2 
B1 

B2 
B1 

B1 
B1 

B1 

 

Table 23. Partition 2π  

 
zf 

C1 C2 C3 C4 C5 
a1 a2 a5 a7 a8 a3 a4 a6 a9 a11 a10 a12 

z1 

z2 
C5 

C2 
C5 

C2 
C4 

C4 
C4 

C4 
C5 

C4 
C2 

C4 
C2 

C4 
C2 

C4 
C2 

C4 
C2 

C4 
C1 

C3 
C1 

C3 
 
The minimal C-automaton S12 is presented in Tables 24-25. 

 

Table 24. Transition table of the minimal C-automaton S12 

zf a1 a3 a5 a8 a10 
z1 

z2 
a10 

a5 
a5 

a3 
a3 

a3 
a10 

a3 
a1 

a8 

 

Table 25. Output table of the minimal C-automaton S12 
 

zf 

u1 u2 u1 u1 u3 

a1 a3 a5 a8 a10 
z1 

z2 
w1 

w2 
w2 

w1 
w1 

w2 
w1 

w2 
w2 

w1 
 
 



Chapter 2 Abstract automata – 44 
 
 
 
 
 
 
 



 
 

Chapter 3 Structure Automata 
 
In the previous Chapter, we were considering abstract automaton as a 'black box' 
with one input and one output (Fig. 2.1) which transforms input sequences (words of 
the input alphabet Z) into output sequences (words of the output alphabet W). We 
were not interested in the contents of this black box. In this Chapter, we will 
concentrate on the interior of a black box and examine how to realize the behavior, 
described at the level of abstract automaton, by means of hardware components. 
 

3.1 Synthesis of Mealy automaton 
 
3.1.1 Structure automaton. We can look at structure automaton as a follow-up 
detailing of abstract automaton. Unlike abstract automaton, structure automaton 
(Fig. 1) has L inputs and N outputs. The signals zero or one can appear at each input 
xl (l=1, …, L) and at each output yn (n=1, …, N) of structure automaton. Thus, the 
input of structure automaton is a binary vector with L components, each of which is 
equal to zero or one. Each output of structure automaton is a vector with N 
components, each of which is also equal to zero or one.  
 

 
Figure 1. Structure automaton 

Fig. 2 presents a basic structure for Mealy automaton with two parts – Logic 
(combinational circuit) and Memory. Memory contains memory elements – Moore 
automata with two states (zero and one). Usually, flip-flops are used as memory 
elements in structure automaton. 
 

L

o

g

i

c

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

t1

tR

f1

fR

t1

tR

x1

xL

y1

yN
 

Figure 2. The structure of structure automaton 

As the first example in this chapter, we will use an abstract Mealy automaton S1 in 
Tables 1 and 2 (the transition and output functions). To transform this abstract 
automaton into the corresponding structure automaton we should encode its each 
input zf, each output wg and each state am by binary vectors. Since abstract 
automaton S1 has three inputs z1, z2, z3, six outputs w1,…,w6 and five states a1,…,a5, 

the corresponding structure automaton will have two binary inputs x1, x2, three 



Chapter 3 Structure automata – 46 
 

 
 

binary outputs y1, y2, y3 and three binary memory elements t1, t2, t3. The basic 
structure for this automaton is shown in Fig. 3. 
 
       Table 1. Transition table of automaton S1 
 

zf a1 a2 a3 a4 a5 
z1 

z2 

z3 

a2 

a3 

a2 

a3 

a1 

- 

- 
a1 

a4 

a4 

a5 

- 

a1 

- 
a4 

       

Table 2. Output table of automaton S1 

zf a1 a2 a3 a4 a5 
z1 

z2 

z3 

w1 

w3 

w4 

w6 

w1 

- 

- 
w5 

w3 

w4 

w2 

- 

w5 

- 
w1 

 
Before we discuss how encoding affects the complexity of the automaton logic circuit 
we will use so-called trivial encoding in which the code (binary number) is equal to the 
decimal number of the encoded object. For example, for state a1 we will use code 001, 
for state a2 – code 010 etc. The corresponding tables for input, output and state 
encoding (assignment) are presented in Tables 3 – 5. 
 

Figure 3. The structure of the automaton in our example 

 
 
 
 
 
 
 
 
 
 
 

L

o

g

i

c

t1

t2

f1

f3

t1

t2

x1

x2

y1

y3

f2

t3 t3

y2

Table 4. Output encoding 

wg y1y2y3 

w1 0 0 1 
w2 0 1 0 
w3 0 1 1 
w4 1 0 0 
w5 1 0 1 
w6 1 1 0 

 
 

Table 5. State encoding 

am t1t2t3 

a1 0 0 1 
a2 0 1 0 
a3 0 1 1 
a4 1 0 0 
a5 1 0 1 

 
 

Table 3. Input encoding 

zf x1x2 

z1 0 1 
z2 1 0 
z3 1 1 

 



Chapter 3 Structure automata – 47 
 

 
 

As the memory element, we will use Moore automaton with two states. Its transition 
table is shown in Table 6. We suppose that the output of this automaton is equal to 
its state – when the automaton is in the state 0, the output is equal to 0, when it is in 
the state 1, the output is equal to 1, so it is not necessary to mark states by their 
outputs.  

Table 6. Transition table of the memory element 

 t 
f 0 1 
0 
1 

0 
1 

1 
0 

 
3.1.2 Execution of structure automaton. Now we return to the structure of the 
automaton S1 in Fig. 3 to discuss how it works. Let abstract automaton S1 transit 
from state a1 to state a2 with input signal z3 (see Table 1). w4 is the output signal at 
this transition (Table 2). When abstract automaton S1 is in the state a1, structure 
automaton S1 is in the state 001 (Table 5). The input vector 11, corresponding to z3 
(Table 3), appears at the inputs of structure automaton (see Fig. 4). The output vector 
100, corresponding to w4 (Table 4), is generated at the outputs y1, y2, y3 of circuit 
Logic. 

 
Figure 4. The structure of the automaton at the transition from a1 to a2 with input z3 

 
To transfer automaton S1 from state a1 (code 001) to state a2 (code 010) we must 
transfer the first memory element t1 from state 0 to state 0, the second t2 – from state 
0 to state 1 and the third t3 – from state 1 to state 0. To implement these transitions 
of memory elements, we should supply the corresponding signals to their inputs. To 
determine these inputs we must use the transition table of the memory element (Table 
6). According to this table: for transition of the first memory element from 0 to 0 its 
input should be equal to 0, for transitions of the second memory element from 0 to 1 
and the third – from 1 to 0, their inputs should be equal to 1. Thus, vector 011 should 
appear at the inputs f1, f2, f3 of the memory elements (Fig. 4). The functions f1, f2, f3 
are called input memory functions or excitation memory functions. 
 
Thus, after choosing memory elements and encoding inputs, outputs and states the 
problem of the logic synthesis for the automaton S1 with a basic structure is  reduced 
to the synthesis of the combinational circuit, which realizes the following functions: 



Chapter 3 Structure automata – 48 
 

 
 

yn = yn(t1, t2, t3, x1, x2); n = 1, …,3; 
 
fr = fr(t1, t2, t3, x1, x2); r = 1, …,3. 

3.1.3 Automaton structure table. The structure table of automaton S1 is shown in 
Table 7. This table has the following columns: am and as are the current and the next 
states; t1t2t3 and t1nt2nt3n are codes of am and as; zf and wg are the input and output 
signals; x1x2 contains binary input signals; y1y2y3 and f1f2f3 contain the values of 
outputs of Logic circuit at Fig. 4.  

Table 7. The structure table of the automaton S1 

am t1t2t3 as t1nt2nt3n zf x1x2 wg y1y2y3 f1f2f3 
a1 001 

001 
001 

a2 

a3 

a2 

010 
011 
010 

z1 

z2 
z3 

01 
10 
11 

w1 
w3 

w4 

001 
011 
100 

011 
010 
011 

a2 010 
010 
010 

a3 

a1 

- 

011 
001 

- 

z1 

z2 
z3 

01 
10 
11 

w6 

w1 

- 

110 
001 

- 

001 
011 

- 
a3 011 

011 
011 

- 
a1 

a4 

- 
001 
100 

z1 

z2 
z3 

01 
10 
11 

- 
w5 

w3 

- 
101 
011 

- 
010 
111 

a4 100 
100 
100 

a4 

a5 

- 

100 
101 

- 

z1 

z2 
z3 

01 
10 
11 

w4 

w2 

- 

100 
010 

- 

000 
001 

- 
a5 101 

101 
101 

a1 

- 
a4 

001 
- 

100 

z1 

z2 
z3 

01 
10 
11 

w5 

- 
w1 

101 
- 

001 

100 
- 

001 
 
To fill in the last column of Table 7 let us look at the transition from a1 to a2 at the 
first row of this table. This transition involves three transitions of memory elements: 
the first memory element t1 from state 0 to state 0, the second t2 – from state 0 to 
state 1 and the third t3 – from state 1 to state 0. Let us use Table 6 to find what input 
causes the transition of the first memory element from the state t1=0 to the state t1=0. 
Looking at the first column and the first row of this table we see that such input f1=0. 
In exactly the same way, we will find that to transfer the second memory element from 
t2=0 to t2=1, its input should be equal to 1 (the first column and the second row of 
Table 6). To transfer the third memory element from t3=1 to t3=0, its input should also 
be equal to 1 (the second column and the second row of Table 6). Thus, we write 011 
in the column f1f2f3 in the first row of Table 7. It now should be evident how to fill in 
the other entries of this column. 
 
3.1.4 Logic circuit synthesis. An automaton structure table may be considered as 
the truth table for functions y1, y2, y3 and f1, f2, f3 with variables t1, t2, t3, x1, x2 (see the 
gray columns in this table). Thus, from this table we can derive the covers for y1, y2, 
y3, f1, f2, f3 as the set of input vectors where these functions are equal to one. 
 

 
 
 
 
 
 

 t1 t2 t3 x1 x2 

 0 0 1 1 1 
y1 = 0 1 0 0 1 

 0 1 1 1 0 
 1 0 0 0 1 
 1 0 1 0 1 

 t1 t2 t3 x1 x2 

f1 = 0 1 1 1 1 
 1 0 1 0 1 

 

 t1 t2 t3 x1 x2 

 0 0 1 0 1 
 0 0 1 1 0 

f2 = 0 0 1 1 1 
 0 1 0 1 0 
 0 1 1 1 0 
 0 1 1 1 1 

 t1 t2 t3 x1 x2 

 0 0 1 1 0 
y2 = 0 1 0 0 1 

 0 1 1 1 1 
 1 0 0 1 0 

 



Chapter 3 Structure automata – 49 
 

 
 

 
 

 
 

 
 

 
 
 
 
 
 
Prior to minimization of these functions, we can define three kinds of don’t care in our 
example: 
 

1. Codes 000, 110 and 111 are not used for state assignment, therefore 
functions y1, y2, y3, f1, f2, f3 are not specified for the cubes 
 

t1 t2 t3 x1 x2 

0 0 0 x x 
1 1 0 x x 
1 1 1 x x 

 
2. Code 00 is not used for encoding of input signals, therefore functions y1, y2, 

y3, f1, f2, f3 are not specified for the cube  
 

t1 t2 t3 x1 x2 

x x x 0 0 

3. The transition and output functions of the abstract automaton (see Tables 1 
and 2) are not completely defined. As a result of this, structure automaton is 
not completely defined either – see dashes “-“ in Table 7 in columns y1, y2, y3, 
f1, f2, f3. Thus, these functions are not specified for the cubes 

 
 

 
 

Karnaugh maps and minimized covers for functions y1, y2, y3, f1, f2, f3 are shown in 
Fig. 5 – Fig10.  

 

 
 
 
 
 
 

t1 t2 t3 x1 x2 

0 1 0 1 1 
0 1 1 0 1 
1 0 0 1 1 
1 0 1 1 0 

 t1 t2 t3 x1 x2 

 0 0 1 0 1 
 0 0 1 1 1 
 0 1 0 0 1 

f3 = 0 1 0 1 0 
 0 1 1 1 1 
 1 0 0 1 0 
 1 0 1 1 1 

 

 t1 t2 t3 x1 x2 

 0 0 1 0 1 
 0 0 1 1 0 
 0 1 0 1 0 

y3 = 0 1 1 1 0 
 0 1 1 1 1 
 1 0 1 0 1 
 1 0 1 1 1 

 

 

 t1 t2 t3 x1 x2 

 x 1 x 0 x 
y1 = x 1 1 x 0 

 1 x x 0 x 
 0 0 x 1 1 

  Figure 5. 
Function y1 



Chapter 3 Structure automata – 50 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
The logic circuit of automaton S1, constructed by using minimized covers for 
functions y1, y2, y3, f1, f2, f3, is shown in Fig. 11. It is evident that this circuit 
corresponds to the structure in Fig. 4. Indeed, this logic circuit consists of two parts – 
the combinational circuit with inputs t1, t2, t3, x1, x2 and outputs y1, y2, y3, f1, f2, f3 and 
the memory, containing three memory elements with inputs f1, f2, f3 and outputs t1, t2, 
t3.     
 
 
 
 
 

 t1 t2 t3 x1 x2 

y2 = x 1 x x 1 
 x 0 x x 0 

Figure 6. Function y2 

 t1 t2 t3 x1 x2 

 0 x x x 0 
y3 = x x 1 0 x 

 x 1 x 1 x 
 1 x 1 x x 

Figure 7. Function y3 

 t1 t2 t3 x1 x2 

f1 = x 1 x 1 1 
 1 x 1 0 x 

Figure 8. Function f1 

 

 t1 t2 t3 x1 x2
f2 = 0 x x 1 x 

 0 x 1 x x 

Figure 9. Function f2 

 



Chapter 3 Structure automata – 51 
 

 
 

 
 
 
 
 
 
 
 
 

 

 

 

 

 
 

 
Figure 11. Logic circuit of automaton S1 

Consider the circuit in Fig. 11. The subsequent minimization of this circuit is possible 
through the use of methods for two-level minimization, but the main effect in the 
automaton logic circuit minimization may be obtained through various techniques of 
factorization and decomposition. Such techniques for the logic design of automata 
with a large number of inputs and outputs will be discussed in the next chapters. 

 

 t1 t2 t3 x1 x2 

 0 x x x 1 
f3 = x 1 0 x x 

 1 x x 1 x 

     Figure 10. Function f3 



Chapter 3 Structure automata – 52 
 

 
 

Here we only note that in the circuit in Fig. 11, the considerable success in the two-
level minimization was obtained by using the same terms in different output and 
input memory functions.  

3.1.5 Output signal assignment. Now we will discuss the possibility for OR gate 
minimization in two level circuit in Fig. 11. The number of inputs into OR gates for 
outputs y1, y2, y3 is equal to the number of ‘ones’ in the columns y1, y2, y3 in Table 7. 
This number of ‘ones’ depends on the number of ‘ones’ in codes for output signals of 
abstract automaton (see Table 4) and on p(wg) – the number of appearances of each 
output in the column wg  in Table 7. We tabulate this information in the first two 
columns of Table 8.  

Next two columns of this table contain codes for each wg (g = 1, …,6) in a trivial 
encoding which we have been using until now, and c( wg) – the number of ‘ones’ which 
each output produces in the column last but one of Table 7. Really, if code of w1 = 001 
(it contains one ‘one’) and w1 appears three times in Table 7 (p(w1) = 3), the number of 
‘ones’ c( w1) in the columns y1, y2, y3  only due to w1 is equal to 3. Exactly in the same 
way, output w2 produces only one ‘one’ in Table 7 (one appearance and one ‘one’ in 
the code), output w3 produces four ‘ones’ (two appearances and two ‘ones’ in the code) 
etc. 
 
The algorithm for the optimal output encoding is very simple. First of all, place the 
outputs in the order of decreasing p(wg). Use zero code for encoding of the output with 
p(wg) = max. In our example, p(w1) = max and we encode w1 by 000 – see column 
y1y2y3 in ‘Optimized encoding’ in Table 8. Then, we assign all possible codes with one 
component, equal to one, to the outputs with the next values of p(wg) – w3, w4 and w5  
in our example. In the next steps we use codes with two ‘ones’, after this – with three 
‘ones’, etc. As a result, we get the encoding in the column y1y2y3 in the ‘Optimized 
encoding’ in Table 8. The sum of numbers in the last column in this table is equal to 
10; it is much lower than the sum of numbers in the column c(wg) in the ‘Trivial 
encoding’.  

Table 8. Optimized output encoding 

 
wg 

 
p( wg) 

Trivial encoding Optimized encoding 
y1y2y3 c(wg) y1y2y3 c(wg) 

w1 3 0 0 1 3 0 0 0 0 
w2 1 0 1 0 1 0 1 1 2 
w3 2 0 1 1 4 0 0 1 2 
w4 2 1 0 0 2 0 1 0 2 
w5 2 1 0 1 4 1 0 0 2 
w6 1 1 1 0 2 1 0 1 2 

 
3.1.6 Logic synthesis with D flip-flops. D flip-flop (Fig. 12) is the most simple and 
the most frequently used memory element. The transition table of this flip-flop is 
presented in Table 9. The name D flip-flop results from word ‘Delay’ – as seen from 
Table 9, the next state of D flip-flop is equal to the previous input (a next state is a 
delayed input). 
 
 
 
 
 

Table 9. Transition table of D flip-flop 

 t 
d 0 1 
0 
1 

0 
1 

0 
1 

 

 
Figure 12. D flip-flop 



Chapter 3 Structure automata – 53 
 

 
 

 
Table 10 contains the structure table of the automaton S1 with D flip-flops. Here we 
have used the optimized output assignment from Table 8 and a trivial state 
assignment in which a binary code for each state is equal to the number of this state. 
To fill out the last column of Table 10 we do not need to apply to the transition table 
of D flip-flop (Table 9); we should simply copy the column t1nt2nt3n into the last 
column. Really, in the column d1d2d3, we write inputs to the memory elements and 
these inputs, according to Table 9, are equal to the next states of the memory 
elements written in the column t1nt2nt3n.  

Table 10. The structure table of automaton S1 with D flip-flops. 

am t1t2t3 as t1nt2nt3n zf x1x2 wg y1y2y3 d1d2d3 
a1 001 

001 
001 

a2 

a3 

a2 

010 
011 
010 

z1 

z2 
z3 

01 
10 
11 

w1 
w3 

w4 

000 
001 
010 

010 
011 
010 

a2 010 
010 
010 

a3 

a1 

- 

011 
001 

- 

z1 

z2 
z3 

01 
10 
11 

w6 

w1 

- 

101 
000 

- 

011 
001 

- 
a3 011 

011 
011 

- 
a1 

a4 

- 
001 
100 

z1 

z2 
z3 

01 
10 
11 

- 
w5 

w3 

- 
100 
001 

- 
001 
100 

a4 100 
100 
100 

a4 

a5 

- 

100 
101 

- 

z1 

z2 
z3 

01 
10 
11 

w4 

w2 

- 

010 
011 

- 

100 
101 

- 
a5 101 

101 
101 

a1 

- 
a4 

001 
- 

100 

z1 

z2 
z3 

01 
10 
11 

w5 

- 
w1 

100 
- 

000 

001 
- 

100 
 

As before for output functions y1, y2, y3, we can minimize the number of inputs into 
OR gates for input memory functions d1, d2, d3. For this, we should minimize the 
number of ‘ones’ in the column d1d2d3. Since this column is equal to the column 
t1nt2nt3n it is sufficient to minimize that in the column t1nt2nt3n. Thus, for the state 
assignment, we can use the algorithm for the output assignment from the previous 
section.  Let p(as) – the number of appearances of each state in the column as in Table 
10 and c(as) – the number of ones which each state produces in the column t1nt2nt3n 
(column d1d2d3). We will insert this information into the first two columns of Table 11.  

Table 11. Optimized state asignment 

 
as 

 
p(as) 

Trivial encoding Optimized encoding 

t1t2t3 c( as) t1t2t3 c( as) 
a1 3 0 0 1 3 0 0 0 0 
a2 2 0 1 0 2 0 1 0 2 
a3 2 0 1 1 4 1 0 0 2 
a4 3 1 0 0 3 0 0 1 3 
a5 1 1 0 1 2 0 1 1 2 

 
First of all, place the states in the order of decreasing p(as). Use zero code for encoding 
of output with p(as) = max. Here we have two states – a1 and a4 with the same weights 
equal to three. We can use code 000 for any of them, for example for a1 – see column 
t1t2t3 in the ‘Optimized encoding’ in Table 11. Then, we assign all possible codes with 
one component equal to one to the states with the next values of p(as) – a4, a2 and a3  
in our example. In the next steps we use codes with two ‘ones’, after this – with three 



Chapter 3 Structure automata – 54 
 

 
 

‘ones’, etc. As a result, we get the encoding in the column t1t2t3 in the ‘Optimized 
encoding’ in Table 11. The sum of numbers in the last column in this table is equal to 
9, it is much lower than the sum of numbers in the column c(as) in the ‘Trivial 
encoding’.  
 
This state assignment is used in Table 12. For such an assignment, we will get the 
new don’t cares: 
 

1. Codes 101, 110 and 111 are not used for the state assignment, therefore 
functions y1, y2, y3, d1, d2, d3 are not specified for the cubes 

t1 t2 t3 x1 x2 

1 0 1 x x 
1 1 0 x x 
1 1 1 x x 

 
2. Code 00 is not used for encoding of input signals, therefore functions y1, y2, 

y3, d1, d2, d3 are not specified for the cube  
t1 t2 t3 x1 x2 

x x x 0 0 

3. Functions y1, y2, y3, d1, d2, d3 are not specified for the cubes corresponding to 
the rows with dashes “-“ in the columns for these functions 

t1 t2 t3 x1 x2 

0 1 0 1 1 
1 0 0 0 1 
0 0 1 1 1 
0 1 1 1 0 

Table 12. The structure table of automaton S1 with optimized state assignment 

am t1t2t3 as t1nt2nt3n zf x1x2 wg y1y2y3 d1d2d3 
a1 000 

000 
000 

a2 

a3 

a2 

010 
100 
010 

z1 

z2 
z3 

01 
10 
11 

w1 
w3 

w4 

000 
001 
010 

010 
100 
010 

a2 010 
010 
010 

a3 

a1 

- 

100 
000 

- 

z1 

z2 
z3 

01 
10 
11 

w6 

w1 

- 

101 
000 

- 

100 
000 

- 
a3 100 

100 
100 

- 
a1 

a4 

- 
000 
001 

z1 

z2 
z3 

01 
10 
11 

- 
w5 

w3 

- 
100 
001 

- 
000 
001 

a4 001 
001 
001 

a4 

a5 

- 

001 
011 

- 

z1 

z2 
z3 

01 
10 
11 

w4 

w2 

- 

010 
011 

- 

001 
011 

- 
a5 011 

011 
011 

a1 

- 
a4 

000 
- 

001 

z1 

z2 
z3 

01 
10 
11 

w5 

- 
w1 

100 
- 

000 

000 
- 

001 
 

Immediately from Table 12 we derive the covers for y1, y2, y3, d1, d2, d3: 
 
 

 
 

 
 

 t1 t2 t3 x1 x2 

 0 1 0 0 1 
y1 = 1 0 0 1 0 

 0 1 1 0 1 
 

 t1 t2 t3 x1 x2 

d1 = 0 0 0 1 0 
 0 1 0 0 1 

 
 t1 t2 t3 x1 x2 

 0 0 0 0 1 
d2 = 0 0 0 1 1 

 0 0 1 1 0 

 t1 t2 t3 x1 x2 

 0 0 0 1 1 
y2 = 0 0 1 0 1 

 0 0 1 1 0 



Chapter 3 Structure automata – 55 
 

 
 

 
 

 
 
 

 
 
 
Minimized covers for functions y1, y2, y3, f1, f2, f3 are shown in Fig. 13 – Fig. 18 (check 
them!). The logic circuit of Mealy automaton S1 with D flip-flops and optimized output 
and state encoding is presented in Fig. 19. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 t1 t2 t3 x1 x2 

 1 0 0 1 1 
d3 = 0 0 1 0 1 

 0 0 1 1 0 
 0 1 1 1 1 

 t1 t2 t3 x1 x2 

 0 0 0 1 0 
y3 = 0 1 0 0 1 

 1 0 0 1 1 
 0 0 1 1 0 

 t1 t2 t3 x1 x2 

d1 = x 1 0 0 x 
 0 0 0 x 0 

           Figure 16. Function d1 

 t1 t2 t3 x1 x2 

y1 = x 1 x 0 x 
 1 x x x 0 

 Figure 13. Function y1 

 t1 t2 t3 x1 x2 

d2 = x x 1 x 0 
 0 0 0 x 1 

   Figure 17. Function d2 

 t1 t2 t3 x1 x2 

y2 = x 0 1 x x 
 0 0 x 1 1 

 Figure 14. Function y2 

 t1 t2 t3 x1 x2 

 x 0 1 x x 
d3 = x x 1 1 x 

 1 x x x 1 

   Figure 18. Function d3 

 t1 t2 t3 x1 x2 

 0 0 x x 0 
y3 = 1 x x x 1 

 x 1 0 0 x 

 Figure 15. Function y3 



Chapter 3 Structure automata – 56 
 

 
 

 
Figure 19. Logic circuit of Mealy automaton S1 with D flip-flops 

3.2 Synthesis of Moore automaton 
 

Fig. 20 presents a basic structure for Moore automaton with three parts – two 
combinational circuits (Logic1 and Logic2) and Memory. As before in a Mealy model, 
the outputs of Logic1 are the input memory functions which depend on a current 
state t1, …, tR and input x1, …, xL. The outputs y1, …, yN are the outputs of Logic2, 
because they depend only on the current state t1, …, tR.  As an example, we will use 
abstract Moore automaton S2 in Table 13.  

 

 

 

 

 

 

 

 

Figure 20. The structure of Moore automaton (general form) 

 



Chapter 3 Structure automata – 57 
 

 
 

Table 13. Moore automaton S2 
 w1 -- w2 w3 w2 

a1 a2 a3 a4 a5 
z1 a5 a2 a1 a2 a5 
z2 -- -- a4 a5 a2 
z3 a3 a3 -- -- a4 

 
Table 14 is the structure table of the automaton S2. First, we insert abstract 
automaton in this table by filling columns am, wg, as and zf from Table 13. Note, that 
we write wg in the left part of Table 14 after codes for current states, because the 
output of Moore automaton depends only on the current state.  

Table 14. The structure table of Moore automaton S2 

am t1t2t3 wg y1y2 as t1nt2nt3n zf x1x2 d1d2d3 
a1 101 

101 
101 

w1 01 a5 

- 
a3 

001 
- 

010 

z1 

z2 
z3 

00 
01 
10 

001 
- 

010 
a2 000 

000 
000 

- - a2 

- 
a3 

000 
- 

010 

z1 

z2 
z3 

00 
01 
10 

000 
- 

010 
a3 010 

010 
010 

w2 00 a1 

a4 

- 

101 
100 

- 

z1 

z2 
z3 

00 
01 
10 

101 
100 

- 
a4 100 

100 
100 

w3 

 
10 a2 

a5 

- 

000 
001 

- 

z1 

z2 
z3 

00 
01 
10 

000 
001 

- 
a5 001 

001 
001 

w2 

 
00 a5 

a2 

a4 

001 
000 
100 

z1 

z2 
z3 

00 
01 
10 

001 
000 
100 

 
To construct whole table, we must encode each input zf, each output wg and each 
state am by binary vectors (Tables 15 – 17). To minimize the number of repetitions of 
‘ones’ in the columns for output and input memory functions, we use the number of 
repetitions of outputs p(wg) and the number of repetitions of next states p(as) in the 
corresponding columns of Table 14. Finally, we rewrite column t1nt2nt3n into column 
d1d2d3, since these columns are equal when we use D flip-flops as memory elements. 
 
 
 
 
 
 
 

Table 17. State assignment 

as p( as) t1t2t3 

a1 1 1 0 1 
a2 3 0 0 0 
a3 2 0 1 0 
a4 2 1 0 0 
a5 3 0 0 1 

Table 16. Output encoding 

wg p( wg) y1y2 

w1 1 0 1 
w2 2 0 0 
w3 1 1 0 

 

Table 15. Input encoding 

zf x1x2 

z1 0 0 
z2 0 1 
z3 1 0 

 



Chapter 3 Structure automata – 58 
 

 
 

 
As abstract automaton S2 has three inputs z1, z2, z3, three outputs w1,…,w3 and five 
states a1,…,a5; the corresponding structure automaton has two binary inputs x1, x2, 
two binary outputs y1, y2 and three binary memory elements t1, t2, t3. The basic 
structure for this automaton is shown in Fig. 21. 
 

 
Figure 21. The structure of Moore automaton S2 

Don’t cares for input memory functions d1, d2, d3: 
1. Codes 011, 110 and 111 are not used for state assignment, therefore the 

functions d1, d2, d3 are not specified for the cubes 
  

t1 t2 t3 x1 x2 

0 1 1 x x 
1 1 0 x x 
1 1 1 x x 

2. Code 11 is not used for encoding of input signals, therefore the functions d1, 
d2, d3 are not specified for the cube 

 
t1 t2 t3 x1 x2 

x x x 1 1 

3. Functions d1, d2, d3 are not specified for the cubes corresponding to the rows 
with dashes “-“ in the columns for these functions 

 
 
 
 
Don’t care for y1, y2: 

 
1. Codes 011, 110 and 111 are not used for state assignment, therefore the 

functions y1, y2 are not specified for the cubes 
 
 
 
 
 

2. Output of the automaton S2 is not specified in the state a2 so y1, y2 are not 
specified for the cube corresponding to the code of this state 

 

t1 t2 t3 x1 x2 

1 0 1 0 1 
0 0 0 0 1 
0 1 0 1 0 
1 0 0 1 0 

t1 t2 t3 
0 1 1 
1 1 0 
1 1 1 



Chapter 3 Structure automata – 59 
 

 
 

 
 

Immediately from Table 14 we derive the covers for d1, d2, d3, y1, y2: 
 

 
 
 
 
 
 

 
 
 

Minimized covers for functions y1, y2, d1, d2, d3 are shown in Fig. 22 – Fig.26 (here we 
gave only Karnaugh maps for y1, y2). Logic circuit of this automaton with D flip-flops 
and optimized output and state encoding is presented in Fig. 27. 

      

                      

 
                                                     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

t1 t2 t3 
0 0 0 

  t1 t2 t3 x1 x2 

 0 1 0 0 0 
d1 = 0 1 0 0 1 

 0 0 1 1 0 

 t1 t2 t3 x1 x2 

d2 = 1 0 1 1 0 
 0 0 0 1 0 

 t1 t2 t3 
y1 = 1 0 0 

 
 t1 t2 t3 x1 x2 

 1 0 1 0 0 
d3 = 0 1 0 0 0 

 1 0 0 0 1 
 0 0 1 0 0 

 t1 t2 t3 
y2 = 1 0 1 

 

 t1 t2 t3 x1 x2 

d2 = 1 x x 1 x 
 x x 0 1 x 

 Figure 23. Function d2 

 t1 t2 t3 x1 x2 

d1 = x 1 x x x 
 0 x 1 1 x 

     Figure 22. Function d1 

 t1 t2 t3 x1 x2 

 x x 1 0 0 
d3 = x 1 x x 0 

 1 x x x 1 

 Figure 24. Function d3

 

 t1 t2 t3 
y1 = 1 x 0 

Figure 25. Function y1 

 t1 t2 t3 
y2 = 1 x 1 

   Figure 26. Function y2 



Chapter 3 Structure automata – 60 
 

 
 

 
Figure 27. Logic circuit of Moore automaton S2 

 
3.3 Synthesis of Combined automaton 

 
In the previous Chapter, we have introduced a combined automaton model. Such an 
automaton has the properties of Mealy and Moore automata. We call it Combined 
automaton (C-automaton). This automaton has two output functions – the first as in 
the Mealy model and the second – as in the Moore model. The transition table of C-
automaton S3 (Table 18) is similar to the transition table for the Mealy model, while, 
in the output table (Table 19), states are marked by the outputs from the set of 
outputs U. 

      Table 18. S3 : as = δ(am , zf) 

zf a1 a2 a3 a4 a5 
z1 

z2 

z3 

- 
a2 

a3 

a5 

- 
a1 

a3 

a4 
- 

a2 

a3 

a5 

- 
a2 

a3 

Table 19. S3 : wg = λ1(am , zf); uf = λ2 (am) 

 u1 - u2 u3 u2 

zf a1 a2 a3 a4 a5 
z1 

z2 

z3 

- 
w2 

w3 

w2 

- 
w4 

w4 

w2 

- 

w1 

w4 

w5 

- 
w6 

w1 
 
Without detailed comments, we will discuss the synthesis of this C-automaton. 

Table 20. The structure table of combined automaton S3 

am t1t2t3 up r1r2 as t1nt2nt3n zf x1x2 wg y1y2y3 d1d2d3 
a1 100 

100 
100 

u1 01 - 
a2 

a3 

- 
001 
000 

z1 

z2 
z3 

00 
01 
10 

- 
w2 

w3 

- 
000 
100 

- 
001 
000 



Chapter 3 Structure automata – 61 
 

 
 

a2 001 
001 
001 

- - a5 

- 
a1 

010 
- 

100 

z1 

z2 
z3 

00 
01 
10 

w2 

- 
w4 

000 
- 

001 

010 
- 

100 
a3 000 

000 
000 

u2 00 a3 

a4 

- 

000 
011 

- 

z1 

z2 
z3 

00 
01 
10 

w4 

w2 

- 

001 
000 

- 

000 
011 

- 
a4 011 

011 
011 

u3 

 
10 a2 

a3 

a5 

001 
000 
010 

z1 

z2 
z3 

00 
01 
10 

w1 
w4 

w5 

010 
001 
011 

001 
000 
010 

a5 010 
010 
010 

u2 

 
00 - 

a2 

a3 

- 
001 
000 

z1 

z2 
z3 

00 
01 
10 

- 
w6 
w1 

- 
101 
010 

- 
001 
000 

 

   Table 21. State assignment                       Table 22. Output wg encoding 

 

 
 

 

 
Table 23. Output up  encoding                              Table 24. Input encoding 

 

 
 

 

 
Figure 28. The structure of Combined automaton S3 

Don’t cares for  y1, y2, y3, d1, d2, d3 
1. Codes 101, 110 and 111 are not used for state assignment, therefore functions 

y1, y2, y3, d1, d2, d3 are not specified for the cubes 
 

t1 t2 t3 x1 x2 

am p( as) t1t2t3 

a1 1 1 0 0 
a2 3 0 0 1 
a3 4 0 0 0 
a4 1 0 1 1 
a5 2 0 1 0 

wg p( wg) y1y2y3 

w1 2 0 1 0 
w2 3 0 0 0 
w3 1 1 0 0 
w4 3 0 0 1 
w5 1 0 1 1 
w6 1 1 0 1 

up p( up) r1r2 

u1 1 0 1 
u2 2 0 0 
u3 1 1 0 

zf x1x2 

z1 0 0 
z2 01 
z3 1 0 



Chapter 3 Structure automata – 62 
 

 
 

1 0 1 x x 
1 1 0 x x 
1 1 1 x x 

 
2. Code 11 is not used for input encoding, functions y1, y2, y3, d1, d2, d3 are not 

specified for the cube 
 

 
3. Functions y1, y2, y3, d1, d2, d3 are not specified for the cubes corresponding to 

the rows with dashes “-“ in the columns for these functions 

 
 

 
 
 
 
Don’t cares for  r1, r2 
 

1. Codes 101, 110 and 111 are not used for state assignment, therefore the 
functions r1, r2 are not specified for the cubes 

 
 

t1 t2 t3 
1 0 1 
1 1 0 
1 1 1 

 
2. Output of automaton S3 is not specified on state a2 so r1, r2 are not specified 

for the cube corresponding to the code of this state 
 

 
 

 
 
Initial covers for  y1, y2, y3, d1, d2, d3 

 
 
 
 
 
 
 
 
 
 

t1 t2 t3 x1 x2 

x x x 1 1 

t1 t2 t3 x1 x2 

1 0 0 0 0 
0 0 1 0 1 
0 0 0 1 0 
0 1 0 0 0 

t1 t2 t3 
0 0 1 

 t1 t2 t3 x1 x2 

y1 = 1 0 0 1 0 
 0 1 0 0 1 

 t1 t2 t3 x1 x2 

 0 1 1 0 0 
y2 = 0 1 1 1 0 

 0 1 0 1 0 

 t1 t2 t3 x1 x2 

 0 0 1 1 0 
 0 0 0 0 0 

y3 = 0 1 1 0 1 

 

 t1 t2 t3 x1 x2 

d1 = 0 0 1 1 0 
 

 t1 t2 t3 x1 x2 

 0 0 1 0 0 
d2 = 0 0 0 0 1 

 0 1 1 1 0 
 

 t1 t2 t3 x1 

 1 0 0 0 
d3 = 0 0 0 0 

 0 1 1 0 
 0 1 0 0 

 



Chapter 3 Structure automata – 63 
 

 
 

 
 

 
 
 
 
Initial covers for r1, r2 

 
 

 
Finding minimized covers 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 0 1 1 1 0 
 0 1 0 0 1 

 t1 t2 t3 
r1 = 0 1 1 

 t1 t2 t3 
r2 = 1 0 0 

 

 

 t1 t2 t3 x1 x2 

d1 = 0 0 x 1 x 

       Figure 29. Function d1 

00

01

11

10

000 001 011 010 110 111 101 100

x1 x2

t1 t2 t3

1

1

1
 

 t1 t2 t3 x1 x2 

 x 0 1 0 x 
d2 = 0 0 x x 1 

 x 1 1 1 x 

    Figure 30. Function d2 

 

 t1 t2 t3 x1 x2 

d3 = x x 0 x 1 
 x 1 x 0 0 

   Figure 31. Function d3 



Chapter 3 Structure automata – 64 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

 
 
 

 
 

 t1 t2 t3 x1 x2 

y1 = 1 x x 1 x 
 x 1 0 x 1 

 Figure 32. Function y1 

 
 

 t1 t2 t3 x1 x2 

y2 = x 1 x x 0 
 Figure 33. Function y2 

 t1 t2 t3 x1 x2 

 x x 1 1 x 
y3 = x 1 x x 1 

 x x 0 0 0 

 Figure 34. Function y3 

 

 t1 t2 t3 
r1 = x x 1 

      Figure 35. Function r1 

 

 

 t1 t2 t3 
r2 = 1 x x 

       Figure 36. Function r2 

 



Chapter 3 Structure automata – 65 
 

 
 

 
 
Logic circuit 

 
Figure 37. Logic circuit of Combined automaton S3 with D flip-flops



 
 

Chapter 4 Algorithmic State Machines and Finite State Machines 
 

In this Chapter, we will introduce Algorithmic state machines and consider their use 
for description of the behavior of control units. Next, we will use algorithmic state 
machines to design Finite State Machines (FSM) with hardly any constraints on the 
number of inputs, outputs and states. 
 

4.1 Flowcharts and Algorithmic state machines 
 
4.1.1 Example of ASM. An Algorithmic state machine (ASM) is the directed 
connected graph containing an initial vertex (Begin), a final vertex (End) and a finite 
set of operator and conditional vertices (Fig. 1). The final, operator and conditional 
vertices have only one input, the initial vertex has no input. Initial and operator 
vertices have only one output, a conditional vertex has two outputs marked by "1" 
and "0". A final vertex has no outputs.  

 
Figure 1. Vertices of Algorithmic state machine 

As the first example, let us consider a very simple Traffic Light Controller (TLC) 
presented in the flowchart in Fig. 2. This controller is at the intersection of a main 
road and a secondary road. Immediately after vertex Begin we have a waiting vertex 
(one of the outputs of this vertex is connected to its input) with a logical condition 
Start. It means that the controller begins to work only when signal Start = 1.  At this 
time, cars can move along the main road for two minutes. For that, the traffic light at 
the main road is green, the traffic light at the secondary road is red and the special 
timer that counts seconds is set to zero (main_grn := 1;  sec_red := 1; t := 0). 
 
Although our TLC is very simple it is also a little smart – it can recognize an 
ambulance on the road. When an ambulance is on the road the signal amb is equal to 
one (amb = 1), when there is no ambulance on the road this signal is equal to zero 
(amb = 0). First we will discuss the case when there are no ambulances on the road. 
 
Thus, when amb = 0 and t = 120 sec TLC transits into some intermediate state to 
allow cars to finish driving along the main road: main_yel := 1;  sec_red := 1; t := 0. 
TLC is in this state only for three seconds (t = 3 sec), after which cars can move along 
the secondary road for 30 seconds: main_red := 1; sec_grn := 1; t := 0. 
 
Thirty seconds later, if there are no ambulances on the road (amb = 0; t = 30 sec), 
there is one more intermediate state. Now cars must finish driving along the 
secondary road: main_red := 1; sec_yel := 1; t := 0. After three seconds, if, once again, 
there are no ambulances on the road, the process reaches vertex End, or, that is the 
same, it returns to the beginning vertex Begin.   
 
When there is ambulance on the road (amb = 1) outputs of conditional vertices with 
logical condition amb, marked by “1” bring us to the intermediate state to let cars to 
finish their driving: main_yel := 1; sec_yel := 1; t := 0. One more logical condition 
dmain tells us where the ambulance is – whether it is on the main road or on the 
secondary one. If it is on the main road (dmain = 1), after three seconds the traffic 



Chapter 4 Algorithmic state machines and finite state machines – 66 
 

  

light will be green on the main road, otherwise (dmain = 0) the traffic light will be 
green on the secondary road. 

 
Figure 2. A simple Traffic Light Controller 

In the flowchart, a logical condition is written in each conditional vertex. It is possible 
to write the same logical condition in different conditional vertices. A microinstruction 
(an operator), containing one, two, three or more microoperations, is written in each 
operator vertex of the flowchart. It is possible to write the same operator in different 
operator vertices.  

 
If we replace logical conditions by x1, x2, … , xL, microoperations by y1, y2, … , yN and 
operators by  Y1, Y2, … , YT we will get Algorithmic State Machine (ASM). ASM for the 
flowchart in Fig. 2 is shown in Fig. 3. 
 
ASM vertices are connected in such a way that: 

1. Inputs and outputs of the vertices are connected by arcs directed from an 
output to an input, each output is connected with only one input;  

2. Each input is connected with at least one output;  
3. Each vertex is located on at least one of the paths from vertex “Begin” to 

vertex “End”. Hereinafter we will not consider ASMs with subgraphs, 



Chapter 4 Algorithmic state machines and finite state machines – 67 
 

  

containing an infinite cycle. An example of such a subgraph with an infinite 
loop between vertices with Y1 and Y3 is shown in Fig. 4. The dots in this ASM 
between vertex “Begin” and the conditional vertex with x1 and between this 
vertex and vertex “End” mean that ASM has other vertices on the path from 
vertex “Begin” to vertex “End”. The vertices in the loop are not on the path 
from “Begin” to “End”. 

4. One of the outputs of a conditional vertex can be connected with its input. 
We will call such conditional vertices the “waiting vertices”, since they 
simulate the waiting process in the system behavior description.  
 

 
          Figure 3. ASM for the flowchart in Fig. 2 

 
Begin

Endx1

.  
.  

.

1 .  .  .

Y1

0

x3 0
1

x2 Y21Y3 0  
Figure 4. Subgraph with an infinite loop 



Chapter 4 Algorithmic state machines and finite state machines – 68 
 

  

One more example of ASM G1 with logical conditions X = {x1, …, x7} and 
microoperations Y = {y1, …, y10} is shown in Fig. 5. This ASM has eight operators Y1, 
…, Y8, they are written near operator vertices.  
 
4.1.2 Transition functions. Let us discuss the paths between the vertex “Begin”, the 
vertex “End” and operator vertices passing only through conditional vertices. We will 
write such paths as follows: 

jiRii YxxY ~...~
1    (1) 

In such a path, irx~  is equal to irx  if the path proceeds from the conditional vertex 

with  irx  via output ‘1’,  and irx~  is equal to '
irx  if the path proceeds from the 

conditional vertex with  irx  via output ‘0’. For example, we have the following paths 
from Yb (vertex Begin) in ASM G1: 

 
Yb x'1 Y2; 
Yb x1x2x'3 Y6; 
Yb x1x'2 Y1; 
Yb x1x2x3 Y5. 

 
Begin

1

x3

1

y1 y3

1

y1 y2 0

x4

x2

x1

y4
0

x5

y5 y6 y7

1

x6

x7

0

0

End

x1

1
0

y8 y91

1
y3 y4

0

x6

y6 y7

1
0

y6 y7
0

0

Yb

Y6

Y1

Y5

Y7

Y4

y3 y6 y10
1 Y8

Y3

Y2

Ye

Y6

 
Figure 5. ASM G1 

 
Let us match a product of variables in the path (1) from operator vertex Yi to operator 
vertex Yj   

iRiij xx ~...~
1=α  

with this path from Yi to Yj. For example, for ASM G1 in Fig. 5 
 

α17 = x4 x'1; α12 = x'4;  α14 = x4 x1.  
 



Chapter 4 Algorithmic state machines and finite state machines – 69 
 

  

If there exist H paths between Yi and Yj through the conditional vertices, then  
αij = α1ij + α2ij + … + αHij 

 
where αhij (h = 1, …,H) is the product for the h-th path. Let us call αij a transition 
function from operator (microinstruction) Yi to operator (microinstruction) Yj.  
 
Note that for the path Y6Y7 (operator Y7 follows operator Y6 immediately without 
conditional vertices) α67 = 1, as the product of an empty set of variables is equal to 
one. 
 
4.1.3 Value of ASM at the sequence of vectors. Denote all possible L-component 
vectors of the logical conditions x1, …,xL by ∆1, …,∆2L and define the  execution of an 
ASM on any given sequence of vectors ∆1, …,∆mq beginning from the initial operator 
Yb. We will demonstrate this procedure by means of ASM G1 in Fig. 5 and the 
sequence (2) containing eight vectors ∆1, …,∆8: 
 

 
 
 
 
 
 
 
 
 
 
 
 
ASM G1 in Fig. 5 contains logical variables x1,…,x7 and operators Yb ,Y1, …,Y8,Ye. Now 
let us find the sequence of operators which would be implemented, if we 
consecutively, beginning from Yb, give variables the values from these vectors. We 
suppose that the values of logical conditions can be changed only during an execution 
of operators.      
 
Step 1. Write the initial operator 

Yb. 
 
Step 2. Let logical variables x1,…,x7  take their values from vector ∆1. From the set of 
the transition functions αb1,…, αb8, αbe we choose such a function αbt  that αbt(∆1) = 1. 
In our example for the operator Yb, the following transition functions are not 
identically equal to zero: 
 

αb5 = x1 x2 x3;        αb6 = x1 x2 x'3; αb1 = x1 x'2; αb2 = x'1.  
        
We will call such functions non-trivial transition functions to distinguish them from the 
trivial functions, which are identically equal to zero. Function αij is trivial if there is no 
path from operator Yi to operator Yj. In the example at this step, we choose the 
function αb1, since only αb1 is equal to one on the first vector ∆1:  
 

αb1 (∆1) = 1. 
 
Write Y1 to the right of Yb: 

  x1 x2 x3 x4 x5 x6 x7 

∆1 = 1 0 1 0 1 1 1 
∆2 = 0 1 1 0 1 0 0 
∆3 = 1 0 1 0 0 1 0 
∆4 = 0 1 0 0 0 0 1                                (2) 
∆5 = 1 1 0 1 1 1 0 

∆6 = 1 1 0 0 1 0 1 
∆7 = 0 1 1 1 0 0 0 
∆8 = 0 1 0 1 0 0 1 



Chapter 4 Algorithmic state machines and finite state machines – 70 
 

  

YbY1. 
Step 3. Let x1,…,x7  take their values from vector ∆2. From the set of the transition 
functions α11,…, α18, α1e we choose non-trivial functions 

α14 = x4 x1;         α17 = x4 x'1;         α12 = x'4 
and among them – the only function α12 (∆2) = 1. Write Y2 to the right of YbY1: 

 
YbY1Y2. 

The computational process for the given sequence of vectors may reach its end in two 
cases:  

1. The final vertex “End” is reached. In this case, the last operator is Ye. The 
number of operators in the operator row (without Yb and Ye) is less or equal (if 
we reached the final vertex with the last vector) to the number of vectors; 

2. The vectors are exhausted but we have not yet reached the final vertex. In this 
case, the number of operators in the operator row is equal to the number of 
vectors.   

 
In our example, we reached the final vertex “End” at the seventh vector  

 
∆7 = 0 1 1 1 0 0 0 

and we get the row 
                            Yb Y1 Y2 Y4 Y2 Y3 Y8 Ye.                                             (3) 

 
The operator row thus obtained is the value of the ASM G1 for the given sequence of 
vectors (2). 

 
4.2 Synthesis of Mealy FSM 

 
We will use Algorithmic state machines to describe the behavior of digital systems, 
mainly of their control units. But if we must construct a logic circuit of the control 
unit we should use a Finite state machine (FSM). We will consider methods of 
synthesis of FSM Mealy, Moore and their combined model implementing a given ASM, 
with hardly any constrains on the number of inputs, outputs and states. 
 
4.2.1 Construction of a marked ASM.  As an example we will use ASM G1 in Fig. 6.  
A Mealy FSM implementing given ASM may be constructed in two stages:  
 
Stage1. Construction of a marked ASM;  
 
Stage 2.  Construction of a state diagram (state graph).  
 
At the first stage, the inputs of vertices following operator vertices are marked by 
symbols a1, a2, …, aM as follows: 
 

1. Symbol a1 marks the input of the vertex following the initial vertex “Begin” and 
the input of the final vertex “End”; 

2. Symbols a2, …, aM mark the inputs of all vertices following  operator vertices; 
3. Vertex inputs are marked only once; 
4. Inputs of different vertices, except the final one, are marked by different 

symbols. 
 

Marked ASM G1 in Fig. 6 is a result of the first step. Symbols a1, …, a6 are used to 
mark this ASM. Note, that we mark the inputs not only of conditional vertices but 



Chapter 4 Algorithmic state machines and finite state machines – 71 
 

  

of operator vertices as well (see mark a3 at the input of the vertex with operator 
Y7). It is important that each marked vertex follows an operator vertex. 
 

 
Figure 6. ASM G1 marked for the Mealy FSM synthesis 

 
4.2.2 Transition Paths. At the second stage, we will consider the following paths in 
the marked ASM: 
    sgmmRmm aYxxa ~...~

1    (P1) 
     
    11

~...~ axxa mmRmm     (P2) 
 
We call these paths transition paths. Thus, the path P1 proceeds from am to as (am = as 

is also allowed) and contains only one operator vertex at the end of this path. The 
path P2 proceeds from am only to a1 without operator vertex. Here, mrmr xx =~ , if on the 

transition path we leave the conditional vertex with mrx via output ‘1’ and mrmr xx '~ =  if 
we leave it via output ‘0’. If Rm = 0 on the path P1, two operator vertices follow one 
after another and this path turns into 

sgm aYa . 
There are sixteen transition paths in the marked ASM G2 in Fig. 6:  
 
 
 
 
 
 
Note, that the path a2 x4x'1 a3 doesn’t correspond to the transition path P1 (the 
operator vertex is absent on the path) and to transition path P2 (it isn’t a path to a1). 
Thus, it isn’t a transition path and we should go on to get the path a2 x4x'1 Y7 a6. For 
the same reason, paths a4 x'5x'1 a3 and a6 x'6 a3 are not the transition paths either. 

a1 x1x2x3 Y5 a2 

a1 x1x2x'3 Y6 a3 

a1 x1x'2 Y1 a2 

a1 x'1 Y2 a4 

a5 x'6x7 Y8 a1 

a5 x'6x'7 a1 

a6 x6 Y6 a1 

a6 x'6 Y7 a6 

a4 x5 Y3 a5 

a4 x'5x1 Y4 a2 

a4 x'5x'1 Y7 a6 

a5 x6 Y4 a2 

a2 x4x1 Y4 a2 

a2 x4x'1 Y7 a6 

a2 x'4 Y2 a4 

a3 Y7 a6 



Chapter 4 Algorithmic state machines and finite state machines – 72 
 

  

4.2.3 Graph of FSM. Next we construct a graph (state diagram) of FSM Mealy with 
states (marks) a1, …, aM, obtained at the first stage. We have six such states a1, …, a6 
in our example. Thus, the FSM graph contains as many states as the number of 
marks we get at the previous stage. Now we should define transitions between these 
states.  
 
FSM has a transition from state am to state as with input X(am, as)  and output Yg (see 
the upper subgraph in Fig. 7) if, in ASM, there is transition path P1  

sgmRmm aYxxa
m

~...~
1 . 

Here X(am, as) is the product of logical conditions written in this path:  
X(am, as) = mmRm xx ~...~

1 . 

In exactly the same way, for the path sgm aYa we have a transition from state am to 
state as with input X(am, as) = 1 and output Yg, as the product of an empty set of 
variables is equal to zero. If, for a certain r (r = 1, …, Rm), symbol xmr (or x'mr) occurs 
several times on the transition path, all symbols xmr (x'mr) but one are deleted; if for a 
certain r (r = 1, …, Rm), both symbols xmr and x'mr occur on the transition path, this 
path is removed. In such a case X(am, as) = 0. 
 
For the second transition path P2, FSM transits from state am to the initial state a1 
with input X(am, a1)  and output Y0 (see the lower subgraph in Fig. 7). Y0 is the 
operator containing an empty set of microoperations.            
                                 

 
Figure 7. Subgraphs for transition paths P1 and P2 

As a result, we obtain a Mealy FSM with as many states as the number of marks we 
used to mark the ASM in Fig. 6. The state diagram of the Mealy FSM is shown in Fig. 
8. 

 
Figure 8. The state diagram of the Mealy FSM 



Chapter 4 Algorithmic state machines and finite state machines – 73 
 

  

 
4.2.4 How not to loose transition paths. Sometimes, if ASM contains many 
conditional vertices, it is difficult not to loose one or several transition paths. Here 
we give a very simple algorithm to resolve this problem. This algorithm has only 
two steps. 

 
1. Find the first transition path leaving each conditional vertex through output 

'1'. For subgraph of ASM in Fig. 9 we will get the following first path from state 
a2: 

a2 x1 x2 x5 Y6 a3. 

 

2. Invert the last non-inverted variable in the previous path, return to ASM and 
continue the path (if it is possible) leaving each conditional vertex through 
output '1'. To construct the second path, we should invert variable x5. We 
cannot continue because we reached an operator vertex: 

 
a2 x1 x2 x'5 Y2 a3. 
 

We should construct paths in the same manner until all variables in a transition path 
will be inverted. For our example, we will get the following paths: 

 
 
 
 
 

 

 
Figure 9. Subgraph of ASM 

 
4.2.5 Transition tables of Mealy FSM. The graph of Mealy FSM in Fig. 8 has only 6 
states and 16 arcs. Practically, however, we must construct FSMs with tens of states 
and more than one-two hundreds of transitions. In such a case, it is difficult to use a 
graph, so we will present it as a table. Table 1 for the same Mealy FSM has five 
columns: 

• am – a current state; 
• as – a next state; 
• X(am,as) – an input signal;                           
• Y(am,as) – an output signal; 

a2 x1 x'2 x5 x6 Y3 a4; 
a2 x1 x'2 x5 x'6 x7 x4 Y5 a5; 
a2 x1 x'2 x5 x'6 x7 x'4 Y7 a4; 
a2 x1 x'2 x5 x'6 x'7 Y5 a5; 
 

a2 x'1 x'3 x6 Y3 a4; 
a2 x'1 x'3 x'6 x7 x4 Y5 a5; 
a2 x'1 x'3 x'6 x7 x'4 Y7 a4; 
a2 x'1 x'3 x'6 x'7 Y5 a5. 

a2 x1 x'2 x'5 Y2 a3; 
a2 x'1 x3 x7 x4 Y5 a5; 
a2 x'1 x3 x7 x'4 Y7 a4; 
a2 x'1 x3 x'7 Y5 a5; 



Chapter 4 Algorithmic state machines and finite state machines – 74 
 

  

• H – a number of line.   
                  

Actually, immediately from ASM, we should write transition paths, one after another, 
into the transition table. In Table 1, ~xt is used instead of x't for the inversion of xt. 

Now we will discuss what kind of FSM we have received. Our ASM G1 in Fig. 6 which 
we used to construct FSM S1 in Table 1, has seven logical conditions and ten 
microoperations. FSM S1 has seven binary inputs in the column X(am,as) and ten 
binary outputs in the column Y(am,as). The input signal of this FSM (Fig. 10) is the 7-
component vector, the output signal of this FSM is the 10-component vector. 

Table 1. Direct transition table of Mealy FSM S1 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. FSM as a black box 

Let us take one of the rows from Table 1, for example row 3, and look at the behavior 
of FSM presented in this row. Our FSM transits from state a1 into state a2 when the 
product x1 x'2 = 1. It is clear that such a transition takes place for any input vector in 
which the first component is equal to 1, the second component is equal to 0. The 
values of other components are not important. Thus, we can say that the third row of 
Table 1 presents transitions from a1 with any vector which is covered by cube 
10xxxxx. In other words, this row presents not one but 25 = 32 transitions. In exactly 
the same way, the first and the second row present 16 transitions, the fourth row – 64 
transitions and the eighth row – 128 transitions. 

Two microoperations y1, y2, written in the third row of the output column, mean that 
two components y1 and y2 are equal to 1 and others are equal to 0 (y1= y2 =1; y3 = y4 = 
… = y10 =0) in the output vector. I remind you that if the operator, written in the 
operator vertex of some ASM, contains microoperations ym, yn, only these 
microoperations are equal to 1 and other microoperations are equal to 0 during 
implementation of this operator.  

am as X(am,as) Y(am,as) H 
a1 a2 

a3 

a2 

a4 

x1x2x3 

x1x2~x3 

x1~x2 

~x1 

y1y3 

y6y7 

y1y2 

y4 

1 
2 
3 
4 

a2 a2 

a6 

a4 

x4x1 

x4~x1 

~x4 

y8y9 

y3y4 

y4 

5 
6 
7 

a3 a6 1 y3y4 8 
a4 a5 

a2 

a6 

x5 

~x5x1 

~x5~x1 

y5y6y7 

y8y9 

y3y4 

9 
10 
11 

a5 a2 

a1 

a1 

x6 

~x6x7 

~x6~x7 

y8y9 

y3y6y10 

- 

12 
13 
14 

a6 a1 

a6 
x6 

~x6 
y6y7 

y3y4 
15 
16 



Chapter 4 Algorithmic state machines and finite state machines – 75 
 

  

Let us compare Table 1 with a classical FSM representation in Table 3.7 from Chapter 
3. If we would like to present our FSM with six states a1, …, a6 and seven inputs x1, 
…, x7 in the classical table, this table will have about 6x27 rows, because each row of 
this table describes only one FSM transition. In our Table 1 from this Chapter, we 
have only 16 rows because each row of such table presents lot of transitions. 
 
The specific feature of such FSM is the multiplicity of inputs in the column X(am,as), 
maybe several tens or even hundreds, but each product in one row contains only few 
variables from the whole set of input variables – as a rule, not more than 8 – 10 
variables. It means that each time the values of the output variables depend only on 
the values of a small number of the input variables. Really, if, for example, FSM has 
30 input variables, the total number of input vectors is equal to 230, and if each time 
the values of the output variables depended on the values of all the input variables, 
no designer could either describe or construct such an FSM.  
 
Let us briefly discuss the correspondence between FSM S1 (Table 1) and ASM G1 (Fig. 
6) which we used to construct FSM S1. In Section 4.1.3 we got the value of ASM G1  
 

Yb Y1 Y2 Y4 Y2 Y3 Y8 Ye 
for some random sequence of vectors (2) of logical conditions: 

 
 
 
 
 
 
 
 
 
 
 

 
Now we will find the response of FSM S1 in the initial state a1 to the same sequence of 
input vectors: 
 
State sequence a1 a2 a4 a2 a4 a5 a1   
Input sequence ∆1 ∆2 ∆3 ∆4 ∆5 ∆6    
Response y1y2 y4 y8y9 y4 y5y6y7 y3y6y10   (4) 
Microinstructions Y1 Y2 Y4 Y2 Y3 Y8    
 
Let FSM be in the initial state a1 with the first vector ∆1 = 1010111 at its input. To 
determine the next state and the output we should find such a row in the array of 
transitions from a1 (Table 1) that the product X(am,as), written in this row, be equal to 
one at input vector ∆1. Since x1x′2(∆1) = 1 (the third row), FSM S1 produces output 
signal y1y2 = Y1 and transits into state a2. Similarly, we find that x′4(∆2) is equal to one 
at one of transitions from state a2 and FSM transits to the state a4 with the output 
signal y4 = Y2 (see row 7 in Table 1) etc. As a result, we get the response of FSM S1 in 
the initial state a1 to the input sequence ∆1, …, ∆6 in the fourth row of sequence (4). 
 
As seen from this row, the FSM response is equal to the value of ASM G1 for the same 
input sequence.  Note, that we consider here only the FSM response until its return to 
the initial state a1 and this response Y1 Y2 Y4 Y2 Y3 Y8 corresponds to the value of ASM  
G1 between the operator Yb (vertex "Begin") and the operator Ye (vertex "End"). 

  x1 x2 x3 x4 x5 x6 x7 

∆1 = 1 0 1 0 1 1 1 
∆2 = 0 1 1 0 1 0 0 
∆3 = 1 0 1 0 0 1 0 
∆4 = 0 1 0 0 0 0 1                                     
∆5 = 1 1 0 1 1 1 0 

∆6 = 1 1 0 0 1 0 1 
∆7 = 0 1 1 1 0 0 0 
∆8 = 0 1 0 1 0 0 1 



Chapter 4 Algorithmic state machines and finite state machines – 76 
 

  

 
Let us define FSM S as implementing ASM G if the response of this FSM in the state a1 

to any input sequence (until its return to the state a1) is equal to the value of ASM G 
for the same input sequence. From the considered method of synthesis of Mealy FSM 
S1 from ASM G1 it follows that this FSM S1 implements ASM G1. 

4.2.6 Synthesis of Mealy FSM logic circuit. As in Chapter 3, we will construct a 
Mealy FSM logic circuit with the structure presented in Fig. 11. To design this circuit 
we will use an FSM structure table (Table 2). This table was constructed from the 
direct transition table (Table 1) by adding three additional columns: 

• K(am) – a code of the current state; 
• K(as) – a code of the next state; 
• D(am,as) – an input memory function. 

       

 
Figure 11. The structure for the Mealy FSM logic circuit 

 
Table 2. Structure table of FSM S1 

am K(am) as K(as) X(am,as) Y(am,as) D(am,as) H 
a1 001 a2 

a3 

a2 

a4 

000 
101 
000 
010 

x1x2x3 

x1x2~x3 

x1~x2 

~x1 

y1y3 

y6y7 

y1y2 

y4 

– 
d1d3 

– 

d2 

1 
2 
3 
4 

a2 000 a2 

a6 

a4 

000 
100 
010 

x4x1 

x4~x1 

~x4 

y8y9 

y3y4 

y4 

– 
d1 

d2 

5 
6 
7 

a3 101 a6 100 1 y3y4 d1 8 
a4 010 a5 

a2 

a6 

110 
000 
100 

x5 

~x5x1 

~x5~x1 

y5y6y7 

y8y9 

y3y4 

d1d2 
– 

d1 

9 
10 
11 

a5 110 a2 

a1 

a1 

000 
001 
001 

x6 

~x6x7 

~x6~x7 

y8y9 

y3y6y10 

- 

– 
d3 

d3 

12 
13 
14 

a6 100 a1 

a6 
001 
100 

x6 

~x6 
y6y7 

y3y4 
d3 

d1 
15 
16 

 
To encode FSM states we constructed Table 3 where p(as) is the number of 
appearances of each state in the next state column as in Table 2. The algorithm for 
state assignment is absolutely the same as in Chapter 3. First, we use the zero code 
for state a2 with max p(a2) = 5. Then codes with one '1' are used for states a6, a1, a4 
with the next max appearances and, finally, two codes with two 'ones' are used for the 
left states a3 and a5.     



Chapter 4 Algorithmic state machines and finite state machines – 77 
 

  

 
To fill column D(am,as) it is sufficient to write there column K(as) because the input of 
D flip-flop is equal to its next state. However, here we use the same notation as in 
column Y(am,as) and write dr in the column D(am,as) if dr is equal to 1 at the 
corresponding  transition (am,as) – equal to 1 in column K(as). After that, the shaded 
part of Table 2 is something like a truth table with input variables t1, t2, t3, x1, …, x7 in 
the columns K(am) and X(am,as) and output variables (functions) y1, …, y10, d1, d2, d3 in 
the columns Y(am,as) and D(am,as).    

Table 3. State assignment 

as p(as) t1 t2 t3 

a1 3 0 0 1 
a2 5 0 0 0 
a3 1 1 0 1 
a4 2 0 1 0 
a5 1 1 1 0 
a6 4 1 0 0 

 
Let Am be a product, corresponding to the state code K(am), and Xh be the product of 
input variables, written in the column X(am,as) in the h row. For example, from the 
column K(am): K(a1) = 001, then A1 = t'1t'2t3; K(a2) = 000, then A2 = t'1t'2t'3; K(a3) = 101, 
then A3 = t1t'2t3 etc. Immediately from the column X(am,as) we get:   
 

X1 = x1x2x3; X2 = x1x2x'3; X6 = x4x'1; X8 = 1; X16 = x'6. 
We call the term 

eh = Am Xh 

 
the product corresponding to the h row of the FSM structure table if am is the current 
state in this row. For example, from Table 2, we get: 
 

e1 =  t'1t'2t3 x1x2x3; 
e2 =  t'1t'2t3 x1x2x'3; 
e6 =  t'1t'2t'3 x4x'1; 
e8 =  t1t'2t3; 
e16 =  t1t'2t'3 x'6. 

 
Let H(yn) is the set of rows with yn in the column Y(am,as). Then, as in the truth table: 

.
)(

∑
∈

=
nyHh

hn ey  

For example, y6  is written in rows 2, 9, 13, 15 in the column Y(am,as). Then 
 

y6 = e2 + e9 + e13 + e15 = t'1t'2t3x1x2x'3 + t'1t2t'3 x5 + t1t2t'3 x'6x7 + t1t'2t'3 x6. 
 
In exactly the same way, if H(dr) is the set of rows with dr in the column D(am,as), then 
 

.
)(

∑
∈

=
rdHh

hr ed  

 
For example, d2 is written in rows 4, 7, 9 in the column D(am,as). Then 
 

d2 = e4 + e7 + e9 = t'1t'2t3 x'1+ t'1t'2t'3 x'4 + t'1t2t'3 x5. 
 



Chapter 4 Algorithmic state machines and finite state machines – 78 
 

  

Thus, immediately from Table 1 we can get expressions for outputs of circuit “Logic” 
in Fig. 11: 

 
y1 = e1 + e3 = t'1t'2t3 x1x2x3 + t'1t'2t3 x1x'2; 
y2 = e3 = t'1t'2t3 x1x'2; 
 
y3 = e1 + e6 + e8 + e11 + e13 + e16 = t'1t'2t3 x1x2x3 + t'1t'2t'3 x4x'1 + t1t'2t3 +  
      + t'1t2t'3 x'5x'1 + t1t2t'3 x'6x7 + t1t'2t'3 x'6; 
.  .  . 
y10 = e13 = t1t2t'3 x'6x7;     

 
d1 = e2 + e6 + e8 + e9 + e11 + e16 = t'1t'2t3 x1x2x'3 + t'1t'2t'3 x4x'1 + t1t'2t3 +  
      + t'1t2t'3 x5 + t'1t2t'3 x'5x'1 + t1t'2t'3 x'6; 
d2 = e4 + e7 + e9 = t'1t'2t3 x'1+ t'1t'2t'3 x'4 + t'1t2t'3 x5; 
d3 = e2 + e13 + e14 + e15 = t'1t'2t3 x1x2x'3 + t1t2t'3 x'6x7 + t1t2t'3 x'6x'7 + t1t'2t'3 x6. 

 
How many different products are there in these expressions? The answer is very 
simple – only sixteen, because we have 16 rows in Table 2 and only one product 
corresponds to one row. Thus, we should not write any expressions but can design 
the logic circuit immediately from the structure table. For that, it is sufficient to 
construct H AND-gates, one for each row, and N+R OR-gates, one for each output 
variable yn (n = 1, …, 10 in our example) and one for each input memory function dr (r 
= 1, 2, 3 in our example). The logic circuit of Mealy FSM is shown in Fig. 12. We have 
constructed 16 AND-gates, as there are 16 rows in its structure table. The number of 
OR-gates in this circuit is less than the number of input memory functions and 
output functions. Really, if yn or dr (y2 and y10 in our example) are written only in one 
row of the structure table, it is not necessary to construct OR-gate for such yn or dr,  
we can get these signals from the corresponding AND-gates. Moreover, we have 
constructed one OR-gate for y8 and y9 since these outputs are always together in the 
structure table of Mealy FSM S1.  
 
4.2.7 ASM with waiting vertices. In this section, we will show that the algorithm for 
FSM synthesis does not change if ASM contains waiting vertices. In a waiting vertex, 
one of its outputs is connected with its input (see the ASM subgraph in Fig. 13). Let 
us find all transition paths from the state a8. The first two are trivial – see the first two 
rows in Table 4. 
 
To find the next path we should invert the variable x7. The output '0' for x7 brings us 
to the input of this conditional vertex. So, the next paths will be: 
 

a8 ~x7 x7 x12 (y11) a13; 
a8 ~x7 x7 ~x12 (y23, y29) a17. 

 
The products of input variables for both of these paths are equal to zero (x'7 x7 = 0), so 
FSM cannot transit from the state a8 to any other state when x7 = 0. If FSM cannot  
transit into any other state, it remains in the same state a8 or, we can say, it transits 
from a8 to a8 with X(a8, a8) = x'7. No output variables are equal to '1' at this transition, 
so we have '–' in the column Y(am, as) in the third row.  
 
The next example (Fig.14) presents a general case. The only difference from the 
previous example – the waiting vertex is in the middle of the path. After the third path 



Chapter 4 Algorithmic state machines and finite state machines – 79 
 

  

in Table 5 we should invert variable x11 and again return to the input of the 
conditional vertex with x11. We can construct the following transitions paths: 
 

a10 ~x4 ~x11 x11 x27 (y33) a22; 
a10 ~x4 ~x11 x11 ~x27 (y7, y31) a17. 

 
The products for both of these paths are equal to zero. So, when x4 = 0, we reached a 
waiting vertex with condition x11. If x11 = 0 (return to the input), FSM transits from 
state a10 to state a10 (remains in this state) with input x'4 x'11 and each output variable 
is equal to zero (the forth row in Table 5).             
 

 
Figure 12. The logic circuit for Mealy FSM S1 

 
 

 
 
 
 
 
 
 

1

x12

x7

a8

0

y11
1

y23 y29

0a13

a17

 
Figure 13. Subgraph G1 with waiting vertex 

Table 4. Transitions for subgraph G1 

am as X(am,as) Y(am,as) H 
.   .   . 

a8 a13 

a17 

a8 

x7x12 

x7~x12 
~x7 

y11 

y23y29 

– 

 

 



Chapter 4 Algorithmic state machines and finite state machines – 80 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3 Synthesis of Moore FSM 
 

As an example, we will use ASM G1 in Fig. 15. A Moore FSM, implementing given ASM, 
can be constructed in two stages: 
 
 Stage 1.  Construction of a marked ASM;  
 Stage 2.  Construction of an FSM transition table. 
 
At the first stage, the vertices "Begin", "End" and operator vertices are marked by 
symbols a1, a2, …, aM as follows: 

1. Vertices "Begin" and "End" are marked by the same symbol a1; 

2. Operator vertices are marked by different symbols a2, …, aM; 

3. All operator vertices should be marked. 

Thus, while synthesizing a Moore FSM, symbols of states do not mark inputs of 
vertices following the operator vertices (as in the Mealy FSM) but operator vertices 
themselves. The number of marks is T+1, where T is the number of operator vertices 
in the marked ASM. In our example (Fig. 15), we need marks a1, …, a10  for ASM G1. 

 
We will find the following transition paths in the marked ASM: 
 

smRmm axxa
m

~...~
1 . 

 

 
Figure 14. Subgraph G2 with a waiting vertex 

Table 5. Transitions for subgraph G2 

am as X(am,as) Y(am,as) H 
.   .   . 

a10 a16 

a22 

a17 

a10 

x4 

~x4x11x27 

~x4x11~x27 

~x4~x11 

y15y27 

y33 

y7y31 

– 

 

 



Chapter 4 Algorithmic state machines and finite state machines – 81 
 

  

Thus, the transition path is the path between two operator vertices, containing Rm 
conditional vertices. Here, as above in the case of Mealy FSM, mrmr xx =~ , if in the 

transition path, we leave the conditional vertex with mrx via output ‘1’ and mrmr xx '~ =  

if we leave the vertex with mrx via output ‘0’. If Rm = 0 in such a path, there are no 

conditional vertices between two operator vertices, and this path turns into smaa . 
 

 
Figure 15. ASM G1 marked for the Moore FSM synthesis 

At the second stage we construct a transition table (or the state diagram) of the Moore 
FSM with states (marks) a1, …, aM, obtained at the first stage. We have ten such states 
a1, …, a10 in our example. Thus, the FSM contains as many states as the number of 
marks we get at the previous stage. Now we should define transitions between these 
states.  
 
Thus, a Moore FSM has a transition from state am to state as with input X(am, as) (see 
the upper subgraph in Fig. 16) if, in ASM, there is a transition path smRmm axxa

m

~...~
1 . 

Here X(am, as) is a product of logical conditions written in this path: X(am, as) =

mmRm xx ~...~
1 . In exactly the same way, for the path smaa (see the lower subgraph in Fig. 

16) we have a transition from state am to state as with input X(am, as) = 1, because the 
product of an empty set of variables is equal to zero. If am marks the operator vertex 
with operator Yt, then λ(am) = Yt, i.e. we identify the operator Yt written in the operator 
vertex with this state am. 
 

 



Chapter 4 Algorithmic state machines and finite state machines – 82 
 

  

Figure 16. Subgraphs to illustrate transitions in the Moore FSM 
The transition table for Moore FSM S2, thus constructed, is presented in Table 6. The 
outputs are written in column Y(am) immediately after the column with the current 
states. To design the logic circuit for this FSM we will use the structure presented in 
Fig. 17. It consists of two logic blocks (Logic1 and Logic2) and memory block with four 
D flip-flops. Logic1 implements input memory functions, depending on flip-flop 
outputs t1, …, t4 (feedback) and input variables x1, …, x7. Logic2 implements output 
functions, depending only on flip-flop outputs t1, …, t4.  

Table 6. The transition table of Moore FSM S2 

am Y(am) as X(am, as) h 
a1  –   a4 

a3 

a2 

a5 

x1x2x3 

x1x2~x3 

x1~x2 

~x1 

1 
2 
3 
4 

a2 y1y2 a7 

a9 

a5 

x4x1 

x4~x1 

~x4 

5 
6 
7 

a3 y6y7 a9 1 8 
a4 y1y3 a7 

a9 

a5 

x4x1 

x4~x1 

~x4 

9 
10 
11 

a5 y4 a6 

a7 

a9 

x5 

~x5x1 

~x5~x1 

12 
13 
14 

a6 y5y6y7 a7 

a8 

a1 

x6 

~x6x7 

~x6~x7 

15 
16 
17 

a7 y8y9 a7 

a9 

a5 

x4x1 

x4~x1 

~x4 

18 
19 
20 

a8 y3y6y10 a1 1 21 
a9 y3y4 a10 

a9 
x6 

~x6 
22 
23 

a10 y6y7 a1 1 24 

To encode FSM states we constructed Table 7 where p(as), as before, is the number of 
appearances of each state in the next state column as in Table 6. The algorithm for 
state assignment is absolutely the same as in the case of Mealy FSM. First, we use 
the zero code for state a9 with max p(a9) = 6. Then codes with one '1' are used for 
states a7, a5, a1 and a2 with the next max appearences and, finally, five codes with two 
'ones' are used for the left five states a3, a4, a6, a8 and a10.    

Table 8 is the structure table of the Moore FSM S2. Its logic circuit is constructed in 
Fig. 18. In this circuit, Am is a product of state variables for the state am (m = 1, …, 
10). As above we construct one AND-gate for one row of the structure table, but we 
need not construct the gates for rows 6, 8, 10, 14, 19 and 23, as all input memory 
functions are equal to zero in these rows (see the column D(am,as) in Table 8). Neither 

 
 
 
 
 
 

Table 7. State assignment 

as p(as) t1t2t3t4 
a1 3 0100 
a2 1 0010 
a3 1 1001 
a4 1 0110 
a5 4 0001 
a6 1 1100 
a7 5 1000 

.  .  .

.  .  .

 



Chapter 4 Algorithmic state machines and finite state machines – 83 
 

  

 
 
 
 
 
 
 

Table 8. The structure table of the Moore FSM S2  
 

am Y(am) K(am) as K(as) X(am,as) D(am,as) h 
a1 – 0100 a4 

a3 

a2 

a5 

0110 
1001 
0010 
0001 

x1x2x3 

x1x2~x3 

x1~x2 

~x1 

d2d3 

d1d4 

d3 

d4 

1 
2 
3 
4 

a2 y1y2 0010 a7 

a9 

a5 

1000 
0000 
0001 

x4x1 

x4~x1 

~x4 

d1 

– 

d4 

5 
6 
7 

a3 y6y7 1001 a9 0000 1 – 8 
a4 y1y3 0110 a7 

a9 

a5 

1000 
0000 
0001 

x4x1 

x4~x1 

~x4 

d1 

– 

d4 

9 
10 
11 

a5 y4 0001 a6 

a7 

a9 

1100 
1000 
0000 

x5 

~x5x1 

~x5~x1 

d1d2 

d1 

– 

12 
13 
14 

a6 y5y6y7 1100 a7 

a8 

a1 

1000 
0100 
0011 

x6 

~x6x7 

~x6~x7 

d1 

d2 

d3d4 

15 
16 
17 

a7 y8y9 1000 a7 

a9 

a5 

1000 
0000 
0001 

x4x1 

x4~x1 

~x4 

d1 

– 

d4 

18 
19 
20 

a8 y3y6y10 0011 a1 0100 1 d2 21 
a9 y3y4 0000 a10 

a9 
0101 
0000 

x6 

~x6 
d2d4 

– 
22 
23 

a10 y6y7 0101 a1 0100 1 d2 24 

 

 



Chapter 4 Algorithmic state machines and finite state machines – 84 
 

  

x3
x2
x1
A1

x3
x2
x1
A1

x2
x1
A1

x1
A1

x7
x6
A6

x4
x1
A7

x4
A7

x6
A9

A8

A10

A10

A9

A8

A3

A2

A1

1D
C1

1D
C1

1D
C1

1D
C1

d1

Clock

d2

d3

d4

t1

t2

t3

t4

y10

y2

A9
A8
A4 y3

A4
A2 y1

A9
A5 y4

A8
A6
A3

y6

A10

A10
A6
A3 y7

...
...

...
...

...

...

e7
e11

e22

e13

e1

e2

e4

e3

e9
e5

e17

e12

e18

e20

e12

e15

e16

&

&

&

&

&

&

&

&

1

1

1

1

&

&

&

&

&

&

1

1

1

1

1

 
Figure 18. The logical circuit for the Moore FSM S2 

do we construct the gates for rows 21 and 24, since there are no input variables in 
the corresponding terms e21 and e24: e21 = A8 and e24 = A10 and we use A8 and A10 
directly as inputs in OR-gate for d2.  

4.4. Synthesis of Combined FSM model 
In this book we will use two kinds of transition tables – direct and reverse. In a direct 
table (Table 9), transitions are ordered according to the current state (the first column 
in this table) – first we write all transitions from the state a1, then from the state a2 , 
etc.  In a reverse table (Table 10), transitions are ordered according to the next state 
(the second column in this table) – first we write all transitions to the state a1, then to 
the state a2 , etc. 

Table 9. Direct transition table of Mealy FSM S3 

am      as   X(am,as)     Y(am,as)    h 
----------------------------------- 
a1   a2   x6          y8y9      1 
a1   a5   ~x6*x7      y6        2 
a1   a5   ~x6*~x7     y3y6y10   3 
a2   a2   x4*x1       y1y2      4 
a2   a6   x4*~x1      y3y4      5 
a2   a4   ~x4         y4        6 
a3   a6   1           y3y5      7 
a4   a1   x5          --        8 
a4   a2   ~x5*x1      y8y9      9 
a4   a6   ~x5*~x1     y3y4      10 
a5   a2   x1*x2*x3    y1y3      11 
a5   a3   x1*x2*~x3   y1y4      12 
a5   a2   x1*~x2      y1y2      13 
a5   a4   ~x1         y4        14 
a6   a5   x6          y6y7      15 



Chapter 4 Algorithmic state machines and finite state machines – 85 
 

  

a6   a6   ~x6         y3y5      16 
 

Now we will discuss the transformation of Mealy FSM into Combined FSM and 
synthesis of its logic circuit. I remind here that Combined FSM has two kinds of 
output signals: 

1.  Signals depending on the current state and the current input (as in the Mealy 
model); 

2.  Signals depending only on the current state (as in the Moore model); 
 
As an example, we use the transition table of Mealy FSM in Table 9. Our first step is 
to construct a reverse table for this FSM (Table 10). 
 
Fig. 19,a illustrates all transitions into state a5 of Mealy FSM from Table 10. Here we 
have three transitions with different outputs but all of them contain the same output 
variable y6. So, we can identify this output variable y6 with the state a5 as a Moore 
signal (see Fig. 19,b). 

 
Figure 19. Transformation from Mealy FSM to Combined FSM 

Table 10. Reverse transition table of Mealy FSM S3 

am     as   X(am,as)     Y(am,as)    H 
--------------------------------- 
a4   a1   x5          --        1 
a2   a2   x4*x1       y1y2      2 
a1   a2   x6          y8y9      3 
a4   a2   ~x5*x1      y8y9      4 
a5   a2   x1*x2*x3    y1y3      5 
a5   a2   x1*~x2      y1y2      6 
a5   a3   x1*x2*~x3   y1y4      7 
a2   a4   ~x4         y4        8 
a5   a4   ~x1         y4        9 
a1   a5   ~x6*x7      y6        10 
a1   a5   ~x6*~x7     y3y6y10   11 
a6   a5   x6          y6y7      12 
a4   a6   ~x5*~x1     y3y4      13 
a2   a6   x4*~x1      y3y4      14 
a3   a6   1           y3y5      15 
a6   a6   ~x6         y3y5      16 

 
After this, the transformation of Mealy FSM into Combined model is trivial. Let us 
return to the reverse Table 10 and begin to construct the reverse transition table of 
Combined FSM S4 (Table 11 In Table10, we look at the transitions to each state, 
beginning from transitions to state a1. Let Ys be the set of output variables at the 
transitions into state as (Y5 = {y3, y6, y7, y10} in Fig19,a or in Table 10) and YsMoore be 
the subset of common output variables at all transitions into as (Y5Moore = {y6} in 
Fig19,a or in Table 10). Then, in Table 11, we delete YsMoore from the column Y(am,as) at 
each row with transition to as and write YsMoore next to as in the column Y(as). In our 
example: 



Chapter 4 Algorithmic state machines and finite state machines – 86 
 

  

Y1Moore = Y2Moore = Ø; Y3Moore = { y1, y4}; Y4Moore = { y4};    
Y5Moore = { y6};  Y6Moore = { y3}.  

 

Table 11. Reverse transition table of Combined FSM S4 

am   as Y(as)  X(am,as)   Y(am,as)  H 
--------------------------------- 
a4  a1  --    x5         --     1 
a1  a2  --    x6         y8y9   2 
a2  a2  --    x4*x1      y1y2   3 
a4  a2  --    ~x5*x1     y8y9   4 
a5  a2  --    x1*x2*x3   y1y3   5 
a5  a2  --    x1*~x2     y1y2   6 
a5  a3  y1y4  x1*x2*~x3  --     7 
a2  a4  y4    ~x4        --     8 
a5  a4  y4    ~x1        --     9 
a1  a5  y6    ~x6*~x7    y3y10  10 
a1  a5  y6    ~x6*x7     --     11 
a6  a5  y6    x6         y7     12 
a2  a6  y3    x4*~x1     y4     13 
a3  a6  y3    1          y5     14 
a4  a6  y3    ~x5*~x1    y4     15 
a6  a6  y3    ~x6        y5     16 

 
Now we consider the design of the logic circuit of Combined FSM. For this, let us 
return to the Mealy FSM S1 with direct transition Table 1. Its reverse transition table 
is presented in Table 12. Immediately from this table we construct the direct 
transition table of Combined FSM S1 (Table 13). To construct the logic circuit for this 
FSM we should encode the states and construct FSM structure table. But before state 
assignment we will make one more step.  

Table 12. Reverse transition table of Mealy FSM S1 

 

 

 

 

 

 

 

 

 

 

 

 

Unlike the transition table of the Mealy FSM, Table 13 contains many empty entries 
in the column Y(am,as). It means that all output variables are equal to zero in these 

am as X(am,as) Y(am,as) H 
a5 

a5 

a6 

a1 

 
~x6x7 

~x6~x7 

x6 

y3y6y10 

- 
y6y7 

1 
2 
3 

a1 

a1 

a2 

a4 

a5 

a2 

 
x1x2x3 

x1~x2 

x4x1 

~x5x1 

x6 

y1y3 

y1y2 

y8y9 

y8y9 

y8y9 

4 
5 
6 
7 
8 

a1 a3 x1x2~x3 y6y7 9 
a1 

a2 
a4 ~x1 

~x4 
y4 

y4 
10 
11 

a4 a5 x5 y5y6y7 12 
a2 

a3 

a4 

a6 

a6 

 
x4~x1 

1 
~x5~x1 

~x6 

y3y4 

y3y4 

y3y4 

y3y4 

13 
14 
15 
16 



Chapter 4 Algorithmic state machines and finite state machines – 87 
 

  

rows. If, after state assignment, we get an empty entry in column D(am,as) for such a 
row, we shouldn’t construct a product for this row, because all output variables and 
input memory functions are equal to zero in this row. Now we will try to maximize the 
number of such rows in the structure table of S5. 

Table 13. Direct transition table of Combined FSM S5 

 
 
 
 

 
 
 

 
 
 
 
 
 
 

Table 13 contains one row with empty entry in the column Y(am,as) for the next states 
a1 (row 14) and a3 (row 2), two rows for a4 (rows 4 and 7), one row for a5 (row 9) and 
four rows for a6 (rows 6, 8, 11 and 16). This information is presented in the first two 
columns of Table 14, z(as) is the number of empty entries in column Y(am,as) for the 
next state as in Table 13. So, if we use zero code for states a1 or a3 or a5, we shouldn’t 
construct a product for one row (z(a1) = z(a3) = z(a5) = 1), if we use zero code for state 
a4 – for two rows (z(a4) = 2); but if we use zero code for state a6, we will construct four 
product less (z(a6) = 4). Thus, we use code 000 for state a6 with max z(as). State 
assignment for other states is presented in Table 15. We have used here the same 
algorithm as we have used previously for Mealy and Moore models. 

 

 

 

 

 

 

 

Table 16. Structure table of Combined FSM S5 

am Y(am) K(am) as K(as) X(am,as) Y(am,as) D(am,as) H 
a1 -- 

-- 
-- 
-- 

010 a2 

a3 

a2 

a4 

001 
101 
001 
100 

x1x2x3 

x1x2~x3 

x1~x2 

~x1 

y1y3 

- 
y1y2 

- 

d3 

d1d3 

d3 

d1 

1 
2 
3 
4 

am Y( am) as X(am,as) Y(am,as) H 
a1 -- 

-- 
-- 
-- 

a2 

a3 

a2 

a4 

x1x2x3 

x1x2~x3 

x1~x2 

~x1 

y1y3 

-  
y1y2 

- 

1 
2 
3 
4 

a2 -- 
-- 
-- 

a2 

a6 

a4 

x4x1 

x4~x1 

~x4 

y8y9 

- 
- 

5 
6 
7 

a3 y6y7 a6 1 - 8 
a4 y4 a5 

a2 

a6 

x5 

~x5x1 

~x5~x1 

- 
y8y9 

-- 

9 
10 
11 

a5 y5y6y7 

 
a2 

a1 

a1 

x6 

~x6x7 

~x6~x7 

y8y9 

y3y6y10 

- 

12 
13 
14 

a6 y3y4 a1 

a6 
x6 

~x6 
y6y7 

- 
15 
16 

Table 14. Next states with zero 
outputs  

as z(as) t1 t2 t3 

a1 1  
a3 1  
a4 2  
a5 1  
a6 4 0 0 0 

 

Table 15. State assignment 

as p(as) t1 t2 t3 

a1 3 0 1 0 
a2 5 0 0 1 
a3 1 1 0 1 
a4 2 10 0 
a5 1 1 1 0 
a6 4 0 0 0 

 



Chapter 4 Algorithmic state machines and finite state machines – 88 
 

  

a2 -- 
-- 
-- 

001 a2 

a6 

a4 

001 
000 
100 

x4x1 

x4~x1 

~x4 

y8y9 

- 
- 

d3 

- 
d1 

5 
6 
7 

a3 y6y7 101 a6 000 1 - - 8 
a4 y4 100 a5 

a2 

a6 

110 
001 
000 

x5 

~x5x1 

~x5~x1 

- 
y8y9 

- 

d1d2 
d3 

- 

9 
10 
11 

a5 y5y6y7 

 
110 a2 

a1 

a1 

001 
010 
010 

x6 

~x6x7 

~x6~x7 

y8y9 

y3y6y10 

- 

d3 

d2 

d2 

12 
13 
14 

a6 y3y4 000 a1 

a6 
010 
000 

x6 

~x6 
y6y7 

- 
d2 

- 
15 
16 

 
Table 16 is the structure table of Combined FSM S5. We have three kinds of output 
variables here: 
 

1. Only Mealy signals: y1, y2, y8, y9, y10. They are written in column Y(am,as) and 
are not written in column Y(am)  in Table 16;    

2. Only Moore signals: y4, y5. They are written in the column Y(am) and are not 
written in column Y(am,as)  in Table 16; 

3. Combined signals: (both Mealy and Moore type) y3, y6, y7. They are written in 
both columns Y(am,as) and Y(am)  in Table 16. 

 
The logic circuit of FSM S5 is constructed in Fig. 20. In this circuit, Am is a product of 
state variables for the state am (m = 1, …, 6). The left part of this circuit, exactly as in 
the synthesis of the Mealy FSM logic circuit, implements input memory functions d1, 
d2, d3 and Mealy signals y1, y2, y8, y9, y10. As above, we construct one AND-gate for 
one row of the structure table, but we need not construct the gates for rows 6, 8, 11, 
16 because all output variables and input memory functions are equal to zero in 
these rows in the columns Y(am,as)  and D(am,as) in Table 16. As in the Mealy case, we 
do not construct OR gates for y2 and y10 since they appear only once in the column 
Y(am,as).  
 
Moore signals y4, y5 are constructed as in the synthesis of Moore FSM logic circuit. 
Signal y4 appears twice near the states a4 and a6 in the column Y(am), so y4 = A4 + A6 

and we construct OR gate for this signal. Output signal y5 appears only once in the 
column Y(am) for the state a5, so we get it straight from A5: y5 = A5.             
 

Combined signal y6 is written in rows 13 and 15 in the column Y(am,as) and near the 
states a3 and a5 in the column Y(am), so        

y6 = e13 + e15 + A3 + A5. 

Exactly in the same way 

y3 = e1 + e13 + A6;    y7 = e15 + A3 + A5. 



Chapter 4 Algorithmic state machines and finite state machines – 89 
 

  

 
Figure 20. Logic circuit of Combined FSM S5 

 
4.5. FSM decomposition 

 
In this section, we will discuss a very simple model for FSM decomposition. As an 
example, we use Mealy FSM S6 (Table 17) and a partition π on the set of its states: 
 

π = {A1, A2, A3}; 
A1 = {a2, a3, a9}; A2 = {a4, a7, a8}; A3 = {a1, a5, a6}. 

 
The number of component FSMs in the FSM network is equal to the number of blocks 
in partition π. Thus, in our example, we have three component FSMs S1, S2, S3.  
 
Let Bm is the set of states in the component FSM Sm. Bm contains the corresponding 
block of the partition π plus one additional state bm. So, in our example: 
 

S1 has the set of states B1 =  {a2, a3, a9, b1}; 
S2 has the set of states B2 =  { a4, a7, a8, b2}; 
S3 has the set of states B3 =  { a1, a5, a6, b3}. 

Table 17. Mealy FSM S6 

am      as           X(am,as)       Y(am,as)      H 
------------------------------------------------------- 
a1  a3  x1*x2*x3   y1y2     1 
a1  a6  x1*x2*~x3  y2y12    2 
a1  a1  x1*~x2     y1y2     3 
a1  a5  ~x1        y1y2y12  4 



Chapter 4 Algorithmic state machines and finite state machines – 90 
 

  

a2  a2  x6         --       5 
a2  a3  ~x6        y3y5     6 
a3  a3  x10        y3y5     7 
a3  a9  ~x10*x4    y10y15   8 
a3  a8  ~x10*~x4   y5y8y9   9 
 a4  a6  x7         y13      10 
 a4  a4  ~x7*x9     y13y18   11 
 a4  a8  ~x7*~x9    y13y14   12 
 a5  a6  x1         y16y17   13 
 a5  a5  ~x1        y7y11    14 
 a6  a1  x5         y1y2     15 
 a6  a1  ~x5        y16y17   16 
 a7  a2  x8         y14y18   17 
 a7  a4  ~x8        y13y18   18 
 a8  a7  x9         y4y6     19 
 a8  a4  ~x9        y6       20 
 a9  a9  x11*x6     y10y15   21 
 a9  a2  x11*~x6    y5y8y9   22 
 a9  a3  ~x11       y3y8y9   23 

 
To construct a transition table for each component FSM we should define the 
transitions between the states of these FSMs. For this, each transition between two 
states ai and aj of Mealy FSM S6 from Table 17 should be implemented one after 
another as one or two transitions in component FSMs. There are two possible cases:  
 

1. In Mealy FSM S6, there is a transition between ai and aj (Fig. 21, left) and both 
of these states are in the same component FSM Sm. In such a case, we will 
have the same transition in this component FSM Sm (Fig. 21, right). It means 
that we must rewrite the corresponding row from the table of FSM S6 into the 
table of component FSM Sm.     
 

 
Figure 21. Two states ai and aj are in the same component FSM 

2. Two states ai and aj are in different component FSMs (Fig. 22). Let ai be in the 
component FSM Sm (ai ∈ Bm) and aj be in the component FSM Sp  (aj ∈ Bp). In 
such a case, one transition of FSM S6 should be presented as two transitions – 
one in the component FSM Sm  and one in the component FSM Sp: 

• FSM Sm transits from ai into its additional state bm with the same input 
Xh. At its output, we have the same output variables from set Yt plus 
one additional output variable zj, where index j is the index of state aj 

in the component FSM Sp.  
• FSM Sp is in its additional state bp. It transits from this state into state 

aj with input signal zj, that is an additional output variable in the 
component FSM Sm. The output at this transition is Y0 – the signal with 
all output variables being equal to zero.    



Chapter 4 Algorithmic state machines and finite state machines – 91 
 

  

 
Figure 22. Two states ai and aj are in the different component FSMs 

Thus, the procedure for FSM decomposition is reduced to: 
a) Copying the row  

ai   aj   X(ai ,aj)   Y(ai ,aj) 
 

from the table of the decomposed FSM S to the table of the component FSM Sm 
if both states ai and aj are the states of Sm; 

 
b) Replacing the row  

ai   aj   X(ai ,aj)   Y(ai ,aj) 
 
in the table of the decomposed FSM S by the row  

 
ai   bm   X(ai ,aj)   Y(ai ,aj) zj 

 
in the table of the component FSM Sm, and by the row  
 

bp   aj    zj  -- 
 
in the table of the component FSM Sp, if ai  is the state of Sm and aj  is the state 
of Sp.  
 

As a result of decomposition of FSM S6, we obtain the network with three component 
FSMs in Fig. 23. Their transition tables are presented in Tables 18 – 20. 
 
Now we will illustrate some examples of transitions for cases (a) and (b): 

 
• In FSM S6, there is a transition from state a2 to state a3 with input ~x6 and 

output y3y5 (row 6 in Table 17). As both these states a2 and a3 are in the 
same component FSM S1, in this FSM there is a transition from a2 to a3 with 
the same input ~x6 and the same output y3y5 (row 2 in Table 18). Exactly in 
the same way, we rewrite row 12 of Table 17 into row 3 of Table 19 and row 2 
of Table 17 into row 2 of Table 20 because the current states and the next 
states are in the same component FSMs. 
 

• In FSM S6, there is a transition from state a3 to state a8 with input ~x10*~x4 
and the output y5y8y9 (row 9 in Table 17). Since a3 is the state of component 
FSM S1 and a8 is the state of another component FSM S2, in FSM S1 there is a 
transition from a3 to b1 with the same input ~x10*~x4 and output y5y8y9z8 
(row 5 in Table 18). The last output z8 is the input of FSM S2 that wakes this 
FSM up and transits it from state b2 to state a8 (row 8 in Table 19). Similarly, 
we convert row 1 of Table 17 into two rows – the first in Table 20 and the tenth 



Chapter 4 Algorithmic state machines and finite state machines – 92 
 

  

in Table 18 etc. Note that we add the last row in each FSM table to remain 
component FSMs in the state bm when each zj is equal to zero.   

 

 
Figure 23. Network with three component FSMs 

Table 18. Component FSM S1 

am              as               X(am,as)           Y(am,as)          H 
--------------------------------------------------------------------- 
a2     a2     x6         --         1 
a2     a3     ~x6        y3y5       2 
a3     a3     x10        y3y5       3 
a3     a9     ~x10*x4    y10y15     4 
a3     b1     ~x10*~x4   y5y8y9z8   5 
a9     a9     x11*x6     y10y15     6 
a9     a2     x11*~x6    y5y8y9     7 
a9     a3     ~x11       y3y8y9     8 
b1     a2     z2         --         9 
b1     a3     z3         --         10 
b1     b1     ~z2*~z3    --         11 

Table 19. Component FSM S2 

am              as               X(am,as)           Y(am,as)          H 
--------------------------------------------------------------------- 
a4     b2     x7        y13z6      1 
a4     a4     ~x7*x9    y13y18     2 
a4     a8     ~x7*~x9   y13y14     3 
a7     b2     x8        y14y18z2   4 
a7     a4     ~x8       y13y18     5 
a8     a7     x9        y4y6       6 
a8     a4     ~x9       y6         7 
b2     a8     z8        --         8 
b2     b2     ~z8       --         9 

 
Let us discuss how this network works. Let a1 be an initial state in FSM S6. After 
decomposition, state a1 is in FSM S3, so, at the beginning, just FSM S3 is in state a1. 
Other FSMs are in states b1 and b2 correspondingly. It is possible to say that they 
“are sleeping” in these states. FSM S3 transits from the state to the state until 
x1*x2*x3 = 1 in state a1 (see row 1 in Table 20). Only at this transition FSM S3 
produces output signal z3 and transits into state b3 (sleeping state). This signal z3 is 
the input signal of FSM S1. It wakes FSM S1 up and transits it from the sleeping state 
b1 to state a3 (see row 10 in Table 18). Now FSM S1 transits from the state to the 
state until, in state a3,  it transits into state b1 with input signal ~x10*~x4 = 1 and 
wakes FSM S2 up by signal z8 (see row 5 in Table 18 and row 8 in Table 19). 



Chapter 4 Algorithmic state machines and finite state machines – 93 
 

  

 

    Table 20. Component FSM S3 

am              as               X(am,as)           Y(am,as)          H 
--------------------------------------------------------------------- 
a1     b3     x1*x2*x3    y1y2z3    1 
a1     a6     x1*x2*~x3   y2y12     2 
a1     a1     x1*~x2      y1y2      3 
a1     a5     ~x1         y1y2y12   4 
a5     a6     x1          y16y17    5 
a5     a5     ~x1         y7y11     6 
a6     a1     x5          y1y2      7 
a6     a1     ~x5         y16y17    8 
b3     a6     z6          --        9 
b3     b3     ~z6         --        10 

 
Unlike FSMs S1 and S3, the component FSM S2 has two possibilities to wake other 
component FSMs up – in state a4 with input signal x7 = 1 (row 1 of Table 19) and in 
state a7 with input signal x8 = 1 (row 4 in the same Table), etc. Thus, each time all 
component FSMs, except one, are in the states of type bm and only one of them is in 
the state of type ai. 



Chapter 4 Algorithmic state machines and finite state machines – 94 
 

  

Chapter 5 Multilevel and Multioutput Synthesis 
 

In this Chapter, we will concentrate on the multilevel minimization of logic circuits. Several 
simple and straightforward methods for obtaining circuit structure with more than two levels 
will be considered. In these methods, we will present four procedures – factoring, term 
decomposition, full inclusion and equal gates removal. At the end of the Chapter we will show 
how to construct optimized multilevel and multioutput circuits of Finite State Machines using 
only these four procedures. 
 

5.1 Factoring 
 
5.1.1 Two factoring structures. The first example of factoring is presented in Fig. 1. The left 
part of this figure implements the function 
 

f1 = x1x2x'3x4 + x1x2x'5 + x1x2x3x'4.  (1) 
 

 
Figure 1. Factoring from all terms 

All AND-gates of this circuit have the common input x1x2, so we can factor this common term 
(we call it a factor) in function (1): 
 

                         f1 = x1x2 (x'3x4 + x'5 + x3x'4)           (2) 
 

The corresponding logic circuit is constructed in Fig. 1,b. In this circuit, e"1, e"2 and e"3 contain 
inputs remained after deleting factor x1x2 from e1, e2 and e3, and if there remains only one letter 
(x'5 in our example), it will be an exact input into OR-gate.  
 
Let us suppose again that the cost of a gate is equal to the number of its inputs, and that the 
cost of logic circuit is the sum of the costs of gates – the total number of inputs into all gates. If 
C1 and C2 are the costs of circuits before and after factoring then C1 – C2 is a minimization or a 
gain of factoring. We can evaluate the gain of factoring for the common term z by the formula 
 

  w(z) = m(n - 1) - 1 + r.                       (3)        
 
Here m is the number of letters in factor z, n is the number of gates in factoring and r is the 
number of gates in which only one letter is left after factoring. In our example w(z) = 2(3 - 1) - 1 
+ 1 = 4. Really, if we count C1 and C2 in Fig.1, C1 – C2 = 4.    
 
One more example of factoring is presented in Fig. 2. Unlike the previous example, here we can 
factor the common term x1x3x'4 only from two AND-gates, not from all of them: 

 
f2 = x1x2x3x'4x5 + x4x6x'7 + x1x'2x3x'4x'5 + x'1x'2; 
f2 = x1x3x'4 (x2x5 + x'2x'5) + x4x6x'7 + x'1x'2. 



Chapter 4 Algorithmic state machines and finite state machines – 95 
 

  

     
The result of factoring is shown in Fig. 2,b. On the right, we have OR-gate with three inputs – 
two of them from all AND-gates that do not take part in factoring (e2, e4) and the third one – 
from the output of the factoring structure for e1, e3 similar to Fig. 1,b. 
 

 
Figure 2. Factoring not from all terms 

Again, we can evaluate the gain of factoring for the common term z by the formula 
 

w(z) = m(n - 1) - 2 + r.     (4) 
 

Here m, n, and r are the same as in expression (3). See if you can understand why “-2” is used 
in this formula instead of “-1”.       
 
We discussed here two structures for factoring – structure one in Fig. 1,b (factoring from all 
AND-gates) and structure two in Fig. 2,b (factoring from some of AND-gates). The duality of 
Boolean functions permits us to use factoring not only for the sum-of-products, but for the 
product-of-sum as well (see Fig.3 and Fig. 4).  
 

 
Figure 3. The first factoring structure for the product-of-sums 

5.1.2 More than one factor. In the previous examples we have only one possible factor for 
factoring. Now we will discuss a case with several probable factors. As an example let us use a 
two-level logic circuit corresponding to Boolean function f = e1 + e2 + e3 + e4 + e5 with the 
products: 

e1 = x1x2x3x4x5x6x7x11;  e4 = x5x6x9; 
e2 = x1x2x3x8;    e5 = x1x2x5x6x10x12x13. 
e3 = x1x2x5x6x10x11x12; 



Chapter 4 Algorithmic state machines and finite state machines – 96 
 

  

 

 
Figure 4. The second factoring structure for the product-of-sums 

Let ei ∩ ej be the intersection between the products ei and ej (the common letters in these 
products). Our first step is to form all possible intersections between each pair of products in f. 
To do this, we construct Table 1. The first column of this table contains products e1, …, e5. 
Intersections between all pairs of products are in the next columns, for example, e1 ∩ e2 is in 
the column e1 in the second row, e1 ∩ e3 – in the column e1 in the third row etc.  

Table 1. Possible factors at the first step 

e1 = x1x2x3x4x5x6x7x11 e1 

e2  = x1x2x3x8 x1x2x3 e2 
e3 = x1x2x5x6x10x11x12 x1x2x5x6x11 x1x2 e3 
e4  = x5x6x9 x5x6 - x5x6 e4 
e5 = x1x2x5x6x10x12x13 x1x2x5x6 x1x2 x1x2x5x6x10x12 x5x6 

 
To find all possible factors, thus constructed, we should extract all different intersections from 
Table 1. There are six such factors z1, …, z6 in this table. In this step, do not pay attention at 
the information in the parenthesis after each factor in expression (5): 

z1 = x1x2x3 (e1, e2*);   w(z1) = 2; 
z2 = x1x2x5x6x11 (e1, e3);  w(z2) = 3; 
z3 = x5x6 (e1, e3, e4*, e5);  w(z3) = 5;  (5) 
z4 = x1x2x5x6 (e1, e3, e5);  w(z4) = 6; 
z5 = x1x2 (e1, e2, e3, e5);  w(z5) = 4; 
z6 = x1x2x5x6x10x12 (e3*, e5*); w(z6) = 6. 

 
We will use formulas (3) and (4) to evaluate the gain of each factor. To do this we should find 
m, n and r for each factor. Here m is the number of letters in the factor, n is the number of 
gates in factoring and r is the number of gates in which only one letter is left after factoring of 
this factor. m is trivial – for z1, m is equal to 3; for z2, m is equal to 5 etc. To find n, we should 
intersect each zt (t = 1, …, 6) with each ei (i = 1, …, 5). If zt is contained in ei, then zt is the factor 
of ei and we write ei in the parenthesis after zt. Thus, for z1, z2 and z6, n is equal to 2, for z3 and 
z5, n is equal to 4 etc. 
 
While performing such intersections, it is possible to find r as well. For example, when we 
intersect z1 with e2  we see that z1 є e2 and only one letter is left after factoring z1 from e2, 
because z1  has three letters but e2  has four. The symbol * next to e2 in the line for z1 means 
that only one letter is left. We have the same for z3 (e4*) and z6 (e3*, e5*). When we have m, n 
and r for each factor, the evaluation is trivial. w(zt) for each zt  is presented in the second 
column of (5). 



Chapter 4 Algorithmic state machines and finite state machines – 97 
 

  

 
In the first step of factoring, we use a factor with a maximal gain. If we have several such 
factors (two in our example – z4 and z6) it is possible to implement one of the following 
strategies: 

1. Take the first of such factors (the simplest strategy); 
2. Take the factor with maximal length from these factors; 
3. Take the factor contained in the maximum number of gates; 
4. Move one step forward for each such factor and select factor after the second 

evaluation step etc. 
 
We will use the first trivial strategy and select z4 with  
  

w(z4) = 6 = max. 

 
Figure 5. The circuit after the first step of factoring 

The circuit after factoring of z4 is shown in Fig. 5. It implements two functions presented as 
sum-of-product: 

1. Function f is the sum-of-products with three AND-gates, one of them contains the 
factor z4, and two others – the products that do not take part in factoring; 

2. Function t1 is the sum-of-products with three AND-gates, each of them corresponds to 
one of the products that took part in factoring. These ANDs have inputs remaining 
after factoring of z4. 

 
Fig. 6 presents the factoring process. The first box in this figure contains the set of products e1, 
…, e5, the second one – the partitioning of this set into two subsets after the first step. Thus, 
we must continue the factoring separately for two functions presented as sum-of-products – 
function f containing products e2, e4, e6 and function t1 containing products e''1, e''3, e''5. A 
similar partition will be at each next step so the process of factoring converges very fast.      

 
Figure 6. Steps of factoring 



Chapter 4 Algorithmic state machines and finite state machines – 98 
 

  

The subsequent steps of factoring for functions t1 and f are presented in Tables 2 and 3. The 
factoring process comes to the end when there are no factors with the gain greater than zero. 
The final circuit after factoring is presented in Fig. 7. The total cost reduction is equal to 

w(z4) +w(z8) + w(z10) = 9. 

Table 2. Factoring of function t1 

 
 
 

 
z7 = x11 (e"1, e"3);  w(z7) = -1; 
z8 = x10x12 (e"3*, e"5*); w(z8) = 2. 

 
w(z8) = 2 = max. 

Table 3. Factoring of function f 

e2  = x1x2x3x8 e2  
e4  = x5x6x9 - e4 
e6 = x1x2x5x6t1 x1x2 x5x6 

 
z9  = x1x2 (e2, e6);  w(z9) = 0; 
z10 = x5x6 (e4*, e6);   w(z10) = 1. 

 
w(z10) = 1 = max. 

 
Figure 7. The circuit after factoring 

 
5.2 Term Decomposition 

 
5.2.1 Simple example. The first example of term decomposition is presented in Fig. 8. Left part 
of this figure contains three separate AND-gates implementing three functions g1, g2 and g3. All 
gates of this circuit have the common inputs x4, x'5, x'6, so we can construct additional AND-
gate z with these inputs and replace inputs x4, x'5, x'6 of initial gates with the output of gate z 
(Fig. 8,b).  

 

e"1 = x3x4x7x11 e"1  
e"3 = x10x11x12 x11 e"3 
e"5 = x10x12x13 - x10x12 



Chapter 4 Algorithmic state machines and finite state machines – 99 
 

  

Figure 8. Simple term decomposition 

If C1 and C2 are the costs of circuits before and after term decomposition then C1 – C2 is a 
minimization or a gain of term decomposition. We can evaluate the gain of term decomposition 
for the common term z by the formula 
 

     w(z) = m(n - 1) - n + r.                 (6)        
 
Here m is the number of letters in the common term z, n is the number of gates in term 
decomposition and r is the number of functions (initial AND-gates) equal to the common term. 
In our example w(z) = 3(3 - 1) - 3 + 1 = 4. Really, if we count C1 and C2 in Fig. 8, C1 – C2 = 4.    
 
5.2.2 More than one common term. In the previous example, we had only one possible term 
for term decomposition. Now we will discuss the case with several probable common terms. As 
an example let us use a circuit in Fig. 9 that corresponds to the following products: 
 
 
 
 

 
Figure 9. Logic circuit before term decomposition 

As in factoring, the algorithm of term decomposition consists of several steps. The first step is 
to form intersections between each pair of products to find all possible common terms 
containing two or more variables (see Table 4). We will use formula (6) to evaluate the gain of 
each common term. To do this we should find m, n and r for each term: m is trivial – it is the 
number of letters in the common term. For z1, m is  
 
 
equal to 3; for z2, m is equal to 5 etc. It is clear that the common term with one variable makes 
no sense in term decomposition. 

Table 4. Possible common terms at the first step 

g1 = x1x2x3x4x5x6x7x11 g1 

g2  = x1x2x3x8 x1x2x3 g2 
g3 = x1x2x5x6x10x11x12 x1x2x5x6x11 x1x2 g3 
g4  = x5x6x9 x5x6 - x5x6 g4 
g5 = x1x2x5x6x10x12 x1x2x5x6 x1x2 x1x2x5x6x10x12 x5x6 

 
z1 = x1x2x3 (g1, g2);    w(z1) = 1; 
z2 = x1x2x5x6x11 (g1, g3);    w(z2) = 3; 
z3 = x5x6 (g1 g2, g4, g5);   w(z3) = 2;   (7) 
z4 = x1x2x5x6 (g1, g3, g5);   w(z4) = 5; 
z5 = x1x2 (g1,g2, g3, g5);            w(z5) = 2; 
z6 = x1x2x5x6x10x12 (g3, g5*);     w(z6) = 5. 

 
To find n, we should intersect each zt (t = 1, …, 6) with each gi (i = 1, …, 5). If zt є gi, then zt is 
the common term for gi and we write gi in the parenthesis after zt. While performing such an 

g4 = x5x6x9; 
g5 = x1x2x5x6x10x12. 

g1 = x1x2x3x4x5x6x7x11; 
g2 = x1x2x3x8; 
g3 = x1x2x5x6x10x11x12; 



Chapter 4 Algorithmic state machines and finite state machines – 100 
 

  

intersection it is possible to find r as well. For example, when we intersect z6 with g5 we see that 
z6 = g5. The symbol * near g5 in the line for z6 means that the product g5 is equal to the 
common term z6. When we have m, n and r for each common term, the evaluation is trivial – 
w(zt) for each zt  is presented in the second column of (7). 
 
In the first step of term decomposition, we use a common term with the maximal gain. If we 
have several such terms (two in our example – z4 and z6), as in factoring, it is possible to 
implement the following several strategies: 
 

1. Take the first of such common terms (the simplest strategy); 
2. Take the common term with maximal length from these common terms; 
3. Take the common term contained in the maximum number of gates; 
4. Move one step forward for each such common term and select common term after the 

second step evaluation etc. 
 
We will use the first strategy and select z4 with  
 

w(z4) = 5 = max.
  

The circuit after decomposition of z4 is shown in Fig. 10. 

 
Figure 10. Logic circuit after the first step of term decomposition 

Unlike factoring, where we had a partition of products into two subsets after each step, there is 
no partition of initial products is here. Moreover, the common term taking part in term 
decomposition should be added to the set of products and will be used at the next step together 
with other products. Only the product equal to the common term should be excluded from the 
list of products in the next step of term decomposition. 
 
The next step of term decomposition is presented in Table 5. The process comes to the end 
when there are no factors with the gain greater than zero. The final circuit after term 
decomposition is shown in Fig. 11, the whole process is illustrated by Fig. 12. 

Table 5. The second (final) step of term decomposition 

 
g"1 = x3x4x7x11z4 g"1 

g2  = x1x2x3x8 - g2 
g"3  = x10x11x12z4 x11z4 - g"3   
g4  = x5x6x9 - - - g4 
g"5  = x10x12z4 - - x10x12z4 - g"5   
z4  = x1x2x5x6  x1x2 - x5x6 - 
 
z7 = x11z4 (g"1, g"3);            w(z1) = 0; 
z8 = x1x2 (g2, z4);                w(z2) = 0; 
z9 = x10x12z4 (g"3, g"5*);      w(z9) = 2; 
z10 = x5x6 (g4, z4);              w(z10) = 0. 



Chapter 4 Algorithmic state machines and finite state machines – 101 
 

  

 
w(z9) = 2 = max. 

 
The total cost reduction is equal to  

w(z4) + w(z9) = 7. 
 

 
Figure 11. The circuit after t-decomposition 

 
Figure 12. Steps of t-decomposition 

5.2.3 Term decomposition for OR gates. Term decomposition can be applied to OR gates as 
well. We will give the next example without any comments and you can fulfill each step on your 
own (Fig. 13).  
 

 
Figure 13. Term decomposition for OR gates 

 
5.3 Gate inclusion 



Chapter 4 Algorithmic state machines and finite state machines – 102 
 

  

 
Let us define gate m as included in gate n, or gate n as covering gate m, if they have the same 
type (both AND or both OR) and the set of inputs of gate m is a subset of the set of inputs of 
gate n. The simplest case of gate inclusion is presented in Fig 14,a. In this case, we can replace 
inputs of gate n, equal to the inputs of gate m (x1 and x2 in our example), with the output of 
gate m (Fig. 14,b).  
 

 
Figure 14. Gate inclusion 

 
5.4 Removal of equal gates 

 
Let us define as gates m and n equal, if they have the same type (both AND or both OR) and the 
set of inputs of gate m is equal to the set of inputs of gate n. The circuit in Fig. 15,a contains 
four equal two-input AND-gates. In this case, we should  
 

1. Remove all equal gates, except one (gates l, m and n in our example);  
2. Connect inputs of gates (t, p and q) formerly connected to the outputs of removed 

gates, with the output of the remained gate (gate k in our example). 
 
The last two procedures – gate inclusion and removal equal gates are covered by term 
decomposition. Really, in the first step of term decomposition – pair intersection, we can find 
equal gates and gates included into other gates. However, term decomposition has two 
problems: (1) the large number of gates taking part in this procedure; (2) multiple comparisons 
demand a lot of intersections between sets of inputs. It is more simple and faster to check gate 
inclusion and remove equal gates before term decomposition. Moreover, after these two 
procedures, only gates with three and more inputs remain for term decomposition (see if you 
can understand why it is so).    

 
Figure 15. Removal three equal AND-gates 

 
5.5 Multilevel and multioutput circuits for Finite State Machines 



Chapter 4 Algorithmic state machines and finite state machines – 103 
 

  

 
In Section 4.2.6 of Chapter 4, we considered a very simple method for synthesis of the two level 
FSM logic circuit from its structure table. Recall that we have used the term 
 

eh = Am Xh 

 

in accordance with the h row of such a table (h = 1, …, H). Here Am is a product of state 
variables corresponding to the current state am written in the h row, Xh is a product of input 
variables written in the same row, and H is the number of rows in the structure table. Then we 
constructed H AND-gates corresponding to terms e1, …, eH. If the output variable yn appears 
only once, for example, in row i of the structure table, we obtain the output yn at the output of 
AND-gate number i. If the output variable yn is written in several rows, for example, in rows p1, 
…, pT of the structure table, we construct OR-gate with T inputs and connect these inputs with 
the outputs of AND-gates p1, …, pT. The output yn is obtained at the output of this OR-gate. In 
exactly the same way, we construct OR-gate for each input memory function which occurs 
more than once in the column D(am,as) of the structure table. The logic circuit of FSM thus 
constructed contains not more than H AND-gates and not more than (N + R) OR-gates where N 
and R are the numbers of output variables and input memory functions in the FSM structure 
table. 

In this section, we will use the reverse structure table. Recall that in such a table all 
transitions are ordered according the next state – first we write all transitions to state a1, then 
to state a2 , etc. As an example we will consider the logic synthesis of FSM S, Table 6 is its 
reverse structure table. As in four previous sections, we assume that the circuit cost is equal to 
the sum of inputs of its gates. 

Table 6. The reverse structure table of FSM S 
a1   001   a1   001   x8*x7                  y7y9y14y15   d3     1 
a1   001   a1   001   x8*~x7*x1*x9*x5        y13          d3     2 
a1   001   a1   001   ~x8*x1*x9*x5           y13          d3     3 
a3   011   a1   001   x9*x5                  y13          d3     4 
a4   000   a1   001   x4*~x9*x3              y2y10y12     d3     5 
a5   010   a1   001   x4                     --           d3     6 
a1   001   a2   100   x8*~x7*~x1             y1y2y3       d1     7 
a1   001   a2   100   ~x8*~x1                y1y2y3       d1     8 
a2   100   a2   100   ~x2                    --           d1     9 
a2   100   a3   011   x2                     y4           d2d3   10 
a4   000   a3   011   x4*~x9*~x3             y5y6         d2d3   11 
a4   000   a3   011   x4*x9                  y5y6         d2d3   12 
a1   001   a4   000   x8*~x7*x1*~x9*x3*~x6   y7y8y9       --     13 
a1   001   a4   000   ~x8*x1*x9*~x5          y7y8y9       --     14 
a3   011   a4   000   x9*~x5                 y7y8y9       --     15 
a3   011   a4   000   ~x9*x3*~x6             y7y8y9       --     16 
a3   011   a4   000   ~x9*~x3                y7y8y9       --     17 
a1   001   a4   000   ~x8*x1*~x9*x3*~x6      y7y8y9       --     18 
a1   001   a4   000   ~x8*x1*~x9*~x3         y7y8y9       --     19 
a1   001   a4   000   x8*~x7*x1*~x9*~x3      y7y8y9       --     20 
a4   000   a4   000   ~x4                    --           --     21 
a1   001   a4   000   x8*~x7*x1*x9*~x5       y7y8y9       --     22 
a1   001   a5   010   x8*~x7*x1*~x9*x3*x6    y10y11y12    d2     23 
a3   011   a5   010   ~x9*x3*x6              y10y11y12    d2     24 
a1   001   a5   010   ~x8*x1*~x9*x3*x6       y10y11y12    d2     25 
a5   010   a5   010   ~x4                    --           d2     26  
 
The structure table is divided into M arrays, each of which corresponds to the set of transitions 
into one state. For FSM in Table 6, M is equal to five. In several initial steps, we will separately 
design logic circuits for transitions into each state. Moreover, even then we will construct 
circuits separately for each subset of output signals. 



Chapter 4 Algorithmic state machines and finite state machines – 104 
 

  

 
A design of the logic circuit consists of the following steps: 
 
Step 1. Divide each array of transitions to the state as (s = 1, …, M) into as many subarrays, as 
the number of different microinstructions (the subsets of output variables) in the column Y(am, as) 
within this array. For example, in Table 6, transitions into state a1 have four microinstructions: 

y7, y9, y14, y15;  
y13;     (8) 
y2, y10, y12; 
∅ . 

We should include the empty microinstruction, corresponding to row 6, in this list because not 
all of input memory functions are equal to zero at this transition (d3 = 1) and we must 
construct AND-gate for this row.  

 
Thus, in our example we have four such subarrays containing  

1. Row 1 with outputs y7, y9, y14, y15; 
2. Rows 2, 3, 4 with output y13; 
3. Row 5 with outputs y2, y10, y12; 
4. Row 6 without output signals. 

 
Step 2. For each subarray corresponding to one of microinstruction in (8), construct as many AND-
gates as the number of rows in this subarray of the structure table. These gates implement 
products AmX(am,as), corresponding to each row. In our example for the transitions into a1 we 
have six such AND-gates (see Fig.16,a).  
 

t1
t2
t3
x8
x7

y7 y9 y14 y15

d3

t1
t2
t3
x8
x7

&

&

x1
x9
x5

t1
t2
t3
x8

&

x1
x9
x5

t1
t2
t3

&

x9
x5

1 y13
d3

t1
t2
t3
x4
x9

y2 y10 y12

d3

&

x3

t1
t2
t3

&

x4
d3

t1
t3
x5

&

x91t2x1 &
1

x8
x7

y13

d3

1

2 3 4

5

6

7

a)

b)

c)

t1
t3
x5
x91

t2

y13
d3

t2
x8
x7
x1

&
&

&t2
x8
x1

t1
t3
x5

&

x91t2x1 &
1

x8x7

y13

d3
&x8

d)  



Chapter 4 Algorithmic state machines and finite state machines – 105 
 

  

Figure 16. Logic circuit for transitions into state a1 

Step 3. If some subarray contains more than one row, connect the outputs of corresponding AND-
gates, constructed at step 2 for the subarray, with OR-gate to form the signals of 
microoperations (output variables) and input memory functions written in the rows of this 
subarray (rows 2, 3, 4 for y13 – Fig. 16,a).  
 
Step 4. Factor the logic circuits constructed in point 3 using the algorithm described in Section 5.1 
‘Factoring’. Let us do this for functions y13, d3. Table 7 contains the first step of this factoring. 
We made all pair intersections between products corresponding to rows with y13, d3 and found 
two possible factors z1 and z2. We factor z2 with max gain (see Fig. 16,b).  
 
It is possible to make one more simplification in the circuit in Fig. 16,b. OR-gate has input t2 
and AND-gates connected with this OR-gate have inputs t′2. According Boolean algebra A + A'B 
= A + B, so we can delete inputs t′2 from AND-gates. To make such minimization we do not have 
to write any formulas. If some OR-gate has some input p (p') we should check all AND-gates 
connected with this OR-gate and remove inputs p' (p) from these AND-gates. 

 

Table 7. The first step of factoring for y13 and d3 

e1 = t'1t'2t3x8x'7x1x9x5 e1 

e2  = t'1t'2t3x'8x1x9x5 t'1t'2t3x1x9x5 e2 
e3 = t'1t2t3x9x5 t'1t3x9x5 t'1t3x9x5 

 
 z1 = t'1t'2t3x1x9x5 (e1, e2*); w(z1) = 6(2 - 1) - 2 + 1 = 5; 
 z2 = t'1t3x9x5 (e1, e2, e3*); w(z2) = 4(3 - 1) - 1 + 1 = 8; 

 
     w(z2) = 8 = max. 

 
The last step of factoring is shown in Table 8 and Fig. 16,c. After removing input x8 from AND-
gate with two inputs we must remove this AND-gate as well, and transfer input x′7 into the OR-
gate. The final step of factoring is presented in Fig. 16,d. 

Table 8. The second steps of factoring for y13, d3 

e′′1  = x8x′7x1 e′′1 
e′′2  = x’8x1 x1 

 
 z3  = x1 (e′′1, e′′2*); w(z3) = 1(2 – 1) – 1 + 1 = 1; 

 
     w(z3) = 1 = max. 

 
Logic circuit after factoring for transitions into state a1 contains seven gates – we numbered 
gates after the last step. Each step of circuit factoring for transitions into states a2 and a3 is 
presented in Fig.17 and Fig. 18. Logic circuits for transitions into states a4 and a5 without 
intermediate steps are shown in Fig. 19 and Fig. 20. We have left the design of these last 
circuits to our readers as exercise to be done on their own. At last, we bring all these circuits 
together in Fig. 21. 
 



Chapter 4 Algorithmic state machines and finite state machines – 106 
 

  

t1
t2
t3
x8
x7

&

x1

t1
t2
t3
x8

&

x1

1 y1 y2 y3

d1

t2
t1

t3

&

x2
d1

t3
t2

&

1
x8x7

x8 &

t1

x1

y1 y2 y3

d1

t3
t2

&

1
x8
x7

t1

x1

y1 y2 y3

d1

9

10

8
a)

b)

c)  
Figure 17. Logic circuit for transitions into state a2 

Step 5. Delete equal gates in the logic circuit thus constructed. If we look at the circuit after 
factoring in Fig. 21 we will find that it contains some equal gates. For example, six two-input 
OR-gates OR2, OR9, OR14, OR16, OR18 and OR27 are equal because they have the same type and 
the same inputs. However, AND-gates AND3(x1,2) and AND28(x1,27) are not equal because they 
have inputs from different gates. Тo find that they are also equal we must determine that OR2 
and OR27  are equal and change the input 27 by input 2 in the description of AND28. Therefore, 
to find that two gates are equal in a multilevel circuit we should find that their preceding gates 
are equal etc. For this reason we should rank the gates in the circuit. 
 

 
 

Figure 18. Logic circuit for transitions into state a3 
 

 



Chapter 4 Algorithmic state machines and finite state machines – 107 
 

  

Figure 19. Logic circuit for transitions into state a4 

 

 
Figure 20. Logic circuit for transitions into state a5 

Gates containing only inputs t1, …, tR (the outputs of the memory elements, in our example R = 
3) and input variables x1, …,xL (in our example L = 9) are referred to as gates of the first rank. 
The gates with inputs t1, …,tR, input variables and the output of at least one gate of the first 
rank are referred to as gates of the second rank etc. Thus, the i-rank gate can have inputs t1, 
…,tR, input variables and the inputs from outputs of gates with the rank less than (i  – 1) and at 
least one input from the gate with rank (i – 1). The results of ranking for the circuit in Fig. 21 
are presented in Table 9 and Fig.22. In this figure, the rank of gate is written above the gate. 
 

 
Figure 21. Logic circuit after factoring 



Chapter 4 Algorithmic state machines and finite state machines – 108 
 

  

Table 9. Ranks of gates 

 
 

 
 
 
 
 
 
It is evident that equal gates can only be of the same rank. The following steps should be used 
to find and delete equal gates: 

1. Find equal gates with rank i (i = 1, 2, 3, ...) beginning from rank 1, separately for AND-
gates and OR-gates. In our example, we have the following set of equal first-rank gates: 

OR2 = OR9 = OR14 = OR16 = OR18 = OR27. 
2. Remove all gates except the first one from each such set. Thus, after the first step we 

removed five gates OR9, OR14, OR16, OR18, OR27. Replace the inputs from the gates thus 
removed with the number of the first (not removed) gate from the corresponding sets. 

3. Repeat steps (1) – (3) for the elements of the (i+1)-th rank. We get equal AND-gates AND3 
and AND28 of the second rank and equal OR-gates OR4 and OR29 of the third one. 

The circuit after removal equal gates is shown in Fig. 23. 
 

 
Figure 22. Ranking after factoring 

Rank AND-gates OR-gates 
1 1, 6, 7, 8, 11, 24, 31 2 , 9, 12, 14, 16, 18, 22, 27 
2 3, 10, 13, 15, 17, 19, 23, 28  
3  4, 20, 29 
4 5, 21, 30  
5  25 
6 26  



Chapter 4 Algorithmic state machines and finite state machines – 109 
 

  

Step 6. Repeat factoring and removing equal gates until the circuit cannot be change any longer. 
Look at the circuit implementing the transitions into a4 in Fig. 23. We drew the part of this 
circuit containing gates AND15, AND17, AND19 and OR20 in Fig. 24,a. After the removal of the 
equal gates, logic elements AND15, AND17, and AND19 got the same inputs from OR2 instead of 
different inputs from OR14, OR16, and OR18. Thereby, we got new possibilities for repeated 
factoring – see sequential steps of factoring in Fig. 24,b,c.  
 
The circuit after the second factoring is shown in Fig. 25. Once again, after factoring we find 
the equal gates: OR22 = OR32 and we remove the last one (Fig. 26). Thus, we  
should repeat factoring and removing equal gates as long as we get these procedures are 
impossible for the circuit. 
 

 
Figure 23. Logic circuit after removal equal gates 



Chapter 4 Algorithmic state machines and finite state machines – 110 
 

  

 
Figure 24. Repeated factoring 

Step 7. Find the inclusion of gates into other gates. Unfortunately, we do not have such cases in 
our rather simple example.  

a2

a5

a1

t1
t2
t3
x8
x7

y7 y9 y14 y15
d3

&

1
t1
t3
x5

&

x91t2x1 &
1

x8
x7

y13

d3

2 3 4

5

t1
t2
t3
x4
x9

y2 y10 y12
d3

&

x3

6

t1
t2
t3

&

x4
d37

t2
t1

t3

&

x2
d18

t3
t2

&t1

x1

y1 y2 y3
d110

2

a3
t2
t1

t3

&

x2
d2 d3

y4
11

&

1x3
12

13

t1
t2
t3
x4

x9

y5 y6

d2 d3

t1
t2

x4

&

d231t3

t1
t3

x3

&

x6

y10 y11 y12

d2
4

30

x9

a4

t2
x1

&

&
x9x3

x6
1

t2

1

&
x5
t2

x9

t1
t3

& y7 y8 y9

20

22

24

21

23

25
26&

x5
x9

117

2

33x6
&

x9

x3

2

1
32

 
 

Figure 25. Circuit after the second factoring  

Step 8. Make term decomposition for AND-gates. Fig. 27,a contains AND-gates with three and 
more inputs which we have selected from the circuit in Fig. 26 for term decomposition. It is 
evident that term decomposition makes it possible to find equal gates and inclusion of some 
gates into other ones as well. However, if a circuit contains many gates, term decomposition 
takes a lot of time and it is faster to implement steps 5 – 7 before term decomposition. 



Chapter 4 Algorithmic state machines and finite state machines – 111 
 

  

 
Let us demonstrate that the term decomposition problem may be divided into several 
independent subproblems. For this purpose, we define such a relation ω on the set of AND-
gates that two gates ANDi and ANDj are in this relation iff they have not less than two common 
inputs. 
 
Construct the graph Gω of this relation (Fig. 28 for the circuit in Fig. 27,a). The vertices of this 
graph are the gates in Fig. 27. We connect two vertices by edge if the corresponding gates have 
two or more common inputs. From the definition of the relation ω, it is evident that there can 
be no common factors for the gates from various subgraphs of Gω. Thus, the problem of term 
decomposition is divided into as many subproblems as the number of unconnected 
components in the graph Gω. Even in our simple example, Gω contains five components and 
there are only 11 vertices (gates) in the largest component. For a complex FSM, the graph Gω 
contains a large number of components, since: 
 

1. There is a large number of input variables in a complex FSM and there are not so many 
input variables in each row of its structure table (in each term corresponding to each 
row); 

2. xi and x′i are different inputs of gates; 
3. The number of gates and the number of inputs in each gate are decreased, as a result 

of steps 4 – 7 (factoring, removal equal gates and inclusion of gates into other ones). 
 



Chapter 4 Algorithmic state machines and finite state machines – 112 
 

  

 
 

Figure 26. Circuit after the second removal equal gates 

The result of term decomposition in our example is shown in Fig. 27,b. Fig. 29 contains the 
total circuit after this step. 
 



Chapter 4 Algorithmic state machines and finite state machines – 113 
 

  

t1
t2
t3
x8
x7

&

1

t1
t3

x5

&

x9
4

5

t1
t2
t3
x4
x9

&

x3

6

t1
t2
t3

&

x4
7

t3
t2

&t1

x1
2

10
t2
t1

t3

&

x2
8

&

12

13

t1
t2
t3
x4

t1
t2

x4

&

31t3

t2
t1

t3

&

x2
11

t1
t3

x3

&

x6
30

x9 &
x5
x9 17

4

2

33

&
x9

2

22

t2
x1

& &
x9
t2&

x5
t2

x9

t1
t3

&

20 2224 21 23 2625

t1
t3

t2

x4

x9
& x3

36

6

&
12 13

t2
t1

t3

&x2
8

&

37

&
x2 11

&

x8
x7

&

1

t2
&

x1
2

10

t1
t3

x5
&

x9
4

5

35
&

&
26

x3

&

x6 30

x9

4

25

t2

a) b)

t2

&
t2 7

Figure 27. 
Term decomposition in our example 

 
 

 
Figure 28. The graph Gω of relation ω 

Step 9. Construct OR-gate for each output variable yn (n = 1, …, 15 in our example) and for each 
input memory function dr (r = 1, …, 3 in our example) which occur more than once in the circuit 
after step 8. If we look at Fig. 29 we will find that several outputs appear more than once in 
this circuit. For example, y2 is written at the outputs of gates AND6 and AND10, d2 is written at 
the outputs AND11, AND13, AND30 and AND31. It is evident that FSM has only one output y2, so, 
first – the circuit in Fig. 29 is not the final circuit and, second – output y2  will be equal to one 
when the output of AND6 or the output of AND10 are equal to one. Thus, for y2 and for each 
output that appears more than once in Fig. 29, we should construct OR-gate with the inputs 
connected to the outputs of gates where these signals are written.  
 
To formalize this process we constructed Table 10 where each row contains the list of gates for 
each output. Now we can immediately construct OR-gates for the outputs which occur more 
than once in the logic circuit (Fig. 30,a).           
 



Chapter 4 Algorithmic state machines and finite state machines – 114 
 

  

 
Figure 29. Logic circuit after term decomposition 

Table 10. Gates for outputs  

 
Step 10. 
Find 

equal OR-gates among the gates constructed at step 9. Leave only one gate in each set of equal 
gates. The logic circuit after removal of equal gates is shown in Fig. 30,b. 
 
Step 11. Find the inclusion of OR-gates into other gates among the gates constructed at steps 10. 
Unfortunately, we do not have any such cases in our rather simple example.  
 
Step 12. Make term decomposition for all OR-gates. Just as at Step 8 for AND-gates, we consider 
here only the gates with not less than three inputs since the minimal number of inputs in a 
common term in term decomposition is equal to two (after removal equal gates and full 
inclusion). Similar to step 8, we should construct the graph of the relation ω for OR-gates. The 
problem of term decomposition for OR-gates is divided into as many subproblems as the 
number unconnected components in the graph of ω. In our rather simple example, we have 
only two OR-gates with more than two inputs (see d2 and d3 in Fig. 30,b).  
 

Outputs Gates Outputs Gates Outputs Gates 
y1 e10 y7 e1 e26 y13 e5 
y2 e6 e10 y8 e26 y14 e1 
y3 e10 y9 e1 e26 y15 e1 
y4 e11 y10 e6 e30 d1 e8 e10 
y5 e13 y11 e30 d2 e11 e13 e30 e31 
y6 e13 y12 e6 e30 d3 e1 e5 e6 e7 e11 e13 



Chapter 4 Algorithmic state machines and finite state machines – 115 
 

  

 
Figure 30. OR-gates before (a) and after (b) removal equal gates 

The final logic circuit is shown in Fig. 31. We have placed the circuit from Fig. 30,b at the 
bottom of Fig. 31. Of course, we should remove appearances of the outputs y2, y7, y9, y10, y12 
and input memory functions d1, d2, d3 from other parts of the logic circuit. Thus, only the 
outputs that have one entry in the column “Gates” of Table 10 will be in the part of the circuit 
that is above the “OR for outputs and input memory functions” in Fig. 31. 
 
Step 13. Relax and drink your coffee.  
 
Really, the reason, that we cannot demonstrate gate inclusion and term decomposition for OR-
gates, can be explained not only by the simplicity of our example, but also a very effective 
optimization at the previous steps that allows to decrease the number of inputs in the most 
gates of our circuit. To overcome some dissatisfaction of our last steps, let us discuss one more 
example, from the synthesis another FSM, presented in Table 11 and Fig. 32 with OR-gates for 
output variables and input memory functions which occur more than once in the circuit after 
Step 9. 
 

Table 11. Gates for outputs in one more example 

 
Step 10a. 
From Table 
11 or Fig. 
32 we 

immediately get that OR75 = OR68 and OR76 = OR67. We remove OR75 and OR76 and get y9 
together with y6 from OR68 and y10 together with y5 from OR67 (Fig. 33). 
 
 
 

Outputs Gates Outputs Gates 
y1 e5 e31 e36 e39 y8 e4 e44 
y2 e3 e5 e36 y9 e16 e30 
y3 e39 e56 e60 y10 e3 e16 e43 
y4 e4 e31 e36 e42 d1 e56 e60 
y5 e3 e16 e43 d2 e3 e4 e31 e36 e39 e44 
y6 e16 e30 d3 e3 e4 e31 e42 e43 
y7 e16 e44 e56 d4 e3 e4 e5 e42 e43 e44 e56 



Chapter 4 Algorithmic state machines and finite state machines – 116 
 

  

 
Figure 31. The final logic circuit 

 
Step 11a. We checked full inclusion for OR gates and found that 7270 OROR ⊂ , 7470 OROR ⊂  

and 6571 OROR ⊂ . The circuit after this step is presented in Fig. 34. 
 
Step 12a. For term decomposition, we constructed the graph of relation ω for OR-gates with 
three and more inputs (Fig. 35). The problem of term decomposition for OR-gates is divided into 
as many subproblems as the number of unconnected components in the graph of ω. In our 
example we have two subgraphs and one of them is nontrivial. 



Chapter 4 Algorithmic state machines and finite state machines – 117 
 

  

 
 

Figure 32. OR-gates for yn and dr in one more example 

 

 
Figure 33. OR-gate transformation after removal of equal gates 

 

 
Figure 34. OR-gates after full inclusion 

 
Figure 35. The graph of relation ω for OR-gates 

 



Chapter 4 Algorithmic state machines and finite state machines – 118 
 

  

 
Figure 36. Logic circuit after term decomposition 

 
The logic circuit after term decomposition is presented in Fig. 36. Its cost is 10 inputs lower 
than in the initial circuit in Fig. 32. 
 
 


