Chapter 1 Boolean functions and combinational circuits

1.1 Short introduction into Boolean functions

1.1.1 Basic Boolean functions. There are two classes of digital circuits -
combinational circuits and sequential circuits. In the first Chapter we will talk about
combinational circuits. In such circuits, outputs at a time ¢t depend only on the inputs
in this time t and do not depend on the prehistory, that is, on what was at their
inputs at the preceding times t-1, t-2, etc. Boolean functions are used to describe the
behavior of combinational circuits. These functions can have only two values (we will
use 0 and 1 for these values) and they depend on the variables with two values as
well. First of all, we will discuss three basic Boolean functions — AND, OR and NOT.

Function AND with two variables is presented in the truth Table 1. In the left part of
such a table we write all possible different vectors with components 0 and I. In
general, a truth table has 2" rows for a function with n variables (only four rows in
our case). In the right part of such a table, in each row we write a value of a function
at the corresponding vector. Function AND is equal to one when both variables are
equal to one (the fourth row of Table 1), otherwise (rows from the first to the third) it
is equal to zero.

Table 1. Function AND

a b aand b
0 0 0
0 1 0
1 0 0
1 1 1

Table 2 presents the truth table for function OR. This function is equal to zero only
when both variables are equal to zero (the first row), otherwise it is equal to one.
Function NOT (Table 3) has only two rows since it always has only one variable.

Table 2. Function OR Table 3. Function
a b aorb NoT

0 0 0 a not a

0 1 1 0 1

1 0 1 1 0

1 1 1

Any Boolean function can be realized by a combinational circuit containing logic
gates. The simplest basic logic gates implementing Boolean function AND, OR and
NOT are presented in Fig. 1-3. Gates AND and OR have two images each -
rectangular and semi-oval. In our logic circuits we will use the former.

a —

b b
a a+b
b

&
ab
a—] ab ag‘ So— a'
b_

Figure 1. AND - gates Figure 2. OR - gates Figure 3. NOT-gate

Chapter 1 Boolean functions and combinational circuits — 2

1.1.2 The main laws and theorems of Boolean algebra

Operations with O and 1:

1.A+0=A; Al=A
2. A+1=1; A0=0

Idempotent theorem:

3A+A=A; AA=A

Involution theorem:

4.(A)=A

Theorem of complementarity:

5A+A =1; AA'=0

Commutative law:

6.A+B=B+A; A-B=BA

Associative law:

7.(A+Bj+C=A+B+C)=A+B+C; (AB)C = A(BC) = ABC

Distributive law:

8.A(B+C)=AB+AC; A+ (BC)=(A+B)A+C)

Simplification theorems:

9. AB+AB'=A; (A+BJA+B)=A
10. A + AB = A; AA+B)=A
11.(A+B)B=AB; (AB)+B=A+B

It is easy to define the functions AND and OR with three and more variables. We
illustrate it in Table 4 for three variable functions. This table contains 23 = 8 rows.

Table 4. Truth table for AND and OR with three variables

a+b+c
0

Q
S
o)

abc
000
001
010
011
100
101
110
111

~IQIQIQ|IQ|Q|Q(S
[y Ay R R A A [

Truth tables can be used to prove laws and theorems of Boolean algebra. Let us show
this for the distributive law a + bc = (a + b)(a + c) in Table 5. The first column of this
table contains all possible combinations of values a, b and c. In the next two columns

Chapter 1 Boolean functions and combinational circuits — 3

we constructed the left part of an expression for the distributive law — the product bc
and the sum a + bc. In the same way we constructed the right part (a + b) (a + ¢).

To prove the equation a + bc = (a + b)(a + c) we should compare the grey columns of
Table 5. Two functions are equivalent if they have the same values at the same bit-
vectors. Thus, the distributive law a + bc = (a + b) (a + ¢) is proven.

However, if two functions are equivalent their circuit implementations may have
different costs. Let us take it that the cost of a gate is equal to the number of inputs
into this gate and that the cost of a circuit is equal to the sum of costs of gates in this
circuit (to the total number of inputs into all gates in the circuit).

Table 5. Example of proving a + bc = (a + b)(a + ¢)

abc bc a + be atbh atc (a + b)(a + c)
000 0 0 0 0 0
001 0 0 0 1 0
010 0 0 1 0 0
011 1 1 1 1 1
100 0 1 1 1 1
101 0 1 1 1 1
110 0 1 1 1 1
111 1 1 1 1 1

The logic circuits corresponding to the left (fi) and to the right (f2) parts of the proven
law are drawn in Fig. 4. These circuits are equivalent because they realize the
equvalent functions (in reality, this is the same function presented by different
expressions) but the costs of these circuits are different. Here for the first time, we
have met the problem of logic circuit minimization. It is evident that some circuit is
more minimized than the other one if the cost of the first of them is lower than the

cost of the second one.
a 1
b— | [

e

The cost is equal to 6

The cost is equal to 4
Figure 4. Two circuits for two parts of the distributive law

1.1.3 DeMorgan’s theorems. The complement of the sum of two variables is equal to
the product of complements of these variables:

(a+b)=ab (1)

The complement of the product of two variables is equal to the sum of complements of
these variables:
(ab)'=a'+ b’ (2)

It is very simple to expand these laws to any number of variables. Here we show that
for three variables:
(a+b+c)=(a+b)+c)=(a+b)c'=ab'c
(abc)' = ((ab)c)' = (ab)'+ c'=a'+b' + ¢’

Chapter 1 Boolean functions and combinational circuits — 4

Formula (3) presents DeMorgan’s theorem in the general form: to complement
function f with variables xi, . . ., x» and operators AND, OR and NOT, we must
complement each variable (replace each xp by xp and each x4 by x5 and replace each
operator AND by OR and each operator OR by AND.

fllea, ..oy xm, & +) =flxi), ..., xm, +, &) (3)
Examples:

fi=xy+wz Jfi'=(x+ty)w+z)
J2 = x1'(x3" + xa'xsx7 + x7'(x4 + x5'%6" + X5%6));
f2'=x1 + x3(xa + x5' + x7')(x7 + x4'(Xx5 + X6) (x5' + Xx6')).

1.1.4 Canonical forms. Let us look at the Table 6. This table describes Boolean
function f with three variables a, b and c. In the column Minterm, we constructed
minterms — the products containing all three variables, in the following way. If in the
column abc, some variable is equal to zero, this variable is complemented in the
corresponding product. Otherwise (variable is equal to one), this variable is written
without inversion.

Table 6. Function fwith three variables 46
abc Minterm f f S
000 ab'c 0 1 a—{g
001 ab'c 1 0 M
010 a'bc’ 1 0 - L
011 a'bc 0 1 a1zl I
100 ab'c’ 1 0 b
101 ab'c 0 1 - —
110 abc' 1 0 a—1g)
111 abc 1 0 o lin
g
Cii

f=ab'c+abc'+ab’c'+abc'tabc (4)) o
Figure 5. The circuit for
canonical sum-of-products (4)

It is easy to show that we can immediately get the expression for Boolean function
from its truth table. For this, we must write a sum of minterms written in the rows
where the function fis equal to one (expression (4) under Table 6 in our example). We
name such expression a canonical sum-of-products. The logic circuit corresponding to
this expression is presented in Fig. 5.

The last column of Table 6 contains function f'- the inversion of function f. Let us
construct the canonical sum-of-product for this function using the “ones” in the last
column:

f'=ab'’c'+abc +ab'c.

Using De-Morgan’s law, we can return to the initial function fpresented as a product-
of-sums where each sum contains all variables or their inversions:

f=(f)=(a+b+cfa+b'+c)(a'+b+c)

Chapter 1 Boolean functions and combinational circuits — 5

As above, for a sum-of-products, we can get this expression immediately from the
truth table of function f (Table 7). For this, we write a product of maxterms

f=(a+b+c)(a +b' +c)(a'+b+c) (5)

a—1
Table 7. The same function f b— —
abc Maxterm f 1
000 a+b+c 0 -
001 a+b+c 1 a— §|
010 a+b+c 1 b—d f
011 a+b'+c 0 c—d J
100 a+b+c 1 T
101 a'+b+c 0 -
110 a+b+c 1 a—1
111 a+b+c 1 b— —
Cc—g

Figure 6. The circuit for a canonical
product-of-sums

written in the rows where the function fis equal to zero (equation (5) in our example).
In the column Maxterm in this table, we constructed the sums containing all three
variables, in the following way. If in column abc some variable is equal to zero, this
variable is not complemented in the corresponding sum. Otherwise (variable is equal
to one) this variable is written with inversion. We name such expression a canonical
product-of-sums. The logic circuit for this expression is presented in Fig. 6.

The costs of circuits in Fig. 5 and Fig. 6 are equal to 20 and 12 respectively. Of
course, looking at these two circuits, you should not think that the circuit
corresponding to the product-of-sums is always better than the circuit for the sum-of-
products. First of all, these circuits are not minimized. Second, it is reasonable to
begin from sum-of-products if the number of “ones” in the column for function value
is less than the number of “zeroes”, and vice versa.

1.1.5 Cover of Boolean function. Let us discuss one more example of the function f
presented in Table 8. Really, we can at once construct its logic circuit from this truth
table. For this, we should go along the column f, and each time when the function is
equal to one in some row, we construct an AND-gate implementing a minterm for this
row (there are six AND-gates in this circuit because Table 8 has six “ones” in the
column f). Our last step is to construct a six-input OR-gate, each its input is
connected with one of the outputs of AND-gates (see the logic circuit in Fig. 7).

In such a design we use only rows with ‘1’ in the last column of Table 8, so we do not
need columns with ‘O’ for this procedure. Let a cover of function f be a set of input
vectors where function fis equal to one. Fig. 8 contains an initial cover for function f
from Table 8. We call it an initial cover because it was obtained directly from the truth
table of this function. Of course, we can construct the circuit in Fig. 7 immediately
from the cover in Fig. 8.

Chapter 1 Boolean functions and combinational circuits — 6

Table 8. Function f'with four variables g &
X1 X2 X3 X4 f ;‘Z
0 0 0 0 0 o
0 0 0 1 0 gj&
0 0 1 0 0 3|
0 0 1 1 0 x4— |
0 1 0 0 1 o
0 1 0 1 0 gf&
0 1 1 0 1 pri L1
0 1 1 1 0 x4—_|
1 0 0 0 0 o
1 0 0 1 1 ®]
1 0 1 0 0 3]
1 0 1 1 1 x4—_|
1 1 0 0 0 -
1 1 0 1 1 o
1 1 1 0 0 3
1 1 1 1 1 x4—_|
x1—{&
x2—
x3—
x4—
Figure 7. Circuit for the function in
Table 8
X1 X2 X3 X4
0 1 0 0
0 1 1 0
f= 1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Figure 8. Initial cover for the function in Table 8

Now let us construct sum-of-products of function ffrom the initial cover in Fig. 8 and
make some trivial transformations. We take common terms from pairs of minterms
and use theorem 5 (A + A’ = 1) and theoreml (A-1 = A) from the list of main laws and
theorems of Boolean algebra found in the beginning of this Chapter.

J=x"1x2x'sx's + X'1X2x3 X'4 + X1X'2X'3X4 + X1X'2X3X4 + X1X2 X'3X4 + X1X2X3X4 =
= X'1x2x'4(x'3 + x3) + X1X'2x4(X'3 + X3) + X1X2x4(X'3 + X3) =
= X'1X2X'4 + X1X'2X4 + X1X2X4 = X'1X2X'4 + X1X4(X'2 + X2).

The result of these transformations is presented in expression (6) and the
corresponding logic circuit — in Fig. 9. The cost of this circuit is equal to 7; this is
much lower than the cost of the circuit in Fig. 7.

[=x'1x2x's + xX1X4. (6).

Chapter 1 Boolean functions and combinational circuits — 7

x1 —cg
X2 — 1l f
x4 —q_ |
x1 —E
x4 — |

Figure 9. The circuit for expression (6)

Let us think, whether it is possible to construct the circuit in Fig. 9 without
transformations of Boolean expressions. In the first two vectors (0100 and 0110) all
components except one are equal. We can replace these two vectors by one (01x0)
where symbol x takes the place of non-equal components in the initial vectors. We call
x a free component and ‘O’ or ‘1’ — bound components. We can immediately return from
vector 01x0 to the initial vectors replacing the free component with ‘O’and ‘1

0100
01x0
0110}

For the next four vectors in the cover we can make two steps:

1001
10x1
1011

1101
11x1
1111

Ixx1

After the first step we get two vectors with one free component (10x1 and 11x1). These
vectors also contain all equal components except the third bound component, and we
replace two vectors by one vector Ixx] with two free components. As before, it is easy
to return from vector IxxI to the four initial vectors 1001, 1011, 1101 and 1111
replacing free components with all possible combinations of “zeroes” and
“ones” (00, 01, 10 and 11).

Let us define a vector as an m-cube (or as having rank m), if this vector contains m
free components. So, the cube IxxI is a 2-cube, vectors 01x0, 10x1 and 11xI are 1-
cubes and all vectors in the initial cover are O-cubes. Since cubes 01x0 and Ixxl
present all O-cubes in the initial cover we can construct a new cover for function f
containing only these two cubes:

X1 X2 X3 X4
f= 0 1 x 0
1 x X 1

For this minimized cover we can get the minimized sum-of-product (6). Each product
in this expression corresponds to one cube. Here we have two products: x'ixzx'’s for
cube 01x0 and xix4 for cube IxxlI. In such product, a variable is non-complemented if
the corresponding bound component is equal to one. Otherwise, the variable is
complemented. There are no variables in the product for free components.

Chapter 1 Boolean functions and combinational circuits — 8

Moreover, to build a circuit such as in Fig. 9 we do not need a Boolean expression. We
must construct as many AND-gates as the number of cubes in the cover, and connect
the outputs of these AND-gates to the inputs of OR-gate. In such a design there exists
some exceptions — if a cube contains only one bound component (the second cube in
cover y):

X1 X2 X3 X4 X5
1 X 0 X 1

y= X X X 1 X
0 X 1 0

AND-gate for this cube is not constructed but OR-gate has input x4 for this bound

component:
X1 &
X3 1 Y
X5

X4 —

From the examples above it is evident that to construct a minimal logic circuit we
must get the cover with the minimal number of maximal cubes — cubes with the
maximal number of free components. We did not show yet how to do it. It will be the
topic of the next item.

1.2 Minimization with Karnaugh maps

1.2.1 Two variable Karnaugh maps. If we have two cubes of rank m (each contains
m free components) with all equal components except for one bound component, we
can combine these two cubes to get one cube with rank m+1. To increase the rank of
cubes in such a way we will use Karnaugh maps. A Karnaugh map is a graphical
representation of a truth table. In a Karnaugh map we can easily find cubes to be
combined to get a cube with a higher rank. We will begin from the simplest Karnaugh
maps with two variables.

A Karnaugh map with two variables is a square with four cells (Fig. 10). Rows in such
Karnaugh map correspond to the first variable a, columns - to the second variable b.
Rows and columns are denoted by zeros and “ones”, and the cell at the intersection of
row O and column O corresponds to vector OO of the truth table, at the intersection of
row 0 and column 1 - to vector 01, etc.

b
0 1
0| 00| 01
a
1|10] 11

Figure 10. Correspondence between a Karnaugh map and a truth table

Let us discuss several examples. Function f; is presented by its cover in Fig. 11,a. To
insert this function into the Karnaugh map we put “ones” in the cells for O-cubes in
the function cover (Fig. 11,b). The two cells with ones in one row or one column are
adjacent and can be combined into one 1l-cube. To construct such 1-cube we must
check which variable has the same value in this cube (a = O in our example) and
which variable changes its value (b in our example: b = 0 in cube 00 and b = I in cube
01). Then, in the 1-cube we write a bound component O for unchanging variable a and

Chapter 1 Boolean functions and combinational circuits — 9

a free component x for changing variable b. This cube Ox is written in the minimized
cover in Fig. 11,c. The similar example with two adjacent cells in the column is shown

in Fig 12.

b
0 1
. b o[[1] 1
fi= | o o a b
0 1 I f1min= | 0 X |
a) h) cl

b
0 1
a b 01| 1 ‘
fo= 0 0 a |_‘ a b
1 0 1 m ‘ f 2 min= ’ X 0 ’
a) b) c)

Figure 12. Function f,: initial cover (a), Karnaugh map (b) and minimized cover (c)

In Fig. 13, two possible one cube have one common cell 00. Since our goal to get
maximal cubes, we cover this cell twice.

b
a b
a b 0 1 3 min= 0 x
o o olf1] 1] " ‘ x 0 ‘
fz= 0 1 a)
1 0 1|1
al b)

Figure 13. Function fs: initial cover (a), Karnaugh map (b) and minimized cover (c)

In Fig. 14, two zero cubes are not adjacent and cannot be combined.

b
a b 0 1 a b
fa= ‘(1) ?‘ ol 1] f4min=‘ 0 0‘
a) a] IC) !
b)

Figure 14. Function f,: initial cover (a), Karnaugh map (b) and minimized cover (c)

In Fig. 15, four adjacent cells form 2-cube xx:

b
a b 0 1
0] 0 0 1 a b
fs= 0 1 a fomn= | x x|
é ? 1911 c
al h)

Figure 15. Function fs: initial cover (a), Karnaugh map (b) and minimized cover (c)

1.2.2 Three variable Karnaugh maps. First two examples for three variable
Karnaugh maps are rather simple. In both cases, four combined cells give 2-cubes. In

Chapter 1 Boolean functions and combinational circuits — 10

Fig. 16, variables a and c are changed but variable b is equal to O in all four of these
cells (b is not changed). Thus, the final cube contains two free and one bound
components. In Fig. 17, 2-cube contains two free and one bound components as well.

a b c b e
f 8 g ? 00 01 11 10
s =
1 0 0 0 1 1 a b c
1 0 1 “ IR fomin= | x 0 x|
a) cl
b)

Figure 16. Function fg: initial cover (a), Karnaugh map (b) and minimized cover (c)

Fig. 18 illustrates the only specific feature of Karnaugh maps with three variables —
the “edge effect”. It is clear from the cover of function fs (Fig. 18, a) that two O-cubes
000 and 010 can be combined into one 1-cube 0x0. To find such a combining in a
Karnaugh map we should combine cells at the opposite edges of the map.

a b c be
0 0 0 00 01 11 10
fr= 0 0 1 oll1 | 1] 1|1 ‘
0 0 1 a a b c
0 1 1 1 f7min = | 0 X X |
a) o
b)

Figure 17. Function f;: initial cover (a), Karnaugh map (b) and minimized cover (c)

b c
o0 01 11 10

a b c ol 1 1
fa= 0 0 0 a *:| |: a b c
o 1 0 1 famin= | 0 x 0|
a) b) c)

Figure 18. Function fg: initial cover (a), Karnaugh map (b) and minimized cover (c)

A similar example with a combination of four cells is shown in Fig. 19. Fig. 20
illustrate closely related example with twice covered two cells.

a b c bc
0 0 0 00 01 11 10
fo= o 1 o0 ol ; a b ¢
1 0 0 u fomin= | x x 0 |
1 1 0 1] 1 1
a) c)
b)

Figure 19. Function fy: initial cover (a), Karnaugh map (b) and minimized cover (c)

Chapter 1 Boolean functions and combinational circuits — 11

a b c b e
0 0 0

f10 _ 0 0 1 00 01 11 10
0 1 0 01| 1 1 a b c
1 0 0 a f]Omin = X X 0
1 0 1 1|11 1 1 X 0 X
1 1 0 C}

al hl

Figure 20. Function f,o: initial cover (a), Karnaugh map (b) and minimized cover (c)

1.2.3 Four variable Karnaugh maps. The specific feature of a Karnaugh map with
four variables is shown in Fig. 21 — it is possible co combine four corner “ones” in one
2-cube. You can check it yourself if you combine “ones” in each column separately at
the first step and then get the 2-cube at the second. Of course, we should do it in one
step, checking which variables are changed (free components correspond to these
variables) and which variables are not changed (bound components correspond to
these variables). In our example we get cube xOxO immediately from Fig. 21,b
(variables a and c are changed and variables b and d are not changed).

00 01 d11‘ 10

oo| 1 1
a b c d ’J L
o 0 0 o0 0

fi1= o o0 1 0 1 b 4
1 0 0 o0 10l 1 = a c
1 0 1 o0] 1] fitmn= | x 0 x 0]
a) cl

b)

Figure 21. Function f,;: initial cover (a), Karnaugh map (b) and minimized cover (c)

In Fig. 22 we have one more example for a four variable Karnaugh map:

a b c d
cd
0 0 0 0 00 01 11 1
0 5 2 ¢| WETDT
0 0 1 1 01
1 o o0 o0 ab
fiz = 1 0 0 1 ‘ : a b c d
1 0 1 0 ol 1] 1] 1|1 Sf12min = x 0 x x|
1 0 1 1 ‘ ‘
b)
a)
c)

Figure 22. Function f;,: initial cover (a), Karnaugh map (b) and minimized cover (c)

Chapter 1 Boolean functions and combinational circuits — 12

1.2.4 Five variable Karnaugh maps. A five variable Karnaugh map is formed from
two four variable Karnaugh maps. The only specific feature of this map is the
possibility to combine cells which are symmetric along the vertical line which divides
this map into two four variable maps (along the “main meridian”).

Let us turn to the Karnaugh map in Fig. 23,b. If we combine “four” ones at the left
side of this map we will get 2-cube x10xI. The same goes for the right four “ones”,
which will give us 2-cube x11x1, and we can combine these two 2-cubes and get 3-
cube xIxxI. To make this in one step we should find at once that these two figures
are symmetric along the “main meridian”. Thus, we can get 3-cube xIxxl immediately
from Fig. 23,b (variables a, c and d are changed, variables b and e are not changed in
the combined figure and both are equal to one).

cde
a b c d e 000 001 011 010 110 111 101 100
0 1 0 0 1
o 1 o 1 I 00
o 1 1 o 1 01 11 1|1
fiz = 0 1 1 1 1 ab b1t —
1 1 0 0 1 11 1)1 101
1 1 0 1 1
1 1 1 0 1 10
1 1 1 1 1 b)
a b c d e
a) f13min = X 1 X x 1
c)

Figure 23. Function f.3: initial cover (a), Karnaugh map (b) and minimized cover (c)

In the example in Fig. 24,b two figures on the left and on the right are not symmetric
so they are not combinable. In our further examples of five variables maps we will
discuss the same topic — how to find out the symmetry along the “main meridian” and
at once combine two distant figures in a Karnaugh map into one cube with a higher
rank.

cde
a b ¢ d e 000 001 011 010 110 111 101 100
0 0 0 0 1 — —
0 0 1 1 1 00 1 1
0 1 0 0 1 01 S ;
fia= 0 1 1 1 1 a b
1 1 0 0 1 1 1 1
1 1 1 1 1
1 0o o o0 1 o |1 1]
1 0 1 1 1
b)
a)
a b c d e
f14min= X X 0 0 1
x x 1 1 1

Chapter 1 Boolean functions and combinational circuits — 13

Figure 24. Function fy4: initial cover (a), Karnaugh map (b) and minimized cover (c)

cde
a b c d e 000 001 011 010 110 111 101 100
0 0 0 0 1 00 (1] (1]
0 0 1 0 1
0 1 0 0 1 o1 T
fis = o 1 1 0 1 ab - .
1 1 0 0 1 1 1 1
1 1 1 0 1 10 ; ;
1 0 0 0 1 — —
1 0 1 0 1 b)
a b c d e
a
} f15min= | X X P 0 1 |
¢

Figure 25. Function fs: initial cover (a), Karnaugh map (b) and minimized cover (c)

cde
a b ¢ d e 000 001 011 010 110 111 101 100
0 1 0 1 1
fie = 0 1 1 1 1 00
1 1 0 1 1
01 1 1
11 1 11 . 2/ ()
T T
10
b)
a b c d e
fi6min = x 1 x 1 1|
c)

Figure 26. Function f.4: initial cover (a), Karnaugh map (b) and minimized cover (c)

cde
a b c d e 000 001 011 010 110 111 101 100
fi7 = 0 1 0 0 1 00
0 1 1 0 1
a} a b
11
a b c d e 10
firmn=] 0 1 x 0 1|

b)

Chapter 1 Boolean functions and combinational circuits — 14

<

Figure 27. Function f;;: initial cover (a), Karnaugh map (b) and minimized cover (c)

cde

a b c d e 000 001 011 010 110 111 101 100
0 0 0 0 0 00] |e——F———p 1] -——————m]
0 0 0 1 0 x x
0 0 1 0 0 01 3 3
fis = 0 0 1 1 0 ab ; ;
1 0 0 0 0 11 |
1 0 0 1 0 L v
1 0o 1 0 o0 e el < L e

1 0 1 1 0
a) b)

a b c d e

fismin= | x 0O x x 0 |

c

Figure 28. Function fg: initial cover (a), Karnaugh map (b) and minimized cover (c)

1.2.5 Karnaugh maps with don’t care. To explain what don’t care is, let us
suppose that the circuit at Fig. 29 is used in decimal arithmetics, i.e. only the vectors
corresponding to the decimal digits from zero to nine can appear at its input. Thus,
the vectors from 1010 to 1111 will never come to the input of this circuit. This means
that this function is not defined at these vectors and we use term “don’t care” to name
this set of inputs. We can define the value of function y as one or zero at don’t care
and use it to enlarge cubes in the minimized cover. The symbol @ will be used to
mark the cell in a Karnaugh map where a function is not defined.

X1 —>
X2 —™
— Y
X3 —>

X4 —*

Figure 29. Circuit in decimal arithmetic

Two rules should be used in minimization with don’t care:

1. We must cover only “ones” in Karnaugh maps, not don'’t cares @;
2. We can use the cell with @ as the cell with ‘1’ if we construct a larger cube in
the minimized cover.

Chapter 1 Boolean functions and combinational circuits — 15

Let us illustrate this by the example of the cover in Fig. 30,a. In this cover, the
function fi9 is equal to one at the vectors written over the dotted line, and it is not
defined (domain of don’t care) at the vectors under the dotted line. The covering
process is shown in Fig. 30,b. As we can see from this Karnaugh map, only cells with
don’t care, which help us to enlarge the cubes in the final cover, were used to get the
minimized cover (Fig. 30,c).

a b c d
0 0 0 1
0 0 1 0 cd
0 1 1 0 00 01 11 10
0 1 1 1
1 1
fio= 1 0 0 0] 00| J
1111 | il
0 0 0 o o1| FI [1]] 1
b
0 1 0o o0 a
o 1 0 I o L1
1 0 1 0
1 0 1 1 10 1 g\
1 1 0 0
a)
b)
a b c d
0 x 0 X
f19min = 0] 1 x X
x 0 x 0
x 1 1 1
¢

Figure 30. Function fo: initial cover (a), Karnaugh map (b) and minimized cover (c)

In Fig. 31 we minimized the same function without taking don’t care into
consideration (function fz0). Logic circuits for minimized functions fiomn and fzomin are
presented in Fig. 32. The cost of the first of them is equal to 13 (the total number of
inputs in gates), the cost of the second — 18. We will return to the using of don’t care
in Chapter 3 where we will show how it can help us to minimize logic circuits of
simple Finite State Machines (FSM).

Now we will show how to shorten the specification of a Boolean function. Let us
return to the Boolean function fwith four variables xi, ..., x4. Its truth table was
presented in Table 8, we illustrated the minimization of this function in Fig. 9.

cd
00 01 11 10

00 1 m a b c d
01 m u Faomin =)OC)IC ; ?

a b11 tlj

10| 1

Chapter 1 Boolean functions and combinational circuits — 16

a)
b)

Figure 31. Function f: Karnaugh map (a) and minimized cover (b)

We repeated this truth table in Table 9 and added one (the first) column to this table.
In this column we wrote decimal numbers from O to 15 corresponding to the binary
vectors of variables xi, ..., x4 in each row. It is clear that we can define this function
writing down the sequence of decimal numbers corresponding to the vectors where
Boolean function is equal to one (these vectors should be in the cover of this
function):

flx1, x2, x3, x4) =2(4, 6, 9, 11, 13, 15).

Here ¥ means that we used sum-of-products for our function. We will use such
function description in many our examples.

af
C
d
&
-

b—g&
a—d4& CE[—

L d L
bjE—\—l Fio 1| g
b—& a—9&
dj: — b{_ —

C
bf d
C
d a—g
b
a) 2{ b)

Figure 32. Logic circuits after minimization with don't care (a) and without it (b)

Table 9. Truth table of function f

X1 X2 X3 x4 | fiz
0 0 0 0 0 0
1 0 0 0 1 0
2 0 0 1 0 0
S 0 0 1 1 0
4 0 1 0 0 1
5 0 1 0 1 0
6 0 1 1 0 1

Chapter 1 Boolean functions and combinational circuits — 17

7 0 1 1 1 0
8 1 0 0 0 0 X1 X2 X3 X4
9 1 0 0 1 1 0 1 0 0
10 1 0 1 0 0 0 1 1 0
11 1 0 1 1 1 f= 1 0 0 1
12 1 1 0 0 0 1 0 1 1
13 1 1 0 1 ‘1 1 1 0 1
14 1 1 1 0 0 1 1 1 1
15 | 1 1 1 1 1 Figure 33. Function f— initial cover

1.2.6 Examples. In this section we will discuss several examples of Boolean function
minimization using Karnaugh maps.

Example 1. The function in this example
Jfei(x1, x2, x3, x4) =2(3, 4, 7, 9, 13, 14)
is defined as a list of decimal numbers. We begin with the initial cover (Fig. 34,a)

writing vectors (0-cubes) for each decimal number in the function representation. The
next steps of minimization are the same as above.

X1 X2 X3 X4 o |
X1 —49
o o 1 1 o &
o 1 o0 o0]
for= 0 1 1 1 X
1 0 0 1
1 1 0 1 o]
X1— &
11 1 o0 e
X4— .1
a) T _f21min
x1—4&]
X3 X4 Xo—
00 01 11 10
X3—-9
of T o
01| 1 M -
X1 X2 X1—/&
11 m 1 o
o | o
X4—9

b) d)

Chapter 1 Boolean functions and combinational circuits — 18

f21min = 1 X 0 1
0 1 0 0
1 1 1 0

¢

Figure 34. Function f,;: initial cover (a), Karnaugh map (b), minimized cover (c) and minimized
logic circuit (d)

Example 2. The function in this example
fe2(a, b, c) =a'b+ bc'+ b'c’

has three input variables and is defined as a Boolean expression. To construct the
initial cover (Fig. 35,a) we must present each product in this expression as a
corresponding cube (l-cube for each product in our example because products
contain two variables). Then we insert these cubes into Karnaugh map and find the
minimized cover (Fig. 35,c). The logic circuit implementing this function is shown in
(Fig. 35,d).

a b c a b c
0 1 x Jf22min = x x 0
foz = ‘ X 1 0 ‘ 0 1 X
X 0 0 b)
a)
b c

00 01 11 10

1 1
0 3 I 3 C - ﬁQmin
a a g

c) d)

Figure 35. Function fy: initial cover (a), Karnaugh map (b), minimized cover (c) and minimized
logic circuit (d)

Example 3. The function in this example is also presented as Boolean expression:
fas=wz+xz+xy+wx'z

As above, we can present each product in this expression as a corresponding cube in
the initial cover (Fig. 36,a). Here we have three 2-cubes and one 1-cube. If, for some
reason, it is difficult to insert this cover in Karnaugh map immediately, it is possible
to construct an initial cover fP2s with O-cubes only. For this, we must replace free
components in each cube in the previous cover by all possible combinations of zeroes
and ones (Fig. 36,b). Repeating O-cubes (grey color in this figure) can be deleted.
Karnaugh map, minimized cover and minimized logic circuit are presented in Fig. 36,
c—e.

Chapter 1 Boolean functions and combinational circuits — 19

w x y z w x y z

0 X X 1 0 0 0 1

foz = X 1 X 1 0 0 1 1

X 0] 1 X 0 1 0 1

1 0 X 1 0 1 1 1

a) o 1 0 I

P23 = 0] 1 1 1

1 1 0 1

1 1 1 1

vz o o0 1 0

00 01 11 10 0 0 1 1

00 111 1 1 0 1 0

1 0] 1 1

01 1|1 1 0 0 1

wx 1 0 1 1
11 1|1 b)

10 11| 1
c)
x d
w x y z ﬁ
Sf23min = X x X 1 Yy
X 0 1 X

d) el

Figure 36. Function f,3: initial cover (a), initial cover with 0-cubes (b), Karnaugh map (c),
minimized cover (d) and minimized logic circuit (e)
Example 4. The function with five variables in this example
feala, b, c,d, e)=%(0, 1,6, 7, 14-17, 19, 20, 24, 27).

is defined as a list of decimal numbers. The sequence of operations to minimize a logic
circuit for this function is the same as in Example 1.

a b c d e
0 0 0 0 0
0 0 0 0 1
0 0 1 1 0
0 0 1 1 1
0 1 1 1 0
foa = 0 1 1 1 1
i1 0 o0 o0 o0 b8
10 0 0 1 4
1 0 0 1 1
1 0 1 0 0
1 1 0 0 0 a—&
1 1 0 1 1 c
d
a) L
a—&
c S
d
cde €]
00 001 011 010 110 111 101 100
00|11 | 1 1] 1 a— &l
Cc —g
01 1] 1 q—1
ab — e —
11|[1 -
10|{[1]]| 1 E a— gl
b —d

Chapter 1 Boolean functions and combinational circuits — 20

f 24min =

~~ i~ O R R
QX X =xOT
2 OO ~O0QD0n
O~O~OQ
Q~OX X O

c)

Figure 37. Function fy: initial cover (a), Karnaugh map (b), minimized cover (c) and minimized
logic circuit (d)
Example 5. The function with five variables and don’t care (Fig. 38)
f2s(a,b,c,d,e) =%(0, 1, 2, 8, 9,[10, 13, 16 — 19, 24, 25])
is defined as a list of decimal numbers. The decimal number, corresponding to vectors

in don’t care are enclosed into square brackets. The “care” and “don’t care” cubes in
the initial cover are separated by the dotted line.

a b c d e cde
8 g 8 g ? 000 001 011 010 110 111 101 100
0 0 0 1 0 00||1 _‘,J,A,,,,m
0 1 0 0 0
fos = o 1 0o o0 1 o1 1]| 1 @ %]
0 1 0 1 0 ab
0o 1 1 0 1 n g
1 0 0 0 0
i1 0 o0 0 1 10\ 0| DD
1 0 0 1 0 b)
1 0 0 1 1
1 1 0 0 0
1 1 0 0 1]
a} CCZ:CCi 1 _f24min
a b c d e a —dg]
fosmin = X X 0 0 X c —d d
0 x 0 x 0 o)

Chapter 1 Boolean functions and combinational circuits — 21
c)

Figure 38. Function fys: initial cover (a), Karnaugh map (b), minimized cover (c) and minimized
logic circuit (d)

1.3 Logic circuits with NORs and NANDs

In this section we will discuss the synthesis of logic circuits with NOR and NAND
gates. Such gates are more popular in logic synthesis. Moreover, it is possible to say
that most VLSI (Very Large Scale Integrated) circuits are constructed from these
gates. However, people are used to think on the basis AND-OR-NOT, it is impossible to
think on the basis NOR-NAND. The simplest methods to construct logic circuits from a
truth table, a Karnough map or a cubical cover give us an expression in sum-of-
products or product-of-sums form, which can be implemented as a two-level circuit.
All the known methods for minimization of logic circuits use circuits on the AND-OR-
NOT basis and produce results on the same basis. Only after this the special mapping
algorithms are used to cover circuit by librarian elements, NOR and NAND gates as
well.

We will discuss very simple algorithms for transformation of any multilevel circuit into
the circuit with NOR gates, with NAND gates and with NOR and NAND gates together.
Let us start with the circuits with NOR gates.

1.3.1 Circuits with NOR gates. Table 10 presents the truth table for function NOR.
This function is equal to one only when both variables are equal to zero (the first row),
otherwise it is equal to zero. The logic gate NOR is shown in Fig. 39.

Table 10. Function NOR

X1 X2 X1 + x2 (x1 + x2)' .
+

0 0 0 1 X1 1 L {xl x2)

0 1 1 0 X2

1 0 1 0
1 1 1 0 Figure 39. Gate NOR
implementatuon ol runcuons Ur ana amnpD with NOF . _ig. 40.

Thus, to realize OR-function f = x: + x2 with NOR gates we must use the same inputs
x1, x2 as inputs for NOR gate and invert its output (mnemonics: Cover — Invert). To
realize AND-function f = x:x2 with NOR gates we must use the inverted inputs xi, x2
for NOR gate (mnemonics: Invert — Cover).

X1+ x2 X1x2
X1 1 X1
— —
X2 X2
(x1 + x2)' X1 + x2 (x1'+ x2')' = x1x2
1 x1—d 1
X2—

Figure 40. Implementation of OR and AND with NOR gates

As the first example, we will discuss mapping of a logic circuit in Fig. 41 with NOR
gates. Here we will use gate by gate transformation. Thus, gate OR; in this figure is
replaced by gates NOR and INV;: in Fig. 42 (Cover — Invert). Gate AND: in Fig. 41 is
replaced by one gate NOR: in Fig. 42 (Invert — Cover) etc. In the circuit thus

Chapter 1 Boolean functions and combinational circuits — 22

constructed, two sequential inverters may be found (such cases are dotted in Fig. 42).
The final step consists of deleting such pairs of inverters (Fig. 43).

x1
x9
X6
x3

x5
"4 N
8
7

> y2

x2 —] &
x10 — E—

x6 —

Figure 41. Example 1 with AND and OR gates

x1
x9
x6
x3

x1
x9
x6
x3

Figure 43. Final step of mapping with NOR gates

1.3.2 Circuits with NAND gates. Table 11 presents the truth table for function
NAND. This function is equal to zero only when both variables are equal to one (the
last row), otherwise it is equal to one. The logic gate NAND is shown in Fig. 44.

Chapter 1 Boolean functions and combinational circuits — 23

Implementation of functions AND and OR with NAND gates is evident from Fig. 45.
Thus, to realize AND-function f = xixz with NAND gates we must use the same inputs
x1, x2 as inputs for NAND gate and invert its output (mnemonics: Cover — Invert). To
realize OR-function f = x; + x2 with NAND gates we must use the inverted inputs xi, x2
for NAND gate (mnemonics: Invert — Cover).

Table 11. Function NAND

Jg);2 xz(;@ (m;cz} . (o)

0 1 0 1 X2

1 0 0 1

1 1 1 0 Figure 44. Gate NAND

X1X2 X1+ x2
X1 X1 1
I
X2 X2
TR
X7 (x1x2)' X1x2 X1—4 ('1x’2) = x1 + x2
b n. b
X2 X2 d

Figure 45. Implementation of AND and OR with gates NAND

As an example we will discuss the mapping of the same logic circuit (Fig. 41) with
NAND gates. Once again, here we use a gate by gate transformation. Thus, gate OR; in
this figure is replaced by gate NAND; in Fig. 46 (Invert — Cover). Gate AND: in Fig. 41
is replaced by two gates NAND and INV2 in Fig. 46 (Cover — Invert) etc. As above, in the
circuit thus constructed, two sequential inverters may be found (such cases are
dotted in Fig. 46). The final step consists of deleting such pairs of inverters (Fig. 47).

We can generalize the rule for mapping of AND-OR circuits by NOR (NAND) gates. Let
us say that gates AND and NAND (OR and NOR) are consonant (with similarly
articulated gates in both occurences). At the same time, gates AND and NOR (OR and
NAND) are not consonant with. Then, in a gate by gate transformation, the consonant
gates are replaced by the rule Cover — Invert, the non-consonant gates are replaced
according with the rule Invert — Cover.

Chapter 1 Boolean functions and combinational circuits — 24

x2 — &]
P s S
x1 E
q 1
x2 x3 —9 ﬁ.
X7 — | s

— &
xl — &
x10 —] @5 @ 7 &
— x4
xQ—E
x10 — pb— ﬁ. ﬁ.
x6—_
> Y2
@
8x5—_ @10 @ & 11 y3
x1 —T&]
x9 —
6 o— ﬁ- ﬁ.
x3 —c_ ..

Figure 46. Gate by gate mapping of the circuit in Fig. 46 with NAND gates

x2 —| &]
x8 — |
1 — » Y2
x2 ﬁo 7 & x1— ’ Y
X. 9 -
x3 —q 10— & &
x Eis
x7 — x5— p y3
— 11
x1— &
X9 —
x6—
x3 —q

Figure 47. Example 1 with NAND gates

1.3.3 Circuits with NOR and NAND gates. Before we define the rules for
transformation of any logic circuit into the circuit with NOR and NAND gates, let us
first conduct some experiments. In Fig. 48,a we have four copies of the same two-level
circuit implementing function fi. In these circuits we numbered gates by all possible
combinations 0-0, 0-1, 1-0 and I-1 of zeroes and ones. Then, in Fig. 48,b we have
implemented these circuits with NOR and NAND gates according the rules in Fig. 40

Chapter 1 Boolean functions and combinational circuits — 25

and Fig. 45. To decide what gate (NOR or NAND) should cover the gates OR and AND
on the left side of this figure, we have used the following very simple rules:

1.

2.

3.

We realized AND gate by NAND gate (consonant gates: NAND for AND) if the
AND gate is marked by 1;

We realized OR gate by NOR gate (consonant gates: NOR for OR) if the OR gate
is marked by 1;

We realized AND gate by NOR gate (non-consonant gates: NOR for AND) if the
AND gate is marked by O;

We realized OR gate by NAND gate (non-consonant gates: NAND for OR) if the
OR gate is marked by O.

0
] 0
e - s

1
X1 —] & =1 XJ:E
e— | 5 | — fi x2 f
1
x1 — x1
1 o o 1
xg L~ e 0

Figure 48. Four implementation of the same circuit with NOR — NAND gates

It follows immediately from Fig. 48 that:

1.

If two gates in the sequence are marked by different numbers (0-1 in the
second circuit and 1-0 in the third circuit) there is no inverter between NOR
and NAND gates;

If two gates in the sequence are marked by the same numbers (0-0 in the first
circuit and I-1 in the last one) there is an inverter between NOR and NAND
gates;

If the right (last gate) in the AND-OR circuit is marked by one (the second and
the fourth circuits in our example) there is an inverter at the output of the
NOR-NAND circuit.

If you repeat our experiment for three other possible combinations of two-level circuits
(Fig. 49) you will get the same results.

xd xd 1 -
X2 E £ x2 ﬁ 5 x2 I Ja
X3 X3

Figure 49. Three other possible two-level circuits

The rules for transformation of any logic circuits with AND-OR gates into the circuit
with NAND-NOR gates can be briefly formulated in the following way:

Chapter 1 Boolean functions and combinational circuits — 26

Stepl — Marking. At this step we go from right to left in the OR-AND circuit and mark
each gate by 1 or 0, minimizing the number of cases in which two connected gates are
marked by the same number. If we consider the circuit as a graph with gates as its
vertices, it would be equivalent to the coloring of this graph by two colors (0 and 1)
with minimization of the number of failures in such coloring — with minimization of
the number of cases in which two connected vertices are colored by the same colors.
One of the possible markings for the circuit in Fig. 41 is presented in Fig. 50.

» yl
0 Yy
0 7 —
1 * & 1
x6— |9
x3 —_|
x1
2 0 1 £
x 1 e rm 5—&

1
x2
x10 — 3
x6

Figure 50. Example 1 with AND and OR gates — the first version of marking

Step2 — Mapping. At this step we go from left to right. Each gate marked by 1, should
be replaced with the consonant gate (OR by NOR, AND by NAND) in accordance with
the rule Cover — Invert. Each gate marked by O, should be replaced with the non-
consonant gate (OR by NAND, AND by NOR) in accordance with the rule Invert —
Cover. In such a mapping, inverters can appear only between gates marked by the
same numbers (0-0 or I-1). The circuit in Fig. 51 with NOR and NAMD gates is the
result of mapping of the circuit with AND and OR gates in Fig. 50.

x1 1
x9
x6
x3

x5 1
x4 E
o
ﬁ. 7

x2—] &]

x10—q p——

xX6—

Figure 51. Example 1 with NOR and NAND gates (the first version)

Since we do not have violations in the marking of the circuit in Fig. 50, there are no
inverters between gates in Fig. 51. However, we have three inverters at the outputs
because yi, y2 and ys are the outputs of gates marked by I (do you remember the rule
Cover — Invert?).

Chapter 1 Boolean functions and combinational circuits — 27

In Fig. 52, we used the marking beginning from O for the same circuit with AND — OR
gates. The corresponding logic circuit with NAND and NOR gates is shown in Fig. 53.

x2 —
x8 —

0

x1 q 1
<
x3 —¢
X7 —

» Yyl
7 y
1 1 —
— 0 x & 0
& 7 x9 — 7
2 6 —I 9
L] 4 . 17 T Y3
x3 —1
1 I
1
& 1 0 —
0 x5 — &
% —Ta 1] = —&] 10
I . |_|8 |
x10 — |95 J7
0 > y2
x2 — &
x10 —9 5
x6 —

Figure 52. Example 1 with AND and OR gates — the second version of marking

x1 —
x9 —
x6 —

x3 —q

54
1 x4 1 *
8

\J

y2

Figure 53. Example 1 with NOR and NAND gates (the second version)

In the circuit in Fig. 54 (Example 2), we could not avoid a violation in marking (two
connected gates AND4; andAND7 are marked by 0) so we have an inverter in the circuit
with NOR and NAND gates in Fig. 55.

x8—0
0
1 — X7—
x5— 1
PR
0
x10— &
x11— =

Chapter 1 Boolean functions and combinational circuits — 28

[&
x8 —a
— X7 —
x5 — &
x1 0 o——
XQ .ﬁ T 6
x10 —9 1 Py
xll—d p—1 y
{Z’D 7 P— 12
x] — & —
1
x4 —
10
xS—T
1
x6—C_ 4
X8 .ﬁ 1]
o 1
x9
x6— p—
X7 — 3

Figure 55. Example 2 with NOR and NAND gates

Chapter 1 Boolean functions and combinational circuits — 29

Chapter 2 Abstract Automata

In the first Chapter, we presented the elements of Boolean algebra as a tool for
description of combinational circuits. In such circuits, the output at a cirtain time
depends only on the inputs at the same time and does not depend on what was at the
inputs of these circuits at the previous time.

This chapter deals with models for description of sequential circuits whose behavior
depends not only on their present inputs, but, generally, on a prehistory, including
past inputs. In the first section, we will introduce such a model — abstract automaton
or a finite state machine (FSM) and will discuss the main automaton models - Mealy,
Moore and their combined model. Then we will talk about the transformations
between Mealy and Moore models and their minimization.

2.1 Behavior of abstract automaton

Let us consider the unit with one input and one output (Fig. 1) working at discrete
times t = 0, 1, 2 ... We suppose that at each point in time t input zr (a letter of input
alphabet Z = {zi, ..., zr}) appears at the unique input of the unit.

Z—» S —W>

Figure 1. Unit S

Output symbol wy (a letter of output alphabet W = {wy, ... , wgj) appears as a response
to the input zr at the same point in time t at the unique output of the unit. Assume,
for example, that Z = {zj, z2, z3} and W = { wi, w2, ws, w4} and the output word w(t) =
wiwswsw2wiwsis the reply to the input word &(t) = 222121232222 (Fig. 2).

t 0 1 2 3 4 5
&(t) z2 Z1 Z1 Z3 Z2 Z2
a(t) wi w3 w4 w2 w1 w3

Figure 2. Input-output sequence for unit S

As seen from Fig. 2, the responses of unit S to the same inputs are sometimes
different. Really, at times I and 2 we have the same input z: but different outputs ws
and ws, at times 0 and 5 we have the same input z2 but different outputs w: and ws
etc. Thus at any time t, the signal at the output of our unit depends not only on the
input signal but also on the prehistory; i.e., it depends on the input sequence applied
to the unit before this time t. Hence, unit S is not a combinational but a sequential
circuit and we can not use Boolean algebra to describe its behavior; we need another
model for such a behavior. For this, we will introduce abstract automaton, or simply
automaton. We use here the term 'abstract' to emphasize that at this level we are
dealing with idealized models and put aside the real properties of input and output
signals; we consider them only as letters of some alphabets.

2.2 Mealy and Moore automata

Abstract automaton has a set of states A. In each point in time, the automaton is in
some state am from this set of states (ame A). When signal zr appears at the input, the
automaton produces signal wy at the output according to its output function A and
transits into the next state as according to its transition function 6. Thus, to present
an automaton we must present three sets — the set of inputs Z, the set of outputs W,

Chapter 2 Abstract automata - 30

the set of states A and two functions - the transition function 6 and the output function
A

Mealy automaton and Moore automaton are the two more popular models now. In
Mealy automaton, the next state depends on the current state and the current input,
the current output depends on the current state and the current input as well:

a(t + 1) = 5(a(t), z(t));
w(t) = A (aft), z(t)).

In Moore automaton, the next state depends on the current state and the current
input, but the current output depends only on the current state:

aft + 1) = 8(a(t), z(t);
w(t) = A (a(t)).

2.3 Automaton representation

2.3.1 Mealy automaton. We use two modes for automata representation — a table
form and a state diagram (graph) form. Table 1 and Table 2 present Mealy automaton
S: in the table form. Columns of these tables correspond to states, and the rows
correspond to inputs. Mealy automaton Si, thus described, has three states and two
inputs. The next state as = §(am,zs) is written at the intersection of column am and row
zrin the transition table (Table 1), output wy = Afam,zs) is written at the intersection of
column amand row zrin the output table (Table 2). So, if automaton S; is in state a2
and its input is equal to zi, the output signal equals to we (see intersection of column
az and row z; in Table 2) and the next state equals to a; (see the intersection of the
same column and the same row in Table 1).

Table 1. a, = d(a,, zp Table 2. w, =2 (@, 29
zr a az as zf ai az as
z az ai ai Z1 w3 wa wi
Z2 as as as Z2 w1 w3 wi

Sometimes, the transition and the output tables are combined into one table (Table
3). In this table, the next state as and the output wy are written together (as/wy) at the
intersection of the state column am and the input row zr.

Table 3. The same Mealy automaton S;

zf ai az as
Z1 az/ w3 ar/wz ai/wi
Z2 as/ wi as/ ws as/ w1

Thus, in the automaton Si: A = {ai, az, as}, Z = {z1, z2}, W= {wi, wz, ws} and the
transition function 6 and the output function A, defined at the pairs (am, z), are
presented in Table 1 and Table 2, or in combined Table 3. If from a practical point of
view it is necessary to emphasize an initial state — the state of an automaton at the
initial point of time, we will call it a; and write it in the left column of such tables.

The state diagram or the graph of the same Mealy automaton S; is shown in Fig. 3. In
such a diagram, vertices correspond to the automaton states and arcs correspond to
the automaton transitions. If there is a transition from state am to state as in Mealy
automaton, then in the state diagram, there is an arc directed from vertex am to vertex

Chapter 2 Abstract automata - 31

as. The input z, initiating this transition, and the output wy = A(am,zr) are written at
this arc.

Figure 3. The state diagram of Mealy automaton §;

2.3.2 Moore automaton. Table 4 is an example of Moore automaton presented
in the table form. As the expressions for transition functions of Mealy and
Moore automata are identical, the next state as = §(an,z7) is also written at the
intersection of the column a, and the row zr in the transition table of Moore
automaton. But the output of Moore automaton depends only on the current
state (wy = A(an)), so we should not construct a special output table for Moore
automaton - it is sufficient to write the output wy over the corresponding state
am. So, if Moore automaton Sz is in the state a4 and its input is equal to z;, the
next state is equal to a; (see the intersection of the column a4 and row z;in
Table 4). The output signal is equal to w; all the time while the automaton is
in the state a; (see the output signal over the state a;).

Table 4. Moore automaton S,

wi w2 w3 w1 w3
zf al az as a4 as
Z] as as az ai ai
Z2 a4 a4 as a4 a4

Thus, in the automaton S2: A = {ai, az, as, a4, as}, Z = {zi1, z2}, W= {wi, we, ws}, the
transition function § and the output function A are presented in Table. 4. Sometimes,
Moore automaton table like this is called a marked transition table, because output
marks each corresponding state of this table.

The state diagram of Moore automaton S, is shown in Fig. 4. As in Mealy automaton,
the vertices and the arcs correspond to the states and the transitions in Moore
automaton state diagram. Since the outputs in such an automaton depend only on
the states, each output is written near the corresponding state (vertex). The
transformations from the table representation of the Mealy and Moore automata to
the state diagrams and vice versa are evident.

2.3.3 Incomplete automaton. Mealy automaton is called complete or completely
specified, if its transition function § and output function A are defined for each pair
(am,zf). Moore automaton is called complete or completely specified, if its transition
function ¢ is defined for each pair (am,zf) and its output function 4 is defined for each
state am. Automata S: and Sz are complete. An automaton is incomplete or
incompletely specified, if it is not complete. The example of incomplete Mealy

Chapter 2 Abstract automata - 32

Figure 4. Moore automaton S,

automaton Sz is presented in Tables 5-6 and in Fig. 5. As seen from this example, if a
transition is not defined for a pair (am,zf) in automaton tables, in the automaton graph
there is no arc going out from state am with input zr written on this arc. Thus, the
following transitions are lacking in the state diagram in Fig. 5:

1. From the state a: with the input zi;

2. From the state as with the input z2;

3. From the state a+ with the input z2,

On the other hand, in Fig. 5 we have the arc from the state az with the input zs
because this transition is defined although the output signal is not defined at the pair

(az,z3).

Table 5. a, = d(a,, zp Table 6. w, = A(a,, 79
Zf ai az as a4 zf ai az as a4
Z1 - a4 as ar Z1 - wi w4 wgz
zZ2 az az - - zZ2 wi ws - -
z3 as as az as z3 w2 - ws w4

Figure 5. The incomplete Mealy automaton S;

2.4 Automata responses to input sequences

To expand our understanding of automaton representation let us conduct two
experiments — one with Mealy automaton S: and one with Moore automaton Sa.

Chapter 2 Abstract automata - 33

2.4.1 Mealy automaton. Consider the behavior of Mealy automaton S; (Tables 1-2 or
Fig. 3) for the given state a: and the input sequence &(t) = z2 z1 z1 z1 z2 z2. The first
column a; in these tables corresponds to the beginning of our experiments. The first
letter in the input sequence & equals to z2. From the output table of automaton S:
(Table 2) we find that w: = Afai1, z2) and we write w;: in the first column of Fig. 6. To
find the next state we turn to the transition table of S: (Table 1) and find that as =
O(ai, z2). So, we write asin the second column of Fig. 6. Repeating the same for the
state as and the second input z: (second column) we get w: = Alas, z1), a: = 6(as, zi)
and so on. As a result, we got the output sequence (output word) w(t) with the same
length as in £(t). Note, that at the last step we got the next state as written in the last
column of Fig. 6.

state sequence aft) ai as ai az ai as as
input sequence &(t) Z2 Z1 Z1 Z1 Z2 Z2
output sequence o(t) wi wi w3 w2 wi wi

Figure 6. Experiment with Mealy automaton S,

The output sequence w(t) is a response of Mealy automaton S: in the state a: to the
input sequence £(t):

o(t)= Alas, &(t)).

It is evident that for the incomplete automaton the response to some input sequence
in some state may be undefined. This can happen in two cases:

1. For some state ap and input zr from the input sequence £(t), the output
function A(ap, zr) is not specified;

2. For some state ap and input zr from the input sequence £(t), the transition
function 6 (ap, zf) is not specified.

For example, the response of the incomplete Mealy automaton Ss, presented in Tables
5-6 or Fig. 5, is

Alaz, z1, z1, 22, 21, 23, 23)= W1, W2, W1, Wi, W4, Ws.

However, the responses A(az, zi, z1, 22, 23, 23, z3) and Alaz, z1, z3, z3, 21, Z2, 21) are not
defined since, in the first case, Afaz,z3) is not defined:

a(t) az a4 ai az as az as
&(t) Zi Z1 z2 z3 z3 z3
a(t) wi w2 wi - ws -

In the second case, 6(a+,z2) is not defined:

a(t) az as as az as -
&(t) Z1 z3 z3 2z z2 Z1
a(t) wi w4 ws wi -

2.4.2 Moore automaton. The response of Moore automaton Sz (Table 4 or Fig.4) in
the state a: to the same input sequence &(t) = z2 z1 21 z1 z2 z2 (we used it for Mealy
automaton Si) may be defined in a similar way (Fig. 7):

state sequence aft) ai a+ ai as az a+ a4
input sequence &(t) Z2 Z1 Z1 Z1 Z2 Z2
output sequence w(t) w1 wi wi w3 w2 wi wi

Figure 7. Experiment with Moore automaton S,

Chapter 2 Abstract automata - 34

As seen from Fig. 7, the length of the output sequence w(t) is equal to seven, whereas
the length of the input sequence £(t) is equal to six. Note, however, that the first
output ws: in o(t) does not depend on the input sequence £(t). Really, w: does not
depend on the first input z2 in this sequence, w; is defined only by the first state a;.
Therefore, we do not include the first output symbol w: in Moore automaton
response. We call the output sequence w(t) = Ala:, £(t)), shifted right one place, a
response of Moore automaton Sz to the input sequence &(t) in the state a:;. This
response is underlined in Fig. 7.

2.5 Transformations between Mealy and Moore models

Two automata S and S’ are equivalent if their responses to any input sequence in their
initial states are equal. Let us return to the experiments with Mealy automaton S:
(Fig. 6) and Moore automaton Sz (Fig. 7). Their underlined responses to the input
sequence &(t) = z2 z1 z1 z1 z2 z2 are equal. Does this mean that these automata are
equivalent? Of course, not, it is possible that there exists such an input sequence £'(t),
to which the responses of these automata in their initial states would be different.
However, from this example, the question arises: is it possible to construct Mealy
automaton that would be equivalent to the given Moore automaton? And vice versa,
is it possible to construct Moore automaton that would be equivalent to the given
Mealy automaton? We will show that there are the positive answers to these
questions. Now we will consider the transformations between these automata models.

2.5.1 Moore to Mealy. To transform a graph of Moore automaton to the graph of
Mealy automaton, it is sufficient to carry the output (wy in our example) written near
the state of Moore automaton to all the arcs incoming to the same state of Mealy

automaton (Fig. 8).
/\ Wy

O
Wy
_/ e
Zp Zp

a) b)
Figure 8. Subgraphs of Moore (a) and Mealy (b) automata

Automaton Mealy Ss, thus constructed for Moore automaton Sz (Fig. 4) is presented in
Fig. 9.

In a general case, let us have Moore automatonSa with the set of states Aa ={ ay, ...,
au}, the set of inputs Za = { z1, ... , zr}, the set of outputs Wa = { wy, ... , wg}, the
transition function 64 and the output function Aa. Mealy automaton Sp that is
equivalent to Sa, has the same set of states (A = Aa={ ai, ... , au}), the same set of
inputs Zgp = Za = { zi1, ... , zr}, the same set of outputs W= Wa = { wy, ... , wg} and the
same transition function és = 4 but their output functions are different.

Let Moore automatonSa transit from the state am to the state as with the input signal
zrand its output in the state as equal to wy:

b4 (am,zr) = as; Aa(as) = wy.

Chapter 2 Abstract automata - 35

Figure 9. Automaton Mealy S, equivalent to Moore automaton S,

Then, in Mealy automaton, the same transition takes place and the output at this
transition is equal to wy:
6B (am,Zf} = As; AB(am,Zf) = Wy.

It corresponds to the carrying of the output, written near the state of Moore
automaton, to all arcs incoming to the same state of Mealy automaton.

If we use a table for representation of Moore automaton Sa (Table 7) then the
transition and output functions of Mealy automaton Sg, equivalent to Sa, can be
constructed in the following way. The transition function of Sg (Table 8) coincides with
the transition function of Moore automatonSa. To construct the output function of Ss
(Table 9) we replace the state as in Table 8 by the output signal wy that marks the
state asin the marked transition table (Table 7) of Moore automatonSa.

Table 7. Transition table of S,

wi woz w3 wi w3

zf ai az as a4 as

Z] as as az ai al

zZ2 a4 a4 as a4 a4

Table 8. Transition table of S, Table 9. Output table of S,

Zf ai az as a4 as Zf ai az as a4 as
Z] as as az al ai Z] w3 w3 w2 wi wi
zZ2 a4 a4 as a4 a4 zZ2 wi wi w3 wi wi

From the method for the construction of Mealy automaton Sg, just considered, it is
evident that this automaton is equivalent to Moore automaton Sa. Really, if some
input signal zr appears at the input of Moore automaton Sa in the state am, then this
automaton transits to the state as = §(am,zr) and the output signal wy = Aa(as) is
generated while the automaton Sa is in this state as. But Mealy automaton Ss also
transits from the state am to the same state as = 6s(am,zr) (68 = 64) with the same
output signal wy = As(am,zf). Thus, for an input sequence with the length equal to one
(for one input signal), the corresponding responses in any state am of the automata Sa
and Sp will coincide. By mathematical induction, it is easy to show that any input
sequence with the length equal to n will produce the same response in the
corresponding states of the Moore and Mealy automata Sa and Ss.

2.5.2 Mealy to Moore. Let we have Mealy automaton Sg with the set of states Ap = {
ai, ... , am}, the set of inputs Zg= { zi, ..., zr}, the set of outputs W= { wy, ... , wag}, the
transition function oJs and the output function As. Moore automatonSa that is

Chapter 2 Abstract automata — 36

equivalent to Sg, has the same set of inputs Za =Zg = { zi, ... , zr} and the same set of
outputs Wa= Wg={wi, ..., we}. We will illustrate the construction of the set of states
of Moore automaton by Fig. 10. In this figure, there are four transitions into the state
as of Mealy automaton with three different outputs wp, wg, and wr.

Figure 10. Four transitions into the state of Mealy automaton

Each such state of Mealy automaton generates as many states of Moore automaton,
as many different outputs are at the transitions into this state. We present such
states of Moore automaton as pairs (state, output) in Mealy automaton, the state as in
Fig.10 generates three states

As = {(as, wr), (as, wp), (as, we)}.
The whole set of states Aa of Moore automaton Sa is the union of states generated by
all states of Mealy automaton Sg:

AA:UAS.

The output function Aa of Moore automaton Sa is defined very simple: for each state
which is the pair (as, wp), the output is equal to wp — to the second component of this
pair.

Before we define the transition function of Moore automaton, we will appeal to an
example. As an example of transformation from the Mealy model to the Moore model,
we use Mealy automaton S: (we repeat this automaton here in Fig. 11). In this
automaton:
A = {ai, az, as};
Zp = {71, z2};
Ws = {w1, w2, ws).

The transition function 68 and the output function Az of S; are defined in Fig. 11.

Figure 11. The state diagram of Mealy automaton .S,

We construct Moore automaton Ss. In this automaton:

Za = {z1, z2};
Wa = {wi, we, ws}.

Chapter 2 Abstract automata - 37

Three states of Mealy automaton S: generate the following states of Moore automaton
Ss(we renamed pairs by by, ..., bs):

A1 = {{a1, wi), (a1, wz)} = {b1, ba};
A2 = {(az, ws)} = { bs};
Asz = {(as, wi), (a3, wz)} = {bs, bs}.

Thus, each state of Moore automaton Ssis a pair (state, output) of Mealy automaton
S1. In our example:

b: = (a1, wi); bz = (a1, w2); bs = (a2, ws);
b4 = (as, wi); bs = (as, ws).

The set of states of Ssis equal to
Aa =A1 UA2 U Az = {bi, bz, bs, ba, bs).

To distinguish these states of Moore automaton Ss from the states of Mealy
automaton Si, we denoted them b, ..., bs. We can now even draw the states of the
automaton Ss with output signals (Fig.12). It remains only to define the transitions
between these states — to define the transition function of the automaton Ss.

wi

w2
w3 .@

i
w1

Figure 12. The states and output function of Moore automaton S’

Fig. 13 illustrates the definition of function 6a of Moore automaton Sa. If there is a
transition from am to as with an input zr and an output wk in Mealy automaton S,
then there should be the transitions from all the states Am, generated by the state am
of Mealy automaton, to the state (as, wkx) with the same input zr in Moore
automatonSa.

Mealy Moore
automaton automaton
wy @ zf
Z Wk
“ @nwp

Figure 13. Definition of function é,, of Moore automaton S,

Let us return to our example. To illustrate, how to design a graph of Moore automaton
S5 we will take one of the transitions of Mealy automaton S: and construct the
corresponding transitions in Moore automaton Ss (Fig. 14). In the Mealy automaton
S1, there is a transition from the state a: to the state az with the input z: and the

Chapter 2 Abstract automata - 38

output ws. Then, in Moore automaton Ss, there should be transitions from all the
states of A; = {b1, bz}, generated by ai, with the same input z to the state (az, ws) = bs
(it is the state generated by the state a, and the output ws at the discussed

transition).
Mealy Moore
automaton S; automaton Ss

ok
@@ D

Figure 14. One transition in S; and the corresponding transitions in S

Continue in the same way with all other transitions of Mealy automaton S; we will get
the state diagram of Moore automaton Ss (Fig. 15).

Figure 15. The state diagram of Moore automaton S

Let us discuss the case of an incomplete Mealy automaton, where the transition
function 65 is specified at the pair (am, zf) (as = 6(am, zf)), but the output function Az is
not specified at this transition (see, for example, the transition as = 6(az, z3) in the
automaton Ss in Fig. 5). Then the set As, generated by as, contains the pair (as, -) with
unspecified second component. In our example in Fig. 5, the state as of the
automaton Sz generates the set As = {(as, wz), (as, wa4), (as, -)}. We leave you the
transformation of this Mealy automaton Ssto Moore automaton as an exercise.

Suppose that we would like to transform Moore automaton Ss (Fig. 15) to some Mealy
automaton Ss. As in such transformation (Moore model — Mealy model), the number
of states is not changed, Mealy automaton Ss will have five states. As a result, we get
the chain presented in Fig. 16. Here we ran into the situation of two equivalent
automata S;and Ssof the same Mealy type having a different number of states. Thus,
we came to the problem of the state minimization which we will discuss in the next
section.

S, —— S5 ———» Ss
Mealy Moore Mealy

3 states 5 states 5 states

Figure 16. Equivalent Mealy automata §; and S with the different number of states

Chapter 2 Abstract automata - 39
2.6 State minimization

2.6.1 Equivalent automata. Two states am and as are said to be equivalent (am =
as), if the responses to any input sequence in these states coincide, i.e. Afam, &) = A(as,

¢) for any input sequence & If two states are not equivalent, they are distinguishable.
k

Two states am and as are said to be k-equivalent (am = as), if their responses to any
input sequence & of the length k in these states coincide, i.e. Afam, &) = Afas, &). If two
states are not k-equivalent, they are k-distinguishable.

Two automata S and S' of the same type (Mealy or Moore) are equivalent (S= S'), if for
each state am of the automaton S there exists a state as of the automaton S|
equivalent to am, and, vice a versa, for each state as' of the automaton S’ there exists
a state am of the automaton S, equivalent to as.

An automaton S is minimal, if there are no equivalent states in this automaton S (from
am = as it follows that am = as for the minimal automaton). We will consider here a
method of the state minimization of complete automata. The main idea of this method
is illustrated by Fig.17 and consists in:

1. Partition of a set of states into disjoint blocks of equivalent states;
2. Replacement of each such block with one state.

The minimal automaton, thus constructed, has exactly as many states as the
number of blocks in this partition. In Fig.17, we have five equivalent blocks
containing 16 dots (states in non-minimal automaton). The minimal automaton
will have only five states.

The equivalent and k-equivalent relations, just introduced, allow us to find partitions
n and m of the state set A with the blocks of equivalent and k-equivalent states.
Having used the partition = we can find redundant states in the set A.

S

Figure 17. Partition of a set of states into equivalent classes

Let, for example, states am and as be equivalent. This means that these states are
indistinguishable regarding their responses to any input sequence and it is not
significant, whether the automaton is in the state am or in the state as. Consequently,
one of these states can be removed from the set A. If each equivalent block in the
partition mw contains one state, the set A is nonreducible.

2.6.2 Minimization of Mealy automaton. The algorithm for state minimization of
Mealy automaton consists of the following steps:

1. Find sequential partitions mi, mo, ... , 7k, T+ of the state set A into blocks one,
two, ... , k, (k+1)equivalent states until m = mk+: at (k + 1) step. It is easy to

Chapter 2 Abstract automata - 40

show, that mx = m in this case, i.e. k-equivalent states are equivalent and k is
not more than (M - 1), where M is the number of states in set A.

2. Take one state from each equivalent block and form a state set Amn of the
minimal automaton Smin that is equivalent to the automaton S.

3. Define the functions O6min and Amin of the automaton S. For this, delete the
columns with the states not included in Amin, from the transition and output
tables of the automaton S. Replace the states not included in Amin by
equivalent ones from Amin in these tables.

4. Take one of the states, equivalent to a: as an initial state aimin of automaton
Smin.

As an example, let us consider the state minimization for Mealy automaton Sz
presented in Tables 10 and 11. If we combine states with equal columns in Table 11
we will get the partition of the set of states into blocks of 1-equivalent states:

7, =8y,8y,85,85,84,8, ={B;, B, }.

Table 10. Transition table of S,

zr a az as a4 as as
Z1 as as as as as as
Z2 as as as as a az

Table 11. Output table of S,

zZf ai az as a4 as aes
Z1 w1 w1 w1 w1 wi wi
Z2 wi wi w2 w2 wi w1

Indeed, two states am and as are l-equivalent, if, in these states, an automaton has
the same responses to any input sequence of the length one (i.e. columns am and as
must be equal in the output table of this automaton).

Construct a table for the partition m: (Table 12) replacing the states in the columns of
Table 10 by their 1-equivalent blocks. Obviously, two l-equivalent states are 2-
equivalent, if they transit to 1-equivalent states with equal inputs.

Table 12. Partition 7,

B; B2
zF a az as as as as
Z1 By B2 B; B; B2 B2
Z2 Bs Bs B B Bi B

From Table 12 we get the partition m2 (Table 13), combining equal columns in each
block in Table 12:

7, =8;,8,;85,85 338, ={C,,C,,C.}.

Table 13. Partition 7,

C 1 CQ C3
Zf aj az as as as a4
Z1 Cs Cs Co Co Cs Cs
Z2 Co Co Ci Ci Co Co

Chapter 2 Abstract automata — 41

In exactly the same way, we construct the partition s

7Ty =28,,8,;35,84;38,,8, ={D,;,D,,D;}

which is equal to mo. Thus, m2 is the partition of the state set A of Mealy automaton S7
into blocks of equivalent states.

To construct a minimal automaton Smin (Tables 14 and 15) we take any state from
each block of the partition m2 to form the state set Amin of this automaton. Let, for
example, Amin = {ai, a4, as}. After this, we remove the columns with states az, as, as not
included in Amin, from the transition and output tables of automaton S7. Inside these
tables, we replace states not included in Amin by equivalent ones from Amin. For
example, we replace as by a+ at the intersection of column a: and row z; and as by as
at the intersection of column asand row za.

Table 14. Transition table of S,,;, Table 15. Output table of S,
zr ai a4 as zf ai a4 as
Z1 a4 a4 as Z1 wi wi w1
zZ2 as as ai zZ2 wi w2 wi

2.6.3 Minimization of Moore automaton. To minimize Moore automaton, in the
first step, we should find the partition of the state set into O-equivalent blocks. Two
0
states an and as of Moore automaton are said to be 0-equivalent (am = as), if they are
marked by equal outputs. Two O-equivalent states are 1-equivalent, if they transit to
0O-equivalent states under equal inputs. All the next k-equivalent blocks for Moore
automaton can be constructed in exactly the same way as for Mealy automaton. As a
result of minimization of Moore automaton Ssin Table 16 with 12 states, we get the
minimal Moore automaton Sowith 4 states (Table 17). We give here only a sequence of
partitions without the corresponding tables.

Table 16. Moore automaton Sg

wi wi ws3 ws3 ws3 woe ws3 wi we we woe we
zf ai az as a4 as as a7 as ao aio aii aiz
Z1 aio aiz as ar as az as aio az ai as az
Z2 as ar as aji as ajl as a4 as as a9 as

Ty =y,8,,85,83,8,,85,87;85, 39, &, &1, 8y, ={B;, B,, B,};
7y =&;,8,,83,85,8,,85,87,85,85,8;,8,5,3;, :{C11C21C31C4};

72.2 :al’aZ’a8;a‘3’a4’a5’a7;a6’a9’a11;a10’a12 :{Dl’DZ’D3’D4}'
T, =TT,

Table 17. Minimal Moore automaton .Sy

wi ws w2 w2
zf ai as as aio
Z1 aio as as ai
Z2 as as as ai

Chapter 2 Abstract automata — 42

2.6.4 Minimization of combined automaton. In some applications, it is interesting
to use the automaton that combines the properties of Mealy and Moore automata. We
call it Combined automaton (C-automaton). We can describe the behavior of C-
automaton as follows:

a(t + 1) = 6(a(t), z(t);
w(t) = Ai(a(t), z(1);
u(t) = Az(aft)).

Thus, C-automaton has two output functions — one as in the Mealy model and the
second one — as in the Moore model. It is possible to think about this in this way: the
output un = A2(am) is generated every time when automaton is in the state am, whereas
the output wy = A1(am,zr) is generated in the state am when the input zris present. For
C-automata representation, it is also possible to use tables and state diagrams. To
present C-automaton in a tabular form we use a transition table and an output table.
The transition table of C-automaton Sio (Table 18) is similar to the transition table in
the Mealy model, while, in the output table (Table 19), states are marked by the
outputs from the set of outputs U.

Table 18. Transition table of C-automaton §;,

zf al az as a4 as
Z1 as as az as ai
zZ2 as az az az a4

Table 19. Output table of C-automaton S,

U1 u2 Ui us us
zf ai az as a4 as
Z1 wi w2 wi wi w2
Z2 w2 wi w2 w2 wi

In the state diagram (Fig. 18), the outputs from the set W are written on the arcs, the
outputs from the set U are written near the corresponding states. Of course, it is
possible to transform C-automaton to Mealy automaton or to Moore automaton just
as we have transformed the Mealy model to the Moore model and vice versa.

Ui

Figure 18. State diagram (graph) of C-automaton S,

For the purpose of state minimization of a complete C-automaton, we can use the
algorithm for Mealy automaton minimization from the previous section, if we assume
that two states am and as of C-automaton are 1l-equivalent, if they are marked by the
equal outputs and have the equal columns in the output table. As an example we
provide the state minimization of C-automaton S:: (Tables 20-21). The minimization
process, presented in Tables 22-23, corresponds to the following sequence of
partitions:

Chapter 2 Abstract automata - 43

Ty = al’aZ’a57a7'a8;a3’a4’a6’a9’all;a10’a12 :{Bl’BZ’BS};

T, = al’aZ;aS’a7;a8;a3’a4’a6’a9’a11;a10’a12 :{C11C27C3’C4'C5};

73 :ai’az;as’aﬁa_s;aa’amaa’awan;aio’aiz :{Dl’ Dzi D3’ D4’ D5}.

Ty =T0,.

Table 20. Transition table of nonminimal C-automaton S;;

zZf al az as a4 as aes arz as ag aio ari a2
Z1 aio a2 as as as as as aio az az az ai
zZ2 as a7z as a4 ae ae aii a4 as as ari as

Table 21. Output table of nonminimal C-automaton §;;

Ui U1 uz uz U1 uz U1 U1 uz us uz us
zf ai az as a4 as as arz as as aio aii aiz
Z1 wi wi w2 w2 wi w2 wi wi w2 w2 w2 w2
zZ2 w2z w2z wi wi w2 wi w2z w2 wi wi wi wi

Table 22. Partition 7,

Bi B2 B3
zf ai az as az as as a4 ae a9 aii aio a2

Z1 B3 B3 B2 B2 B3 Bi Bi Bi Bi Bi Bs: Bs:
Z2 Bi Bi B> B> B> B> B> B> B> B> B B

Table 23. Partition 7,

Ci C2 C3 Cs Cs
zf ai az as arz as as a4 as as aii aio aiz

Z1 Cs Cs Cs Cs Cs Co Co Co Co Co Ci C
Z2 Co Co Cs Cs Cs Cs Cs Cs Cs Cs Cs Cs

The minimal C-automaton Si2is presented in Tables 24-25.

Table 24. Transition table of the minimal C-automaton S,

zf ai as as as aio
Z1 aio as as aio ai
z2 as as as as as

Table 25. Output table of the minimal C-automaton S;,

Uus uz Ui Uz us
zf ai as as as aio
Z1 w1 w2 wi w1 wo2
Z2 w2 w1 w2 w2 w1

Chapter 2 Abstract automata - 44

Chapter 3 Structure Automata

In the previous Chapter, we were considering abstract automaton as a 'black box'
with one input and one output (Fig. 2.1) which transforms input sequences (words of
the input alphabet Z) into output sequences (words of the output alphabet W). We
were not interested in the contents of this black box. In this Chapter, we will
concentrate on the interior of a black box and examine how to realize the behavior,
described at the level of abstract automaton, by means of hardware components.

3.1 Synthesis of Mealy automaton

3.1.1 Structure automaton. We can look at structure automaton as a follow-up
detailing of abstract automaton. Unlike abstract automaton, structure automaton
(Fig. 1) has L inputs and N outputs. The signals zero or one can appear at each input
xi (=1, ..., L) and at each output yn (n=1, ..., N) of structure automaton. Thus, the
input of structure automaton is a binary vector with L components, each of which is
equal to zero or one. Each output of structure automaton is a vector with N
components, each of which is also equal to zero or one.

X1 —— — Y1

X[———» —— YN

Figure 1. Structure automaton

Fig. 2 presents a basic structure for Mealy automaton with two parts — Logic
(combinational circuit) and Memory. Memory contains memory elements — Moore
automata with two states (zero and one). Usually, flip-flops are used as memory
elements in structure automaton.

1|t
t L fi 1
. O . . .
tr fr] e
g I—
X] ——» t — Y1
. C .
XL, ——» — UnN

Figure 2. The structure of structure automaton

As the first example in this chapter, we will use an abstract Mealy automaton S:in
Tables 1 and 2 (the transition and output functions). To transform this abstract
automaton into the corresponding structure automaton we should encode its each
input zr, each output wy; and each state am by binary vectors. Since abstract
automaton S; has three inputs zi, z2, z3, six outputs wy,...,ws and five states ay,...,as,
the corresponding structure automaton will have two binary inputs xi, x2, three

Chapter 3 Structure automata — 46

binary outputs yi, y2, ys and three binary memory elements t;, t2, t3. The basic
structure for this automaton is shown in Fig. 3.

Table 1. Transition table of automaton S;

zf ai az as a4 as
Z] az as - a4 ai
zZ2 as ai ar as -
Z3 az - a4 - a4
Table 2. Output table of automaton §;
Zf ai az as a4 as
Z] wi We - w4 ws
Z2 w3 wi ws w2 -
Z3 w4 - ws - wi

Before we discuss how encoding affects the complexity of the automaton logic circuit
we will use so-called trivial encoding in which the code (binary number) is equal to the
decimal number of the encoded object. For example, for state a; we will use code 001,
for state a2 — code 010 etc. The corresponding tables for input, output and state

encoding (assignment) are presented in Tables 3 — 5.

Table 3. Input encoding

t;

t2

ts

X] ——»

Xo ——»

— Y1
—— Y2

— y3

fi | t;
L]
f2 1 t2
L]
f3 s
L]

Figure 3. The structure of the automaton in our example

zf X1x2
Z1 01
Z2 10
z3 11

Wy y1yzys
wi 001
w2 010
w3 011
w4 100
Wws 101
we 110

Table 4. Output encoding

Table 5. State encoding

am titats
a; 001
az 010
as 011
a4 100
as 101

Chapter 3 Structure automata — 47

As the memory element, we will use Moore automaton with two states. Its transition
table is shown in Table 6. We suppose that the output of this automaton is equal to
its state — when the automaton is in the state O, the output is equal to 0, when it is in
the state I, the output is equal to I, so it is not necessary to mark states by their
outputs.

Table 6. Transition table of the memory element

¢
f 0 1
0 0 1
1 1 0

3.1.2 Execution of structure automaton. Now we return to the structure of the
automaton S: in Fig. 3 to discuss how it works. Let abstract automaton S: transit
from state a:to state az with input signal zs (see Table 1). w4 is the output signal at
this transition (Table 2). When abstract automaton S: is in the state ai, structure
automaton S; is in the state 001 (Table 5). The input vector 11, corresponding to zs
(Table 3), appears at the inputs of structure automaton (see Fig. 4). The output vector
100, corresponding to wa4 (Table 4), is generated at the outputs yi, yz, ys of circuit
Logic.

0
>
|
t1 fi 0 t1 01|
> L gl P
ta f1 M t2 0| o
= Io} g L
ts £ o1 B ts 1— |
g
1 X1 ——» l — y; 1
c — Y2 0
1 xg — —— Y3 0

Figure 4. The structure of the automaton at the transition from a; to a, with input z;

To transfer automaton S: from state a: (code 001) to state az (code 010) we must
transfer the first memory element ¢ from state O to state 0, the second ¢z — from state
O to state I and the third t; — from state I to state 0. To implement these transitions
of memory elements, we should supply the corresponding signals to their inputs. To
determine these inputs we must use the transition table of the memory element (Table
6). According to this table: for transition of the first memory element from O to O its
input should be equal to O, for transitions of the second memory element from O to I
and the third — from 1 to O, their inputs should be equal to 1. Thus, vector 011 should
appear at the inputs fi, f2, f3 of the memory elements (Fig. 4). The functions fi, f2, f3
are called input memory functions or excitation memory functions.

Thus, after choosing memory elements and encoding inputs, outputs and states the
problem of the logic synthesis for the automaton S; with a basic structure is reduced
to the synthesis of the combinational circuit, which realizes the following functions:

Chapter 3 Structure automata — 48
Yn = Yn(ts, to, t3, X1, x2); n =1, ...,3;

fr=filts, to, ts, x1, x2); r=1,...,3.

3.1.3 Automaton structure table. The structure table of automaton S: is shown in
Table 7. This table has the following columns: am and as are the current and the next
states; titots and tintontsn are codes of am and as; zr and wy are the input and output
signals; xix2 contains binary input signals; y:y2ys and fifofs contain the values of
outputs of Logic circuit at Fig. 4.

Table 7. The structure table of the automaton S,

am titots as tintontsn zr X1X2 Wy Y1yays fifofs
ai 001 az 010 Z] 01 wi 001 011
001 as 011 Z2 10 w3 011 010
001 az 010 Z3 11 w4 100 011
az 010 as 011 Z] 01 Wwe 110 001
010 ai 001 Z2 10 wi 001 011
010 - - Z3 11 - - -
as 011 - - Z] 01 - - -
011 ai 001 Z2 10 ws 101 010
011 a4 100 Z3 11 w3 011 111
a4 100 a4 100 Z] 01 w4 100 000
100 as 101 Z2 10 w2 010 001
100 - - Z3 11 - - -
as 101 ai 001 Z1 01 ws 101 100
101 - - Z2 10 - - -
101 a4 100 Z3 11 wi 001 001

To fill in the last column of Table 7 let us look at the transition from a: to a2 at the
first row of this table. This transition involves three transitions of memory elements:
the first memory element t; from state O to state O, the second tz — from state O to
state I and the third t3 — from state 1 to state 0. Let us use Table 6 to find what input
causes the transition of the first memory element from the state ¢;=0 to the state ¢;=0.
Looking at the first column and the first row of this table we see that such input f;=0.
In exactly the same way, we will find that to transfer the second memory element from
t2=0 to t2=1, its input should be equal to I (the first column and the second row of
Table 6). To transfer the third memory element from =1 to t3=0, its input should also
be equal to I (the second column and the second row of Table 6). Thus, we write 011
in the column fif2fs5 in the first row of Table 7. It now should be evident how to fill in
the other entries of this column.

3.1.4 Logic circuit synthesis. An automaton structure table may be considered as
the truth table for functions yi, y2, ys and fi, f2, f3 with variables ti, t2, t3, x1, x2 (see the
gray columns in this table). Thus, from this table we can derive the covers for yi, ya,
Ys, f1, f2, f3 as the set of input vectors where these functions are equal to one.

ti1 t2 tz3 x1 X2 t1 t2 t3 x1 x2

0O 0 1 1 1 fi= 0 1 1 1 1

Y1 = o 1 0 O 1 1 0 1 0 1
0o 1 1 1 0]
1 0 O O 1

1 0o 1 0] 1 t1 t2 tz x1 xe

0O 0 1 0 1

t; t2 tz x1 xo 0O 0 1 1 0

0O 0 1 1 0 fo= 0O 0 1 1 1

Yz = o 1 0 O 1 o 1 O 1 0

0o 1 1 1 1 o 1 1 1 0

1 0 O 1 0 0 1 1 1 1

Chapter 3 Structure automata — 49

ys=

~~OoOoO0oO0OOS
OO ~~~OOg
o O
N O~~~ OR
NN~ OO O~
~N~NQOOoO0O0OoS
QO ~~~OOQOF
~NO~OOQO NG
A L Ry
~N OO~ ~~G

Prior to minimization of these functions, we can define three kinds of don’t care in our
example:

1.

2.

Codes 000, 110 and 111 are not used for state assignment, therefore
functions yi, y2, ys, f1, f2, f3 are not specified for the cubes

t1 tz t3 x1 xo
0O 0 0 «x X
1 1 0 x X
1 1 1 X X

Code 00 is not used for encoding of input signals, therefore functions yi, yo,
ys, fi, f2, f3 are not specified for the cube

1 t2 t3 x1 xe
|x x x 0 0]

The transition and output functions of the abstract automaton (see Tables 1
and 2) are not completely defined. As a result of this, structure automaton is
not completely defined either — see dashes “-“ in Table 7 in columns yi, yz, ys,
f1, f2, f3. Thus, these functions are not specified for the cubes

X

[

~N~OQOOoOS
QO ~~T
~O~O&

1
0
1
1

QNNN‘\>§

Karnaugh maps and minimized covers for functions yi, yz, ys, fi, f2, f3 are shown in

Fig. 5 -
00
01
x1 x2
11
10

Figl0.
tl1t2 t3
000 001 011 010 110 111 101 100
|9 Q 2 Q Q @/ tir t2 t3 x1 X2
%] gl1 Tl A 1 1 x 1 x 0 x
yr = x 1 1 x O

@j dNT| T %) I x x 0 «x

,,,,,,,,, ‘ 0O 0 x 1 1
o] 1 jegliatiged .

— — Figure 5.

Function y;,

Chapter 3 Structure automata — 50

t1t2 t3
000 001 011 010 110 111 101 100
o|F NSNS TND DD | D
o1| g1 DI
x1 x2 t1 t2 tz3 x1 Xx2
11@’ I Q ’®/ ’®/ ’®/ Yz = x 1 x x 1
Figure 6. Function y,
t1t2 t3
000 001 011 010 110 111 101 100
; t t: ts x X
SEIEIEIEIEIEEE Goew s
* ys= | x x 1 0 «x
x1x201@/1/® ST\ 1 x 1 x 1 x
ng| |28 1|2 P
Figure 7. Function y;
o|\g| 1|1 1)|I|T|NTI
t1t2 t3
000 001 011 010 110 111 101 100
o| NI\ DN D T | D|| I
o1| & o] T | 1! ti to t3 X1 x2
x1 x2 fi= | x 1 x 1 1
ulgl 1| g |g]| | 1 x 1 0
10| &f I Figure 8. Function fi

The logic circuit of automaton Si, constructed by using minimized covers for
functions yi1, y2, ys, f1, fz, f3, is shown in Fig. 11. It is evident that this circuit
corresponds to the structure in Fig. 4. Indeed, this logic circuit consists of two parts —
the combinational circuit with inputs ti, to, t3, x1, x2 and outputs yi, yz, ys, fi, f2, f3 and
the memory, containing three memory elements with inputs fi, f2, fsand outputs ti, to,
ts.

t1t2 t3
000 001 011 010 110 111 101 100
GG EICICICIE
1 I
o1\ 1| Ji [B%] T PR CRED CH)
x1 x2 : : =0 x x 1 x
gl | 1| I %] 0 x 1 x x
1 |
10 /@ i_{___{_i 1 g @’ /®/ Figureg. FUnCtioan

Chapter 3 Structure automata - 51

t1t2 t3
000 001 011 010 110 111 101 100

ol ININOND DD ND I t01 tj t; o
ol gli1 || |o|o@ f=|x 1 0 x x

x1 x2 : [I x x 1 x
g b |2 g Figure 10. Function f;
ollg il 1) o|o|e

titats

55

TF

I

o]
‘h
.
-]
k5
2]
o

[

&
Fh
~ o
-
>
E
&

[

baj
9‘
<

r
5 58
> © ®
SN N S |e =
y“‘ _y_“‘
< <
W [y

&
.
G (S
-
§

X2 —q

~N

Figure 11. Logic circuit of automaton §;

Consider the circuit in Fig. 11. The subsequent minimization of this circuit is possible
through the use of methods for two-level minimization, but the main effect in the
automaton logic circuit minimization may be obtained through various techniques of
factorization and decomposition. Such techniques for the logic design of automata
with a large number of inputs and outputs will be discussed in the next chapters.

Chapter 3 Structure automata — 52

Here we only note that in the circuit in Fig. 11, the considerable success in the two-
level minimization was obtained by using the same terms in different output and
input memory functions.

3.1.5 Output signal assignment. Now we will discuss the possibility for OR gate
minimization in two level circuit in Fig. 11. The number of inputs into OR gates for
outputs yi, yz, ysis equal to the number of ‘ones’ in the columns yi, y2, ysin Table 7.
This number of ‘ones’ depends on the number of ‘ones’ in codes for output signals of
abstract automaton (see Table 4) and on p(wy) — the number of appearances of each
output in the column wy in Table 7. We tabulate this information in the first two
columns of Table 8.

Next two columns of this table contain codes for each wy (g = 1, ...,6) in a trivial
encoding which we have been using until now, and ¢ wy) — the number of ‘ones’ which
each output produces in the column last but one of Table 7. Really, if code of w: = 001
(it contains one ‘one’) and w: appears three times in Table 7 (p(w:) = 3), the number of
‘ones’ ¢ wi) in the columns yi, yz, ys only due to wr:is equal to 3. Exactly in the same
way, output w2 produces only one ‘one’ in Table 7 (one appearance and one ‘one’ in
the code), output wsproduces four ‘ones’ (two appearances and two ‘ones’ in the code)
etc.

The algorithm for the optimal output encoding is very simple. First of all, place the
outputs in the order of decreasing p(w;y). Use zero code for encoding of the output with
p(wg) = max. In our example, p(w:) = max and we encode w: by 000 — see column
yi1y2ysin ‘Optimized encoding’ in Table 8. Then, we assign all possible codes with one
component, equal to one, to the outputs with the next values of p(wy) — ws, w+and ws
in our example. In the next steps we use codes with two ‘ones’, after this — with three
‘ones’, etc. As a result, we get the encoding in the column y:yzys in the ‘Optimized
encoding’ in Table 8. The sum of numbers in the last column in this table is equal to
10; it is much lower than the sum of numbers in the column c(wy) in the ‘Trivial
encoding’.

Table 8. Optimized output encoding

Trivial encoding Optimized encoding
W p(ws) yiyzys | clwy) Y1y2ys c(wy)
wi 3 001 3 000 0
w2 1 010 1 011 2
ws3 2 011 4 001 2
w4 2 100 2 010 2
ws 2 101 4 100 2
We 1 110 2 101 2

3.1.6 Logic synthesis with D flip-flops. D flip-flop (Fig. 12) is the most simple and
the most frequently used memory element. The transition table of this flip-flop is
presented in Table 9. The name D flip-flop results from word ‘Delay’ - as seen from
Table 9, the next state of D flip-flop is equal to the previous input (a next state is a
delayed input).

Table 9. Transition table of D flip-flop

t
d——r d 0 1

0 0
1 1

D H—->»

Figure 12. D flip-flop

Chapter 3 Structure automata — 53

Table 10 contains the structure table of the automaton S: with D flip-flops. Here we
have used the optimized output assignment from Table 8 and a trivial state
assignment in which a binary code for each state is equal to the number of this state.
To fill out the last column of Table 10 we do not need to apply to the transition table
of D flip-flop (Table 9); we should simply copy the column tintentsn into the last
column. Really, in the column d:dzds, we write inputs to the memory elements and
these inputs, according to Table 9, are equal to the next states of the memory
elements written in the column tintzntsn.

Table 10. The structure table of automaton .S; with D flip-flops,

am titots as tintontsn zf X1X2 Wy y1yays didzds
ai 001 az 010 Z1 01 wi 000 010
001 as 011 Z2 10 w3 001 011
001 az 010 Z3 11 w4 010 010
az 010 as 011 Z1 01 Wwe 101 011
010 ai 001 Zz2 10 wi 000 001
010 - - Z3 11 - - -
as 011 - - Z1 01 - - -
011 ai 001 Zz2 10 ws 100 001
011 a4 100 Z3 11 w3 001 100
a4 100 a4 100 Z1 01 w4 010 100
100 as 101 z2 10 w2 011 101
100 - - Z3 11 - - -
as 101 ai 001 Z1 01 ws 100 001
101 - - z2 10 - - -
101 a4 100 Z3 11 wi 000 100

As before for output functions yi, y2, ys, we can minimize the number of inputs into
OR gates for input memory functions di, dz, ds. For this, we should minimize the
number of ‘ones’ in the column d:dzds. Since this column is equal to the column
tintontsn it is sufficient to minimize that in the column tintontsn. Thus, for the state
assignment, we can use the algorithm for the output assignment from the previous
section. Let p(as) — the number of appearances of each state in the column as in Table
10 and c(as) — the number of ones which each state produces in the column tintontsn
(column didzds). We will insert this information into the first two columns of Table 11.

Table 11. Optimized state asignment

Trivial encoding Optimized encoding
as plas)

titots c(as) titots cl as)
ai 3 001 3 000 0
az 2 010 2 010 2
as 2 011 4 100 2
a4 3 100 3 001 3
as 1 101 2 011 2

First of all, place the states in the order of decreasing p(as). Use zero code for encoding
of output with p(as) = max. Here we have two states — a; and a+ with the same weights
equal to three. We can use code 000 for any of them, for example for a; - see column
titots in the ‘Optimized encoding’ in Table 11. Then, we assign all possible codes with
one component equal to one to the states with the next values of p(as) — a4, azand as
in our example. In the next steps we use codes with two ‘ones’, after this — with three

Chapter 3 Structure automata — 54

‘ones’, etc. As a result, we get the encoding in the column titots in the ‘Optimized
encoding’ in Table 11. The sum of numbers in the last column in this table is equal to
9, it is much lower than the sum of numbers in the column c(as) in the ‘Trivial
encoding’.

This state assignment is used in Table 12. For such an assignment, we will get the
new don'’t cares:

1. Codes 101, 110 and 111 are not used for the state assignment, therefore
functions yi, yo, ys, di, dz, ds are not specified for the cubes
t1 t2 tz x1 xe
1 0 1 X X
1 1 0 x x
1 1 1 X X

2. Code 00 is not used for encoding of input signals, therefore functions yi, ya,
ys, di, dz, ds are not specified for the cube
t1 t2 tz3 x1 Xxe
| x x x 0 O |

3. Functions yi, yz, ys, di, dz, ds are not specified for the cubes corresponding to
the rows with dashes “-“ in the columns for these functions

t1 t2 tz x1 xe
o 1 0 1 1
1 0 O O 1
0O 0 1 1 1
0 1 1 1 0
Table 12. The structure table of automaton S; with optimized state assignment
am titots as tintontsn zf X1x2 Wy Yyiyays didads
ai 000 az 010 Z1 01 w1 000 010
000 as 100 Z2 10 ws 001 100
000 az 010 Z3 11 w4 010 010
az 010 as 100 Z1 01 Wwe 101 100
010 ai 000 Z2 10 wi 000 000
010 - - Z3 11 - - -
as 100 - - Z1 01 - - -
100 ai 000 Z2 10 ws 100 000
100 a4 001 Z3 11 w3 001 001
a4 001 a4 001 Z1 01 w4 010 001
001 as 011 Z2 10 w2 011 011
001 - - Z3 11 - - -
as 011 ai 000 Z1 01 ws 100 000
011 - - Z2 10 - - -
011 a4 001 Z3 11 wi 000 001

Immediately from Table 12 we derive the covers for yi, yz, ys, di, do, ds:

t: t2 tz x1 xo

0 1 0 0 1 ti t2 tz3 x1 Xxo
Y1 = 1 0 0 1 0 dl = 0 0] 0 1 0

o 1 1 0 1 0 1 0 0 1

t: t2 tz3 x1 xo tr t2 t3 x1 X2

o 0 o0 1 1 o 0 0 O 1
Y2 = 0O 0 1 0 1 do = O 0 0 1 1

0O 0 1 1 0] 0O 0 1 1 0]

t: t2 tz x1 xo
o 0 0 1 0]
ys = o 1 0 0 1
1 0 0 1 1
A 0O 0 1 1 0]

2, Y3, f1,

Chapter 3 Structure automata — 55

t: t2 tz3 xi
1 0 0 1
dz = 0O 0 1 0]
0O 0 1 1
0 1 1 1

113 (check

them!). The logic circuit ot Mealy automaton S; with D flip-tflops and optimized output
and state encoding is presented in Fig. 19.

tir t2 t3 x1 x2
x 1 x 0 «x
1 x x x 0

yr =

Figure 13. Function y;

t1 t2 tz x1 xe
Y2 = x 0 1 x «x
0O 0 «x 1 1

Figure 14. Function y,

t1 t2 t3 x1 x2
0O 0 x «x 0
1 x x x
x 1 0 O

xR~

Figure 15. Function y;

t1 tz t3 x1 xo
d; = x 1 0 O X
0O 0 0 «x 0

Figure 16. Function d,

t1 t2 t3 x1 x2
x x 1 x 0
0O 0 0 «x 1

do =

Figure 17. Function d,

t1 t2 tz3 x1 Xx2

x 0 1 X X
ds = x x 1 1 X
1 x 1

Figure 18. Function d;

titats

Chapter 3 Structure automata — 56

X1

1

ENEN)
-
&
S

T2

Figure 19. Logic circuit of Mealy automaton §; with D flip-flops

3.2 Synthesis of Moore automaton

Fig. 20 presents a basic structure for Moore automaton with three parts — two
combinational circuits (Logicl and Logic2) and Memory. As before in a Mealy model,
the outputs of Logicl are the input memory functions which depend on a current

state ti, ..., tr and input xi, ..
because they depend only on the current state ti,

abstract Moore automaton Sz in Table 13.

tr

XL —*

—

di

., x.. The outputs y;, ..., yv are the outputs of Logic2,
..., tr. As an example, we will use

dr

tr

0 *Q O t~

. yl

.y,

Figure 20. The structure of Moore automaton (general form)

Chapter 3 Structure automata — 57

Table 13. Moore automaton S,

w1 - w2 w3 w2
al az as a4 as
Z] as az al az as
Z2 - - a4 as az
Z3 as as - - a4

Table 14 is the structure table of the automaton S2. First, we insert abstract
automaton in this table by filling columns am, wy, as and zr from Table 13. Note, that
we write wy in the left part of Table 14 after codes for current states, because the
output of Moore automaton depends only on the current state.

Table 14. The structure table of Moore automaton S,

am titots Wy yiyz as tintontsn zf X1x2 didads
ai 101 wi 01 as 001 Z1 00 001
101 - - Z2 01 -
101 as 010 Z3 10 010
az 000 - - az 000 Z] 00 000
000 - - Z2 01 -
000 as 010 Z3 10 010
as 010 wo2 00 ai 101 Z1 00 101
010 a4 100 Z2 (0)) 100
010 - - Z3 10 -
a4 100 ws 10 az 000 Z1 00 000
100 as 001 Z2 01 001
100 - - Z3 10 -
as 001 w2 00 as 001 Z1 00 001
001 az 000 Z2 01 000
001 a4 100 Z3 10 100

To construct whole table, we must encode each input z; each output wy; and each
state am by binary vectors (Tables 15 — 17). To minimize the number of repetitions of
‘ones’ in the columns for output and input memory functions, we use the number of
repetitions of outputs p(wy) and the number of repetitions of next states p(as) in the
corresponding columns of Table 14. Finally, we rewrite column tintontsn into column
didzds, since these columns are equal when we use D flip-flops as memory elements.

zf X1X2
Z] 00
Z2 01
Z3 10

Table 15. Input encoding

Table 16. Output encoding

Wy plwy) Y1yz
w1 1 01
w2 2 00
ws 1 10

Table 17. State assignment

as p(as) titots
aj 1 101
az 3 000
as 2 010
a4 2 100
as 3 001

Chapter 3 Structure automata — 58

As abstract automaton Sz has three inputs zi, z2, zs, three outputs wi,...,ws and five
states ai,...,as; the corresponding structure automaton has two binary inputs xi, xz,
two binary outputs yi, y2 and three binary memory elements ti, t2, t3. The basic
structure for this automaton is shown in Fig. 21.

t1 L di — t1 L
L] o — Y1
to o d> M to
L 9
t3 ds s i - Y2
g L c 5
X] ———» 1
X2 ———» c
1

Figure 21. The structure of Moore automaton S,

Don'’t cares for input memory functions di, do, ds:
1. Codes 011, 110 and 111 are not used for state assignment, therefore the
functions di, d2, ds are not specified for the cubes

tr tz t3 x1 xo
0 1 1 X X
1 1 0 «x x

1 1 1 x x
2. Code 11 is not used for encoding of input signals, therefore the functions di,
dz, ds are not specified for the cube

t1 t2 tz3 x1 X2
|xxx11|

3. Functions di, dz, ds are not specified for the cubes corresponding to the rows
with dashes “-“ in the columns for these functions

~O O~
oO~oOog
oo~
~~Oo 0ok
OO ~~J

Don'’t care for yi, yo:

1. Codes 011, 110 and 111 are not used for state assignment, therefore the
functions yi, y2 are not specified for the cubes

t1 t2 t3
0 1 1

1 1 0
1 1 1

2. Output of the automaton Sz is not specified in the state az so yi, yz are not
specified for the cube corresponding to the code of this state

t1

Chapter 3 Structure automata — 59

to t3

lo o o]

Immediately from Table 14 we derive the covers for di, dz, ds, yi1, y2:

d; =

coos
O~
~o0og
~ Qo
O~

ds

1]
O~ ~
oco~Og
~QOO~&
ocoood
O~O0oOg

t1 t2 t3
yi= |1 0 o0

t1 t2 t3
y2= | 1 0 1]

Minimized covers for functions yi, y2, di, dz, ds are shown in Fig. 22 — Fig.26 (here we
gave only Karnaugh maps for yi, yz). Logic circuit of this automaton with D flip-flops
and optimized output and state encoding is presented in Fig. 27.

t; t2 tz x1 xo
d; = x 1 x x x
0 x 1 1 X

Figure 22. Function d,

t1 t2 tz x1 x2
do = 1 x x 1 X
x x O 1 X

Figure 23. Function d,

to t3 x1 x2
x 1 0 0
1 x x 0]
X X X 1

Figure 24. Function d;

t; t2
00 01 11 10

o|lg| |zl

1 o} o}

t3

00 01

11
0| 1%
%]

10

ts

t1 t2 t3
yi= |1 x 0]

Figure 25. Function y;

t1 t2 t3
y2= | 1 x 1]

Figure 26. Function y,

Chapter 3 Structure automata — 60

Figure 27. Logic circuit of Moore automaton S,

3.3 Synthesis of Combined automaton

In the previous Chapter, we have introduced a combined automaton model. Such an
automaton has the properties of Mealy and Moore automata. We call it Combined
automaton (C-automaton). This automaton has two output functions — the first as in
the Mealy model and the second — as in the Moore model. The transition table of C-
automaton Sz (Table 18) is similar to the transition table for the Mealy model, while,
in the output table (Table 19), states are marked by the outputs from the set of
outputs U.

Table 18. S;: a,= Ka,, , 29

zf ai az as a4 as
Z1 - as as az -

zZ2 az - a4 as az
Z3 as ai - as as

Table 19. 85: we =A@ , 295 up=2; (a,)

ui - uz us uz
zf ai az as a4 as
Z1 - w2 w4 wi -
Z2 w2 - w2 w4 we
Z3 w3 w4 - ws wi

Without detailed comments, we will discuss the synthesis of this C-automaton.

Table 20. The structure table of combined automaton S;

am titots Up rire as tintontsn zf X1X2 Wy y1yzys | didads

ai 100 uz 01 - - Z] 00 - - -
100 az 001 Z2 01 w2 000 001
100 as 000 Z3 10 w3 100 000

Chapter 3 Structure automata - 61

az 001 - - as 010 Z1 00 w2 000 010
001 - - Z2 01 - - -
001 ai 100 Z3 10 w4 001 100
as 000 uz 00 as 000 Z1 00 w4 001 000
000 as 011 Z2 01 w2 000 011
000 - - Z3 10 - - -
a4 011 us 10 az 001 Z1 00 wi 010 001
011 as 000 Z2 01 w4 001 000
011 as 010 Z3 10 ws 011 010
as 010 uz 00 - - Z1 00 - - -
010 az 001 Z2 01 Wwe 101 001
010 as 000 Z3 10 wi 010 000
Table 21. State assignment Table 22. Output w, encoding
am p(as) titots Wy plwg) Y1yays
aj 1 100 wi 2 010
az 3 001 w2 3 000
as 4 000 ws 1 100
a4 1 011 w4 3 001
as 2 010 ws 1 011
Wwe 1 101
Table 23. Output u, encoding Table 24. Input encoding
up plup) rirz z X1x2
us 1 01 Z1 00
uz 2 00 Z2 01
us 1 10 Z3 10
tl . d1 =,—| tl . L
L L ———» 1]
to dz mm to o
> o :I_, > g
s ds | |t - l I
- g . " ¢ 2
X1 ———» i +—> Y1
— y2
X2 —> ¢] > Uys

Figure 28. The structure of Combined automaton S;

Don'’t cares for yl, y2, y3,dli, d2, d3
1. Codes 101, 110 and 111 are not used for state assignment, therefore functions
Y1, Yz, Y3, di, do, ds are not specified for the cubes

t1 t2 tz x1 xo

Chapter 3 Structure automata — 62

1 X x
1 1 0 «x x
1 1 1 X x

2. Code 11 is not used for input encoding, functions yi, y2, y3, di, d2, ds are not
specified for the cube

t; 2 tz3 x1 Xxo
|xxx1 1|

3. Functions yi, y2, ys, di, dz, ds are not specified for the cubes corresponding to
the rows with dashes “-“ in the columns for these functions

oo~
~0o0oOog
COoO~O&
O~O0oOg
QO~OYZ

Don’t cares for ri, r2

1. Codes 101, 110 and 111 are not used for state assignment, therefore the
functions ri, 2 are not specified for the cubes

~

=
~~ O
~ QO ~&

~N N~

2. Output of automaton Sz is not specified on state az so ri, r2 are not specified
for the cube corresponding to the code of this state

t1 to [%]
| o 1|
Initial covers for yi, yo, ys, di, dz, ds

tir to t3 x1 X2 ti t2 tz3 x1 Xx2
yr= (1 0 0 I O di= 10 0 1 1 0]

0 1 0o O 1

ti t2 tz3 x1 Xx2

ti to tz3 x1 Xx2

0o 1 1 0 o0 I O
y2 = 0 1 1 1 0 d2 = 0 0 O 0 1

0o 1 0 1 o0 o 1 1 1 0

t1 to t3 x1 x2

0O 0 1 1 0

o 0 0 O 0 ds =
ys= |0 1 1 0 1

OO0~
~~O0Og
oO~oog
ococooR

Chapter 3 Structure automata — 63

Initial covers for ri, r2

tir to t3 t1 t2 t3
rn= | o 1 1] = |1 0 0]

Finding minimized covers
t1to t3

000 001 011 010 110 111 101 100
00 SN DT ot t3 x1 xe
o di= |0 0 x 1 x|
X1 X2 o1 @/ Q Q Figure 29. Function 4,
SN INTND DD || &
10| | 1 NI NI
ti to t3
000 001 011 010 110 111 101 100
00 1 @/ /®/ @/ /®/ /®/ t1 t2 t3 x1 x2
x 0 1 0 X
o1| 1 ||(F TS d= |0 0 x x 1
X1 X2 x 1 1 1 x
M| 1§ g2 jol %] Figure 30. Function d;
10| & 1 Rl ine]
t1 to ts
000 001 011 010 110 111 101 100
00 || |g\g|o
o1| 1| S 1 | DD 1
X1 X2 t: t2 t3 x1 xo
1 @/ @/ @/ @/ @/ @/ @/ @/ d= | x x 0 x 1
@/ @/ @/ @/ x 1 x O 0
10
Figure 31. Function d;

Chapter 3 Structure automata — 64

t; to t3
000 001 011 010 110 111 101 100

00 o]
01 %} 1

[NIRSHASERN
[SERSEIRSERW

QIR |

X1 X2 @/
11 Y1 = 1 x x 1 X
@/ Q @/ Q x 1 0 x 1
10 @/ I Figure 32. Function y;
t1to ts
000 001 011 010 110 111 101 100
00 FND DTS
01 I 1| J T\ D
X1 X2
11@’@’@’@/@/@/@’@’ t: to tz3 X1 Xo
Yo = |x 1 x x O|
10
’@/ @/ @/ ’®/ ! Figure 33. Function y,

t;1 to ts
000 001 011 010 110

00 1| DD

01 %) 1%

SN DD D
%]

~

1

~
~

0

~

100

t1 t2 t3 x1 x2
x x 1 1 x
@/ ysz = x 1 x x 1
x x 0 O 0

X1 X2

[SYRSERSIN
[SIRNEROSRN

10 11 | Figure 34. Function y;
t2 t3
00 01 11 10
0 1 t1 to t3
t; 2 rn= | x x 1]
1 I D)2 Figure 35. Function r;

to t3
00 01 11 10

0 @/ t1 t2 t3

t1 r2=|1 xx|

oo a Figure 36. Function r,

Chapter 3 Structure automata — 65

Logic circuit
titats

JN

H
&

AN
-
&
EIRE)
S

r2

s

]
]

ri

. F
|

Jow
ol
|]
<

& | 8 101
——d — 11 Ys
X2 —— 12
&| 9
X2 —-9 N
& | 10
X1 — [N
& |11
X2 — [N
& 12
X1 — \

Figure 37. Logic circuit of Combined automaton S5 with D flip-flops

Chapter 4 Algorithmic State Machines and Finite State Machines

In this Chapter, we will introduce Algorithmic state machines and consider their use
for description of the behavior of control units. Next, we will use algorithmic state
machines to design Finite State Machines (FSM) with hardly any constraints on the
number of inputs, outputs and states.

4.1 Flowcharts and Algorithmic state machines

4.1.1 Example of ASM. An Algorithmic state machine (ASM) is the directed
connected graph containing an initial vertex (Begin), a final vertex (End) and a finite
set of operator and conditional vertices (Fig. 1). The final, operator and conditional
vertices have only one input, the initial vertex has no input. Initial and operator
vertices have only one output, a conditional vertex has two outputs marked by "1"
and "0". A final vertex has no outputs.

P @0

Figure 1. Vertices of Algorithmic state machine

As the first example, let us consider a very simple Traffic Light Controller (TLC)
presented in the flowchart in Fig. 2. This controller is at the intersection of a main
road and a secondary road. Immediately after vertex Begin we have a waiting vertex
(one of the outputs of this vertex is connected to its input) with a logical condition
Start. It means that the controller begins to work only when signal Start = 1. At this
time, cars can move along the main road for two minutes. For that, the traffic light at
the main road is green, the traffic light at the secondary road is red and the special
timer that counts seconds is set to zero (main_grn := 1; sec red := 1; t := 0).

Although our TLC is very simple it is also a little smart — it can recognize an
ambulance on the road. When an ambulance is on the road the signal amb is equal to
one (amb = 1), when there is no ambulance on the road this signal is equal to zero
(amb = 0). First we will discuss the case when there are no ambulances on the road.

Thus, when amb = 0 and t = 120 sec TLC transits into some intermediate state to
allow cars to finish driving along the main road: main_yel := 1; sec_red := 1; t := 0.
TLC is in this state only for three seconds (t = 3 sec), after which cars can move along
the secondary road for 30 seconds: main_red := 1; sec_grn := 1; t := 0.

Thirty seconds later, if there are no ambulances on the road (amb = 0; t = 30 secq),
there is one more intermediate state. Now cars must finish driving along the
secondary road: main_red := 1; sec_yel := 1; t := 0. After three seconds, if, once again,
there are no ambulances on the road, the process reaches vertex End, or, that is the
same, it returns to the beginning vertex Begin.

When there is ambulance on the road (amb = 1) outputs of conditional vertices with
logical condition amb, marked by “1” bring us to the intermediate state to let cars to
finish their driving: main_yel := 1; sec_yel := 1; t := 0. One more logical condition
dmain tells us where the ambulance is — whether it is on the main road or on the
secondary one. If it is on the main road (dmain = 1), after three seconds the traffic

Chapter 4 Algorithmic state machines and finite state machines — 66

light will be green on the main road, otherwise (dmain = 0) the traffic light will be
green on the secondary road.

main_grn:=1| yl
sec red := 1 y2
t:=0 y3

Y5
y4 | main_yel := 1
y7 | sec yel:=1
y3 t:=0

Iy

main_yel := 1 y4
secred:=1 | y2
0 t:=0 y3

Y3
y5 | main_red := 1
Y6 | secgm:=1 |«
y3 t:=0

main_red := 1
sec yel :=1
t:=0

Figure 2. A simple Traffic Light Controller

In the flowchart, a logical condition is written in each conditional vertex. It is possible
to write the same logical condition in different conditional vertices. A microinstruction
(an operator), containing one, two, three or more microoperations, is written in each
operator vertex of the flowchart. It is possible to write the same operator in different
operator vertices.

If we replace logical conditions by xi, x2, ... , X1, microoperations by yi, ya2, ... , yvy and
operators by Yi, Yz, ..., Yr we will get Algorithmic State Machine (ASM). ASM for the
flowchart in Fig. 2 is shown in Fig. 3.

ASM vertices are connected in such a way that:
1. Inputs and outputs of the vertices are connected by arcs directed from an
output to an input, each output is connected with only one input;
2. Each input is connected with at least one output;
3. Each vertex is located on at least one of the paths from vertex “Begin” to
vertex “End”. Hereinafter we will not consider ASMs with subgraphs,

Chapter 4 Algorithmic state machines and finite state machines — 67

containing an infinite cycle. An example of such a subgraph with an infinite
loop between vertices with Y: and Ysis shown in Fig. 4. The dots in this ASM
between vertex “Begin” and the conditional vertex with x; and between this
vertex and vertex “End” mean that ASM has other vertices on the path from
vertex “Begin” to vertex “End”. The vertices in the loop are not on the path
from “Begin”to “End”.

One of the outputs of a conditional vertex can be connected with its input.
We will call such conditional vertices the “waiting vertices”, since they
simulate the waiting process in the system behavior description.

Figure 3. ASM for the flowchart in Fig. 2

e D
0]

]

o

1

X3 >4
Y3 X2 Yo
[V e v]

Figure 4. Subgraph with an infinite loop

QS

Chapter 4 Algorithmic state machines and finite state machines — 68

One more example of ASM G: with logical conditions X = {xi, ..., x7} and
microoperations Y = {yi, ..., yio} is shown in Fig. 5. This ASM has eight operators Yi,
..., Ys, they are written near operator vertices.

4.1.2 Transition functions. Let us discuss the paths between the vertex “Begin”, the
vertex “End” and operator vertices passing only through conditional vertices. We will
write such paths as follows:

YRRV (1)

[J

In such a path, Yir is equal to X if the path proceeds from the conditional vertex

with X, via output ‘I’, and iir is equal to Xi'r if the path proceeds from the

ir
conditional vertex with X;, via output ‘O’. For example, we have the following paths
from Y» (vertex Begin) in ASM Gu:

Yo x'1 Yo,

Yb x1x2x'3 Ye;
Ys x1x'2 Y15
Yy x1x2x3 Ys.

T w)
ol L ma

{75 Y

> Ye
End) Ye

Figure 5. ASM G,

Let us match a product of variables in the path (1) from operator vertex Y; to operator
vertex Y

oy = Xy Xig
with this path from Yito Y;. For example, for ASM G: in Fig. 5

a7z =x4Xx'1; a2z =XxX'4; a4 = X4 X1.

Chapter 4 Algorithmic state machines and finite state machines — 69

If there exist H paths between Yiand Y; through the conditional vertices, then
aj=alj+a;+... +ad;

where a%; (h = 1, ...,H) is the product for the h-th path. Let us call a; a transition
function from operator (microinstruction) Yi to operator (microinstruction) Y.

Note that for the path YsY7 (operator Y7 follows operator Ys immediately without
conditional vertices) as7 = I, as the product of an empty set of variables is equal to

one.

4.1.3 Value of ASM at the sequence of vectors. Denote all possible L-component

vectors of the logical conditions xi, ...,xt by A1, ...,AJk and define the execution of an
ASM on any given sequence of vectors Ai, ...,Amq beginning from the initial operator
Y». We will demonstrate this procedure by means of ASM G; in Fig. 5 and the
sequence (2) containing eight vectors Ay, ...,As:
X1 X2 X3 X4 X5 X6 X7

A1 = 1 0 1 0 1 1 1

Ax = 0 1 1 0 1 0O O

Az = 1 0 1 0 0 1 0

A« = 0O 1 0 0 0 0 1 2)

As = 1 1 0 1 1 1 0

Ae = 1 1 0 0 1 0 1

A7 = 0 1 1 1 0 0O O

As = 0 1 0 1 0 0o 1

ASM Giin Fig. 5 contains logical variables xi,...,x7 and operators Y»,Yy, ...,Ys,Ye. Now
let us find the sequence of operators which would be implemented, if we
consecutively, beginning from Y», give variables the values from these vectors. We
suppose that the values of logical conditions can be changed only during an execution
of operators.

Step 1. Write the initial operator
Y.

Step 2. Let logical variables xi,...,x7 take their values from vector A;. From the set of
the transition functions awi,..., ars, are we choose such a function an: that aw(A:) = 1.
In our example for the operator Y», the following transition functions are not
identically equal to zero:

aps = X1 X2 X3; ap6 = X1 X2 X'3; ap1 = X1 X'2; ap2 = X'1.
We will call such functions non-trivial transition functions to distinguish them from the
trivial functions, which are identically equal to zero. Function aj is trivial if there is no
path from operator Y: to operator Y. In the example at this step, we choose the
function ans, since only an: is equal to one on the first vector A;:

an1 (A1) = 1.

Write Y; to the right of Yu:

Chapter 4 Algorithmic state machines and finite state machines — 70

Y, Y.
Step 3. Let xi,...,x7 take their values from vector A,. From the set of the transition
functions aii,..., ais, aie we choose non-trivial functions
Qa4 = X4 X1; a7 = x4+ X'1; a2 = x4
and among them - the only function aiz (A2) = 1. Write Y2 to the right of Y»Yi:

YoY:Yo.
The computational process for the given sequence of vectors may reach its end in two
cases:

1. The final vertex “End” is reached. In this case, the last operator is Ye. The
number of operators in the operator row (without Y» and Ye) is less or equal (if
we reached the final vertex with the last vector) to the number of vectors;

2. The vectors are exhausted but we have not yet reached the final vertex. In this
case, the number of operators in the operator row is equal to the number of
vectors.

In our example, we reached the final vertex “End” at the seventh vector

A7=0111000
and we get the row
Yo Y1 Y2YsY2Ys5 YsYe. (3)

The operator row thus obtained is the value of the ASM G for the given sequence of
vectors (2).

4.2 Synthesis of Mealy FSM

We will use Algorithmic state machines to describe the behavior of digital systems,
mainly of their control units. But if we must construct a logic circuit of the control
unit we should use a Finite state machine (FSM). We will consider methods of
synthesis of FSM Mealy, Moore and their combined model implementing a given ASM,
with hardly any constrains on the number of inputs, outputs and states.

4.2.1 Construction of a marked ASM. As an example we will use ASM G;in Fig. 6.
A Mealy FSM implementing given ASM may be constructed in two stages:

Stagel. Construction of a marked ASM;
Stage 2. Construction of a state diagram (state graph).

At the first stage, the inputs of vertices following operator vertices are marked by
symbols ai, az, ..., au as follows:

1. Symbol a; marks the input of the vertex following the initial vertex “Begin” and
the input of the final vertex “End”;

2. Symbols az, ..., au mark the inputs of all vertices following operator vertices;

3. Vertex inputs are marked only once;

4. Inputs of different vertices, except the final one, are marked by different
symbols.

Marked ASM G; in Fig. 6 is a result of the first step. Symbols aj, ..., as are used to
mark this ASM. Note, that we mark the inputs not only of conditional vertices but

Chapter 4 Algorithmic state machines and finite state machines — 71

of operator vertices as well (see mark as at the input of the vertex with operator
Y7). It is important that each marked vertex follows an operator vertex.

Yb
a
0
Y: i
@—%«F
Y2 a2
X4

1
1
1
0
5 @1

as
([Ys ga]¥7

Qe
Sl {ga g

0

x> (Y5 U gio) Vs Y6
0

ai

End) Ye

Figure 6. ASM G, marked for the Mealy FSM synthesis

4.2.2 Transition Paths. At the second stage, we will consider the following paths in
the marked ASM:

a X

mA™ 1

X . Y.a (P1)

mMRm " g™~'s

amel"'XmRmai (P2)

We call these paths transition paths. Thus, the path PI proceeds from am to as (am = as
is also allowed) and contains only one operator vertex at the end of this path. The

path P2 proceeds from am only to a: without operator vertex. Here,)Tmr = X, » if on the

transition path we leave the conditional vertex with X via output ‘1’ and Ymr =X, if

we leave it via output ‘O’. If Rm = 0 on the path PI, two operator vertices follow one
after another and this path turns into

a,Y,a;.

There are sixteen transition paths in the marked ASM Gz in Fig. 6:

ai xix2x3 Ys az az xax1 Y4 az as+ xs Y3 as as x'ex7 Ys ai
a; x1x2x'3 Ys as az x4x'1 Y7 as a4 xX'sx1 Ya az as xX'sx'7 a1
a; xix'2 Y1 az azx's Yo as as x'sx'1 Y7 aes as x6 Y6 ai
ar x'1 Yo a4 az Y7 as as xXe Y4 az as x's Y7 as

Note, that the path az xsx'1 as doesn’t correspond to the transition path PI (the
operator vertex is absent on the path) and to transition path P2 (it isn’t a path to ai).
Thus, it isn’t a transition path and we should go on to get the path a2 x4x'1 Y7 as. For
the same reason, paths a+ x'sx'1 as and as x's as are not the transition paths either.

Chapter 4 Algorithmic state machines and finite state machines — 72

4.2.3 Graph of FSM. Next we construct a graph (state diagram) of FSM Mealy with
states (marks) ai, ..., au, obtained at the first stage. We have six such states ay, ..., as
in our example. Thus, the FSM graph contains as many states as the number of
marks we get at the previous stage. Now we should define transitions between these
states.

FSM has a transition from state am to state as with input X(am, as) and output Yy (see
the upper subgraph in Fig. 7) if, in ASM, there is transition path PI
Ay X+ X Y@ -

Here X(am, as) is the product of logical conditions written in this path:

X(am, as) = X1+ Xnrm -

In exactly the same way, for the path ang a,we have a transition from state am to

state as with input X(am, as) = 1 and output Yy, as the product of an empty set of
variables is equal to zero. If, for a certain r (r = 1, ..., Rm), symbol xmr (or x'm) occurs
several times on the transition path, all symbols xmr (x'm) but one are deleted; if for a
certain r (r = 1, ..., Rm), both symbols xmr and x'mr occur on the transition path, this
path is removed. In such a case X(am, as) = 0.

For the second transition path P2, FSM transits from state am to the initial state a:
with input X(am, a:;) and output Yo (see the lower subgraph in Fig. 7). Yo is the
operator containing an empty set of microoperations.

X(am,as Yy
Xam,a1 Yo

Figure 7. Subgraphs for transition paths P1 and P2

As a result, we obtain a Mealy FSM with as many states as the number of marks we
used to mark the ASM in Fig. 6. The state diagram of the Mealy FSM is shown in Fig.
8.

Y8 Y9

as)e
\9 YsYe Y7 X5 @4/ X's X1

Figure 8. The state diagram of the Mealy FSM

Chapter 4 Algorithmic state machines and finite state machines — 73

4.2.4 How not to loose transition paths. Sometimes, if ASM contains many
conditional vertices, it is difficult not to loose one or several transition paths. Here
we give a very simple algorithm to resolve this problem. This algorithm has only
two steps.

1. Find the first transition path leaving each conditional vertex through output
'1'. For subgraph of ASM in Fig. 9 we will get the following first path from state
az:

az x1x2xs Ys as.

2. Invert the last non-inverted variable in the previous path, return to ASM and
continue the path (if it is possible) leaving each conditional vertex through
output 'I" To construct the second path, we should invert variable xs. We
cannot continue because we reached an operator vertex:

az x1x2x's Y2 as.

We should construct paths in the same manner until all variables in a transition path
will be inverted. For our example, we will get the following paths:

az x1 X'2 x5 x6 Yz a4; azx1x'2x's Y2asz; azx'1 x'sxe Y3 a4;

az x1 X'2 x5 x'e X7 x4 Ys as; az x'1 x3x7x4 Ysas; azx'1 x'sx'ex7 x4 Ysas;
azxixX'2xsx'exzx's Yz as; azx'1x3x7x'e Y7 as4; azx'1x3x'ex7x'sa Y7 a4;
azxi1x'2xs5x'sx'7 Ys as; azx'1x3x'7Ysas; azx'1x'3x'sx'7 Ysas.

[N

Ys

Figure 9. Subgraph of ASM

4.2.5 Transition tables of Mealy FSM. The graph of Mealy FSM in Fig. 8 has only 6
states and 16 arcs. Practically, however, we must construct FSMs with tens of states
and more than one-two hundreds of transitions. In such a case, it is difficult to use a
graph, so we will present it as a table. Table 1 for the same Mealy FSM has five
columns:

e am-— a current state;

® as— a next state;

e X(amas)— an input signal;
e Y(amas)— an output signal;

Chapter 4 Algorithmic state machines and finite state machines — 74
e H- anumber of line.

Actually, immediately from ASM, we should write transition paths, one after another,
into the transition table. In Table 1, ~x:is used instead of x for the inversion of x:.

Now we will discuss what kind of FSM we have received. Our ASM G: in Fig. 6 which
we used to construct FSM S:; in Table 1, has seven logical conditions and ten
microoperations. FSM S; has seven binary inputs in the column X(am,as) and ten
binary outputs in the column Y{(am,as). The input signal of this FSM (Fig. 10) is the 7-
component vector, the output signal of this FSM is the 10-component vector.

Table 1. Direct transition table of Mealy FSM §;

am As X(am,as) Y(am, as} H
ai az X1X2X3 y1ys 1
as X1X2~X3 ysyrz 2
az X1~X2 yiyz 3
a4 ~X1 Y4 4
az az X4X1 ysyo 5
as X4~X1 Yay4 6
a4 ~X4 Y4 7
as as 1 Y3y4 8
a4 as X5 Yysyeyz 9
az ~X5X1 ysyo 10
ae ~X5~X1 Yy3y4 11
as az X6 ysyo 12
ai ~X6X7 yayeyio 13
ai ~X6~X7 - 14
as ai X6 yeyrz 15
as ~X6 y3y4 16
X1 ———» > VY1
Xp ———» >)2
X7 ——» > Y10

Figure 10. FSM as a black box

Let us take one of the rows from Table 1, for example row 3, and look at the behavior
of FSM presented in this row. Our FSM transits from state a: into state a2 when the
product x: xz = 1. It is clear that such a transition takes place for any input vector in
which the first component is equal to 1, the second component is equal to 0. The
values of other components are not important. Thus, we can say that the third row of
Table 1 presents transitions from a:; with any vector which is covered by cube
10xxxxx. In other words, this row presents not one but 25 = 32 transitions. In exactly
the same way, the first and the second row present 16 transitions, the fourth row — 64
transitions and the eighth row — 128 transitions.

Two microoperations yi, yz, written in the third row of the output column, mean that
two components y: and yzare equal to I and others are equal to O (yi=yz2=1; ys=y+=
... = yi10 =0) in the output vector. I remind you that if the operator, written in the
operator vertex of some ASM, contains microoperations ym, yn, only these
microoperations are equal to 1 and other microoperations are equal to O during
implementation of this operator.

Chapter 4 Algorithmic state machines and finite state machines — 75

Let us compare Table 1 with a classical FSM representation in Table 3.7 from Chapter
3. If we would like to present our FSM with six states ai, ..., as and seven inputs xi,
..., x7 in the classical table, this table will have about 6x27 rows, because each row of
this table describes only one FSM transition. In our Table 1 from this Chapter, we
have only 16 rows because each row of such table presents lot of transitions.

The specific feature of such FSM is the multiplicity of inputs in the column X(am,as),
maybe several tens or even hundreds, but each product in one row contains only few
variables from the whole set of input variables — as a rule, not more than 8 — 10
variables. It means that each time the values of the output variables depend only on
the values of a small number of the input variables. Really, if, for example, FSM has
30 input variables, the total number of input vectors is equal to 239, and if each time
the values of the output variables depended on the values of all the input variables,
no designer could either describe or construct such an FSM.

Let us briefly discuss the correspondence between FSM S; (Table 1) and ASM G (Fig.
6) which we used to construct FSM S:. In Section 4.1.3 we got the value of ASM G:

YoY:Y2YaYoYs5YsYe
for some random sequence of vectors (2) of logical conditions:

X1 X2 X3 X4 X5 X6 X7

A= 1 0 1 0 1 1 1
A2 = 0] 1 1 0 1 0O O
Az = 1 0 1 0 0 1 0
As = 0] 1 0 0 0 0 1
As = 1 1 0 1 1 1 0
Ae = 1 1 0 0 1 0 1
A7 = 0] 1 1 1 0 0O O
Ag = 0] 1 0 1 0 0 1

Now we will find the response of FSM S;: in the initial state a; to the same sequence of
input vectors:

State sequence ai az a4 az a4 as ai

Input sequence A1 A2 As Aa As Ae

Response Yy1yz Y4 Ysyo Y4 Yysyeyrz ysyeyio 4)
Microinstructions Y: Y2 Ya Y2 Ys Ys

Let FSM be in the initial state a: with the first vector A; = 1010111 at its input. To
determine the next state and the output we should find such a row in the array of
transitions from a; (Table 1) that the product X(amas), written in this row, be equal to
one at input vector A;. Since xix2(A1) = 1 (the third row), FSM S: produces output
signal yiy2 = Y: and transits into state az. Similarly, we find that x'4(Az) is equal to one
at one of transitions from state a2 and FSM transits to the state as+ with the output
signal y+ = Yz (see row 7 in Table 1) etc. As a result, we get the response of FSM S: in
the initial state a: to the input sequence Ay, ..., As in the fourth row of sequence (4).

As seen from this row, the FSM response is equal to the value of ASM G; for the same
input sequence. Note, that we consider here only the FSM response until its return to
the initial state a: and this response Y: Y2 Y4 Y2 Y3 Ys corresponds to the value of ASM
G:1between the operator Y» (vertex "Begin") and the operator Ye (vertex "End").

Chapter 4 Algorithmic state machines and finite state machines — 76

Let us define FSM S as implementing ASM G if the response of this FSM in the state a:
to any input sequence (until its return to the state a;) is equal to the value of ASM G
for the same input sequence. From the considered method of synthesis of Mealy FSM
S1 from ASM G it follows that this FSM S; implements ASM Gi.

4.2.6 Synthesis of Mealy FSM logic circuit. As in Chapter 3, we will construct a
Mealy FSM logic circuit with the structure presented in Fig. 11. To design this circuit
we will use an FSM structure table (Table 2). This table was constructed from the
direct transition table (Table 1) by adding three additional columns:

e K(am)— a code of the current state;
e K{as) — a code of the next state;
e Dfamas)— an input memory function.

t; di ﬁ
L
t2 dz M t2
o .
t3 ds — ts
g .
X1 4> 1 ' yi
. c .
X7 —™ ™ Yio

Figure 11. The structure for the Mealy FSM logic circuit

Table 2. Structure table of FSM §,

am K(am) as K(Cls) X(am,as) Y(am,as) D(am,as) H
ai 001 az 000 X1X2X3 yi1ys = 1
as 101 X1X2~X3 Yeyz dids 2
az 000 X1~X2 Y1y2 = 3
as 010 ~X1 Y4 do 4
az 000 az 000 X4X1 Ysyo - 5
as 100 X4~X1 Y3y4 di 6
a4 010 ~X4 Y4 dz 7
as 101 as 100 1 Y3sy4 di 8
a4 010 as 110 X5 Ysyeyr didz 9
az 000 ~X5X1 Ysys = 10
as 100 ~X5~X1 Y3sy4 di 11
as 110 az 000 X6 ysyso = 12
ai 001 ~X6X7 Yy3yeyio ds 13
ai 001 ~X6~X7 - ds 14
as 100 ai 001 X6 yeyr ds 15
as 100 ~X6 Y3y4 di 16

To encode FSM states we constructed Table 3 where p(as) is the number of
appearances of each state in the next state column as in Table 2. The algorithm for
state assignment is absolutely the same as in Chapter 3. First, we use the zero code
for state a2 with max p(az) = 5. Then codes with one '1l' are used for states as, a1, a4
with the next max appearances and, finally, two codes with two 'ones' are used for the
left states as and as.

Chapter 4 Algorithmic state machines and finite state machines — 77

To fill column Dfam,as) it is sufficient to write there column K{(as) because the input of
D flip-flop is equal to its next state. However, here we use the same notation as in
column Y(amas) and write dr in the column Dfamas) if dr is equal to 1 at the
corresponding transition (amas) — equal to 1 in column Kf(as). After that, the shaded
part of Table 2 is something like a truth table with input variables ti, tz, t3, xi1, ..., X7 in
the columns K(am) and X(am,as) and output variables (functions) yi, ..., y1o, di, dz2, ds in
the columns Y{(amas) and D(amas).

Table 3. State assignment

as plas) titots
ai 3 001
az 5 000
as 1 101
a4 2 010
as 1 110
as 4 100

Let Am be a product, corresponding to the state code K(am), and X» be the product of
input variables, written in the column X(amas) in the h row. For example, from the
column K(am): K(a:) = 001, then A: = t'1it'2ts; K(az) = 000, then Az = t'it'2t's; K(as) = 101,
then As = tit'2ts etc. Immediately from the column X(am.as) we get:

X1 = x1x2x3; X2 = x1x2x'3; X6 = x4x'1; Xg = 1; X16 = X's.
We call the term
en=Am Xn

the product corresponding to the h row of the FSM structure table if am is the current
state in this row. For example, from Table 2, we get:

e1 = t'itots x1xoxs;
ez = t'1tats x1x2x'3;
es = t'it'at's xax's;
es = tit'sats

ei6 = titat's X's.

Let H(yn) is the set of rows with y» in the column Y(amas). Then, as in the truth table:

yn = Zeh'
heH (y,)
For example, ys is written in rows 2, 9, 13, 15 in the column Y{(amas). Then

Ye=e2 + eg + ez + eis = tithtsxixex's + t'itat's xs + titat's xX'exz + tit'2t's Xe.

In exactly the same way, if H(d) is the set of rows with dr in the column D(amas), then

d = De,.

heH (d,)
For example, d2is written in rows 4, 7, 9 in the column D(am,as). Then

do=eq +e7+eo=1t1thtsx'1+ titht's x'e + t'itot’s xs.

Chapter 4 Algorithmic state machines and finite state machines — 78

Thus, immediately from Table 1 we can get expressions for outputs of circuit “Logic”
in Fig. 11:

Y1 =e1 +es = tht'ats xixoxs + t'it'ats x1x'2;
Y2 = ez = t'it'ats x1x'2;

ys=er testes+em+eistes=tithtsxixexs + t'it'st'’s xax's + titatsz +
+ t'itot's x'sx't + titot's X'ex7 + tit'at's X's;

yio = ez = titat'3 X'sx7;

di=ex+es+es+eot+err+eis=tithtsxixex's + t'it'at's xax's + tit'atz +
+ t'1tot's x5 + titot's xX'sx'1 + tit'at's X's;
do=eq +e7r+eg=titotsx'1+ t'itat's x's + t'itot’s xs;
ds =ez2 + ez +eis +eis=thtatsxixex's + titot's X'sxz + titot's x'ex'7 + tit'2t's xe.

How many different products are there in these expressions? The answer is very
simple — only sixteen, because we have 16 rows in Table 2 and only one product
corresponds to one row. Thus, we should not write any expressions but can design
the logic circuit immediately from the structure table. For that, it is sufficient to
construct H AND-gates, one for each row, and N+R OR-gates, one for each output
variable yn(n = 1, ..., 10 in our example) and one for each input memory function dr (r
= 1, 2, 3 in our example). The logic circuit of Mealy FSM is shown in Fig. 12. We have
constructed 16 AND-gates, as there are 16 rows in its structure table. The number of
OR-gates in this circuit is less than the number of input memory functions and
output functions. Really, if y» or dr (yzand yioin our example) are written only in one
row of the structure table, it is not necessary to construct OR-gate for such yn or dr,
we can get these signals from the corresponding AND-gates. Moreover, we have
constructed one OR-gate for ys and yo since these outputs are always together in the
structure table of Mealy FSM S;.

4.2.7 ASM with waiting vertices. In this section, we will show that the algorithm for
FSM synthesis does not change if ASM contains waiting vertices. In a waiting vertex,
one of its outputs is connected with its input (see the ASM subgraph in Fig. 13). Let
us find all transition paths from the state as. The first two are trivial — see the first two
rows in Table 4.

To find the next path we should invert the variable x7. The output 'O’ for x7 brings us
to the input of this conditional vertex. So, the next paths will be:

as ~X7 X7 X12 (Yi1) ais;
as ~xX7 X7 ~Xi12 (Y23, Y29) ai7.

The products of input variables for both of these paths are equal to zero (x'7x7 = 0), so
FSM cannot transit from the state as to any other state when x7 = 0. If FSM cannot
transit into any other state, it remains in the same state as or, we can say, it transits
from as to as with X(as, as) = x'7. No output variables are equal to 'I'at this transition,
so we have '-' in the column Y(am, as) in the third row.

The next example (Fig.14) presents a general case. The only difference from the
previous example — the waiting vertex is in the middle of the path. After the third path

Chapter 4 Algorithmic state machines and finite state machines — 79

in Table 5 we should invert variable xi; and again return to the input of the
conditional vertex with x1;. We can construct the following transitions paths:

Q10 ~X4 ~X11 X11 X27 (Y33) A22;
aio ~X4 ~X11X11 ~X27 (Y7, Ys1) aiz.

The products for both of these paths are equal to zero. So, when x4 = 0, we reached a
waiting vertex with condition x::. If x1; = O (return to the input), FSM transits from
state aio to state aio (remains in this state) with input x4 x'1; and each output variable
is equal to zero (the forth row in Table 5).

titots
& 1
e —— d
er eg — 1 t1
X1 eqg — 1D _/
X2 —— er;— —p C1I
X3 —
€ — 1| do
e er — 1D 12 /]
X1 — | e L | —>C1
X2 —
X3 —d
— Y2
e |
e 1])
X1 e1s ds 1D ts
X2
—pC1
=] il
€14 T
X6 —q e —
X7 —q es — Ys
— eir— |
&
ei1s eij3—
4 L |
X6 —— . Clock
& 1|y,
ei16 eg T —
X6 -
es— 1 |ysyo
eio —»
ej2
Figure 12. The logic circuit for Mealy FSM S,
a. .y
¢ o Table 4. Transitions for subgraph G,
& an | as | Xama) | Yiama) | H
uii - i as ais X7X12 Yyii
s f a7 X7~X12 Y23Yy29
v as X7 -
Y23 Y29
a7z

Figure 13. Subgraph G;with waiting vertex

Chapter 4 Algorithmic state machines and finite state machines — 80

aie

Table 5. Transitions for subgraph G,

am | as | Xlamas) | Y(amas) | H
aio aie X4 Yyisyz7
az azz ~X4X11X27 Y33
aiz ~X4X11~X27 Y7ysi
aio ~X4~X11 -

Figure 14. Subgraph G,with a waiting vertex

4.3 Synthesis of Moore FSM

As an example, we will use ASM G;in Fig. 15. A Moore FSM, implementing given ASM,
can be constructed in two stages:

Stage 1. Construction of a marked ASM;
Stage 2. Construction of an FSM transition table.

At the first stage, the vertices "Begin", "End" and operator vertices are marked by
symbols ai, az, ..., au as follows:

1. Vertices "Begin" and "End" are marked by the same symbol ai;

2. Operator vertices are marked by different symbols az, ..., au;

3. All operator vertices should be marked.

Thus, while synthesizing a Moore FSM, symbols of states do not mark inputs of
vertices following the operator vertices (as in the Mealy FSM) but operator vertices
themselves. The number of marks is T+1, where T is the number of operator vertices
in the marked ASM. In our example (Fig. 15), we need marks ay, ..., aio for ASM Gi.

We will find the following transition paths in the marked ASM:

~ ~

a'mxml"'XmRﬂz-:\s-

Chapter 4 Algorithmic state machines and finite state machines — 81

Thus, the transition path is the path between two operator vertices, containing Rm

conditional vertices. Here, as above in the case of Mealy FSM, imr = Xy, if in the
transition path, we leave the conditional vertex with X, via output ‘1’ and imr = X'mlr
if we leave the vertex with X, via output ‘0’. If Rm = 0 in such a path, there are no

conditional vertices between two operator vertices, and this path turns into a,a,.

a1 (Begin) Yo
0 @
1
Y:
az(yi yz 0
1
Y2 0 Ys a
as Y x4 Ys Y7| 43
0 1 vs 1
Y1 Ys] s

aiCEnd) Ye
Figure 15. ASM G; marked for the Moore FSM synthesis

At the second stage we construct a transition table (or the state diagram) of the Moore
FSM with states (marks) ai, ..., au, obtained at the first stage. We have ten such states
ai, ..., aio in our example. Thus, the FSM contains as many states as the number of
marks we get at the previous stage. Now we should define transitions between these
states.

Thus, a Moore FSM has a transition from state am to state as with input X(am, as) (see
the upper subgraph in Fig. 16) if, in ASM, there is a transition path am;(‘ml---)-szﬂas.
Here X(am, as) is a product of logical conditions written in this path: X(am, as) =
le...mem. In exactly the same way, for the path Q,a, (see the lower subgraph in Fig.

16) we have a transition from state am to state as with input X(am, as) = 1, because the
product of an empty set of variables is equal to zero. If an marks the operator vertex
with operator Y:, then A(am) = Y, i.e. we identify the operator Y: written in the operator
vertex with this state am.

Y, .X(am,as[Y,
@@,

Chapter 4 Algorithmic state machines and finite state machines — 82

Figure 16. Subgraphs to illustrate transitions in the Moore FSM

The transition table for Moore FSM Sz, thus constructed, is presented in Table 6. The
outputs are written in column Y(am) immediately after the column with the current
states. To design the logic circuit for this FSM we will use the structure presented in
Fig. 17. It consists of two logic blocks (Logicl and Logic2) and memory block with four
D flip-flops. Logicl implements input memory functions, depending on flip-flop
outputs ti, ..., t4 (feedback) and input variables xi, ..., x7. Logic2 implements output
functions, depending only on flip-flop outputs ti, ..., ta.

Table 6. The transition table of Moore FSM §,

am Y(am) as X(am, as} h
ai - a4 X1X2X3 1
as X1X2~X3 2
az X1~X2 3
as ~X1 4
az Yy1yz2 az X4X1 5
as X4~X1 6
as ~X4 7
as Yey7z as 1 8
as Yy1ys ar X4X1 9
as X4~X1 10
as ~X4 11
as Y4 as X5 12
ar ~X5X1 13
a9 ~X5~X1 14
as ysyseyrz ar X6 15
as ~X6X7 16
ai ~X6~X7 17
arz ysys arz X4X1 18
as X4~X1 19
as ~X4 20
as ysysyio ai 1 21
ao Y3y4+ aio X6 22
as ~X6 23
aio Yyey7z ai 1 24

To encode FSM states we constructed Table 7 where p(as), as before, is the number of
appearances of each state in the next state column as in Table 6. The algorithm for
state assignment is absolutely the same as in the case of Mealy FSM. First, we use
the zero code for state as with max p(ag) = 6. Then codes with one 'l1' are used for
states a7, as, a: and a2 with the next max appearences and, finally, five codes with two
‘ones' are used for the left five states as, a4, as, as and aio.

Table 8 is the structure table of the Moore FSM Sz. Its logic circuit is constructed in
Fig. 18. In this circuit, An is a product of state variables for the state am (m = 1, ...,
10). As above we construct one AND-gate for one row of the structure table, but we
need not construct the gates for rows 6, 8, 10, 14, 19 and 23, as all input memory
functions are equal to zero in these rows (see the column D(amas) in Table 8). Neither

Table 7. State assignment
b» d; |t as plas) titotsta
Y1

‘ L @ | = L ai 3 0100

2 2 L o a 1 0010

i3 0 ds ts g as 1 1001

D l Yio

ts d ¢ c as 1 0110

- 9 - 2 as 4 0001

; as 1 1100

x ar 5 1000

o c
7 1

Chapter 4 Algorithmic state machines and finite state machines — 83

Table 8. The structure table of the Moore FSM S,

am Y(am) K(am) as K{(as) X(am,as) D(am,as) h
ai - 0100 as+ 0110 X1X2X3 dzds 1
as 1001 X1X2~X3 dids 2
az 0010 X1~X2 ds 3
as 0001 ~X1 da 4
az yiyz 0010 arz 1000 X4X1 di 5
ao 0000 X4~X1 - 6
as 0001 ~X4 da4 7
as yey7z 1001 as 0000 1 - 8
a4 Yy1ys 0110 ar 1000 X4X1 di 9
as 0000 X4~X1 - 10
as 0001 ~X4 da+ 11
as y4 0001 as 1100 X5 didz 12
ar 1000 ~X5X1 di 13
as 0000 ~X5~X1 - 14
as ysyeyrz 1100 az 1000 X6 di 15
as 0100 ~X6X7 d2 16
ai 0011 ~X6~X7 dsda 17
arz ysyo 1000 arz 1000 X4X1 d: 18
as 0000 X4~X1 - 19
as 0001 ~X4 da 20
as Y3yeyio 0011 ai 0100 1 dz 21
ao Yysy4 0000 aio 0101 X6 doda 22
as 0000 ~X6 - 23
aio yeyr 0101 ai 0100 1 dz 24

Chapter 4 Algorithmic state machines and finite state machines — 84

N N 4‘{ &
A; e 1 A
X1 ! es — | A y
X2 — e9 — d t 2 1 1
X3 — e —— ! 1D ! Y2 Ay .
— e 3 — &
A; ers —| —pCl Az
X1 e A
x2—| - L As III“
X3—9
L 1 Ag
d t
A . ez 7 & as
o e | e as 1w
X2 —9 Ag
— A R ;
A, & | es 10 Dl LYo 4 7
X1 — —d & 3
: I|ds DLE Ag ﬁﬁ — | Y
. s ——
: Ao—
As & |err ¢t — ”
9 3 T ke
ez — As — [
Az & | e e —j ds 1D b A1f7
X1 —
X4 ’7 —pC1 ?
Ao
A €20 | | A10
X47 -ﬂ Clock —q

52
a
t))

Figure 18. The logical circuit for the Moore FSM S,

do we construct the gates for rows 21 and 24, since there are no input variables in
the corresponding terms e2: and ezs: e2;r = As and e2s+ = Aio and we use As and Aio
directly as inputs in OR-gate for do.

4.4. Synthesis of Combined FSM model

In this book we will use two kinds of transition tables — direct and reverse. In a direct
table (Table 9), transitions are ordered according to the current state (the first column
in this table) — first we write all transitions from the state ai, then from the state az,
etc. In a reverse table (Table 10), transitions are ordered according to the next state
(the second column in this table) — first we write all transitions to the state a:, then to
the state ao, etc.

Table 9. Direct transition table of Mealy FSM S;

ap as X(an,as) Y(an,as) h
al a2 X6 y8y9 1
al a5 ~X6*X7 y6 2
al a5 ~X6*~X7 y3y6y10 3
a2 a2 x4*x1 yly2 4
a2 a6 X4*~x1 y3y4 5
a2 a4 ~X4 W2 6
a3 a6 1 y3y5 7
a4 al x5 -- 8
a4 a2 ~x5*x1 y8y9 9
a4 a6 ~x5*~x1 y3y4 10
a5 a2 X1*X2*x3 yly3 11
a5 a3 X1*x2*~x3 yly4 12
a5 a2 X1*~x2 yly?2 13
a5 a4 ~x1 v4 14

Chapter 4 Algorithmic state machines and finite state machines — 85
a6 a6 ~X6 y3y5 16

Now we will discuss the transformation of Mealy FSM into Combined FSM and
synthesis of its logic circuit. I remind here that Combined FSM has two kinds of
output signals:
1. Signals depending on the current state and the current input (as in the Mealy
model);
2. Signals depending only on the current state (as in the Moore model);

As an example, we use the transition table of Mealy FSM in Table 9. Our first step is
to construct a reverse table for this FSM (Table 10).

Fig. 19,a illustrates all transitions into state as of Mealy FSM from Table 10. Here we
have three transitions with different outputs but all of them contain the same output
variable ys. So, we can identify this output variable ys with the state as as a Moore
signal (see Fig. 19,b).

%y,

&

e

yo¥!

a)
Figure 19. Transformation from Mealy FSM to Combined FSM
Table 10. Reverse transition table of Mealy FSM S;

an as X(ap,as) Y(an,as) H
a4 al X5 - 1
a2 a2 X4*x1 yly2 2
al a2 X6 y8y9 3
a4 a2 ~x5*x1 y8y9 4
ab a2 X1*x2*x3 yly3 5
a5 a2 X1*~x2 yly2 6
a5 a3 X1*X2*~x3 yly4 7
a2 a4 ~x4 v4 8
a5 a4 ~x1 v4 9
al ab ~X6*X7 y6 10
al a5 ~X6*~X7 y3y6y10 11
a6 a5 X6 y6y7 12
a4 a6 ~x5*~x1 y3y4 13
a2 a6 x4*~x1 y3y4 14
a3 a6 1 y3y5 15
a6 a6 ~X6 y3y5 16

After this, the transformation of Mealy FSM into Combined model is trivial. Let us
return to the reverse Table 10 and begin to construct the reverse transition table of
Combined FSM Ss (Table 11 In TablelO, we look at the transitions to each state,
beginning from transitions to state ai:. Let Ys be the set of output variables at the
transitions into state as (Ys = {ys, ys, y7, yio in Figl9,a or in Table 10) and YsMoore be
the subset of common output variables at all transitions into as (YsMeore = {ye in
Figl19,a or in Table 10). Then, in Table 11, we delete YsMoorefrom the column Y{amas) at
each row with transition to as and write YsMoore next to asin the column Y{(as). In our
example:

Chapter 4 Algorithmic state machines and finite state machines — 86

Y Moore = Y Moore = (7§ Y3Moore = { yi, y4}; Y Moore = { y4};
YsMoore = { yﬁ}; YeMoore = { y3}

Table 11. Reverse transition table of Combined FSM S,
a, as Y(as) X(ap,as) Y(an,as) H

a4 al -- x5 -— 1
al a2 -- X6 y8y9 2
a2 a2 -- X4*x1 yly2 3
ad a2 -- ~x5*x1 y8y9 4
a5 a2 -- X1*x2*x3 yly3 5
a5 a2 -- X1*~x2 yly?2 6
ab a3 yly4 x1*x2*~x3 -- 7
a2 a4 vy4a ~X4 - 8
a5 a4 vy4 ~x1 - 9
al a5 y6 ~X6*~X7 y3yl0 10
al a5 yé6 ~X6*X7 -— 11
a6 a5 y6 X6 y7 12
a2 a6 y3 X4*~x1 V2 13
a3 a6 vy3 1 y5 14
a4 a6 y3 ~X5*~x1 v4 15
a6 a6 vy3 ~X6 y5 16

Now we consider the design of the logic circuit of Combined FSM. For this, let us
return to the Mealy FSM S; with direct transition Table 1. Its reverse transition table
is presented in Table 12. Immediately from this table we construct the direct
transition table of Combined FSM S: (Table 13). To construct the logic circuit for this
FSM we should encode the states and construct FSM structure table. But before state
assignment we will make one more step.

Table 12. Reverse transition table of Mealy FSM §;

am as X (Aam,ds } Y(Aam, as} H
as ai ~X6X7 ysysy1o 1
as ~X6~X7 - 2
as X6 Yey7z 3
ai az X1X2X3 Yy1ys 4
ai X1~X2 y1yz 5
az X4X1 ysyo 6
a4 ~X5X1 ysyo 7
as X6 Yysyo 8
ai as X1X2~X3 Yyeyz 9
ai as ~X1 y4 10
az ~X4 y4 11
a4 as X5 Yysyeyrz 12
az as X4~X1 Yysy4 13
as 1 Y3y4 14
as+ ~X5~X1 Yysy4 15
as ~X6 Yy3y4 16

Unlike the transition table of the Mealy FSM, Table 13 contains many empty entries
in the column Y{amas). It means that all output variables are equal to zero in these

Chapter 4 Algorithmic state machines and finite state machines — 87

rows. If, after state assignment, we get an empty entry in column D(amnas) for such a
row, we shouldn’t construct a product for this row, because all output variables and
input memory functions are equal to zero in this row. Now we will try to maximize the

number of such rows in the structure table of Ss.

Table 13. Direct transition table of Combined FSM Ss

am Y(am) Qs X(am,as) Y(am, as} H
ai -- az X1X2X3 y1ys 1
-- as X1X2~X3 - 2
- az X1~X2 yiyz 3
-- a4 ~X1 - 4
az -- az X4X1 ysys 5
- as X4~X1 - 6
- a4 ~X4 - 7
as ysyrz as 1 - 8
a4 Y4 as X5 - 9
az ~X5X1 ysyo 10
as ~X5~X1 - 11
as ysyeyrz az X6 ysyo 12
ai ~X6X7 Yy3yeyio 13
aj ~X6~X7 - 14
as Yy3y4 ai X6 ysyrz 15
as ~X6 - 16

Table 13 contains one row with empty entry in the column Y{amas) for the next states
a: (row 14) and as (row 2), two rows for a4 (rows 4 and 7), one row for as (row 9) and
four rows for as (rows 6, 8, 11 and 16). This information is presented in the first two
columns of Table 14, z(as) is the number of empty entries in column Y(amas) for the
next state as in Table 13. So, if we use zero code for states a: or azor as, we shouldn’t
construct a product for one row (z(a:) = z(as) = z(as) = 1), if we use zero code for state
as— for two rows (z(a4) = 2); but if we use zero code for state as, we will construct four
product less (z(as) = 4). Thus, we use code 000 for state as with max z(as). State
assignment for other states is presented in Table 15. We have used here the same
algorithm as we have used previously for Mealy and Moore models.

Table 14. Next states with zero Table 15. State assignment

outputs as plas) titats
as z(as) titots ai 3 010
ai 1 az 5 001
as 1 as 1 101
a4 2 a4 2 100
as 1 as 1 110
as 4 000 as 4 000
Table 16. Structure table of Combined FSM Ss

am Y(an) K(am) as K(as) | X(amas) Y(amas) D(am,as) H
ai -- 010 az 001 X1X2X3 yiys ds 1

- as 101 X1X2~X3 - dids 2

-- az 001 X1~X2 yiyz ds 3

- as 100 ~X1 - di 4

Chapter 4 Algorithmic state machines and finite state machines — 88

az - 001 az 001 X4X1 ysys ds 5
-- as 000 X4~X1 - - 6
- as 100 ~X4 - di 7
as Yyeyz 101 as 000 1 - - 8
a4 Y4 100 as 110 X5 - didz 9
az 001 ~X5X1 yYsyo ds 10
as 000 ~X5~X1 - - 11
as Ysysy7z 110 az 001 X6 Yysyo ds 12
ai 010 ~X6X7 Yysysy1o dz 13
ai 010 ~X6~X7 - dz 14
as Y3sy4+ 000 ai 010 X6 Yey7 dz 15
as 000 ~X6 - - 16

Table 16 is the structure table of Combined FSM Ss. We have three kinds of output
variables here:

1. Only Mealy signals: yi, yz, ys, Yo, Yyio. They are written in column Y(amas) and
are not written in column Y{(an) in Table 16;

2. Only Moore signals: y4, ys. They are written in the column Y(am) and are not
written in column Y{amas) in Table 16;

3. Combined signals: (both Mealy and Moore type) ys, ys, yz. They are written in
both columns Y(am.as) and Y(am) in Table 16.

The logic circuit of FSM Ss is constructed in Fig. 20. In this circuit, Am is a product of
state variables for the state am (m = 1, ..., 6). The left part of this circuit, exactly as in
the synthesis of the Mealy FSM logic circuit, implements input memory functions di,
dz, ds and Mealy signals yi, yz, ys, Yo, Yyio. As above, we construct one AND-gate for
one row of the structure table, but we need not construct the gates for rows 6, 8, 11,
16 because all output variables and input memory functions are equal to zero in
these rows in the columns Y{amas) and D(amas) in Table 16. As in the Mealy case, we
do not construct OR gates for yz and yio since they appear only once in the column
Y(am,as).

Moore signals ys+, ys are constructed as in the synthesis of Moore FSM logic circuit.
Signal y+ appears twice near the states a+and as in the column Y(am), so y+ = A4 + As
and we construct OR gate for this signal. Output signal ys appears only once in the
column Y(an) for the state as, so we get it straight from As: ys = As.

Combined signal ys is written in rows 13 and 15 in the column Y(amas) and near the
states asand as in the column Y(am), so

Yo =ei3 + eis+ Az + As.
Exactly in the same way

ys=er+teztAs, yr=eis+Asz+As.

Chapter 4 Algorithmic state machines and finite state machines — 89

—9 & | A
Al— & - | 441
X1 2 ez — 1
— — d Ay — Y4
g €9 1 ID |t ° s 115
— A
A—T & —>C1 & Az
X1 — €2] A 47
X2 — e — 1 dz ° LY
X340
Y2 t2
A 1D & | As —
x; & | es] —pCl1
X2 —_— [Az 1
e es — 1 As — Yo
Ar & | & e | | ds & | A4
X1 1D ts
. —pC1
As & | e1z | Ys
Xo 1o & | As
1 Y1 A 1
As—T o e”T B L 4 . yr
X6
X7 <A
X7 Clock
As & | e1s
X6

Figure 20. Logic circuit of Combined FSM S

4.5. FSM decomposition

In this section, we will discuss a very simple model for FSM decomposition. As an
example, we use Mealy FSM Ss (Table 17) and a partition m on the set of its states:

= {A1, Az, A3}
A1 ={az, as, as}; A2 ={as, ar, as}); Az = {ai, as, as)}.

The number of component FSMs in the FSM network is equal to the number of blocks
in partition . Thus, in our example, we have three component FSMs S!, S2, S3.

Let Bm is the set of states in the component FSM S™ Bm contains the corresponding
block of the partition 1t plus one additional state bm. So, in our example:

S?has the set of states B! = {az, as, as, bi};
S? has the set of states B? = { a4, a7, as, bz);
S3has the set of states B3 = { a1, as, as, bs}.

Table 17. Mealy FSM Sg
am Qs X(am,as) Y(amas) H

al a3 x1*x2*x3 yly2
al a6 x1*x2*~x3 y2yl2
al al x1*~x2 yly2
al a5 -x1 yly2y12

A WN P

Chapter 4 Algorithmic state machines and finite state machines — 90

a2 a2 x6 -- 5

a2 a3 ~x6 y3y5 6

a3 a3 x10 y3y5 7

a3 a9 ~x10*x4 y1l0yl5 8

a3 a8 ~x10*~x4 y5y8y9 9

ad a6 x7 y13 10
ad a4 ~x7*x9 y13y18 11
a4 a8 ~x7*~x9 y13y14 12
a5 a6 x1 y16y17 13
a5 ab ~x1 y7y1l1 14
a6 al x5 yly?2 15
a6 al ~x5 yl6yl7 16
ar a2 x8 y14y18 17
a7 a4 ~x8 y13y18 18
a8 a7 x9 y4y6 19
a8 a4 ~x9 y6 20
a9 a9 x11*x6 y10y15 21
a9 a2 x11*~x6 y5y8y9 22
a9 a3 ~x11 y3y8y9 23

To construct a transition table for each component FSM we should define the
transitions between the states of these FSMs. For this, each transition between two
states a; and a; of Mealy FSM Ss from Table 17 should be implemented one after
another as one or two transitions in component FSMs. There are two possible cases:

1.

In Mealy FSM Ss, there is a transition between a; and a; (Fig. 21, left) and both
of these states are in the same component FSM S™ In such a case, we will
have the same transition in this component FSM Sm (Fig. 21, right). It means
that we must rewrite the corresponding row from the table of FSM Ss into the
table of component FSM S™.

FSM Se FSM Sm

4,

Figure 21. Two states a; and a; are in the same component FSM

Two states a; and qj are in different component FSMs (Fig. 22). Let a: be in the
component FSM S (a; € B™) and aj be in the component FSM Sr (a; € Bp). In
such a case, one transition of FSM Ss should be presented as two transitions —
one in the component FSM Sm and one in the component FSM Se:
e FSM Smtransits from a;into its additional state bn with the same input
Xn. At its output, we have the same output variables from set Y: plus
one additional output variable z, where index j is the index of state q;
in the component FSM Sr.
e FSM Srisin its additional state bp. It transits from this state into state
a; with input signal z;, that is an additional output variable in the
component FSM Sm. The output at this transition is Yo— the signal with
all output variables being equal to zero.

Chapter 4 Algorithmic state machines and finite state machines — 91

FSM Sm

FSM Se
. Xn Y: . ,

FSM Sr

Figure 22. Two states 4; and a; are in the different component FSMs

Thus, the procedure for FSM decomposition is reduced to:

a)

b)

Copying the row
a a X(ai,a) Y(ai,w)

from the table of the decomposed FSM S to the table of the component FSM Sm
if both states a; and q; are the states of S

Replacing the row
a aj X(ai,q) Y(ai,aj

in the table of the decomposed FSM S by the row
ai bm X(ai,a) Y(ai,aqj) z
in the table of the component FSM S™, and by the row
bp @ 7 -

in the table of the component FSM Sv, if ai is the state of S® and g, is the state
of Sp.

As a result of decomposition of FSM Ss, we obtain the network with three component
FSMs in Fig. 23. Their transition tables are presented in Tables 18 — 20.

Now we will illustrate some examples of transitions for cases (a) and (b):

In FSM Se, there is a transition from state a2 to state a3 with input ~x6 and
output y3y5 (row 6 in Table 17). As both these states a2 and a3 are in the
same component FSM S;, in this FSM there is a transition from a2 to a3 with
the same input ~x6 and the same output y3y5 (row 2 in Table 18). Exactly in
the same way, we rewrite row 12 of Table 17 into row 3 of Table 19 and row 2
of Table 17 into row 2 of Table 20 because the current states and the next
states are in the same component FSMs.

In FSM Se, there is a transition from state a3 to state a8 with input ~xI10*~x4
and the output ySy8y9 (row 9 in Table 17). Since a3 is the state of component
FSM S? and a8 is the state of another component FSM S2, in FSM S! there is a
transition from a3 to b1 with the same input ~xI10*~x4 and output y5y8y9z8
(row 5 in Table 18). The last output z8 is the input of FSM S? that wakes this
FSM up and transits it from state b2 to state a8 (row 8 in Table 19). Similarly,
we convert row 1 of Table 17 into two rows — the first in Table 20 and the tenth

Chapter 4 Algorithmic state machines and finite state machines — 92

in Table 18 etc. Note that we add the last row in each FSM table to remain
component FSMs in the state bm when each z;is equal to zero.

X4 X10 X7 Xg X1 X3
J T ny J T { { T J T
S S, S3
as az as bi as az as bz ai as as bs
l l Zg Z2 Zg Z3 l l
A\ \,

Ys Y10 vyYs vYuay y7 Y16

Y3 Yo Y5 Y15 Ya Y13 Y18 Y1Y11 Y2 YizY12

Figure 23. Network with three component FSMs
Table 18. Component FSM §’

Qm as X(amas) Y(amas) H
a2 a2 X6 - 1
a2 a3 ~X6 y3y5 2
a3 a3 x10 y3y5 3
a3 a9 ~x10*x4 y10y15 4
a3 bl ~x10*~x4 y5y8y9z8 5
a9 a9 X11*x6 y10y15 6
a9 a2 X11*~x6 y5y8y9 7
a9 a3 ~x11 y3y8y9 8
bl a2 z2 -— 9
bl a3 z3 - 10
bl bl ~z22*~73 -— 11
Table 19. Component FSM §*

am as X(am, as) Y(am, as) H
a4 b2 X7 y13z6 1
a4 a4 ~X7*x9 y13y18 2
a4 a8 ~X7*~x9 y13yl4 3
a7 b2 x8 y1l4y18z2 4
ar’ a4 ~x8 y13y18 5
a8 a7 X9 y4y6 6
a8 a4 ~X9 y6 7
b2 a8 z8 - 8
b2 b2 ~z8 - 9

Let us discuss how this network works. Let al be an initial state in FSM Ss. After
decomposition, state a; is in FSM S8, so, at the beginning, just FSM S%is in state al.
Other FSMs are in states bl and b2 correspondingly. It is possible to say that they
“are sleeping” in these states. FSM S5 transits from the state to the state until
x1*x2*x3 = 1 in state al (see row 1 in Table 20). Only at this transition FSM S°
produces output signal z3 and transits into state b3 (sleeping state). This signal z3 is
the input signal of FSM SI. It wakes FSM S! up and transits it from the sleeping state
b1 to state a3 (see row 10 in Table 18). Now FSM S! transits from the state to the
state until, in state a3, it transits into state b1 with input signal ~x10*~x4 = 1 and
wakes FSM S2 up by signal z8 (see row 5 in Table 18 and row 8 in Table 19).

Chapter 4 Algorithmic state machines and finite state machines — 93

Table 20. Component FSM §°

am as X(am,as) Y(am,as) H
al b3 X1*X2*x3 yly2z3 1
al a6 X1*x2*~x3 y2y12 2
al al X1*~x2 yly?2 3
al ab ~x1 yly2y12 4
a5 a6 x1 y16y17 5
a5 a5 ~x1 y7yll 6
a6 al x5 yly2 7
a6 al ~x5 yl6yl7 8
b3 a6 z6 - 9
b3 b3 ~76 - 10

Unlike FSMs S? and S3, the component FSM S? has two possibilities to wake other
component FSMs up - in state a4 with input signal x7 = I (row 1 of Table 19) and in
state a7 with input signal x8 = 1 (row 4 in the same Table), etc. Thus, each time all
component FSMs, except one, are in the states of type bm and only one of them is in
the state of type ai.

Chapter 4 Algorithmic state machines and finite state machines — 94

Chapter 5 Multilevel and Multioutput Synthesis

In this Chapter, we will concentrate on the multilevel minimization of logic circuits. Several
simple and straightforward methods for obtaining circuit structure with more than two levels
will be considered. In these methods, we will present four procedures — factoring, term
decomposition, full inclusion and equal gates removal. At the end of the Chapter we will show
how to construct optimized multilevel and multioutput circuits of Finite State Machines using
only these four procedures.

5.1 Factoring

5.1.1 Two factoring structures. The first example of factoring is presented in Fig. 1. The left
part of this figure implements the function

J1 = X1xox'sx4 + X1X2X'5 + X1X2X3X 4. (1)

X1 &
X2 — el
xS—c
x4 —

X1 &| en 1 1
X2 —]
XSAC

X1 —\&
X2— ||
X3—] es
xs—q_| a) b)

NN

g8

Figure 1. Factoring from all terms

All AND-gates of this circuit have the common input xix2, so we can factor this common term
(we call it a factor) in function (1):

f1 = Xx1x2 (xX'sx4 + X's + x3x'4) (2)

The corresponding logic circuit is constructed in Fig. 1,b. In this circuit, e";, e"2 and e"s contain
inputs remained after deleting factor x:x2 from e;, ez and es, and if there remains only one letter
(x's in our example), it will be an exact input into OR-gate.

Let us suppose again that the cost of a gate is equal to the number of its inputs, and that the
cost of logic circuit is the sum of the costs of gates — the total number of inputs into all gates. If
C: and C: are the costs of circuits before and after factoring then C: - Czis a minimization or a
gain of factoring. We can evaluate the gain of factoring for the common term z by the formula

w(z)=m(n-1)-1+r. (3)
Here m is the number of letters in factor z, n is the number of gates in factoring and r is the
number of gates in which only one letter is left after factoring. In our example w(z) = 2(3 - 1) - 1

+ 1 = 4. Really, if we count C: and Czin Fig.1, C1—Cz = 4.

One more example of factoring is presented in Fig. 2. Unlike the previous example, here we can
factor the common term xixsx's only from two AND-gates, not from all of them:

f2 = x1x2x3%'9x5 + Xax6X'7 + X1X'2X3X 45 + X'1X'2;
J2 = x1x3x'4 (Xox5 + X'2x'5) + Xaxex'7 + X'1X2.

Chapter 4 Algorithmic state machines and finite state machines — 95

The result of factoring is shown in Fig. 2,b. On the right, we have OR-gate with three inputs -
two of them from all AND-gates that do not take part in factoring (e2, e4s) and the third one -
from the output of the factoring structure for e;, es similar to Fig. 1,b.

x1—{g]
X2 —
X3—
X4 —1
X5—] X4 &/ en

L %o —| L2
— X7— |
X4 & ez

o | 1| £ " B

X1—& —
X2
X3—]
X4—q
X5—q_ |

el

X1 ﬁ es a) b)

Figure 2. Factoring not from all terms

Again, we can evaluate the gain of factoring for the common term z by the formula
w(z)=m(n-1)-2 +r. (4)

Here m, n, and r are the same as in expression (3). See if you can understand why “-2” is used
in this formula instead of “-1”.

We discussed here two structures for factoring — structure one in Fig. 1,b (factoring from all
AND-gates) and structure two in Fig. 2,b (factoring from some of AND-gates). The duality of
Boolean functions permits us to use factoring not only for the sum-of-products, but for the
product-of-sum as well (see Fig.3 and Fig. 4).

X1 —1
Xo— | €1
x\’))—c
Xa—_|

X111 es 3
X2 —]
XSAC

x1—1]
X2 —]

x3— |es
xi—q | a) b)

Figure 3. The first factoring structure for the product-of-sums

5.1.2 More than one factor. In the previous examples we have only one possible factor for
factoring. Now we will discuss a case with several probable factors. As an example let us use a
two-level logic circuit corresponding to Boolean function f = e;r + e2 + es + es + es with the
products:

€] = X1X2X3X4X5X6X7X11, €4 = X5X6X9,
€2 = X1X2X3X8, €5 = X1X2X5X6X10X12X13.
€3 = X1X2X5X6X10X11X12;

Chapter 4 Algorithmic state machines and finite state machines — 96

X1 —7
X2 —
X3 —
X4—q
X5— x471 ez
X6— [
X7— |

€1

xa—11
X6 —1 -
X7—_| & fa

x1—71] —
Xo—9
X3—

X4—
X5—q |

X1—] | €4 @)
Xo—d

Figure 4. The second factoring structure for the product-of-sums

b)

Let e: N e be the intersection between the products e; and e; (the common letters in these
products). Our first step is to form all possible intersections between each pair of products in f.
To do this, we construct Table 1. The first column of this table contains products e, ..., es.
Intersections between all pairs of products are in the next columns, for example, e; N ez is in
the column e;in the second row, e; N ez — in the column e;in the third row etc.

Table 1. Possible factors at the first step

€1 = X1X2X3X4X5X6X7X11 ej

e2 = X1X2X3X8 X1X2X3 e2

€3 = X1X2X5X6X10X11X12 X1X2X5X6X11 X1xX2 es

e4 = X5X6X9 X5X6 - X5X6 ‘ e4 ‘
€5 = X1X2X5X6X10X12X13 X1X2X5X6 X1XxX2 X1X2X5X6X10X12 X5X6

To find all possible factors, thus constructed, we should extract all different intersections from
Table 1. There are six such factors zi, ..., ze in this table. In this step, do not pay attention at
the information in the parenthesis after each factor in expression (5):

Z1 = X1x2x3 (e1, e2*); w(z1) = 2;

Z2 = X1X2X5X6X11 (€1, e3); w(zz) = 3;

Z3 = Xs5Xs (€1, €3, e4¥, es); w(zs) = 5; (5)
Z4 = X1X2X5X6 (€1, €3, es); w(z4) = 6;

z5 = x1x2 (e1, e2, es, es); w(zs) = 4;

Z6 = X1X2X5X6X10X12 (€3%, es¥); w(zs) = 6.

We will use formulas (3) and (4) to evaluate the gain of each factor. To do this we should find
m, n and r for each factor. Here m is the number of letters in the factor, n is the number of
gates in factoring and r is the number of gates in which only one letter is left after factoring of
this factor. m is trivial — for z:;, m is equal to 3; for z2, m is equal to 5 etc. To find n, we should
intersect each z: (t = 1, ..., 6) with each ei (i = 1, ..., 5). If z: is contained in e;, then z: is the factor
of e; and we write e;in the parenthesis after z:. Thus, for z:, zzand zs, n is equal to 2, for zzand
zs, nis equal to 4 etc.

While performing such intersections, it is possible to find r as well. For example, when we
intersect z; with ez we see that z; € ez and only one letter is left after factoring z; from e,
because z: has three letters but ez has four. The symbol * next to ezin the line for z; means
that only one letter is left. We have the same for zs (e+*) and zs (es* es*). When we have m, n
and r for each factor, the evaluation is trivial. w(z¢) for each z: is presented in the second
column of (5).

Chapter 4 Algorithmic state machines and finite state machines — 97

In the first step of factoring, we use a factor with a maximal gain. If we have several such
factors (two in our example — z4+ and 2ze) it is possible to implement one of the following
strategies:

1. Take the first of such factors (the simplest strategy);

2. Take the factor with maximal length from these factors;

3. Take the factor contained in the maximum number of gates;

4. Move one step forward for each such factor and select factor after the second

evaluation step etc.

We will use the first trivial strategy and select zs with

w(z4) = 6 = max.

X1 —J o]
Xo— | €2
X3 —
X X5 L]
xX4— |€1
X7—]
X1 —
X11— &

— X2 — e 11

B Z4 X5 —| 6 I f
X10 —| & e’bﬂ X6—]

X11 — t L
X12— | —‘

- X5 —1&| e4
x10 —&le"s X6 —]
X12 — X9 —_|
x13—_|

Figure 5. The circuit after the first step of factoring

The circuit after factoring of z+ is shown in Fig. 5. It implements two functions presented as
sum-of-product:
1. Function f is the sum-of-products with three AND-gates, one of them contains the
factor z4, and two others — the products that do not take part in factoring;
2. Function t; is the sum-of-products with three AND-gates, each of them corresponds to
one of the products that took part in factoring. These ANDs have inputs remaining
after factoring of z4.

Fig. 6 presents the factoring process. The first box in this figure contains the set of products ey,

.., es, the second one — the partitioning of this set into two subsets after the first step. Thus,
we must continue the factoring separately for two functions presented as sum-of-products —
function f containing products ez, es, es and function t: containing products e'1, e"s, e's. A
similar partition will be at each next step so the process of factoring converges very fast.

Ao
2 e"s, e”'s
A, 2 e, er
Ao TP B>
Z4 e e3es | |
e, ez, €3, e4, €5 —
e T 6 e, es4, e
As
B; T
Z10 €4, €6
1 ez, es
B3

Figure 6. Steps of factoring

Chapter 4 Algorithmic state machines and finite state machines — 98

The subsequent steps of factoring for functions t; and f are presented in Tables 2 and 3. The
factoring process comes to the end when there are no factors with the gain greater than zero.
The final circuit after factoring is presented in Fig. 7. The total cost reduction is equal to

w(z4) +w(zs) + w(zio) = 9.

Table 2. Factoring of function ¢,

e"1 = X3X4X7X11 e’
e"3 = X10X11X12 X11 e's
e's = X10X12X13 - X10X12
z7=x11 (€"1, "3); w(z7) =-1;
zg = x10X12 (€"3% €"s%); w(zs) = 2.

w(zs) = 2 = max.

Table 3. Factoring of function f

e2 = X1X2X3X8 ez

e4 = X5X6X9 - eq

e6 = X1X2X5X6t1 X1Xx2 X5X6
Z9 = X1X2 (€2, es); w(z9) = O;
Z10 = X5X6 (€4%, es); w(zio) = 1.

w(zi0) = 1 = max.

Figure 7. The circuit after factoring

5.2 Term Decomposition

5.2.1 Simple example. The first example of term decomposition is presented in Fig. 8. Left part
of this figure contains three separate AND-gates implementing three functions gi, g2 and gs. All
gates of this circuit have the common inputs x4, x'5, X's, SO we can construct additional AND-

gate z with these inputs and replace inputs x4, x's, X's of initial gates with the output of gate z
(Fig. 8,b).

X1 &
X2 —9
X3 — X z
o — g1 X5

X6—9 X1 g1
X5—9 X2—d
X6 —4 X3
X7 —_| X7
X2 *g
X4 — g2 g2
X5—1 X2
X6—q |

g3
— B

X418 gs
X5—q —»
X6—9

Chapter 4 Algorithmic state machines and finite state machines — 99

Figure 8. Simple term decomposition

If C; and C2 are the costs of circuits before and after term decomposition then C; — Czis a
minimization or a gain of term decomposition. We can evaluate the gain of term decomposition
for the common term z by the formula

w(z)=m(n-1)-n+r. (©)

Here m is the number of letters in the common term z, n is the number of gates in term
decomposition and r is the number of functions (initial AND-gates) equal to the common term.
In our example w(z) = 3(3 - 1) - 3 + 1 = 4. Really, if we count C; and Czin Fig. 8, C:1— C2 = 4.

5.2.2 More than one common term. In the previous example, we had only one possible term
for term decomposition. Now we will discuss the case with several probable common terms. As
an example let us use a circuit in Fig. 9 that corresponds to the following products:

g1 = X1X2X3X4X5X6X7X11;
g2 = X1X2X3X8;
g3 = X1X2X5X6X10X11X12;

g4 = X5X6X9;

g5 = X1X2X5X6X10X12,

X1 —& X1 —& X1
Xo — X2 — X2
X3 — X5 — gs X5 gs
e — |91 xe— —* X6
X5 — X10 — X10 —
X6 —] X11—1 X12
X7 — X12—_|
xX11—_|

X1 — X5 — g+

X2 —| gz X6 — |—»

X3 — X9 —

X8 — o

Figure 9. Logic circuit before term decomposition

As in factoring, the algorithm of term decomposition consists of several steps. The first step is
to form intersections between each pair of products to find all possible common terms
containing two or more variables (see Table 4). We will use formula (6) to evaluate the gain of
each common term. To do this we should find m, n and r for each term: m is trivial — it is the
number of letters in the common term. For z;, mis

equal to 3; for zo, mis equal to 5 etc. It is clear that the common term with one variable makes
no sense in term decomposition.

Table 4. Possible common terms at the first step

g1 = X1X2X3X4X5X6X7X11 g1
g2 = X1X2X3X8 X1X2X3 g2
g3 = X1X2X5X6X10X11X12 X1X2X5X6X11 X1x2 gs
g4 = X5X6X9 X5X6 - X5X6 g4+ ‘
g5 = X1X2X5X6X10X12 X1X2X5X6 X1x2 X1X2X5X6X10X12 X5X6
Z1 = X1X2X3 (g1, g2); w(zi) = 1;
Z2 = X1X2X5X6X11 (g1, 93); w(zz) = 3;
23 = X5X6 (g1 g2, 94, 95); w(zs) = 2; (7)
Z4 = X1X2X5X6 (g1, g3, g5); w(z4) = 5;
Zz5 = X1X2 (91,92, 93, g5); w(zs) = 2;
Z6 = X1X2X5X6X10X12 (g3, g5%); w(zs) = 5.

To find n, we should intersect each z: (t = 1, ..., 6) with each gi (i = 1, ..., 5). If zt € gi, then z: is
the common term for gi and we write gi in the parenthesis after z.. While performing such an

Chapter 4 Algorithmic state machines and finite state machines — 100

intersection it is possible to find r as well. For example, when we intersect zs with gswe see that
zs = gs. The symbol * near gs in the line for zs means that the product gs is equal to the
common term zs. When we have m, n and r for each common term, the evaluation is trivial —
w(z:) for each z: is presented in the second column of (7).

In the first step of term decomposition, we use a common term with the maximal gain. If we
have several such terms (two in our example — z+ and ze), as in factoring, it is possible to
implement the following several strategies:

Take the first of such common terms (the simplest strategy);

Take the common term with maximal length from these common terms;

Take the common term contained in the maximum number of gates;

Move one step forward for each such common term and select common term after the
second step evaluation etc.

el 2

We will use the first strategy and select zs with
w(z4) = 5 = max.

The circuit after decomposition of z4 is shown in Fig. 10.

X3— & X1
xq4— g1 X2 gz
X7 — | — X3
X1
& X11— Xs
X2 24

X10—]
X11—

&
=]
'
4
<

X12—

& gs
X10 — |—»

Figure 10. Logic circuit after the first step of term decomposition

Unlike factoring, where we had a partition of products into two subsets after each step, there is
no partition of initial products is here. Moreover, the common term taking part in term
decomposition should be added to the set of products and will be used at the next step together
with other products. Only the product equal to the common term should be excluded from the
list of products in the next step of term decomposition.

The next step of term decomposition is presented in Table 5. The process comes to the end
when there are no factors with the gain greater than zero. The final circuit after term
decomposition is shown in Fig. 11, the whole process is illustrated by Fig. 12.

Table 5. The second (final) step of term decomposition

g1 = X3X4X7X1124 g'

g2 = X1X2X3X8 - g2

g3 = X10X11X1224 X11Z4 - g's

g4 = X5X6X9 - - - g4 ‘

g's = X10x1224 - - X10X12Z4 - g's ‘
Z4 = X1X2X5X6 X1X2 - X5X6 _
z7=x1124 (9"1, "3); w(z1) = 0;

Z8 = X1X2 (g2, 24); w(zz2) = 0;

29 = X10X1224 ("3, 9"5%); w(z9) = 2;

Z10 = X5X6 (g4, Z4); w(zio0) = 0.

Chapter 4 Algorithmic state machines and finite state machines — 101

w(zg) = 2 = max.

The total cost reduction is equal to
w(z4) + w(zg) = 7.

X3 /&
Xq —
X7 — JI
X1 & X11 —
X2 Z4
X5 — gs
X6 g
X10 — 29 S g3
Xi2—_ | Xu1 4D—>
X1 /&
X2 — g2
X3 —]
Xg —1_J
x5 —& g4+
X6 — —™
X9 —_ |

Figure 11. The circuit after t-decomposition

Aj Ao Az
Z. V4
g1, 92 95 94 9sF—=—+{g"1, g2, g'3 g4 95 zs |—5—> 9", 92, 9", G4 24, %9

Figure 12. Steps of t-decomposition

5.2.3 Term decomposition for OR gates. Term decomposition can be applied to OR gates as
well. We will give the next example without any comments and you can fulfill each step on your
own (Fig. 13).

x1—{4]

X2 —
X3 —
x4 —

x5— |

x1—q 1]

X2 —
x3 —
x5 —
X6 —
x8 —

x9 —_|

x1 —
X2 —
x5 —
X6 —q
x8 —

x9 —_|

-~ ‘

1

3

-

x1—

X2 —q
X3 —
x4 —
x5 —
X6 —q
x8 —q
x9 —

x1—1
X2 —q
x3 —
x4 —q

x1—1
X2 —
x5 —
x8 —
X9 —

4

5

6

a)

b)

6 —a1 7
x1—1 X
X2 —d z8 7 x7 I
x3 x4 z11

Figure 13. Term decomposition for OR gates

5.3 Gate inclusion

Chapter 4 Algorithmic state machines and finite state machines — 102

Let us define gate m as included in gate n, or gate n as covering gate m, if they have the same
type (both AND or both OR) and the set of inputs of gate m is a subset of the set of inputs of
gate n. The simplest case of gate inclusion is presented in Fig 14,a. In this case, we can replace
inputs of gate n, equal to the inputs of gate m (x: and x2 in our example), with the output of
gate m (Fig. 14,b).

Figure 14. Gate inclusion

5.4 Removal of equal gates

Let us define as gates m and n equal, if they have the same type (both AND or both OR) and the
set of inputs of gate m is equal to the set of inputs of gate n. The circuit in Fig. 15,a contains
four equal two-input AND-gates. In this case, we should

1. Remove all equal gates, except one (gates [, m and n in our example);
2. Connect inputs of gates (¢, p and g) formerly connected to the outputs of removed
gates, with the output of the remained gate (gate k in our example).

The last two procedures — gate inclusion and removal equal gates are covered by term
decomposition. Really, in the first step of term decomposition — pair intersection, we can find
equal gates and gates included into other gates. However, term decomposition has two
problems: (1) the large number of gates taking part in this procedure; (2) multiple comparisons
demand a lot of intersections between sets of inputs. It is more simple and faster to check gate
inclusion and remove equal gates before term decomposition. Moreover, after these two
procedures, only gates with three and more inputs remain for term decomposition (see if you
can understand why it is so).

Figure 15. Removal three equal AND-gates

5.5 Multilevel and multioutput circuits for Finite State Machines

Chapter 4 Algorithmic state machines and finite state machines — 103

In Section 4.2.6 of Chapter 4, we considered a very simple method for synthesis of the two level
FSM logic circuit from its structure table. Recall that we have used the term

en =Am Xn

in accordance with the h row of such a table (h = I, ..., H). Here Am is a product of state
variables corresponding to the current state am written in the h row, Xn is a product of input
variables written in the same row, and H is the number of rows in the structure table. Then we
constructed H AND-gates corresponding to terms ey, ..., en. If the output variable y» appears
only once, for example, in row i of the structure table, we obtain the output y» at the output of
AND-gate number i If the output variable y. is written in several rows, for example, in rows pi,
..., pr of the structure table, we construct OR-gate with T inputs and connect these inputs with
the outputs of AND-gates pi, ..., pr. The output y» is obtained at the output of this OR-gate. In
exactly the same way, we construct OR-gate for each input memory function which occurs
more than once in the column D(amas) of the structure table. The logic circuit of FSM thus
constructed contains not more than H AND-gates and not more than (N + R) OR-gates where N
and R are the numbers of output variables and input memory functions in the FSM structure
table.

In this section, we will use the reverse structure table. Recall that in such a table all
transitions are ordered according the next state — first we write all transitions to state ai, then
to state a2, etc. As an example we will consider the logic synthesis of FSM S, Table 6 is its
reverse structure table. As in four previous sections, we assume that the circuit cost is equal to
the sum of inputs of its gates.

Table 6. The reverse structure table of FSM S

al 001 al 001 x8*x7 y7y9y14yl5 d3 1
al 001 al 001 x8*~x7*x1*x9*x5 y13 d3 2
al 001 al 001 ~x8*x1*x9*x5 y13 d3 3
a3 011 al 001 x9*x5 y13 d3 4
a4 000 al 001 x4*~x9*x3 y2y10y12 d3 5
a5 010 al 001 x4 == d3 6
al 001 a2 100 X8*~x7*~x1 yly2y3 di 7
al 001 a2 100 ~Xx8*~x1 yly2y3 di 8
a2 100 a2 100 ~x2 -- di 9
a2 100 a3 011 x2 y4 d2d3 10
a4 000 a3 011 x4*~x9*~x3 y5y6 d2d3 11
a4 000 a3 011 x4*x9 y5y6 d2d3 12
al 001 a4 000 X8*~X7T*X1*~x9*x3*~x6 y7y8y9 -- 13
al 001 a4 000 ~X8*x1*Xx9*~x5 y7y8y9 -— 14
a3 011 a4 000 X9*~x5 y7y8y9 -- 15
a3 011 a4 000 ~X9*x3*~x6 y7y8y9 -— 16
a3 011 a4 000 ~X9*~x3 y7y8y9 - 17
al 001 a4 000 ~X8*X1*~X9*x3*~X6 y7y8y9 -— 18
al 001 a4 000 ~X8*X1*~x9*~x3 y7y8y9 - 19
al 001 a4 000 X8*~XT*X1*~x9*~x3 y7y8y9 -— 20
a4 000 a4 000 -~x4 -- -- 21
al 001 a4 000 X8*~X7*X1*X9*~x5 y7y8y9 -— 22
al 001 a5 010 x8*~x7*Xx1*~x9*x3*x6 y10y11y12 dz2 23
a3 011 a5 010 ~x9*x3*x6 y1l0y1l1ly12 dz2 24
al 001 a5 010 ~x8*x1*~x9*x3*x6 y10y11y12 d2 25
a5 010 a5 010 -~x4 - dz2 26

The structure table is divided into M arrays, each of which corresponds to the set of transitions
into one state. For FSM in Table 6, M is equal to five. In several initial steps, we will separately
design logic circuits for transitions into each state. Moreover, even then we will construct
circuits separately for each subset of output signals.

Chapter 4 Algorithmic state machines and finite state machines — 104

A design of the logic circuit consists of the following steps:

Step 1. Divide each array of transitions to the state as (s = 1, ..., M) into as many subarrays, as
the number of different microinstructions (the subsets of output variables) in the column Y(am, as)
within this array. For example, in Table 6, transitions into state a; have four microinstructions:

y7,y9, yl4, yl15;

y13; (8)

y2,yl0, yl12;

.
We should include the empty microinstruction, corresponding to row 6, in this list because not
all of input memory functions are equal to zero at this transition (d3 = 1) and we must
construct AND-gate for this row.

Thus, in our example we have four such subarrays containing
Row 1 with outputs y7, y9, y14, y15;

Rows 2, 3, 4 with output y13;

Row 5 with outputs y2, y10, y12;

Row 6 without output signals.

e S

Step 2. For each subarray corresponding to one of microinstruction in (8), construct as many AND-
gates as the number of rows in this subarray of the structure table. These gates implement
products AmX(am,as), corresponding to each row. In our example for the transitions into al we
have six such AND-gates (see Fig.16,a).

t1—] gl

2 —9 y7y9yl4yls
t3 — 1—»
8 —| d3
x7— |

t1 %E

t2 —q

t3 —
x8 —

x7—4 []

x1—

X9 —

x5— |

t1 —CE

t2 —q

t3 — 1

x8 — yi3
1 —] d3
x9 —

x5— |

t1— g

t2 —

t3 — ——

X9 —

x5— |

t1 —CE

2 —9 y2yl0yl2
t3 —q ——»
w4 |6 a3
x9 —

x3— |

t1—] gl

t2 —

t3 7 d3

x4

a) d)

Chapter 4 Algorithmic state machines and finite state machines — 105

Figure 16. Logic circuit for transitions into state a;

Step 3. If some subarray contains more than one row, connect the outputs of corresponding AND-
gates, constructed at step 2 for the subarray, with OR-gate to form the signals of
microoperations (output variables) and input memory functions written in the rows of this
subarray (rows 2, 3, 4 for y13 — Fig. 16,a).

Step 4. Factor the logic circuits constructed in point 3 using the algorithm described in Section 5.1
‘Factoring’. Let us do this for functions y13, d3. Table 7 contains the first step of this factoring.
We made all pair intersections between products corresponding to rows with y13, d3 and found
two possible factors z; and z2. We factor z2 with max gain (see Fig. 16,b).

It is possible to make one more simplification in the circuit in Fig. 16,b. OR-gate has input t2
and AND-gates connected with this OR-gate have inputs t2. According Boolean algebra A + A'B
= A + B, so we can delete inputs t2from AND-gates. To make such minimization we do not have
to write any formulas. If some OR-gate has some input p (p') we should check all AND-gates
connected with this OR-gate and remove inputs p' (p) from these AND-gates.

Table 7. The first step of factoring for y;; and d;

er
t'1t'otsxixoxs
t'1tsxoxs

e1 = t'1t'ataxsx'7zx1xoxs
ez = t'1t'2t3x'sx1Xx9xs
e3 = t'1tatzxoxs

ez
t'1tsxoxs

z1 = t'1t'atsxixoxs (e1, e2’); w(z1) = 6(2-1)-2+1=25;
z2 = t'1tsxoxs (e1, ez, e3’); w(z2)=43-1)-1+1=8;

w(zz2) = 8 = max.

The last step of factoring is shown in Table 8 and Fig. 16,c. After removing input xs from AND-
gate with two inputs we must remove this AND-gate as well, and transfer input x'7into the OR-
gate. The final step of factoring is presented in Fig. 16,d.

Table 8. The second steps of factoring for y;;, d;

e’ = xsx'7x1 e'
e's = xX’sxi X1
z3 =x1 (e'1, e"2%); wzz)=12-1)-1+1=1;

w(z3) = 1 = max.

Logic circuit after factoring for transitions into state a: contains seven gates — we numbered
gates after the last step. Each step of circuit factoring for transitions into states a2 and as is
presented in Fig.17 and Fig. 18. Logic circuits for transitions into states a+ and as without
intermediate steps are shown in Fig. 19 and Fig. 20. We have left the design of these last
circuits to our readers as exercise to be done on their own. At last, we bring all these circuits
together in Fig. 21.

Chapter 4 Algorithmic state machines and finite state machines — 106

t1 —CE
t2 —q

8 — yly2y3
x8 —|
e di

x1—q | /

t1 %E
t2 —q
t3 —
x8 —4
x1—q |

yly2y3
t1 — gl
t2 —q
t3 8 dlI
x2 a) c)

Figure 17. Logic circuit for transitions into state a,

Step 5. Delete equal gates in the logic circuit thus constructed. If we look at the circuit after
factoring in Fig. 21 we will find that it contains some equal gates. For example, six two-input
OR-gates OR2, OR9y, OR14, OR16, OR1s and OR27 are equal because they have the same type and
the same inputs. However, AND-gates ANDs(x1,2) and AND2s(x1,27) are not equal because they
have inputs from different gates. To find that they are also equal we must determine that OR>
and OR27 are equal and change the input 27 by input 2 in the description of ANDzs. Therefore,
to find that two gates are equal in a multilevel circuit we should find that their preceding gates
are equal etc. For this reason we should rank the gates in the circuit.

t1 &

t2 y4
—»

t3 11 d2d3

x2

tl—9
t2 —q
t3 —q
x4 —
x9 —q
x3—q |

t1—q
t2 —q
t3 —q
x4 —
X9 —

Chapter 4 Algorithmic state machines and finite state machines — 107

Figure 19. Logic circuit for transitions into state a,

t1 &
2 t1
—— t3
t3 31 d2
x4 ylOoyllyl2

a2

Figure 20. Logic circuit for transitions into state a;

Gates containing only inputs ti, ..., tr (the outputs of the memory elements, in our example R =
3) and input variables xi, ...,x. (in our example L = 9) are referred to as gates of the first rank.
The gates with inputs ti, ...,tr, input variables and the output of at least one gate of the first
rank are referred to as gates of the second rank etc. Thus, the i-rank gate can have inputs t,
...,tr, input variables and the inputs from outputs of gates with the rank less than (i — 1) and at
least one input from the gate with rank (i — 1). The results of ranking for the circuit in Fig. 21
are presented in Table 9 and Fig.22. In this figure, the rank of gate is written above the gate.

tl1—&

2 — 7y9yl4 y1s —

3 Jy yyl4y 11—

x8— as 3 —

x7— x5 —
x1 ad ¥

X7—91 4

%8 I 3

t1—g] t1—

t2 — t2 —
2ylOoyl2

83— 7Y 13

x4 —]| d3

x9 —

x3— |

t1 —{g]

t2 — y4

t3 11 d2d3

x2

Figure 21. Logic circuit after factoring

Chapter 4 Algorithmic state machines and finite state machines — 108

Table 9. Ranks of gates

Rank AND-gates OR-gates
1 1,6,7,8,11, 24, 31 2,9,12, 14, 16, 18, 22, 27
2 3,10, 13, 15,17, 19, 23, 28
3 4, 20, 29
4 5,21, 30
5 25
6 26

It is evident that equal gates can only be of the same rank. The following steps should be used
to find and delete equal gates:

1. Find equal gates with rank i (i = I, 2, 3, ...) beginning from rank 1, separately for AND-
gates and OR-gates. In our example, we have the following set of equal first-rank gates:

OR2 = OR9 = OR14 = OR16 = OR158 = OR27.

2. Remove all gates except the first one from each such set. Thus, after the first step we
removed five gates OR9, OR14, OR16, OR18, OR27. Replace the inputs from the gates thus
removed with the number of the first (not removed) gate from the corresponding sets.

3. Repeat steps (1) — (3) for the elements of the (i+1)-th rank. We get equal AND-gates AND3
and ANDzgof the second rank and equal OR-gates ORsand OR2 of the third one.

The circuit after removal equal gates is shown in Fig. 23.

,, B
a1 |
115 |
i
2 — 7y9yldyls 4 |
3]y y9yldy g |
d3
x8 t3 — 13 !
X7 3 X5 — 5~ 4 |
2 X9 — d3 1
LI t2 |
X7 91 3 4 |
x8— |2 i
1 1 i
t1—4g& t1—qg, i
t2 2 — i
2yloyl2 .
53— Y 3 [7 d3 }
x4 ds x4— !
x9 !
x3 !
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,}},,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1 2 |
t1 g a3 dg ! as
t2 y4 t2 — y5y6 3
t3 11 d2d3 , 3 ; 4
x2 3_d X4 13 a2a3 | t1 —
3 L@
X. 12 |
! yloyllyl2
Y 30 42

&y
[
>

&)
1 \
el |
~lw
&Y
L)
[ERES
)
~
e

Sl oo

=

[&]
M
o | N

<
G

(S
o)

x

® g,
-
#N
= |%
O

|

g v |

19 2

L] 1 ;29:&
x3—9 1 23
Xx6—q_ |22

Figure 22. Ranking after factoring

Chapter 4 Algorithmic state machines and finite state machines — 109

Step 6. Repeat factoring and removing equal gates until the circuit cannot be change any longer.
Look at the circuit implementing the transitions into a+ in Fig. 23. We drew the part of this
circuit containing gates ANDis, ANDi17, ANDio and OR2zo in Fig. 24,a. After the removal of the
equal gates, logic elements AND;s, AND;7, and ANDi9 got the same inputs from OR: instead of
different inputs from ORi4, ORis, and ORis. Thereby, we got new possibilities for repeated
factoring — see sequential steps of factoring in Fig. 24,b,c.

The circuit after the second factoring is shown in Fig. 25. Once again, after factoring we find
the equal gates: OR22 = OR32 and we remove the last one (Fig. 26). Thus, we

should repeat factoring and removing equal gates as long as we get these procedures are
impossible for the circuit.

yly2y3
| e—
10 d1I

t1 &

t2 y4
t3 11 d2d3
x2

e S |
VR
g i

2 —
x9— |
X6—
x3— |

2 —

x5—
xX9—

2—&
x9— —

x3—_ |19 t2
x3— 1 x9— 23
x6— |22

Figure 23. Logic circuit after removal equal gates

Chapter 4 Algorithmic state machines and finite state machines — 110

X9 —4
x6— |15
X3 —

x5 —4

X9 —

x9—
x3—q_ |

a)
Figure 24. Repeated factoring

Step 7. Find the inclusion of gates into other gates. Unfortunately, we do not have such cases in
our rather simple example.

l
I
I
I
I
i
]
I
I
I
I
I
I
I
I
I
I
I
!
P2 | y1y2y3
| >
I
I
I
I
I
I
I
!
al
I
I
I
I
i
]
I
I
I
I
I
I
I

t1—48,
t3 —
Jtcfz— 6 o3 Jtci 7 d3 xl_d [10 d1
27
x9 — —
X3 —
t1 ab
t2
t3
x2 tl —o
t3
9= | y10y11yI2
x3
”””””””””””””””””””””””””” x6 30 d2
tl — 4
t2
t3— |31 d2
x4 —9
2 Ia a4
x5—
x9— |24

Figure 25. Circuit after the second factoring

Step 8. Make term decomposition for AND-gates. Fig. 27,a contains AND-gates with three and
more inputs which we have selected from the circuit in Fig. 26 for term decomposition. It is
evident that term decomposition makes it possible to find equal gates and inclusion of some
gates into other ones as well. However, if a circuit contains many gates, term decomposition
takes a lot of time and it is faster to implement steps 5 — 7 before term decomposition.

Chapter 4 Algorithmic state machines and finite state machines — 111

Let us demonstrate that the term decomposition problem may be divided into several
independent subproblems. For this purpose, we define such a relation @ on the set of AND-
gates that two gates AND; and ANDj are in this relation iff they have not less than two common
inputs.

Construct the graph G of this relation (Fig. 28 for the circuit in Fig. 27,a). The vertices of this
graph are the gates in Fig. 27. We connect two vertices by edge if the corresponding gates have
two or more common inputs. From the definition of the relation w, it is evident that there can
be no common factors for the gates from various subgraphs of Go. Thus, the problem of term
decomposition is divided into as many subproblems as the number of unconnected
components in the graph Go. Even in our simple example, Go contains five components and
there are only 11 vertices (gates) in the largest component. For a complex FSM, the graph Go
contains a large number of components, since:

1. There is a large number of input variables in a complex FSM and there are not so many
input variables in each row of its structure table (in each term corresponding to each
row);

2. xiand x'are different inputs of gates;

3. The number of gates and the number of inputs in each gate are decreased, as a result
of steps 4 — 7 (factoring, removal equal gates and inclusion of gates into other ones).

Chapter 4 Algorithmic state machines and finite state machines — 112

a2
tl —g
t2—
t3— |8 dl
x2—q |
t1—dg
2 | yly2ys
14 |10 a1
27
ad
t1 —
13
;‘39 y10y11 y12
x6 30 d2
4
a4
x6
x3

Figure 26. Circuit after the second removal equal gates

The result of term decomposition in our example is shown in Fig. 27,b. Fig. 29 contains the
total circuit after this step.

Chapter 4 Algorithmic state machines and finite state machines — 113

t1—J g 2=
t1 — g t1 — g D t1—9 & — x9 —
2 —d 3 —| g% :21 & zajj 35 tQ%& t1—d & 33— |6
_ I B - > t3
e T 5 ¥— [6 = 3 7 xl— [10 36 —
x8 — x9 — x4
7 | 4 —| x9 — x4 2 L -
X L x3— &
— = 12— 53>
& BREE
- - t2 —q 2 —
t1 — gl & t1 — g 94 x8— | 1
t2 —q t2 —q _
27 . 279 3 —d [A t2 E 7
t3 — 8 10 t3 11 13
x2 — X x2 x— —
— 2 — 12 — &
T T xj— ?
o] t1 x2 E
. t1 —q & - 22— 37 8
tl —q & t3 —] 2 2] t3 —
2= F—» x9 > Xx5—1 XQ%&—» ﬁ
t3 —q 31 x3 — 30 %0 17 on | 33 25 26 @ E 11
x4 —q_ | x6 — —
4 77
x9
x3
- x6 30
t2 2 —q g t2 t1 —d 4
x5 —q x]l — F——» x9— t3
o 24 20 | | 21 s ﬁ 23 e 25
% b Figure 27.
Term decomposition in our example
17 24 21 8 11
*———o []
23 33
L N—]
5 1 6 13
26 10 30 7 31
Figure 28. The graph G, of relation @
Step 9. Construct OR-gate for each output variable y, (n = 1, ..., 15 in our example) and for each
input memory function d- (r = 1, ..., 3 in our example) which occur more than once in the circuit

after step 8. If we look at Fig. 29 we will find that several outputs appear more than once in
this circuit. For example, y2 is written at the outputs of gates ANDs and ANDjo, d2 is written at
the outputs ANDi:, ANDi3, AND3o and ANDs;. It is evident that FSM has only one output ye, so,
first — the circuit in Fig. 29 is not the final circuit and, second — output y2 will be equal to one
when the output of ANDs or the output of AND;o are equal to one. Thus, for y2 and for each
output that appears more than once in Fig. 29, we should construct OR-gate with the inputs
connected to the outputs of gates where these signals are written.

To formalize this process we constructed Table 10 where each row contains the list of gates for
each output. Now we can immediately construct OR-gates for the outputs which occur more
than once in the logic circuit (Fig. 30,a).

Chapter 4 Algorithmic state machines and finite state machines — 114

t2 —4 y7y9yl4yls
x8 1 43
X7

& yl3
S ds
L

al

a3
x3—4 1 36 y5y6
x9 I 12 2 .ﬁ 13 42d3
t2 a4
2l
5 t2—] 1] 35 y7y8y9
x5 17 xl 21 25 26
x9 20
2 o s |
ﬁg 2;9 ﬁ » i 38 ig yloyilylz
;29 4 = x4 2);z 30 “a
| 4
Figure 29. Logic circuit after term decomposition
Table 10. Gates for outputs
Outputs Gates Outputs | Gates Outputs Gates
yl el0 y7 el e26 yl3 e5
y2 e6ell y8 e26 yl4 el
y3 el0 y9 el e26 ylsd el
y4 ell ylo eb e30 dl e8el0
y5 el3 yll e30 d2 ell el3 e30e31
y6 el3 yl2 eb6 e30 d3 eleSebe7ell el3

equal OR-gates among the gates constructed at step 9. Leave only one gate in each set of equal

gates. The logic circuit after removal of equal gates is shown in Fig. 30,b.

Step 11. Find the inclusion of OR-gates into other gates among the gates constructed at steps 10.

Unfortunately, we do not have any such cases in our rather simple example.

Step 12. Make term decomposition for all OR-gates. Just as at Step 8 for AND-gates, we consider

here only the gates with not less than three inputs since the minimal number of inputs in a
common term in term decomposition is equal to two (after removal equal gates and full
inclusion). Similar to step 8, we should construct the graph of the relation @ for OR-gates. The
problem of term decomposition for OR-gates is divided into as many subproblems as the
number unconnected components in the graph of . In our rather simple example, we have
only two OR-gates with more than two inputs (see d2 and d3 in Fig. 30,b).

Chapter 4 Algorithmic state machines and finite state machines — 115

8 —1 dl
10— [42

6 —1 y2 117
11 y7 111 l
26 40 13— | a2 10 39 13 92
30 45 30 45

|5 yo 31 1 1] Y7y9 31
e 41 26 0

1—1
éil 6 — 1] yloyl2 >
] 10 —
iy R — 6 d3 30 ° 43
30 —| |42 ” 76 7 46
i 11
6 y12 13 87 4 13
10 —{ | 44
30 43
a) b)

Figure 30. OR-gates before (a) and after (b) removal equal gates

The final logic circuit is shown in Fig. 31. We have placed the circuit from Fig. 30,b at the
bottom of Fig. 31. Of course, we should remove appearances of the outputs yz, y7, yo, Yo, yiz
and input memory functions di, dz, ds from other parts of the logic circuit. Thus, only the
outputs that have one entry in the column “Gates” of Table 10 will be in the part of the circuit
that is above the “OR for outputs and input memory functions” in Fig. 31.

Step 13. Relax and drink your coffee.

Really, the reason, that we cannot demonstrate gate inclusion and term decomposition for OR-
gates, can be explained not only by the simplicity of our example, but also a very effective
optimization at the previous steps that allows to decrease the number of inputs in the most
gates of our circuit. To overcome some dissatisfaction of our last steps, let us discuss one more
example, from the synthesis another FSM, presented in Table 11 and Fig. 32 with OR-gates for
output variables and input memory functions which occur more than once in the circuit after
Step 9.

Table 11. Gates for outputs in one more example

Outputs Gates Outputs Gates

Step yl e5e31 e36 e39 y8 e4 e44 10a.
From y2 e3 e5 e36 y9 el6 e30 Table
11 or y3 e39 e56 e60 ylo e3 el6e43 Fig.
32 we y4 e4 e31 e36 e42 dl e56 e60

yS e3el6 e43 d2 e3 e4 e31 e36 e39 e44

y6 el6 e30 d3 e3 e4 e31 e42 e43

y7 el6 e44 e56 d4 e3 e4 e5 e42 e43 e44 e56

immediately get that OR7s = ORess and OR7s = ORs7. We remove OR7s and OR7zs and get yo
together with ys from ORss and yio together with ys from ORes7 (Fig. 33).

Chapter 4 Algorithmic state machines and finite state machines — 116

9 yl1

OR for outputs and input
memory functions

Figure 31. The final logic circuit

Step 11a. We checked full inclusion for OR gates and found thatOR,; cOR,,, OR,, OR,,
and OR,; © OR;. The circuit after this step is presented in Fig. 34.

Step 12a. For term decomposition, we constructed the graph of relation o for OR-gates with
three and more inputs (Fig. 35). The problem of term decomposition for OR-gates is divided into
as many subproblems as the number of unconnected components in the graph of w. In our
example we have two subgraphs and one of them is nontrivial.

Chapter 4 Algorithmic state machines and finite state machines — 117

5 —1 3 1] s 8 =1 4o 3—1
31 —| yl 16 —| &7 16 —| 4 — as
36— [63 43 43 76 31—
39 —_| 42—
43 —
- 16 —1] Y6 56 —1] 4l -
8 1] 4 30 68 60 — |71 -
5 — (" 3 —1
36— |%* 4 —
L 16—1] 47 3—1
— — 5 a4
- 44 = 4] %
39 — 1 3 56 31 d2 93— 74
56 — Y 36 72
65 44—
60 —| 8 39
— 4 1 A 44 56 —|
44 70
4 —1
31 — y4 9
36— [66 ég Y
42 —| 75

Figure 32. OR-gates for y, and 4, in one more example

—] 6 y9
1 67 68

43

Figure 33. OR-gate transformation after removal of equal gates

5 -1 8 1] ysy10 3!
31 — yl 16 —| 2% 31—
= 67 dz
36— |63 43— | 36—~
39— | 39— |72
16 1] Y6y9 L
3 —1] 30 — |68 !
y2 —J 3 —1
S 4 4 —|
36 — 6 — d3
L 16 —1] 47 31— f——
B 44—t a2 |73
39 1] y3 56 — 43—
- L] L]
L |65
- 4 —1] | Y8 3—1
4 —1 44— |70 5—
31 — y4 42 —| a4
36— |66 T 43— |74
42 —| 96— 1| % 56—
— 60 — |71

Figure 34. OR-gates after full inclusion

63
L
74 K 64
69
67 .
73 V' 66
72

Figure 35. The graph of relation e for OR-gates

Chapter 4 Algorithmic state machines and finite state machines — 118

56 —[1 dl 3 1]
60 — |71 o 5 gz~
36 — |
(7] y3 -
— n_g2 16 — 1] Y6y9
1 a2 39— |65 -
— 30 — |68
3 — == L
72
— 16 — 1|
] 8 _ y7
:4—1 s 4 —1 36—14&14 94— g™
70 o 31— = | [66 56— |
1 42
5 a4
42— —» .
56— |7* 1] 43
L L |73
3 1
43— 179 7] y5y10
—»
16 —|_J67

Figure 36. Logic circuit after term decomposition

The logic circuit after term decomposition is presented in Fig. 36. Its cost is 10 inputs lower
than in the initial circuit in Fig. 32.

