

Chapter 4 Algorithmic State Machines and Finite State Machines

In this Chapter, we will introduce Algorithmic state machines and consider their use
for description of the behavior of control units. Next, we will use algorithmic state
machines to design Finite State Machines (FSM) with hardly any constraints on the
number of inputs, outputs and states.

4.1 Flowcharts and Algorithmic state machines

4.1.1 Example of ASM. An Algorithmic state machine (ASM) is the directed
connected graph containing an initial vertex (Begin), a final vertex (End) and a finite
set of operator and conditional vertices (Fig. 1). The final, operator and conditional
vertices have only one input, the initial vertex has no input. Initial and operator
vertices have only one output, a conditional vertex has two outputs marked by "1"
and "0". A final vertex has no outputs.

Figure 1. Vertices of Algorithmic state machine

As the first example, let us consider a very simple Traffic Light Controller (TLC)
presented in the flowchart in Fig. 2. This controller is at the intersection of a main
road and a secondary road. Immediately after vertex Begin we have a waiting vertex
(one of the outputs of this vertex is connected to its input) with a logical condition
Start. It means that the controller begins to work only when signal Start = 1. At this
time, cars can move along the main road for two minutes. For that, the traffic light at
the main road is green, the traffic light at the secondary road is red and the special
timer that counts seconds is set to zero (main_grn := 1; sec_red := 1; t := 0).

Although our TLC is very simple it is also a little smart – it can recognize an
ambulance on the road. When an ambulance is on the road the signal amb is equal to
one (amb = 1), when there is no ambulance on the road this signal is equal to zero
(amb = 0). First we will discuss the case when there are no ambulances on the road.

Thus, when amb = 0 and t = 120 sec TLC transits into some intermediate state to
allow cars to finish driving along the main road: main_yel := 1; sec_red := 1; t := 0.
TLC is in this state only for three seconds (t = 3 sec), after which cars can move along
the secondary road for 30 seconds: main_red := 1; sec_grn := 1; t := 0.

Thirty seconds later, if there are no ambulances on the road (amb = 0; t = 30 sec),
there is one more intermediate state. Now cars must finish driving along the
secondary road: main_red := 1; sec_yel := 1; t := 0. After three seconds, if, once again,
there are no ambulances on the road, the process reaches vertex End, or, that is the
same, it returns to the beginning vertex Begin.

When there is ambulance on the road (amb = 1) outputs of conditional vertices with
logical condition amb, marked by “1” bring us to the intermediate state to let cars to
finish their driving: main_yel := 1; sec_yel := 1; t := 0. One more logical condition
dmain tells us where the ambulance is – whether it is on the main road or on the
secondary one. If it is on the main road (dmain = 1), after three seconds the traffic

66 – Logic and System Design

light will be green on the main road, otherwise (dmain = 0) the traffic light will be
green on the secondary road.

Figure 2. A simple Traffic Light Controller

In the flowchart, a logical condition is written in each conditional vertex. It is possible
to write the same logical condition in different conditional vertices. A microinstruction
(an operator), containing one, two, three or more microoperations, is written in each
operator vertex of the flowchart. It is possible to write the same operator in different
operator vertices.

If we replace logical conditions by x1, x2, … , xL, microoperations by y1, y2, … , yN and
operators by Y1, Y2, … , YT we will get Algorithmic State Machine (ASM). ASM for the
flowchart in Fig. 2 is shown in Fig. 3.

ASM vertices are connected in such a way that:

1. Inputs and outputs of the vertices are connected by arcs directed from an
output to an input, each output is connected with only one input;

2. Each input is connected with at least one output;
3. Each vertex is located on at least one of the paths from vertex “Begin” to

vertex “End”. Hereinafter we will not consider ASMs with subgraphs,
containing an infinite cycle. An example of such a subgraph with an infinite

Chapter 4 Algorithmic state machines and finite state machines – 67

loop between vertices with Y1 and Y3 is shown in Fig. 4. The dots in this ASM
between vertex “Begin” and the conditional vertex with x1 and between this
vertex and vertex “End” mean that ASM has other vertices on the path from
vertex “Begin” to vertex “End”. The vertices in the loop are not on the path
from “Begin” to “End”.

4. One of the outputs of a conditional vertex can be connected with its input.
We will call such conditional vertices the “waiting vertices”, since they
simulate the waiting process in the system behavior description.

 Figure 3. ASM for the flowchart in Fig. 2

Begin

Endx1

.
.

.

1 . . .

Y1

0

x3 0
1

x2 Y21Y3 0
Figure 4. Subgraph with an infinite loop

68 – Logic and System Design

One more example of ASM G1 with logical conditions X = {x1, …, x7} and
microoperations Y = {y1, …, y10} is shown in Fig. 5. This ASM has eight operators Y1,
…, Y8, they are written near operator vertices.

4.1.2 Transition functions. Let us discuss the paths between the vertex “Begin”, the
vertex “End” and operator vertices passing only through conditional vertices. We will
write such paths as follows:

jiRii YxxY ~...~
1 (1)

In such a path, irx~ is equal to irx if the path proceeds from the conditional vertex

with irx via output ‘1’, and irx~ is equal to '
irx if the path proceeds from the

conditional vertex with irx via output ‘0’. For example, we have the following paths
from Yb (vertex Begin) in ASM G1:

Yb x'1 Y2;
Yb x1x2x'3 Y6;
Yb x1x'2 Y1;
Yb x1x2x3 Y5.

Begin

1

x3

1

y1 y3

1

y1 y2 0

x4

x2

x1

y4
0

x5

y5 y6 y7

1

x6

x7

0

0

End

x1

1
0

y8 y91

1
y3 y4

0

x6

y6 y7

1
0

y6 y7
0

0

Yb

Y6

Y1

Y5

Y7

Y4

y3 y6 y10
1 Y8

Y3

Y2

Ye

Y6

Figure 5. ASM G1

Let us match a product of variables in the path (1) from operator vertex Yi to operator
vertex Yj

iRiij xx ~...~
1=α

with this path from Yi to Yj. For example, for ASM G1 in Fig. 5

α17 = x4 x'1; α12 = x'4; α14 = x4 x1.

If there exist H paths between Yi and Yj through the conditional vertices, then

Chapter 4 Algorithmic state machines and finite state machines – 69

αij = α1ij + α2ij + … + αHij

where αhij (h = 1, …,H) is the product for the h-th path. Let us call αij a transition
function from operator (microinstruction) Yi to operator (microinstruction) Yj.

Note that for the path Y6Y7 (operator Y7 follows operator Y6 immediately without
conditional vertices) α67 = 1, as the product of an empty set of variables is equal to
one.

4.1.3 Value of ASM at the sequence of vectors. Denote all possible L-component
vectors of the logical conditions x1, …,xL by ∆1, …,∆2L and define the execution of an
ASM on any given sequence of vectors ∆1, …,∆mq beginning from the initial operator
Yb. We will demonstrate this procedure by means of ASM G1 in Fig. 5 and the
sequence (2) containing eight vectors ∆1, …,∆8:

ASM G1 in Fig. 5 contains logical variables x1,…,x7 and operators Yb ,Y1, …,Y8,Ye. Now
let us find the sequence of operators which would be implemented, if we
consecutively, beginning from Yb, give variables the values from these vectors. We
suppose that the values of logical conditions can be changed only during an execution
of operators.

Step 1. Write the initial operator

Yb.

Step 2. Let logical variables x1,…,x7 take their values from vector ∆1. From the set of
the transition functions αb1,…, αb8, αbe we choose such a function αbt that αbt(∆1) = 1.
In our example for the operator Yb, the following transition functions are not
identically equal to zero:

αb5 = x1 x2 x3; αb6 = x1 x2 x'3; αb1 = x1 x'2; αb2 = x'1.

We will call such functions non-trivial transition functions to distinguish them from the
trivial functions, which are identically equal to zero. Function αij is trivial if there is no
path from operator Yi to operator Yj. In the example at this step, we choose the
function αb1, since only αb1 is equal to one on the first vector ∆1:

αb1 (∆1) = 1.

Write Y1 to the right of Yb:

YbY1.

 x1 x2 x3 x4 x5 x6 x7

∆1 = 1 0 1 0 1 1 1
∆2 = 0 1 1 0 1 0 0
∆3 = 1 0 1 0 0 1 0
∆4 = 0 1 0 0 0 0 1 (2)
∆5 = 1 1 0 1 1 1 0
∆6 = 1 1 0 0 1 0 1
∆7 = 0 1 1 1 0 0 0
∆8 = 0 1 0 1 0 0 1

70 – Logic and System Design

Step 3. Let x1,…,x7 take their values from vector ∆2. From the set of the transition
functions α11,…, α18, α1e we choose non-trivial functions

α14 = x4 x1; α17 = x4 x'1; α12 = x'4
and among them – the only function α12 (∆2) = 1. Write Y2 to the right of YbY1:

YbY1Y2.

The computational process for the given sequence of vectors may reach its end in two
cases:

1. The final vertex “End” is reached. In this case, the last operator is Ye. The
number of operators in the operator row (without Yb and Ye) is less or equal (if
we reached the final vertex with the last vector) to the number of vectors;

2. The vectors are exhausted but we have not yet reached the final vertex. In this
case, the number of operators in the operator row is equal to the number of
vectors.

In our example, we reached the final vertex “End” at the seventh vector

∆7 = 0 1 1 1 0 0 0

and we get the row
 Yb Y1 Y2 Y4 Y2 Y3 Y8 Ye. (3)

The operator row thus obtained is the value of the ASM G1 for the given sequence of
vectors (2).

4.2 Synthesis of Mealy FSM

We will use Algorithmic state machines to describe the behavior of digital systems,
mainly of their control units. But if we must construct a logic circuit of the control
unit we should use a Finite state machine (FSM). We will consider methods of
synthesis of FSM Mealy, Moore and their combined model implementing a given ASM,
with hardly any constrains on the number of inputs, outputs and states.

4.2.1 Construction of a marked ASM. As an example we will use ASM G1 in Fig. 6.
A Mealy FSM implementing given ASM may be constructed in two stages:

Stage1. Construction of a marked ASM;

Stage 2. Construction of a state diagram (state graph).

At the first stage, the inputs of vertices following operator vertices are marked by
symbols a1, a2, …, aM as follows:

1. Symbol a1 marks the input of the vertex following the initial vertex “Begin” and
the input of the final vertex “End”;

2. Symbols a2, …, aM mark the inputs of all vertices following operator vertices;
3. Vertex inputs are marked only once;
4. Inputs of different vertices, except the final one, are marked by different

symbols.

Marked ASM G1 in Fig. 6 is a result of the first step. Symbols a1, …, a6 are used to
mark this ASM. Note, that we mark the inputs not only of conditional vertices but
of operator vertices as well (see mark a3 at the input of the vertex with operator
Y7). It is important that each marked vertex follows an operator vertex.

Chapter 4 Algorithmic state machines and finite state machines – 71

Figure 6. ASM G1 marked for the Mealy FSM synthesis

4.2.2 Transition Paths. At the second stage, we will consider the following paths in
the marked ASM:
 sgmmRmm aYxxa ~...~

1 (P1)

 11

~...~ axxa mmRmm (P2)

We call these paths transition paths. Thus, the path P1 proceeds from am to as (am = as

is also allowed) and contains only one operator vertex at the end of this path. The
path P2 proceeds from am only to a1 without operator vertex. Here, mrmr xx =~ , if on

the transition path we leave the conditional vertex with mrx via output ‘1’ and

mrmr xx '~ = if we leave it via output ‘0’. If Rm = 0 on the path P1, two operator vertices
follow one after another and this path turns into

sgm aYa .
There are sixteen transition paths in the marked ASM G2 in Fig. 6:

Note, that the path a2 x4x'1 a3 doesn’t correspond to the transition path P1 (the
operator vertex is absent on the path) and to transition path P2 (it isn’t a path to a1).
Thus, it isn’t a transition path and we should go on to get the path a2 x4x'1 Y7 a6. For
the same reason, paths a4 x'5x'1 a3 and a6 x'6 a3 are not the transition paths either.

a1 x1x2x3 Y5 a2

a1 x1x2x'3 Y6 a3

a1 x1x'2 Y1 a2

a1 x'1 Y2 a4

a2 x4x1 Y4 a2

a2 x4x'1 Y7 a6

a2 x'4 Y2 a4

a3 Y7 a6

a4 x5 Y3 a5

a4 x'5x1 Y4 a2

a4 x'5x'1 Y7 a6

a5 x6 Y4 a2

a5 x'6x7 Y8 a1

a5 x'6x'7 a1

a6 x6 Y6 a1

a6 x'6 Y7 a6

72 – Logic and System Design

4.2.3 Graph of FSM. Next we construct a graph (state diagram) of FSM Mealy with
states (marks) a1, …, aM, obtained at the first stage. We have six such states a1, …, a6
in our example. Thus, the FSM graph contains as many states as the number of
marks we get at the previous stage. Now we should define transitions between these
states.

FSM has a transition from state am to state as with input X(am, as) and output Yg (see
the upper subgraph in Fig. 7) if, in ASM, there is transition path P1

sgmRmm aYxxa
m

~...~
1 .

Here X(am, as) is the product of logical conditions written in this path:
X(am, as) = mmRm xx ~...~

1 .

In exactly the same way, for the path sgm aYa we have a transition from state am to
state as with input X(am, as) = 1 and output Yg, as the product of an empty set of
variables is equal to zero. If, for a certain r (r = 1, …, Rm), symbol xmr (or x'mr) occurs
several times on the transition path, all symbols xmr (x'mr) but one are deleted; if for a
certain r (r = 1, …, Rm), both symbols xmr and x'mr occur on the transition path, this
path is removed. In such a case X(am, as) = 0.

For the second transition path P2, FSM transits from state am to the initial state a1
with input X(am, a1) and output Y0 (see the lower subgraph in Fig. 7). Y0 is the
operator containing an empty set of microoperations.

Figure 7. Subgraphs for transition paths P1 and P2

As a result, we obtain a Mealy FSM with as many states as the number of marks we
used to mark the ASM in Fig. 6. The state diagram of the Mealy FSM is shown in Fig.
8.

Figure 8. The state diagram of the Mealy FSM

4.2.4 How not to loose transition paths. Sometimes, if ASM contains many
conditional vertices, it is difficult not to loose one or several transition paths. Here

Chapter 4 Algorithmic state machines and finite state machines – 73

we give a very simple algorithm to resolve this problem. This algorithm has only
two steps.

1. Find the first transition path leaving each conditional vertex through output

'1'. For subgraph of ASM in Fig. 9 we will get the following first path from state
a2:

a2 x1 x2 x5 Y6 a3.

2. Invert the last non-inverted variable in the previous path, return to ASM and
continue the path (if it is possible) leaving each conditional vertex through
output '1'. To construct the second path, we should invert variable x5. We
cannot continue because we reached an operator vertex:

a2 x1 x2 x'5 Y2 a3.

We should construct paths in the same manner until all variables in a transition path
will be inverted. For our example, we will get the following paths:

Figure 9. Subgraph of ASM

4.2.5 Transition tables of Mealy FSM. The graph of Mealy FSM in Fig. 8 has only 6
states and 16 arcs. Practically, however, we must construct FSMs with tens of states
and more than one-two hundreds of transitions. In such a case, it is difficult to use a
graph, so we will present it as a table. Table 1 for the same Mealy FSM has five
columns:

• am – a current state;
• as – a next state;
• X(am,as) – an input signal;
• Y(am,as) – an output signal;
• H – a number of line.

a2 x1 x'2 x5 x6 Y3 a4;
a2 x1 x'2 x5 x'6 x7 x4 Y5 a5;
a2 x1 x'2 x5 x'6 x7 x'4 Y7 a4;
a2 x1 x'2 x5 x'6 x'7 Y5 a5;

a2 x1 x'2 x'5 Y2 a3;
a2 x'1 x3 x7 x4 Y5 a5;
a2 x'1 x3 x7 x'4 Y7 a4;
a2 x'1 x3 x'7 Y5 a5;

a2 x'1 x'3 x6 Y3 a4;
a2 x'1 x'3 x'6 x7 x4 Y5 a5;
a2 x'1 x'3 x'6 x7 x'4 Y7 a4;
a2 x'1 x'3 x'6 x'7 Y5 a5.

74 – Logic and System Design

Actually, immediately from ASM, we should write transition paths, one after another,
into the transition table. In Table 1, ~xt is used instead of x't for the inversion of xt.

Now we will discuss what kind of FSM we have received. Our ASM G1 in Fig. 6 which
we used to construct FSM S1 in Table 1, has seven logical conditions and ten
microoperations. FSM S1 has seven binary inputs in the column X(am,as) and ten
binary outputs in the column Y(am,as). The input signal of this FSM (Fig. 10) is the 7-
component vector, the output signal of this FSM is the 10-component vector.

Table 1. Direct transition table of Mealy FSM S1

Figure 10. FSM as a black box

Let us take one of the rows from Table 1, for example row 3, and look at the behavior
of FSM presented in this row. Our FSM transits from state a1 into state a2 when the
product x1 x'2 = 1. It is clear that such a transition takes place for any input vector in
which the first component is equal to 1, the second component is equal to 0. The
values of other components are not important. Thus, we can say that the third row of
Table 1 presents transitions from a1 with any vector which is covered by cube
10xxxxx. In other words, this row presents not one but 25 = 32 transitions. In exactly
the same way, the first and the second row present 16 transitions, the fourth row – 64
transitions and the eighth row – 128 transitions.

Two microoperations y1, y2, written in the third row of the output column, mean that
two components y1 and y2 are equal to 1 and others are equal to 0 (y1= y2 =1; y3 = y4 =
… = y10 =0) in the output vector. I remind you that if the operator, written in the
operator vertex of some ASM, contains microoperations ym, yn, only these
microoperations are equal to 1 and other microoperations are equal to 0 during
implementation of this operator.

Let us compare Table 1 with a classical FSM representation in Table 3.7 from Chapter
3. If we would like to present our FSM with six states a1, …, a6 and seven inputs x1,
…, x7 in the classical table, this table will have about 6x27 rows, because each row of

am as X(am,as) Y(am,as) H
a1 a2

a3

a2

a4

x1x2x3

x1x2~x3

x1~x2

~x1

y1y3

y6y7

y1y2

y4

1
2
3
4

a2 a2

a6

a4

x4x1

x4~x1

~x4

y8y9

y3y4

y4

5
6
7

a3 a6 1 y3y4 8
a4 a5

a2

a6

x5

~x5x1

~x5~x1

y5y6y7

y8y9

y3y4

9
10
11

a5 a2

a1

a1

x6

~x6x7

~x6~x7

y8y9

y3y6y10

-

12
13
14

a6 a1

a6
x6

~x6
y6y7

y3y4
15
16

Chapter 4 Algorithmic state machines and finite state machines – 75

this table describes only one FSM transition. In our Table 1 from this Chapter, we
have only 16 rows because each row of such table presents lot of transitions.

The specific feature of such FSM is the multiplicity of inputs in the column X(am,as),
maybe several tens or even hundreds, but each product in one row contains only few
variables from the whole set of input variables – as a rule, not more than 8 – 10
variables. It means that each time the values of the output variables depend only on
the values of a small number of the input variables. Really, if, for example, FSM has
30 input variables, the total number of input vectors is equal to 230, and if each time
the values of the output variables depended on the values of all the input variables,
no designer could either describe or construct such an FSM.

Let us briefly discuss the correspondence between FSM S1 (Table 1) and ASM G1 (Fig.
6) which we used to construct FSM S1. In Section 4.1.3 we got the value of ASM G1

Yb Y1 Y2 Y4 Y2 Y3 Y8 Ye
for some random sequence of vectors (2) of logical conditions:

Now we will find the response of FSM S1 in the initial state a1 to the same sequence of
input vectors:

State sequence a1 a2 a4 a2 a4 a5 a1
Input sequence ∆1 ∆2 ∆3 ∆4 ∆5 ∆6
Response y1y2 y4 y8y9 y4 y5y6y7 y3y6y10 (4)
Microinstructions Y1 Y2 Y4 Y2 Y3 Y8

Let FSM be in the initial state a1 with the first vector ∆1 = 1010111 at its input. To
determine the next state and the output we should find such a row in the array of
transitions from a1 (Table 1) that the product X(am,as), written in this row, be equal to
one at input vector ∆1. Since x1x′2(∆1) = 1 (the third row), FSM S1 produces output
signal y1y2 = Y1 and transits into state a2. Similarly, we find that x′4(∆2) is equal to one
at one of transitions from state a2 and FSM transits to the state a4 with the output
signal y4 = Y2 (see row 7 in Table 1) etc. As a result, we get the response of FSM S1 in
the initial state a1 to the input sequence ∆1, …, ∆6 in the fourth row of sequence (4).

As seen from this row, the FSM response is equal to the value of ASM G1 for the same
input sequence. Note, that we consider here only the FSM response until its return to
the initial state a1 and this response Y1 Y2 Y4 Y2 Y3 Y8 corresponds to the value of ASM
G1 between the operator Yb (vertex "Begin") and the operator Ye (vertex "End").

Let us define FSM S as implementing ASM G if the response of this FSM in the state a1

to any input sequence (until its return to the state a1) is equal to the value of ASM G

 x1 x2 x3 x4 x5 x6 x7

∆1 = 1 0 1 0 1 1 1
∆2 = 0 1 1 0 1 0 0
∆3 = 1 0 1 0 0 1 0
∆4 = 0 1 0 0 0 0 1
∆5 = 1 1 0 1 1 1 0

∆6 = 1 1 0 0 1 0 1
∆7 = 0 1 1 1 0 0 0
∆8 = 0 1 0 1 0 0 1

76 – Logic and System Design

for the same input sequence. From the considered method of synthesis of Mealy FSM
S1 from ASM G1 it follows that this FSM S1 implements ASM G1.

4.2.6 Synthesis of Mealy FSM logic circuit. As in Chapter 3, we will construct a
Mealy FSM logic circuit with the structure presented in Fig. 11. To design this circuit
we will use an FSM structure table (Table 2). This table was constructed from the
direct transition table (Table 1) by adding three additional columns:

• K(am) – a code of the current state;
• K(as) – a code of the next state;
• D(am,as) – an input memory function.

Figure 11. The structure for the Mealy FSM logic circuit

Table 2. Structure table of FSM S1

am K(am) as K(as) X(am,as) Y(am,as) D(am,as) H
a1 001 a2

a3

a2

a4

000
101
000
010

x1x2x3

x1x2~x3

x1~x2

~x1

y1y3

y6y7

y1y2

y4

–
d1d3

–

d2

1
2
3
4

a2 000 a2

a6

a4

000
100
010

x4x1

x4~x1

~x4

y8y9

y3y4

y4

–
d1

d2

5
6
7

a3 101 a6 100 1 y3y4 d1 8
a4 010 a5

a2

a6

110
000
100

x5

~x5x1

~x5~x1

y5y6y7

y8y9

y3y4

d1d2
–

d1

9
10
11

a5 110 a2

a1

a1

000
001
001

x6

~x6x7

~x6~x7

y8y9

y3y6y10

-

–
d3

d3

12
13
14

a6 100 a1

a6
001
100

x6

~x6
y6y7

y3y4
d3

d1
15
16

To encode FSM states we constructed Table 3 where p(as) is the number of
appearances of each state in the next state column as in Table 2. The algorithm for
state assignment is absolutely the same as in Chapter 3. First, we use the zero code
for state a2 with max p(a2) = 5. Then codes with one '1' are used for states a6, a1, a4
with the next max appearances and, finally, two codes with two 'ones' are used for the
left states a3 and a5.

To fill column D(am,as) it is sufficient to write there column K(as) because the input of
D flip-flop is equal to its next state. However, here we use the same notation as in
column Y(am,as) and write dr in the column D(am,as) if dr is equal to 1 at the

Chapter 4 Algorithmic state machines and finite state machines – 77

corresponding transition (am,as) – equal to 1 in column K(as). After that, the shaded
part of Table 2 is something like a truth table with input variables t1, t2, t3, x1, …, x7 in
the columns K(am) and X(am,as) and output variables (functions) y1, …, y10, d1, d2, d3 in
the columns Y(am,as) and D(am,as).

Table 3. State assignment

as p(as) t1 t2 t3

a1 3 0 0 1
a2 5 0 0 0
a3 1 1 0 1
a4 2 0 1 0
a5 1 1 1 0
a6 4 1 0 0

Let Am be a product, corresponding to the state code K(am), and Xh be the product of
input variables, written in the column X(am,as) in the h row. For example, from the
column K(am): K(a1) = 001, then A1 = t'1t'2t3; K(a2) = 000, then A2 = t'1t'2t'3; K(a3) = 101,
then A3 = t1t'2t3 etc. Immediately from the column X(am,as) we get:

X1 = x1x2x3; X2 = x1x2x'3; X6 = x4x'1; X8 = 1; X16 = x'6.
We call the term

eh = Am Xh

the product corresponding to the h row of the FSM structure table if am is the current
state in this row. For example, from Table 2, we get:

e1 = t'1t'2t3 x1x2x3;
e2 = t'1t'2t3 x1x2x'3;
e6 = t'1t'2t'3 x4x'1;
e8 = t1t'2t3;
e16 = t1t'2t'3 x'6.

Let H(yn) is the set of rows with yn in the column Y(am,as). Then, as in the truth table:

.
)(

∑
∈

=
nyHh

hn ey

For example, y6 is written in rows 2, 9, 13, 15 in the column Y(am,as). Then

y6 = e2 + e9 + e13 + e15 = t'1t'2t3x1x2x'3 + t'1t2t'3 x5 + t1t2t'3 x'6x7 + t1t'2t'3 x6.

In exactly the same way, if H(dr) is the set of rows with dr in the column D(am,as), then

.
)(

∑
∈

=
rdHh

hr ed

For example, d2 is written in rows 4, 7, 9 in the column D(am,as). Then

d2 = e4 + e7 + e9 = t'1t'2t3 x'1+ t'1t'2t'3 x'4 + t'1t2t'3 x5.

Thus, immediately from Table 1 we can get expressions for outputs of circuit “Logic”
in Fig. 11:

y1 = e1 + e3 = t'1t'2t3 x1x2x3 + t'1t'2t3 x1x'2;

78 – Logic and System Design

y2 = e3 = t'1t'2t3 x1x'2;

y3 = e1 + e6 + e8 + e11 + e13 + e16 = t'1t'2t3 x1x2x3 + t'1t'2t'3 x4x'1 + t1t'2t3 +
 + t'1t2t'3 x'5x'1 + t1t2t'3 x'6x7 + t1t'2t'3 x'6;
. . .
y10 = e13 = t1t2t'3 x'6x7;

d1 = e2 + e6 + e8 + e9 + e11 + e16 = t'1t'2t3 x1x2x'3 + t'1t'2t'3 x4x'1 + t1t'2t3 +
 + t'1t2t'3 x5 + t'1t2t'3 x'5x'1 + t1t'2t'3 x'6;
d2 = e4 + e7 + e9 = t'1t'2t3 x'1+ t'1t'2t'3 x'4 + t'1t2t'3 x5;
d3 = e2 + e13 + e14 + e15 = t'1t'2t3 x1x2x'3 + t1t2t'3 x'6x7 + t1t2t'3 x'6x'7 + t1t'2t'3 x6.

How many different products are there in these expressions? The answer is very
simple – only sixteen, because we have 16 rows in Table 2 and only one product
corresponds to one row. Thus, we should not write any expressions but can design
the logic circuit immediately from the structure table. For that, it is sufficient to
construct H AND-gates, one for each row, and N+R OR-gates, one for each output
variable yn (n = 1, …, 10 in our example) and one for each input memory function dr (r
= 1, 2, 3 in our example). The logic circuit of Mealy FSM is shown in Fig. 12. We have
constructed 16 AND-gates, as there are 16 rows in its structure table. The number of
OR-gates in this circuit is less than the number of input memory functions and
output functions. Really, if yn or dr (y2 and y10 in our example) are written only in one
row of the structure table, it is not necessary to construct OR-gate for such yn or dr,
we can get these signals from the corresponding AND-gates. Moreover, we have
constructed one OR-gate for y8 and y9 since these outputs are always together in the
structure table of Mealy FSM S1.

4.2.7 ASM with waiting vertices. In this section, we will show that the algorithm for
FSM synthesis does not change if ASM contains waiting vertices. In a waiting vertex,
one of its outputs is connected with its input (see the ASM subgraph in Fig. 13). Let
us find all transition paths from the state a8. The first two are trivial – see the first two
rows in Table 4.

To find the next path we should invert the variable x7. The output '0' for x7 brings us
to the input of this conditional vertex. So, the next paths will be:

a8 ~x7 x7 x12 (y11) a13;
a8 ~x7 x7 ~x12 (y23, y29) a17.

The products of input variables for both of these paths are equal to zero (x'7 x7 = 0), so
FSM cannot transit from the state a8 to any other state when x7 = 0. If FSM cannot
transit into any other state, it remains in the same state a8 or, we can say, it transits
from a8 to a8 with X(a8, a8) = x'7. No output variables are equal to '1' at this transition,
so we have '–' in the column Y(am, as) in the third row.

The next example (Fig.14) presents a general case. The only difference from the
previous example – the waiting vertex is in the middle of the path. After the third path
in Table 5 we should invert variable x11 and again return to the input of the
conditional vertex with x11. We can construct the following transitions paths:

a10 ~x4 ~x11 x11 x27 (y33) a22;
a10 ~x4 ~x11 x11 ~x27 (y7, y31) a17.

Chapter 4 Algorithmic state machines and finite state machines – 79

The products for both of these paths are equal to zero. So, when x4 = 0, we reached a
waiting vertex with condition x11. If x11 = 0 (return to the input), FSM transits from
state a10 to state a10 (remains in this state) with input x'4 x'11 and each output variable
is equal to zero (the forth row in Table 5).

Figure 12. The logic circuit for Mealy FSM S1

1

x12

x7

a8

0

y11
1

y23 y29

0a13

a17

Figure 13. Subgraph G1 with waiting vertex

Table 4. Transitions for subgraph G1

am as X(am,as) Y(am,as) H
. . .

a8 a13

a17

a8

x7x12

x7~x12
~x7

y11

y23y29

–

80 – Logic and System Design

4.3 Synthesis of Moore FSM

As an example, we will use ASM G1 in Fig. 15. A Moore FSM, implementing given ASM,
can be constructed in two stages:

 Stage 1. Construction of a marked ASM;
 Stage 2. Construction of an FSM transition table.

At the first stage, the vertices "Begin", "End" and operator vertices are marked by
symbols a1, a2, …, aM as follows:

1. Vertices "Begin" and "End" are marked by the same symbol a1;

2. Operator vertices are marked by different symbols a2, …, aM;

3. All operator vertices should be marked.

Thus, while synthesizing a Moore FSM, symbols of states do not mark inputs of
vertices following the operator vertices (as in the Mealy FSM) but operator vertices
themselves. The number of marks is T+1, where T is the number of operator vertices
in the marked ASM. In our example (Fig. 15), we need marks a1, …, a10 for ASM G1.

We will find the following transition paths in the marked ASM:

smRmm axxa
m

~...~
1 .

Thus, the transition path is the path between two operator vertices, containing Rm
conditional vertices. Here, as above in the case of Mealy FSM, mrmr xx =~ , if in the

transition path, we leave the conditional vertex with mrx via output ‘1’ and mrmr xx '~ =

if we leave the vertex with mrx via output ‘0’. If Rm = 0 in such a path, there are no

conditional vertices between two operator vertices, and this path turns into smaa .

Figure 14. Subgraph G2 with a waiting vertex

Table 5. Transitions for subgraph G2

am as X(am,as) Y(am,as) H
. . .

a10 a16

a22

a17

a10

x4

~x4x11x27

~x4x11~x27

~x4~x11

y15y27

y33

y7y31

–

Chapter 4 Algorithmic state machines and finite state machines – 81

Figure 15. ASM G1 marked for the Moore FSM synthesis

At the second stage we construct a transition table (or the state diagram) of the Moore
FSM with states (marks) a1, …, aM, obtained at the first stage. We have ten such states
a1, …, a10 in our example. Thus, the FSM contains as many states as the number of
marks we get at the previous stage. Now we should define transitions between these
states.

Thus, a Moore FSM has a transition from state am to state as with input X(am, as) (see

the upper subgraph in Fig. 16) if, in ASM, there is a transition path smRmm axxa
m

~...~
1 .

Here X(am, as) is a product of logical conditions written in this path: X(am, as) =

mmRm xx ~...~
1 . In exactly the same way, for the path smaa (see the lower subgraph in Fig.

16) we have a transition from state am to state as with input X(am, as) = 1, because the
product of an empty set of variables is equal to zero. If am marks the operator vertex
with operator Yt, then λ(am) = Yt, i.e. we identify the operator Yt written in the operator
vertex with this state am.

Figure 16. Subgraphs to illustrate transitions in the Moore FSM

The transition table for Moore FSM S2, thus constructed, is presented in Table 6. The
outputs are written in column Y(am) immediately after the column with the current
states. To design the logic circuit for this FSM we will use the structure presented in
Fig. 17. It consists of two logic blocks (Logic1 and Logic2) and memory block with four
D flip-flops. Logic1 implements input memory functions, depending on flip-flop

82 – Logic and System Design

outputs t1, …, t4 (feedback) and input variables x1, …, x7. Logic2 implements output
functions, depending only on flip-flop outputs t1, …, t4.

Table 6. The transition table of Moore FSM S2

am Y(am) as X(am, as) h
a1 – a4

a3

a2

a5

x1x2x3

x1x2~x3

x1~x2

~x1

1
2
3
4

a2 y1y2 a7

a9

a5

x4x1

x4~x1

~x4

5
6
7

a3 y6y7 a9 1 8
a4 y1y3 a7

a9

a5

x4x1

x4~x1

~x4

9
10
11

a5 y4 a6

a7

a9

x5

~x5x1

~x5~x1

12
13
14

a6 y5y6y7 a7

a8

a1

x6

~x6x7

~x6~x7

15
16
17

a7 y8y9 a7

a9

a5

x4x1

x4~x1

~x4

18
19
20

a8 y3y6y10 a1 1 21
a9 y3y4 a10

a9
x6

~x6
22
23

a10 y6y7 a1 1 24

To encode FSM states we constructed Table 7 where p(as), as before, is the number of
appearances of each state in the next state column as in Table 6. The algorithm for
state assignment is absolutely the same as in the case of Mealy FSM. First, we use
the zero code for state a9 with max p(a9) = 6. Then codes with one '1' are used for
states a7, a5, a1 and a2 with the next max appearences and, finally, five codes with two
'ones' are used for the left five states a3, a4, a6, a8 and a10.

Table 8 is the structure table of the Moore FSM S2. Its logic circuit is constructed in
Fig. 18. In this circuit, Am is a product of state variables for the state am (m = 1, …,
10). As above we construct one AND-gate for one row of the structure table, but we
need not construct the gates for rows 6, 8, 10, 14, 19 and 23, as all input memory
functions are equal to zero in these rows (see the column D(am,as) in Table 8). Neither

Figure 17. Moore FSM structure

Table 7. State assignment

as p(as) t1t2t3t4
a1 3 0100
a2 1 0010
a3 1 1001
a4 1 0110
a5 4 0001
a6 1 1100
a7 5 1000
a8 1 0011
a9 6 0000
a10 1 0101

Chapter 4 Algorithmic state machines and finite state machines – 83

Table 8. The structure table of the Moore FSM S2

am Y(am) K(am) as K(as) X(am,as) D(am,as) h
a1 – 0100 a4

a3

a2

a5

0110
1001
0010
0001

x1x2x3

x1x2~x3

x1~x2

~x1

d2d3

d1d4

d3

d4

1
2
3
4

a2 y1y2 0010 a7

a9

a5

1000
0000
0001

x4x1

x4~x1

~x4

d1

–

d4

5
6
7

a3 y6y7 1001 a9 0000 1 – 8
a4 y1y3 0110 a7

a9

a5

1000
0000
0001

x4x1

x4~x1

~x4

d1

–

d4

9
10
11

a5 y4 0001 a6

a7

a9

1100
1000
0000

x5

~x5x1

~x5~x1

d1d2

d1

–

12
13
14

a6 y5y6y7 1100 a7

a8

a1

1000
0100
0011

x6

~x6x7

~x6~x7

d1

d2

d3d4

15
16
17

a7 y8y9 1000 a7

a9

a5

1000
0000
0001

x4x1

x4~x1

~x4

d1

–

d4

18
19
20

a8 y3y6y10 0011 a1 0100 1 d2 21
a9 y3y4 0000 a10

a9
0101
0000

x6

~x6
d2d4

–
22
23

a10 y6y7 0101 a1 0100 1 d2 24

x3
x2
x1
A1

x3
x2
x1
A1

x2
x1
A1

x1
A1

x7
x6
A6

x4
x1
A7

x4
A7

x6
A9

A8

A10

A10

A9

A8

A3

A2

A1

1D
C1

1D
C1

1D
C1

1D
C1

d1

Clock

d2

d3

d4

t1

t2

t3

t4

y10

y2

A9
A8
A4 y3

A4
A2 y1

A9
A5 y4

A8
A6
A3

y6

A10

A10
A6
A3 y7

...
...

...
...

...

...

e7
e11

e22

e13

e1

e2

e4

e3

e9
e5

e17

e12

e18

e20

e12

e15

e16

&

&

&

&

&

&

&

&

1

1

1

1

&

&

&

&

&

&

1

1

1

1

1

Figure 18. The logical circuit for the Moore FSM S2

84 – Logic and System Design

do we construct the gates for rows 21 and 24, since there are no input variables in
the corresponding terms e21 and e24: e21 = A8 and e24 = A10 and we use A8 and A10
directly as inputs in OR-gate for d2.

4.4. Synthesis of Combined FSM model
In this book we will use two kinds of transition tables – direct and reverse. In a direct
table (Table 9), transitions are ordered according to the current state (the first column
in this table) – first we write all transitions from the state a1, then from the state a2 ,
etc. In a reverse table (Table 10), transitions are ordered according to the next state
(the second column in this table) – first we write all transitions to the state a1, then to
the state a2 , etc.

Table 9. Direct transition table of Mealy FSM S3

am as X(am,as) Y(am,as) h

a1 a2 x6 y8y9 1
a1 a5 ~x6*x7 y6 2
a1 a5 ~x6*~x7 y3y6y10 3
a2 a2 x4*x1 y1y2 4
a2 a6 x4*~x1 y3y4 5
a2 a4 ~x4 y4 6
a3 a6 1 y3y5 7
a4 a1 x5 -- 8
a4 a2 ~x5*x1 y8y9 9
a4 a6 ~x5*~x1 y3y4 10
a5 a2 x1*x2*x3 y1y3 11
a5 a3 x1*x2*~x3 y1y4 12
a5 a2 x1*~x2 y1y2 13
a5 a4 ~x1 y4 14
a6 a5 x6 y6y7 15
a6 a6 ~x6 y3y5 16

Now we will discuss the transformation of Mealy FSM into Combined FSM and
synthesis of its logic circuit. I remind here that Combined FSM has two kinds of
output signals:

1. Signals depending on the current state and the current input (as in the Mealy
model);

2. Signals depending only on the current state (as in the Moore model);

As an example, we use the transition table of Mealy FSM in Table 9. Our first step is
to construct a reverse table for this FSM (Table 10).

Fig. 19,a illustrates all transitions into state a5 of Mealy FSM from Table 10. Here we
have three transitions with different outputs but all of them contain the same output
variable y6. So, we can identify this output variable y6 with the state a5 as a Moore
signal (see Fig. 19,b).

Figure 19. Transformation from Mealy FSM to Combined FSM

Chapter 4 Algorithmic state machines and finite state machines – 85

Table 10. Reverse transition table of Mealy FSM S3

am as X(am,as) Y(am,as) H

a4 a1 x5 -- 1
a2 a2 x4*x1 y1y2 2
a1 a2 x6 y8y9 3
a4 a2 ~x5*x1 y8y9 4
a5 a2 x1*x2*x3 y1y3 5
a5 a2 x1*~x2 y1y2 6
a5 a3 x1*x2*~x3 y1y4 7
a2 a4 ~x4 y4 8
a5 a4 ~x1 y4 9
a1 a5 ~x6*x7 y6 10
a1 a5 ~x6*~x7 y3y6y10 11
a6 a5 x6 y6y7 12
a4 a6 ~x5*~x1 y3y4 13
a2 a6 x4*~x1 y3y4 14
a3 a6 1 y3y5 15
a6 a6 ~x6 y3y5 16

After this, the transformation of Mealy FSM into Combined model is trivial. Let us
return to the reverse Table 10 and begin to construct the reverse transition table of
Combined FSM S4 (Table 11 In Table10, we look at the transitions to each state,
beginning from transitions to state a1. Let Ys be the set of output variables at the
transitions into state as (Y5 = {y3, y6, y7, y10} in Fig19,a or in Table 10) and YsMoore be
the subset of common output variables at all transitions into as (Y5Moore = {y6} in
Fig19,a or in Table 10). Then, in Table 11, we delete YsMoore from the column Y(am,as) at
each row with transition to as and write YsMoore next to as in the column Y(as). In our
example:

Y1Moore = Y2Moore = Ø; Y3Moore = { y1, y4}; Y4Moore = { y4};
Y5Moore = { y6}; Y6Moore = { y3}.

Table 11. Reverse transition table of Combined FSM S4

am as Y(as) X(am,as) Y(am,as) H

a4 a1 -- x5 -- 1
a1 a2 -- x6 y8y9 2
a2 a2 -- x4*x1 y1y2 3
a4 a2 -- ~x5*x1 y8y9 4
a5 a2 -- x1*x2*x3 y1y3 5
a5 a2 -- x1*~x2 y1y2 6
a5 a3 y1y4 x1*x2*~x3 -- 7
a2 a4 y4 ~x4 -- 8
a5 a4 y4 ~x1 -- 9
a1 a5 y6 ~x6*~x7 y3y10 10
a1 a5 y6 ~x6*x7 -- 11
a6 a5 y6 x6 y7 12
a2 a6 y3 x4*~x1 y4 13
a3 a6 y3 1 y5 14
a4 a6 y3 ~x5*~x1 y4 15
a6 a6 y3 ~x6 y5 16

86 – Logic and System Design

Now we consider the design of the logic circuit of Combined FSM. For this, let us
return to the Mealy FSM S1 with direct transition Table 1. Its reverse transition table
is presented in Table 12. Immediately from this table we construct the direct
transition table of Combined FSM S1 (Table 13). To construct the logic circuit for this
FSM we should encode the states and construct FSM structure table. But before state
assignment we will make one more step.

Table 12. Reverse transition table of Mealy FSM S1

Unlike the transition table of the Mealy FSM, Table 13 contains many empty entries
in the column Y(am,as). It means that all output variables are equal to zero in these
rows. If, after state assignment, we get an empty entry in column D(am,as) for such a
row, we shouldn’t construct a product for this row, because all output variables and
input memory functions are equal to zero in this row. Now we will try to maximize the
number of such rows in the structure table of S5.

Table 13. Direct transition table of Combined FSM S5

Table 13 contains one row with empty entry in the column Y(am,as) for the next states
a1 (row 14) and a3 (row 2), two rows for a4 (rows 4 and 7), one row for a5 (row 9) and

am as X(am,as) Y(am,as) H
a5

a5

a6

a1

~x6x7

~x6~x7

x6

y3y6y10

-
y6y7

1
2
3

a1

a1

a2

a4

a5

a2

x1x2x3

x1~x2

x4x1

~x5x1

x6

y1y3

y1y2

y8y9

y8y9

y8y9

4
5
6
7
8

a1 a3 x1x2~x3 y6y7 9
a1

a2
a4 ~x1

~x4
y4

y4
10
11

a4 a5 x5 y5y6y7 12
a2

a3

a4

a6

a6

x4~x1

1
~x5~x1

~x6

y3y4

y3y4

y3y4

y3y4

13
14
15
16

am Y(am) as X(am,as) Y(am,as) H
a1 --

--
--
--

a2

a3

a2

a4

x1x2x3

x1x2~x3

x1~x2

~x1

y1y3

-
y1y2

-

1
2
3
4

a2 --
--
--

a2

a6

a4

x4x1

x4~x1

~x4

y8y9

-
-

5
6
7

a3 y6y7 a6 1 - 8
a4 y4 a5

a2

a6

x5

~x5x1

~x5~x1

-
y8y9

--

9
10
11

a5 y5y6y7

a2

a1

a1

x6

~x6x7

~x6~x7

y8y9

y3y6y10

-

12
13
14

a6 y3y4 a1

a6
x6

~x6
y6y7

-
15
16

Chapter 4 Algorithmic state machines and finite state machines – 87

four rows for a6 (rows 6, 8, 11 and 16). This information is presented in the first two
columns of Table 14, z(as) is the number of empty entries in column Y(am,as) for the
next state as in Table 13. So, if we use zero code for states a1 or a3 or a5, we shouldn’t
construct a product for one row (z(a1) = z(a3) = z(a5) = 1), if we use zero code for state
a4 – for two rows (z(a4) = 2); but if we use zero code for state a6, we will construct four
product less (z(a6) = 4). Thus, we use code 000 for state a6 with max z(as). State
assignment for other states is presented in Table 15. We have used here the same
algorithm as we have used previously for Mealy and Moore models.

Table 16. Structure table of Combined FSM S5

am Y(am) K(am) as K(as) X(am,as) Y(am,as) D(am,as) H
a1 --

--
--
--

010 a2

a3

a2

a4

001
101
001
100

x1x2x3

x1x2~x3

x1~x2

~x1

y1y3

-
y1y2

-

d3

d1d3

d3

d1

1
2
3
4

a2 --
--
--

001 a2

a6

a4

001
000
100

x4x1

x4~x1

~x4

y8y9

-
-

d3

-
d1

5
6
7

a3 y6y7 101 a6 000 1 - - 8
a4 y4 100 a5

a2

a6

110
001
000

x5

~x5x1

~x5~x1

-
y8y9

-

d1d2
d3

-

9
10
11

a5 y5y6y7

110 a2

a1

a1

001
010
010

x6

~x6x7

~x6~x7

y8y9

y3y6y10

-

d3

d2

d2

12
13
14

a6 y3y4 000 a1

a6
010
000

x6

~x6
y6y7

-
d2

-
15
16

Table 16 is the structure table of Combined FSM S5. We have three kinds of output
variables here:

1. Only Mealy signals: y1, y2, y8, y9, y10. They are written in column Y(am,as) and
are not written in column Y(am) in Table 16;

2. Only Moore signals: y4, y5. They are written in the column Y(am) and are not
written in column Y(am,as) in Table 16;

3. Combined signals: (both Mealy and Moore type) y3, y6, y7. They are written in
both columns Y(am,as) and Y(am) in Table 16.

The logic circuit of FSM S5 is constructed in Fig. 20. In this circuit, Am is a product of
state variables for the state am (m = 1, …, 6). The left part of this circuit, exactly as in
the synthesis of the Mealy FSM logic circuit, implements input memory functions d1,
d2, d3 and Mealy signals y1, y2, y8, y9, y10. As above, we construct one AND-gate for
one row of the structure table, but we need not construct the gates for rows 6, 8, 11,

Table 14. Next states with zero
outputs

as z(as) t1 t2 t3

a1 1
a3 1
a4 2
a5 1
a6 4 0 0 0

Table 15. State assignment

as p(as) t1 t2 t3

a1 3 0 1 0
a2 5 0 0 1
a3 1 1 0 1
a4 2 10 0
a5 1 1 1 0
a6 4 0 0 0

88 – Logic and System Design

16 because all output variables and input memory functions are equal to zero in
these rows in the columns Y(am,as) and D(am,as) in Table 16. As in the Mealy case, we
do not construct OR gates for y2 and y10 since they appear only once in the column
Y(am,as).

Moore signals y4, y5 are constructed as in the synthesis of Moore FSM logic circuit.
Signal y4 appears twice near the states a4 and a6 in the column Y(am), so y4 = A4 + A6

and we construct OR gate for this signal. Output signal y5 appears only once in the
column Y(am) for the state a5, so we get it straight from A5: y5 = A5.

Combined signal y6 is written in rows 13 and 15 in the column Y(am,as) and near the
states a3 and a5 in the column Y(am), so

y6 = e13 + e15 + A3 + A5.

Exactly in the same way

y3 = e1 + e13 + A6; y7 = e15 + A3 + A5.

Figure 20. Logic circuit of Combined FSM S5

4.5. FSM decomposition

In this section, we will discuss a very simple model for FSM decomposition. As an
example, we use Mealy FSM S6 (Table 17) and a partition π on the set of its states:

π = {A1, A2, A3};
A1 = {a2, a3, a9}; A2 = {a4, a7, a8}; A3 = {a1, a5, a6}.

Chapter 4 Algorithmic state machines and finite state machines – 89

The number of component FSMs in the FSM network is equal to the number of blocks
in partition π. Thus, in our example, we have three component FSMs S1, S2, S3.

Let Bm is the set of states in the component FSM Sm. Bm contains the corresponding
block of the partition π plus one additional state bm. So, in our example:

S1 has the set of states B1 = {a2, a3, a9, b1};
S2 has the set of states B2 = { a4, a7, a8, b2};
S3 has the set of states B3 = { a1, a5, a6, b3}.

Table 17. Mealy FSM S6

am as X(am,as) Y(am,as) H

a1 a3 x1*x2*x3 y1y2 1
a1 a6 x1*x2*~x3 y2y12 2
a1 a1 x1*~x2 y1y2 3
a1 a5 ~x1 y1y2y12 4
a2 a2 x6 -- 5
a2 a3 ~x6 y3y5 6
a3 a3 x10 y3y5 7
a3 a9 ~x10*x4 y10y15 8
a3 a8 ~x10*~x4 y5y8y9 9
 a4 a6 x7 y13 10
 a4 a4 ~x7*x9 y13y18 11
 a4 a8 ~x7*~x9 y13y14 12
 a5 a6 x1 y16y17 13
 a5 a5 ~x1 y7y11 14
 a6 a1 x5 y1y2 15
 a6 a1 ~x5 y16y17 16
 a7 a2 x8 y14y18 17
 a7 a4 ~x8 y13y18 18
 a8 a7 x9 y4y6 19
 a8 a4 ~x9 y6 20
 a9 a9 x11*x6 y10y15 21
 a9 a2 x11*~x6 y5y8y9 22
 a9 a3 ~x11 y3y8y9 23

To construct a transition table for each component FSM we should define the
transitions between the states of these FSMs. For this, each transition between two
states ai and aj of Mealy FSM S6 from Table 17 should be implemented one after
another as one or two transitions in component FSMs. There are two possible cases:

1. In Mealy FSM S6, there is a transition between ai and aj (Fig. 21, left) and both
of these states are in the same component FSM Sm. In such a case, we will
have the same transition in this component FSM Sm (Fig. 21, right). It means
that we must rewrite the corresponding row from the table of FSM S6 into the
table of component FSM Sm.

Figure 21. Two states ai and aj are in the same component FSM

90 – Logic and System Design

2. Two states ai and aj are in different component FSMs (Fig. 22). Let ai be in the
component FSM Sm (ai ∈ Bm) and aj be in the component FSM Sp (aj ∈ Bp). In
such a case, one transition of FSM S6 should be presented as two transitions –
one in the component FSM Sm and one in the component FSM Sp:

• FSM Sm transits from ai into its additional state bm with the same input
Xh. At its output, we have the same output variables from set Yt plus
one additional output variable zj, where index j is the index of state aj

in the component FSM Sp.
• FSM Sp is in its additional state bp. It transits from this state into state

aj with input signal zj, that is an additional output variable in the
component FSM Sm. The output at this transition is Y0 – the signal with
all output variables being equal to zero.

Figure 22. Two states ai and aj are in the different component FSMs

Thus, the procedure for FSM decomposition is reduced to:
a) Copying the row

ai aj X(ai ,aj) Y(ai ,aj)

from the table of the decomposed FSM S to the table of the component FSM Sm
if both states ai and aj are the states of Sm;

b) Replacing the row

ai aj X(ai ,aj) Y(ai ,aj)

in the table of the decomposed FSM S by the row

ai bm X(ai ,aj) Y(ai ,aj) zj

in the table of the component FSM Sm, and by the row

bp aj zj --

in the table of the component FSM Sp, if ai is the state of Sm and aj is the state
of Sp.

As a result of decomposition of FSM S6, we obtain the network with three component
FSMs in Fig. 23. Their transition tables are presented in Tables 18 – 20.

Now we will illustrate some examples of transitions for cases (a) and (b):

• In FSM S6, there is a transition from state a2 to state a3 with input ~x6 and

output y3y5 (row 6 in Table 17). As both these states a2 and a3 are in the
same component FSM S1, in this FSM there is a transition from a2 to a3 with
the same input ~x6 and the same output y3y5 (row 2 in Table 18). Exactly in
the same way, we rewrite row 12 of Table 17 into row 3 of Table 19 and row 2

Chapter 4 Algorithmic state machines and finite state machines – 91

of Table 17 into row 2 of Table 20 because the current states and the next
states are in the same component FSMs.

• In FSM S6, there is a transition from state a3 to state a8 with input ~x10*~x4
and the output y5y8y9 (row 9 in Table 17). Since a3 is the state of component
FSM S1 and a8 is the state of another component FSM S2, in FSM S1 there is a
transition from a3 to b1 with the same input ~x10*~x4 and output y5y8y9z8
(row 5 in Table 18). The last output z8 is the input of FSM S2 that wakes this
FSM up and transits it from state b2 to state a8 (row 8 in Table 19). Similarly,
we convert row 1 of Table 17 into two rows – the first in Table 20 and the tenth
in Table 18 etc. Note that we add the last row in each FSM table to remain
component FSMs in the state bm when each zj is equal to zero.

Figure 23. Network with three component FSMs

Table 18. Component FSM S1

am as X(am,as) Y(am,as) H

a2 a2 x6 -- 1
a2 a3 ~x6 y3y5 2
a3 a3 x10 y3y5 3
a3 a9 ~x10*x4 y10y15 4
a3 b1 ~x10*~x4 y5y8y9z8 5
a9 a9 x11*x6 y10y15 6
a9 a2 x11*~x6 y5y8y9 7
a9 a3 ~x11 y3y8y9 8
b1 a2 z2 -- 9
b1 a3 z3 -- 10
b1 b1 ~z2*~z3 -- 11

Table 19. Component FSM S2

am as X(am,as) Y(am,as) H

a4 b2 x7 y13z6 1
a4 a4 ~x7*x9 y13y18 2
a4 a8 ~x7*~x9 y13y14 3
a7 b2 x8 y14y18z2 4
a7 a4 ~x8 y13y18 5
a8 a7 x9 y4y6 6
a8 a4 ~x9 y6 7
b2 a8 z8 -- 8
b2 b2 ~z8 -- 9

92 – Logic and System Design

Let us discuss how this network works. Let a1 be an initial state in FSM S6. After
decomposition, state a1 is in FSM S3, so, at the beginning, just FSM S3 is in state a1.
Other FSMs are in states b1 and b2 correspondingly. It is possible to say that they
“are sleeping” in these states. FSM S3 transits from the state to the state until
x1*x2*x3 = 1 in state a1 (see row 1 in Table 20). Only at this transition FSM S3
produces output signal z3 and transits into state b3 (sleeping state). This signal z3 is
the input signal of FSM S1. It wakes FSM S1 up and transits it from the sleeping state
b1 to state a3 (see row 10 in Table 18). Now FSM S1 transits from the state to the
state until, in state a3, it transits into state b1 with input signal ~x10*~x4 = 1 and
wakes FSM S2 up by signal z8 (see row 5 in Table 18 and row 8 in Table 19).

 Table 20. Component FSM S3

am as X(am,as) Y(am,as) H

a1 b3 x1*x2*x3 y1y2z3 1
a1 a6 x1*x2*~x3 y2y12 2
a1 a1 x1*~x2 y1y2 3
a1 a5 ~x1 y1y2y12 4
a5 a6 x1 y16y17 5
a5 a5 ~x1 y7y11 6
a6 a1 x5 y1y2 7
a6 a1 ~x5 y16y17 8
b3 a6 z6 -- 9
b3 b3 ~z6 -- 10

Unlike FSMs S1 and S3, the component FSM S2 has two possibilities to wake other
component FSMs up – in state a4 with input signal x7 = 1 (row 1 of Table 19) and in
state a7 with input signal x8 = 1 (row 4 in the same Table), etc. Thus, each time all
component FSMs, except one, are in the states of type bm and only one of them is in
the state of type ai.

Chapter 5 Multilevel and Multioutput Synthesis

In this Chapter, we will concentrate on the multilevel minimization of logic circuits.
Several simple and straightforward methods for obtaining circuit structure with more
than two levels will be considered. In these methods, we will present four procedures
– factoring, term decomposition, full inclusion and equal gates removal. At the end of
the Chapter we will show how to construct optimized multilevel and multioutput
circuits of Finite State Machines using only these four procedures.

5.1 Factoring

5.1.1 Two factoring structures. The first example of factoring is presented in Fig. 1.
The left part of this figure implements the function

f1 = x1x2x'3x4 + x1x2x'5 + x1x2x3x'4. (1)

Figure 1. Factoring from all terms

All AND-gates of this circuit have the common input x1x2, so we can factor this
common term (we call it a factor) in function (1):

 f1 = x1x2 (x'3x4 + x'5 + x3x'4) (2)

The corresponding logic circuit is constructed in Fig. 1,b. In this circuit, e"1, e"2 and
e"3 contain inputs remained after deleting factor x1x2 from e1, e2 and e3, and if there
remains only one letter (x'5 in our example), it will be an exact input into OR-gate.

Let us suppose again that the cost of a gate is equal to the number of its inputs, and
that the cost of logic circuit is the sum of the costs of gates – the total number of
inputs into all gates. If C1 and C2 are the costs of circuits before and after factoring
then C1 – C2 is a minimization or a gain of factoring. We can evaluate the gain of
factoring for the common term z by the formula

 w(z) = m(n - 1) - 1 + r. (3)

Here m is the number of letters in factor z, n is the number of gates in factoring and r
is the number of gates in which only one letter is left after factoring. In our example
w(z) = 2(3 - 1) - 1 + 1 = 4. Really, if we count C1 and C2 in Fig.1, C1 – C2 = 4.

One more example of factoring is presented in Fig. 2. Unlike the previous example,
here we can factor the common term x1x3x'4 only from two AND-gates, not from all of
them:

94 – Logic and System Design

f2 = x1x2x3x'4x5 + x4x6x'7 + x1x'2x3x'4x'5 + x'1x'2;
f2 = x1x3x'4 (x2x5 + x'2x'5) + x4x6x'7 + x'1x'2.

The result of factoring is shown in Fig. 2,b. On the right, we have OR-gate with three
inputs – two of them from all AND-gates that do not take part in factoring (e2, e4) and
the third one – from the output of the factoring structure for e1, e3 similar to Fig. 1,b.

Figure 2. Factoring not from all terms

Again, we can evaluate the gain of factoring for the common term z by the formula

w(z) = m(n - 1) - 2 + r. (4)

Here m, n, and r are the same as in expression (3). See if you can understand why “-2”
is used in this formula instead of “-1”.

We discussed here two structures for factoring – structure one in Fig. 1,b (factoring
from all AND-gates) and structure two in Fig. 2,b (factoring from some of AND-gates).
The duality of Boolean functions permits us to use factoring not only for the sum-of-
products, but for the product-of-sum as well (see Fig.3 and Fig. 4).

Figure 3. The first factoring structure for the product-of-sums

5.1.2 More than one factor. In the previous examples we have only one possible
factor for factoring. Now we will discuss a case with several probable factors. As an

Chapter 5 Multilevel and Multioutput Synthesis – 95

example let us use a two-level logic circuit corresponding to Boolean function f = e1 +
e2 + e3 + e4 + e5 with the products:

e1 = x1x2x3x4x5x6x7x11; e4 = x5x6x9;
e2 = x1x2x3x8; e5 = x1x2x5x6x10x12x13.
e3 = x1x2x5x6x10x11x12;

Figure 4. The second factoring structure for the product-of-sums

Let ei ∩ ej be the intersection between the products ei and ej (the common letters in
these products). Our first step is to form all possible intersections between each pair
of products in f. To do this, we construct Table 1. The first column of this table
contains products e1, …, e5. Intersections between all pairs of products are in the next
columns, for example, e1 ∩ e2 is in the column e1 in the second row, e1 ∩ e3 – in the
column e1 in the third row etc.

Table 1. Possible factors at the first step

e1 = x1x2x3x4x5x6x7x11 e1

e2 = x1x2x3x8 x1x2x3 e2
e3 = x1x2x5x6x10x11x12 x1x2x5x6x11 x1x2 e3
e4 = x5x6x9 x5x6 - x5x6 e4
e5 = x1x2x5x6x10x12x13 x1x2x5x6 x1x2 x1x2x5x6x10x12 x5x6

To find all possible factors, thus constructed, we should extract all different
intersections from Table 1. There are six such factors z1, …, z6 in this table. In this
step, do not pay attention at the information in the parenthesis after each factor in
expression (5):

z1 = x1x2x3 (e1, e2*); w(z1) = 2;
z2 = x1x2x5x6x11 (e1, e3); w(z2) = 3;
z3 = x5x6 (e1, e3, e4*, e5); w(z3) = 5; (5)
z4 = x1x2x5x6 (e1, e3, e5); w(z4) = 6;
z5 = x1x2 (e1, e2, e3, e5); w(z5) = 4;
z6 = x1x2x5x6x10x12 (e3*, e5*); w(z6) = 6.

We will use formulas (3) and (4) to evaluate the gain of each factor. To do this we
should find m, n and r for each factor. Here m is the number of letters in the factor, n
is the number of gates in factoring and r is the number of gates in which only one
letter is left after factoring of this factor. m is trivial – for z1, m is equal to 3; for z2, m
is equal to 5 etc. To find n, we should intersect each zt (t = 1, …, 6) with each ei (i = 1,

96 – Logic and System Design

…, 5). If zt is contained in ei, then zt is the factor of ei and we write ei in the
parenthesis after zt. Thus, for z1, z2 and z6, n is equal to 2, for z3 and z5, n is equal to 4
etc.

While performing such intersections, it is possible to find r as well. For example, when
we intersect z1 with e2 we see that z1 є e2 and only one letter is left after factoring z1
from e2, because z1 has three letters but e2 has four. The symbol * next to e2 in the
line for z1 means that only one letter is left. We have the same for z3 (e4*) and z6 (e3*,
e5*). When we have m, n and r for each factor, the evaluation is trivial. w(zt) for each zt
is presented in the second column of (5).

In the first step of factoring, we use a factor with a maximal gain. If we have several
such factors (two in our example – z4 and z6) it is possible to implement one of the
following strategies:

1. Take the first of such factors (the simplest strategy);
2. Take the factor with maximal length from these factors;
3. Take the factor contained in the maximum number of gates;
4. Move one step forward for each such factor and select factor after the

second evaluation step etc.

We will use the first trivial strategy and select z4 with

w(z4) = 6 = max.

Figure 5. The circuit after the first step of factoring

The circuit after factoring of z4 is shown in Fig. 5. It implements two functions
presented as sum-of-product:

1. Function f is the sum-of-products with three AND-gates, one of them contains
the factor z4, and two others – the products that do not take part in factoring;

2. Function t1 is the sum-of-products with three AND-gates, each of them
corresponds to one of the products that took part in factoring. These ANDs
have inputs remaining after factoring of z4.

Fig. 6 presents the factoring process. The first box in this figure contains the set of
products e1, …, e5, the second one – the partitioning of this set into two subsets after
the first step. Thus, we must continue the factoring separately for two functions
presented as sum-of-products – function f containing products e2, e4, e6 and function
t1 containing products e''1, e''3, e''5. A similar partition will be at each next step so the
process of factoring converges very fast.

Chapter 5 Multilevel and Multioutput Synthesis – 97

Figure 6. Steps of factoring

The subsequent steps of factoring for functions t1 and f are presented in Tables 2 and
3. The factoring process comes to the end when there are no factors with the gain
greater than zero. The final circuit after factoring is presented in Fig. 7. The total cost
reduction is equal to

w(z4) +w(z8) + w(z10) = 9.

Table 2. Factoring of function t1

z7 = x11 (e"1, e"3); w(z7) = -1;
z8 = x10x12 (e"3*, e"5*); w(z8) = 2.

w(z8) = 2 = max.

Table 3. Factoring of function f

e2 = x1x2x3x8 e2
e4 = x5x6x9 - e4
e6 = x1x2x5x6t1 x1x2 x5x6

z9 = x1x2 (e2, e6); w(z9) = 0;
z10 = x5x6 (e4*, e6); w(z10) = 1.

w(z10) = 1 = max.

Figure 7. The circuit after factoring

5.2 Term Decomposition

5.2.1 Simple example. The first example of term decomposition is presented in Fig. 8.
Left part of this figure contains three separate AND-gates implementing three
functions g1, g2 and g3. All gates of this circuit have the common inputs x4, x'5, x'6, so
we can construct additional AND-gate z with these inputs and replace inputs x4, x'5,
x'6 of initial gates with the output of gate z (Fig. 8,b).

e"1 = x3x4x7x11 e"1
e"3 = x10x11x12 x11 e"3
e"5 = x10x12x13 - x10x12

98 – Logic and System Design

Figure 8. Simple term decomposition

If C1 and C2 are the costs of circuits before and after term decomposition then C1 – C2

is a minimization or a gain of term decomposition. We can evaluate the gain of term
decomposition for the common term z by the formula

 w(z) = m(n - 1) - n + r. (6)

Here m is the number of letters in the common term z, n is the number of gates in
term decomposition and r is the number of functions (initial AND-gates) equal to the
common term. In our example w(z) = 3(3 - 1) - 3 + 1 = 4. Really, if we count C1 and C2

in Fig. 8, C1 – C2 = 4.

5.2.2 More than one common term. In the previous example, we had only one
possible term for term decomposition. Now we will discuss the case with several
probable common terms. As an example let us use a circuit in Fig. 9 that corresponds
to the following products:

Figure 9. Logic circuit before term decomposition

As in factoring, the algorithm of term decomposition consists of several steps. The
first step is to form intersections between each pair of products to find all possible
common terms containing two or more variables (see Table 4). We will use formula (6)
to evaluate the gain of each common term. To do this we should find m, n and r for
each term: m is trivial – it is the number of letters in the common term. For z1, m is

g1 = x1x2x3x4x5x6x7x11;
g2 = x1x2x3x8;
g3 = x1x2x5x6x10x11x12;

g4 = x5x6x9;
g5 = x1x2x5x6x10x12.

Chapter 5 Multilevel and Multioutput Synthesis – 99

equal to 3; for z2, m is equal to 5 etc. It is clear that the common term with one
variable makes no sense in term decomposition.

Table 4. Possible common terms at the first step

g1 = x1x2x3x4x5x6x7x11 g1

g2 = x1x2x3x8 x1x2x3 g2
g3 = x1x2x5x6x10x11x12 x1x2x5x6x11 x1x2 g3
g4 = x5x6x9 x5x6 - x5x6 g4
g5 = x1x2x5x6x10x12 x1x2x5x6 x1x2 x1x2x5x6x10x12 x5x6

z1 = x1x2x3 (g1, g2); w(z1) = 1;
z2 = x1x2x5x6x11 (g1, g3); w(z2) = 3;
z3 = x5x6 (g1 g2, g4, g5); w(z3) = 2; (7)
z4 = x1x2x5x6 (g1, g3, g5); w(z4) = 5;
z5 = x1x2 (g1,g2, g3, g5); w(z5) = 2;
z6 = x1x2x5x6x10x12 (g3, g5*); w(z6) = 5.

To find n, we should intersect each zt (t = 1, …, 6) with each gi (i = 1, …, 5). If zt є gi,
then zt is the common term for gi and we write gi in the parenthesis after zt. While
performing such an intersection it is possible to find r as well. For example, when we
intersect z6 with g5 we see that z6 = g5. The symbol * near g5 in the line for z6 means
that the product g5 is equal to the common term z6. When we have m, n and r for each
common term, the evaluation is trivial – w(zt) for each zt is presented in the second
column of (7).

In the first step of term decomposition, we use a common term with the maximal gain.
If we have several such terms (two in our example – z4 and z6), as in factoring, it is
possible to implement the following several strategies:

1. Take the first of such common terms (the simplest strategy);
2. Take the common term with maximal length from these common terms;
3. Take the common term contained in the maximum number of gates;
4. Move one step forward for each such common term and select common term

after the second step evaluation etc.

We will use the first strategy and select z4 with

w(z4) = 5 = max.

The circuit after decomposition of z4 is shown in Fig. 10.

Figure 10. Logic circuit after the first step of term decomposition

100 – Logic and System Design

Unlike factoring, where we had a partition of products into two subsets after each
step, there is no partition of initial products is here. Moreover, the common term
taking part in term decomposition should be added to the set of products and will be
used at the next step together with other products. Only the product equal to the
common term should be excluded from the list of products in the next step of term
decomposition.

The next step of term decomposition is presented in Table 5. The process comes to the
end when there are no factors with the gain greater than zero. The final circuit after
term decomposition is shown in Fig. 11, the whole process is illustrated by Fig. 12.

Table 5. The second (final) step of term decomposition

g"1 = x3x4x7x11z4 g"1

g2 = x1x2x3x8 - g2
g"3 = x10x11x12z4 x11z4 - g"3
g4 = x5x6x9 - - - g4
g"5 = x10x12z4 - - x10x12z4 - g"5
z4 = x1x2x5x6 x1x2 - x5x6 -

z7 = x11z4 (g"1, g"3); w(z1) = 0;
z8 = x1x2 (g2, z4); w(z2) = 0;
z9 = x10x12z4 (g"3, g"5*); w(z9) = 2;
z10 = x5x6 (g4, z4); w(z10) = 0.

w(z9) = 2 = max.

The total cost reduction is equal to

w(z4) + w(z9) = 7.

Figure 11. The circuit after t-decomposition

Figure 12. Steps of t-decomposition

5.2.3 Term decomposition for OR gates. Term decomposition can be applied to OR
gates as well. We will give the next example without any comments and you can fulfill
each step on your own (Fig. 13).

Chapter 5 Multilevel and Multioutput Synthesis – 101

Figure 13. Term decomposition for OR gates

5.3 Gate inclusion

Let us define gate m as included in gate n, or gate n as covering gate m, if they have
the same type (both AND or both OR) and the set of inputs of gate m is a subset of the
set of inputs of gate n. The simplest case of gate inclusion is presented in Fig 14,a. In
this case, we can replace inputs of gate n, equal to the inputs of gate m (x1 and x2 in
our example), with the output of gate m (Fig. 14,b).

Figure 14. Gate inclusion

5.4 Removal of equal gates

Let us define as gates m and n equal, if they have the same type (both AND or both
OR) and the set of inputs of gate m is equal to the set of inputs of gate n. The circuit
in Fig. 15,a contains four equal two-input AND-gates. In this case, we should

1. Remove all equal gates, except one (gates l, m and n in our example);
2. Connect inputs of gates (t, p and q) formerly connected to the outputs of

removed gates, with the output of the remained gate (gate k in our
example).

102 – Logic and System Design

The last two procedures – gate inclusion and removal equal gates are covered by term
decomposition. Really, in the first step of term decomposition – pair intersection, we
can find equal gates and gates included into other gates. However, term
decomposition has two problems: (1) the large number of gates taking part in this
procedure; (2) multiple comparisons demand a lot of intersections between sets of
inputs. It is more simple and faster to check gate inclusion and remove equal gates
before term decomposition. Moreover, after these two procedures, only gates with
three and more inputs remain for term decomposition (see if you can understand why
it is so).

Figure 15. Removal three equal AND-gates

5.5 Multilevel and multioutput circuits for Finite State Machines

In Section 4.2.6 of Chapter 4, we considered a very simple method for synthesis of the
two level FSM logic circuit from its structure table. Recall that we have used the term

eh = Am Xh

in accordance with the h row of such a table (h = 1, …, H). Here Am is a product of
state variables corresponding to the current state am written in the h row, Xh is a
product of input variables written in the same row, and H is the number of rows in
the structure table. Then we constructed H AND-gates corresponding to terms e1, …,
eH. If the output variable yn appears only once, for example, in row i of the structure
table, we obtain the output yn at the output of AND-gate number i. If the output
variable yn is written in several rows, for example, in rows p1, …, pT of the structure
table, we construct OR-gate with T inputs and connect these inputs with the outputs
of AND-gates p1, …, pT. The output yn is obtained at the output of this OR-gate. In
exactly the same way, we construct OR-gate for each input memory function which
occurs more than once in the column D(am,as) of the structure table. The logic circuit
of FSM thus constructed contains not more than H AND-gates and not more than (N +
R) OR-gates where N and R are the numbers of output variables and input memory
functions in the FSM structure table.

In this section, we will use the reverse structure table. Recall that in such a table all
transitions are ordered according the next state – first we write all transitions to state
a1, then to state a2 , etc. As an example we will consider the logic synthesis of FSM S,

Chapter 5 Multilevel and Multioutput Synthesis – 103

Table 6 is its reverse structure table. As in four previous sections, we assume that the
circuit cost is equal to the sum of inputs of its gates.

Table 6. The reverse structure table of FSM S
a1 001 a1 001 x8*x7 y7y9y14y15 d3 1
a1 001 a1 001 x8*~x7*x1*x9*x5 y13 d3 2
a1 001 a1 001 ~x8*x1*x9*x5 y13 d3 3
a3 011 a1 001 x9*x5 y13 d3 4
a4 000 a1 001 x4*~x9*x3 y2y10y12 d3 5
a5 010 a1 001 x4 -- d3 6
a1 001 a2 100 x8*~x7*~x1 y1y2y3 d1 7
a1 001 a2 100 ~x8*~x1 y1y2y3 d1 8
a2 100 a2 100 ~x2 -- d1 9
a2 100 a3 011 x2 y4 d2d3 10
a4 000 a3 011 x4*~x9*~x3 y5y6 d2d3 11
a4 000 a3 011 x4*x9 y5y6 d2d3 12
a1 001 a4 000 x8*~x7*x1*~x9*x3*~x6 y7y8y9 -- 13
a1 001 a4 000 ~x8*x1*x9*~x5 y7y8y9 -- 14
a3 011 a4 000 x9*~x5 y7y8y9 -- 15
a3 011 a4 000 ~x9*x3*~x6 y7y8y9 -- 16
a3 011 a4 000 ~x9*~x3 y7y8y9 -- 17
a1 001 a4 000 ~x8*x1*~x9*x3*~x6 y7y8y9 -- 18
a1 001 a4 000 ~x8*x1*~x9*~x3 y7y8y9 -- 19
a1 001 a4 000 x8*~x7*x1*~x9*~x3 y7y8y9 -- 20
a4 000 a4 000 ~x4 -- -- 21
a1 001 a4 000 x8*~x7*x1*x9*~x5 y7y8y9 -- 22
a1 001 a5 010 x8*~x7*x1*~x9*x3*x6 y10y11y12 d2 23
a3 011 a5 010 ~x9*x3*x6 y10y11y12 d2 24
a1 001 a5 010 ~x8*x1*~x9*x3*x6 y10y11y12 d2 25
a5 010 a5 010 ~x4 -- d2 26

The structure table is divided into M arrays, each of which corresponds to the set of
transitions into one state. For FSM in Table 6, M is equal to five. In several initial
steps, we will separately design logic circuits for transitions into each state. Moreover,
even then we will construct circuits separately for each subset of output signals.

A design of the logic circuit consists of the following steps:

Step 1. Divide each array of transitions to the state as (s = 1, …, M) into as many
subarrays, as the number of different microinstructions (the subsets of output variables)
in the column Y(am, as) within this array. For example, in Table 6, transitions into state
a1 have four microinstructions:

y7, y9, y14, y15;
y13; (8)
y2, y10, y12;
∅ .

We should include the empty microinstruction, corresponding to row 6, in this list
because not all of input memory functions are equal to zero at this transition (d3 = 1)
and we must construct AND-gate for this row.

Thus, in our example we have four such subarrays containing

1. Row 1 with outputs y7, y9, y14, y15;
2. Rows 2, 3, 4 with output y13;
3. Row 5 with outputs y2, y10, y12;
4. Row 6 without output signals.

104 – Logic and System Design

Step 2. For each subarray corresponding to one of microinstruction in (8), construct as
many AND-gates as the number of rows in this subarray of the structure table. These
gates implement products AmX(am,as), corresponding to each row. In our example for
the transitions into a1 we have six such AND-gates (see Fig.16,a).

Figure 16. Logic circuit for transitions into state a1

Step 3. If some subarray contains more than one row, connect the outputs of
corresponding AND-gates, constructed at step 2 for the subarray, with OR-gate to form
the signals of microoperations (output variables) and input memory functions written
in the rows of this subarray (rows 2, 3, 4 for y13 – Fig. 16,a).

Step 4. Factor the logic circuits constructed in point 3 using the algorithm described in
Section 5.1 ‘Factoring’. Let us do this for functions y13, d3. Table 7 contains the first
step of this factoring. We made all pair intersections between products corresponding
to rows with y13, d3 and found two possible factors z1 and z2. We factor z2 with max
gain (see Fig. 16,b).

It is possible to make one more simplification in the circuit in Fig. 16,b. OR-gate has
input t2 and AND-gates connected with this OR-gate have inputs t′2. According
Boolean algebra A + A'B = A + B, so we can delete inputs t′2 from AND-gates. To make
such minimization we do not have to write any formulas. If some OR-gate has some

Chapter 5 Multilevel and Multioutput Synthesis – 105

input p (p') we should check all AND-gates connected with this OR-gate and remove
inputs p' (p) from these AND-gates.

Table 7. The first step of factoring for y13 and d3

e1 = t'1t'2t3x8x'7x1x9x5 e1

e2 = t'1t'2t3x'8x1x9x5 t'1t'2t3x1x9x5 e2
e3 = t'1t2t3x9x5 t'1t3x9x5 t'1t3x9x5

 z1 = t'1t'2t3x1x9x5 (e1, e2*); w(z1) = 6(2 - 1) - 2 + 1 = 5;
 z2 = t'1t3x9x5 (e1, e2, e3*); w(z2) = 4(3 - 1) - 1 + 1 = 8;

 w(z2) = 8 = max.

The last step of factoring is shown in Table 8 and Fig. 16,c. After removing input x8
from AND-gate with two inputs we must remove this AND-gate as well, and transfer
input x′7 into the OR-gate. The final step of factoring is presented in Fig. 16,d.

Table 8. The second steps of factoring for y13, d3

e′′1 = x8x′7x1 e′′1
e′′2 = x’8x1 x1

 z3 = x1 (e′′1, e′′2*); w(z3) = 1(2 – 1) – 1 + 1 = 1;

 w(z3) = 1 = max.

Logic circuit after factoring for transitions into state a1 contains seven gates – we
numbered gates after the last step. Each step of circuit factoring for transitions into
states a2 and a3 is presented in Fig.17 and Fig. 18. Logic circuits for transitions into
states a4 and a5 without intermediate steps are shown in Fig. 19 and Fig. 20. We have
left the design of these last circuits to our readers as exercise to be done on their own.
At last, we bring all these circuits together in Fig. 21.

Figure 17. Logic circuit for transitions into state a2

Step 5. Delete equal gates in the logic circuit thus constructed. If we look at the circuit
after factoring in Fig. 21 we will find that it contains some equal gates. For example,
six two-input OR-gates OR2, OR9, OR14, OR16, OR18 and OR27 are equal because they
have the same type and the same inputs. However, AND-gates AND3(x1,2) and
AND28(x1,27) are not equal because they have inputs from different gates. Тo find that
they are also equal we must determine that OR2 and OR27 are equal and change the

106 – Logic and System Design

input 27 by input 2 in the description of AND28. Therefore, to find that two gates are
equal in a multilevel circuit we should find that their preceding gates are equal etc.
For this reason we should rank the gates in the circuit.

Figure 18. Logic circuit for transitions into state a3

Figure 19. Logic circuit for transitions into state a4

Figure 20. Logic circuit for transitions into state a5

Gates containing only inputs t1, …, tR (the outputs of the memory elements, in our
example R = 3) and input variables x1, …,xL (in our example L = 9) are referred to as
gates of the first rank. The gates with inputs t1, …,tR, input variables and the output
of at least one gate of the first rank are referred to as gates of the second rank etc.
Thus, the i-rank gate can have inputs t1, …,tR, input variables and the inputs from
outputs of gates with the rank less than (i – 1) and at least one input from the gate

Chapter 5 Multilevel and Multioutput Synthesis – 107

with rank (i – 1). The results of ranking for the circuit in Fig. 21 are presented in Table
9 and Fig.22. In this figure, the rank of gate is written above the gate.

Figure 21. Logic circuit after factoring

Table 9. Ranks of gates

It is evident that equal gates can only be of the same rank. The following steps should
be used to find and delete equal gates:

1. Find equal gates with rank i (i = 1, 2, 3, ...) beginning from rank 1, separately
for AND-gates and OR-gates. In our example, we have the following set of
equal first-rank gates:

Rank AND-gates OR-gates
1 1, 6, 7, 8, 11, 24, 31 2 , 9, 12, 14, 16, 18, 22, 27
2 3, 10, 13, 15, 17, 19, 23, 28
3 4, 20, 29
4 5, 21, 30
5 25
6 26

108 – Logic and System Design

OR2 = OR9 = OR14 = OR16 = OR18 = OR27.
2. Remove all gates except the first one from each such set. Thus, after the first

step we removed five gates OR9, OR14, OR16, OR18, OR27. Replace the inputs
from the gates thus removed with the number of the first (not removed) gate
from the corresponding sets.

3. Repeat steps (1) – (3) for the elements of the (i+1)-th rank. We get equal AND-
gates AND3 and AND28 of the second rank and equal OR-gates OR4 and OR29 of
the third one.

The circuit after removal equal gates is shown in Fig. 23.

Figure 22. Ranking after factoring

Step 6. Repeat factoring and removing equal gates until the circuit cannot be change
any longer. Look at the circuit implementing the transitions into a4 in Fig. 23. We
drew the part of this circuit containing gates AND15, AND17, AND19 and OR20 in Fig.
24,a. After the removal of the equal gates, logic elements AND15, AND17, and AND19 got
the same inputs from OR2 instead of different inputs from OR14, OR16, and OR18.
Thereby, we got new possibilities for repeated factoring – see sequential steps of
factoring in Fig. 24,b,c.

The circuit after the second factoring is shown in Fig. 25. Once again, after factoring
we find the equal gates: OR22 = OR32 and we remove the last one (Fig. 26). Thus, we

Chapter 5 Multilevel and Multioutput Synthesis – 109

should repeat factoring and removing equal gates as long as we get these procedures
are impossible for the circuit.

Figure 23. Logic circuit after removal equal gates

Figure 24. Repeated factoring

Step 7. Find the inclusion of gates into other gates. Unfortunately, we do not have such
cases in our rather simple example.

110 – Logic and System Design

a2

a5

a1

t1
t2
t3
x8
x7

y7 y9 y14 y15
d3

&

1
t1
t3
x5

&

x91t2x1 &
1

x8
x7

y13

d3

2 3 4

5

t1
t2
t3
x4
x9

y2 y10 y12
d3

&

x3

6

t1
t2
t3

&

x4
d37

t2
t1

t3

&

x2
d18

t3
t2

&t1

x1

y1 y2 y3
d110

2

a3
t2
t1

t3

&

x2
d2 d3

y4
11

&

1x3
12

13

t1
t2
t3
x4

x9

y5 y6

d2 d3

t1
t2

x4

&

d231t3

t1
t3

x3

&

x6

y10 y11 y12

d2
4

30

x9

a4

t2
x1

&

&
x9x3

x6
1

t2

1

&
x5
t2

x9

t1
t3

& y7 y8 y9

20

22

24

21

23

25
26&

x5
x9

117

2

33x6
&

x9

x3

2

1
32

Figure 25. Circuit after the second factoring

Step 8. Make term decomposition for AND-gates. Fig. 27,a contains AND-gates with
three and more inputs which we have selected from the circuit in Fig. 26 for term
decomposition. It is evident that term decomposition makes it possible to find equal
gates and inclusion of some gates into other ones as well. However, if a circuit
contains many gates, term decomposition takes a lot of time and it is faster to
implement steps 5 – 7 before term decomposition.

Let us demonstrate that the term decomposition problem may be divided into several
independent subproblems. For this purpose, we define such a relation ω on the set of
AND-gates that two gates ANDi and ANDj are in this relation iff they have not less than
two common inputs.

Construct the graph Gω of this relation (Fig. 28 for the circuit in Fig. 27,a). The
vertices of this graph are the gates in Fig. 27. We connect two vertices by edge if the
corresponding gates have two or more common inputs. From the definition of the
relation ω, it is evident that there can be no common factors for the gates from
various subgraphs of Gω. Thus, the problem of term decomposition is divided into as
many subproblems as the number of unconnected components in the graph Gω. Even

Chapter 5 Multilevel and Multioutput Synthesis – 111

in our simple example, Gω contains five components and there are only 11 vertices
(gates) in the largest component. For a complex FSM, the graph Gω contains a large
number of components, since:

1. There is a large number of input variables in a complex FSM and there are not
so many input variables in each row of its structure table (in each term
corresponding to each row);

2. xi and x′i are different inputs of gates;
3. The number of gates and the number of inputs in each gate are decreased, as

a result of steps 4 – 7 (factoring, removal equal gates and inclusion of gates
into other ones).

Figure 26. Circuit after the second removal equal gates

The result of term decomposition in our example is shown in Fig. 27,b. Fig. 29
contains the total circuit after this step.

112 – Logic and System Design

t1
t2
t3
x8
x7

&

1

t1
t3

x5

&

x9
4

5

t1
t2
t3
x4
x9

&

x3

6

t1
t2
t3

&

x4
7

t3
t2

&t1

x1
2

10
t2
t1

t3

&

x2
8

&

12

13

t1
t2
t3
x4

t1
t2

x4

&

31t3

t2
t1

t3

&

x2
11

t1
t3

x3

&

x6
30

x9 &
x5
x9 17

4

2

33

&
x9

2

22

t2
x1

& &
x9
t2&

x5
t2

x9

t1
t3

&

20 2224 21 23 2625

t1
t3

t2

x4

x9
& x3

36

6

&
12 13

t2
t1

t3

&x2
8

&

37

&
x2 11

&

x8
x7

&

1

t2
&

x1
2

10

t1
t3

x5
&

x9
4

5

35
&

&
26

x3

&

x6 30

x9

4

25

t2

a) b)

t2

&
t2 7

Figure 27. Term decomposition in our example

Figure 28. The graph Gω of relation ω

Step 9. Construct OR-gate for each output variable yn (n = 1, …, 15 in our example) and
for each input memory function dr (r = 1, …, 3 in our example) which occur more than
once in the circuit after step 8. If we look at Fig. 29 we will find that several outputs
appear more than once in this circuit. For example, y2 is written at the outputs of
gates AND6 and AND10, d2 is written at the outputs AND11, AND13, AND30 and AND31. It
is evident that FSM has only one output y2, so, first – the circuit in Fig. 29 is not the
final circuit and, second – output y2 will be equal to one when the output of AND6 or
the output of AND10 are equal to one. Thus, for y2 and for each output that appears
more than once in Fig. 29, we should construct OR-gate with the inputs connected to
the outputs of gates where these signals are written.

To formalize this process we constructed Table 10 where each row contains the list of
gates for each output. Now we can immediately construct OR-gates for the outputs
which occur more than once in the logic circuit (Fig. 30,a).

Chapter 5 Multilevel and Multioutput Synthesis – 113

Figure 29. Logic circuit after term decomposition

Table 10. Gates for outputs

Step 10. Find equal OR-gates among the gates constructed at step 9. Leave only one
gate in each set of equal gates. The logic circuit after removal of equal gates is shown
in Fig. 30,b.

Step 11. Find the inclusion of OR-gates into other gates among the gates constructed at
steps 10. Unfortunately, we do not have any such cases in our rather simple example.

Step 12. Make term decomposition for all OR-gates. Just as at Step 8 for AND-gates, we
consider here only the gates with not less than three inputs since the minimal
number of inputs in a common term in term decomposition is equal to two (after
removal equal gates and full inclusion). Similar to step 8, we should construct the

Outputs Gates Outputs Gates Outputs Gates
y1 e10 y7 e1 e26 y13 e5
y2 e6 e10 y8 e26 y14 e1
y3 e10 y9 e1 e26 y15 e1
y4 e11 y10 e6 e30 d1 e8 e10
y5 e13 y11 e30 d2 e11 e13 e30 e31
y6 e13 y12 e6 e30 d3 e1 e5 e6 e7 e11 e13

114 – Logic and System Design

graph of the relation ω for OR-gates. The problem of term decomposition for OR-gates
is divided into as many subproblems as the number unconnected components in the
graph of ω. In our rather simple example, we have only two OR-gates with more than
two inputs (see d2 and d3 in Fig. 30,b).

Figure 30. OR-gates before (a) and after (b) removal equal gates

The final logic circuit is shown in Fig. 31. We have placed the circuit from Fig. 30,b at
the bottom of Fig. 31. Of course, we should remove appearances of the outputs y2, y7,
y9, y10, y12 and input memory functions d1, d2, d3 from other parts of the logic circuit.
Thus, only the outputs that have one entry in the column “Gates” of Table 10 will be
in the part of the circuit that is above the “OR for outputs and input memory functions”
in Fig. 31.

Step 13. Relax and drink your coffee.

Really, the reason, that we cannot demonstrate gate inclusion and term
decomposition for OR-gates, can be explained not only by the simplicity of our
example, but also a very effective optimization at the previous steps that allows to
decrease the number of inputs in the most gates of our circuit. To overcome some
dissatisfaction of our last steps, let us discuss one more example, from the synthesis
another FSM, presented in Table 11 and Fig. 32 with OR-gates for output variables
and input memory functions which occur more than once in the circuit after Step 9.

Table 11. Gates for outputs in one more example

Step 10a. From Table 11 or Fig. 32 we immediately get that OR75 = OR68 and OR76 =
OR67. We remove OR75 and OR76 and get y9 together with y6 from OR68 and y10
together with y5 from OR67 (Fig. 33).

Outputs Gates Outputs Gates
y1 e5 e31 e36 e39 y8 e4 e44
y2 e3 e5 e36 y9 e16 e30
y3 e39 e56 e60 y10 e3 e16 e43
y4 e4 e31 e36 e42 d1 e56 e60
y5 e3 e16 e43 d2 e3 e4 e31 e36 e39 e44
y6 e16 e30 d3 e3 e4 e31 e42 e43
y7 e16 e44 e56 d4 e3 e4 e5 e42 e43 e44 e56

Chapter 5 Multilevel and Multioutput Synthesis – 115

Figure 31. The final logic circuit

Step 11a. We checked full inclusion for OR gates and found that 7270 OROR ⊂ ,

7470 OROR ⊂ and 6571 OROR ⊂ . The circuit after this step is presented in Fig. 34.

Step 12a. For term decomposition, we constructed the graph of relation ω for OR-
gates with three and more inputs (Fig. 35). The problem of term decomposition for
OR-gates is divided into as many subproblems as the number of unconnected
components in the graph of ω. In our example we have two subgraphs and one of
them is nontrivial.

116 – Logic and System Design

Figure 32. OR-gates for yn and dr in one more example

Figure 33. OR-gate transformation after removal of equal gates

Figure 34. OR-gates after full inclusion

Figure 35. The graph of relation ω for OR-gates

Chapter 5 Multilevel and Multioutput Synthesis – 117

Figure 36. Logic circuit after term decomposition

The logic circuit after term decomposition is presented in Fig. 36. Its cost is 10 inputs
lower than in the initial circuit in Fig. 32.

118 – Logic and System Design

Chapter 6 Transformation of Algorithmic State Machines

In this Chapter, we consider two more representations of Algorithmic State Machine –
System of transition formulae and Matrix scheme of algorithms. After this, we will
discuss transformation of Algorithmic State Machine – minimization of conditional
and operator vertices and combining of Algorithmic State Machines. We will use these
transformations in the next chapter dedicated to the high level synthesis of digital
systems.

6.1 Various representations of Algorithmic State Machine

6.1.1 System of transition formulae. As an example, we use ASM Γ in Fig. 1. Let
us look at operators following operator Yb. The facts that operator Y3 is implemented
after Yb when x1x4x3 = 1, operator Y1 is implemented after Yb when x1x'4 = 1 and
operator Y5 is implemented after Yb when x1x4x'3 = 1 or x'1 = 1, can be represented as
the formula

 Yb → x1x4x3Y3 + x1x4x'3Y5 + x1x'4Y1 + x'1Y5. (1)

Figure 1. ASM Γ

In general, the transition formula for the operator Yi is

∑
+

=

→
1

1

T

t
titi YY α , i = b, 1, …, T.

Here YT+1 = Ye is the operator, corresponding to the final vertex "End" and αit is the
transition function from Yi to Yt (see Section 4.1.2 in Chapter 4). The term αitYt is equal
to Yt if αit = 1, and is equal to 0 if αit = 0.

The transition formulae can be transformed according to the rules of Boolean algebra
and the following additional rules:

1. (α + β)Yi = αYi + βYi;
2. αβYi + αγYj = α(βYi + γYj);
3. If α = β then αYi = βYi.

120 – Logic and System Design

Here α, β and γ are Boolean functions and Yi and Yj are operators. The set of transition
formulae for all i = b, 1, 2, . . ., T is called the system of transition formulae. This
system contains seven formulae for ASM Γ in Fig. 1:

Yb → x1x4x3Y3 + x1x4x'3Y5 + x1x'4Y1 + x'1Y5;
Y1 → x3Y2 + x'3Y4;
Y2 → x6Ye;
Y3 → x5x1Y6 + x5x'1Y2 + x'5Y2; (2)
Y4 → x2Y1 + x'2Y3;
Y5 → x4x3Y3 + x4x'3Y5 + x'4Y1;
Y6 → Ye.

The following representation of the transition formula

Yi → xmA + x'mB (3)

is called the expansion of transition formula Yi by variable xm. Here xm is one of the
logical conditions and transition subformulae A and B do not depend on xm. For
example, let us expand formula (1) by variable x1:

Yb → x1(x4x3Y3 + x4x'3Y5 + x'4Y1) + x'1Y5 . (4)

If some terms of the transition formula do not depend on xm, then these terms must
be multiplied by expression (xm + x'm) before the expansion of the transition formula by
xm. Thus, any transition formula may be expanded by any variable. For example,
expanding the transition formula (1) by the variable x4 we obtain

Yb → x1x4x3Y3 + x1x4x'3Y5 + x1x'4Y1 + x'1(x4 + x'4)Y5 =
= x4(x1x3Y3 + x1x'3Y5 + x'1Y5) + x'4(x1Y1+ x'1Y5). (5)

In expression (3), we can continue expanding subformulae A and B by other variables
until the terms in the internal brackets are as follows:

(xpYm+ x'pYn) (6)

where Ym,Yn є { Y1, …, YT, YT+1}. This expression corresponds to subgraph G1 in Fig. 2.
The resulting transition formula and the system of such formulae are called the
bracket transition formula and the system of transition formulae in the bracket form
correspondingly.

Figure 2. Subgraph G1 corresponding to expression (6)

Let us continue to expand the transition formula for Yb in expression (4):

Yb → x1(x4(x3Y3 + x'3Y5) + x'4Y1) + x'1Y5. (7)

Expression (7) presents the transition formula for Yb in a bracket form. It is easy to
show that there is a one-to-one correspondence between the bracket transition
formula and the ASM subgraph obtained from this formula. To illustrate this,

Chapter 6 Transformation of Algorithmic State machines – 121

consider the construction of ASM subgraph G2 (Fig. 3,a) for transition formula Yb in
(7).

Figure 3. Subgraphs G2 and G3 corresponding to expansions (7) and (8)

First, draw operator vertex Yb. Then construct conditional vertex with x1 and link its
input with the output of operator Yb, since first we expanded transition formula Yb
with this variable x1. Next, construct conditional vertex x4 and link its input with the
output "1" of the preceding conditional vertex x1, since the expansion by the variable
x4 is implemented in brackets just after x1. Further, construct operator vertex Y5 and
link its input with the output ‘0’ of conditional vertex x1, as there are no expansions
by any variables after x'1. In exactly the same way construct conditional vertex x3, link
its input with the output "1" of vertex x4, and link the zero output of vertex x4 with
operator vertex Y1 etc. Thus, at each step we have no alternative and can construct
only one subgraph for a given bracket transition formula.

The ASM subgraph G3 in Fig. 3,b is constructed in a similar way for another
expansion (8) of the same unexpanded transition formula Yb in (1). We changed the
order of variables in this expansion:

Yb → x4(x1x3Y3 + x1x'3Y5+ x'1Y5) + x'4(x1Y1+ x'1Y5) =
 = x4(x1(x3Y3 + x'3Y5) + x'1Y5) + x'4(x1Y1+ x'1Y5). (8)

Thus, to obtain a ASM subgraph from a bracket transition formula it is sufficient to
construct chains of conditional vertices in accordance with a sequence of the
transition formula expansion. As seen from Fig. 3,a and Fig. 3,b, the number of
conditional vertices in the subgraph for some transition formula depends on the order
of the expansion of this transition formula. Now it is evident that to transit from a
system of transition formulae to ASM it is necessary to expand this system to the
bracket form and to construct the ASM subgraph for each bracket transition formula.

We will show now that the number of conditional vertices in the ASM, thus
constructed, depends not only on the separate expansion of each transition formula
but also on their joint expansion. Let us rewrite here expression (7) and expand
transition formula for Y5 beginning from variable x4:

;))((5
'
11

'
45

'
33341 YxYxYxYxxxYb +++→ (7)

;)(1
'
45

'
33345 YxYxYxxY ++→ (9)

122 – Logic and System Design

For example, let us construct ASM subgraph G4 for bracket transition formulae Yb
and Y5 in (7) and (9). The identical subformulae are underlined in these expressions.
Obviously, one subgraph corresponds to the same subformulae so only one subgraph
is constructed for these subformulae (Fig. 4,a).

Figure 4. Subgraphs G4 (a) and G5 (b) corresponding to expansions (7, 9) and (7, 10)
Now we construct the ASM subgraph for the same bracket transition formula for Yb
(7) and the new bracket transition formula Y5, obtained by its expansion beginning
with variable x3:

Y5 → x3(x4Y3 + x'4Y1) + x'3(x4Y5+ x'4Y1). (10)

Since there are no identical subformulae in bracket transition formulae (7) and (10)
we derive subgraph G5 (Fig. 4,b) with three additional conditional vertices, compared
to subgraph G4 in Fig. 4,a.

At the end of this section, we expand the system of transition formulae, presented in
(2):

;))((5
'
11

'
45

'
33341 YxYxYxYxxxYb +++→

;4
'
3231 YxYxY +→

Y x Y2 6→ e ;
;)(2

'
52

'
16153 YxYxYxxY ++→ (11)

;3
'
2124 YxYxY +→

;)(1
'
45

'
33345 YxYxYxxY ++→

Y Y6 → e .

6.1.2. Matrix schemes of algorithms. The matrix scheme of algorithm (MSA) is a
square matrix with rows Yb, Y1,. . ., YT, and columns Y1,Y2,. . ., YT, Ye. We write the
transition function from operator Yi to operator Yj at the intersection of row Yi and
column Yj in this matrix. The MSA M for ASM Г from Fig. 1 is presented in Table 1.
For simplicity, we do not write the transition functions that are equal to zero in the
matrix scheme of algorithm.

Chapter 6 Transformation of Algorithmic State machines – 123

The transition from ASM to MSA is obvious. We find all transition functions in ASM
and place them into the corresponding entries of MSA. To transit from MSA to ASM
we should obtain a system of transition formulae, a system of bracket transition
formulae and then ASM. Just as for ASM (Section 4.1.3), it is possible to define an
execution of MSA and a value of MSA for any sequence of vectors of logical conditions.

Table 1. MSA M

6.2 Minimization of conditional vertices in Algorithmic state machines

In this section, we will discuss minimization of conditional vertices in ASMs. The
minimization algorithm consists of three steps. In the first step, the initial ASM is
divided into such subgraphs G GQ1, ..., , that for obtaining the minimal ASM it is
sufficient to minimize the number of conditional vertices in each subgraph
independently of one another. In the second step, for each subgraph G q Qq(,...,)=1

we will find a set of equivalent ones that contains the minimized subgraph Gq
min . In the

third step, the subgraph Gq
min will be obtained by solving the covering problem on the

set of subgraphs found in the second step.

6.2.1 ASM partitioning into subgraps. As an example for ASM minimization, we
will use ASM Γnonmin in Fig. 5. To partition ASM, choose any operator, except the final
oneYe , from the set of operators },,...,,{ 1 eTb YYYY and find the set of operators towards
which there is a path

 Y x x Yi i i iR j
~ ... ~

1 (12)

from operator vertex Yi (i = b,1,2, …,T) passing only through conditional vertices with
the logical conditions x xi iR1 , ... , . Here, as before, ~x xir ir= if the path proceeds

through the conditional vertex with xir via output ‘1’ (, ... ,)r R= 1 and irir xx '~ = if the
path proceeds through the conditional vertex via output ‘0’. Since we can start from
any operator, let us begin with the initial operator Yb. For ASM Γnonmin in Fig. 5, there
are paths to Y1, Y4, Y5 from Yb. The arrows from operator Yb (Fig. 6,a) designate these
paths. Next, go to the right side of this subgraph and find the operators, excludingYb ,
from which there are paths (12) leading to operatorsY Y Y1 4 5, , . We place these

operators (,)Y Y2 3 under bY on the left side. For all operators on the left, continue
finding such operators to which there are paths (12), etc., until the set on the left
()A1 and that on the right ()B1 are no longer increasing. Next, choose a new operator

 Y1 Y2 Y3 Y4 Y5 Y6 Ye

Yb x1x'4 x1x4x3 x1x4x'3

x'1

Y1 x3 x'3
Y2 x6
Y3 x5x'1

x'5
 x5x1

Y4 x2 x'2
Y5 x'4 x4x3 x4x'3
Y6 1

124 – Logic and System Design

Y Am ∉
1 (Y1 in our example) and construct ()A2 and ()B2 in a similar way (see Fig.

6,b). The algorithm consists of Q steps, Q T≤ + 1 , where T is the number of
operator vertices.

Begin

x3

0

x1

0

y1 y2 y3

x7

0

x2

0

x8

x2

1y4

x2
1

x1
1

x3

1 x6

y10 y11 y12

1

1

y2 y10 y12
1

0

0

y5 y6
0

x6 1

0

1

1

x3

1

y7 y8 y9 1x4

x5

x5

End

0

0

1

1
0

0

x8
1x2

0

0

0

1

1

0

0

Yb

Y1

Y2

Y3

Y4 Y5

Y6

Ye

Figure 5. Nonminimal ASM Γnonmin

Figure 6. Partition ASM Γnonmin

In the q th step (, ... ,)q Q= 2 , choose a vertex Y Af
i

i

q

∉
=

−

1

1

U , and continue constructing

Aq and Bq etc. until, after Q steps, it is impossible to find an operator, which is not

included in the sets A AQ1, ..., . As a result, ASM is divided into subgraphs G1, …, GQ

where the subgraph G A B Pq q q q(, ,) is defined by sets Aq , Bq , Pq and by the arcs

between the vertices of these sets. Here Pq is the set of conditional vertices between
operators of the sets Aq and Bq . Two subgraphs G1 and G2 constructed by partition of
ASM Γnonmin in Fig. 5 is shown in Fig. 7.

From the partition of ASM it follows:

Chapter 6 Transformation of Algorithmic State machines – 125

1. For any two subgraphs G1 and G2:
 ∅=∩ ji AA ; ∅=∩ ji BB ; P Pi j∩ =∅.

2. The partition is independent of the choice of the first operator at every step.
Since the partition is unique and the sets of conditional vertices in different
subgraphs do not intersect (P Pi j∩ =∅), the following statement results immediately:

R Rq

q

Q

=
=
∑

1
.

Here R is the number of conditional vertices in ASM and Rq is the number of
conditional vertices in the subgraph Gq (q = 1, …, Q). In one of my previous works I

have proved that if ASM is partitioned into subgraphs G1, …, Gq and the number qRmin
of conditional vertices is minimal in each subgraph Gq (q = 1, …, Q), then the number
of conditional vertices in ASM is also minimal and equal to

R Rq

q

Q

min min .=
=
∑

1

Yb

x3 x1
1

x1

0

1

x6

1

Y5

1

Y4Y1

0

0 x3

Y2

1
x6

0

x3

1

1

0

Y3

0
0

x7

Y1

0

x2

1

Y2

1

x2

x8

Y6

1

Ye

Y5

0

Y3

1

Y4

x4

x5

x5

1

0

Y6

x8

x2

0
x2

1

1
1

0

00

0

1

0

1

0

a)

b)

Figure 7. Two subgraphs G1
 and G2 as a result of partition of ASM Γnonmin

From the last statement, it follows that the problem of expansion for the system of
transition formulae can be also divided into Q independent subproblems in
accordance with the introduced partition of ASM. In our example for ASM Γnonmin, we
have two such subsystems:

1. ;''''' 11341311346135613 YxxYxxYxxYxxxYxxxYb ++++→

;'' 434635632 YxYxxYxxY ++→ (13)

464365363 '' YxYxxYxxY ++→ .

126 – Logic and System Design

2. ;''''''' 82768272273272271 eYxxxYxxxYxxYxxYxxY ++++→

;'''''' 548546854543544 eee YxxYxxxYxxxYxxYxxY ++++→ (14)

;' 32225 YxYxY +→

.'''' 282286282286 eYxxYxxYxxYxxY +++→

6.2.2 Constructing a set of equivalent subgraphs. At this stage, we expand each
subsystem of transition formulae, obtained at the previous stage, into the bracket
form. To minimize a subgraph of ASM corresponding to the subsystem of transition
formulae, M versions of expansion for each transition formula Yt should be
constructed:

.'
mimmimt BxAxY +→ (15)

Here x xi iM1 , ... , are the first M variables contained maximal times inYt . Then, we

again find M variables xnm and xpm which occur maximal times in Am and Bm . After

that, we continue expansion of Am and Bm with xnm and xpm :

).()('''
pmpmpmpmimnmnmnmnmimt FxExxDxCxxY +++→

Continuing expansion we get not more than M
K2 1− version of expansion, here K is

the number of expansion levels. In our experiments with very complicated ASMs, we
have seen that it is sufficient to take M K= = 3 so as not to lose the minimal
subgraph of ASM.

Now we return to our example and begin with transition formula Yb from the first
subsystem (13). Let us find how many times each variable occurs in the transition
formula forYb :

x1 – 5 times; x3 – 5 times; x6 – 2 times.

In our simple example we use M = 2 , that is we make four expansions for Yb – two
starting from x1 and two starting from x3 (two variables with the maximal number of
appearances in transition formula Yb). Let us begin with x1:

11434635631 ')''(YxYxYxxYxxxYb +++→ .

Since the expansion after x'1 is impossible, find how many times each variable occurs
in the transition formula after x1:

x3 – 3 times; x 6 - 2 times.

In our example, we choose x3, x6 and get two expansion versions with 1x in the first
step. First of them is

1143465631 ')')'((YxYxYxYxxxYb +++→ . (16)

The result of the second expansion with 6x after x1 is:

1146435361 ')')'((YxYxYxYxxxYb +++→ . (17)

Now let us return to Fig. 2. In this figure, we marked the input of the conditional
vertex with xp by operatorYq . The following transition formula

Chapter 6 Transformation of Algorithmic State machines – 127

npmpq YxYxY '+→

corresponds to operator Yq in Fig. 2. We call Yq a derivative operator and denote it by

a circle to distinguish it from primary rectangular operatorsY Y Y Yb T e, , ... , ,1 in the
graph of ASM. For expansion (16) we can write the following derivative operators
beginning with the internal brackets:

465610 ' YxYxY +→ ;

4310311 ' YxYxY +→ ;

1111112 ' YxYxY +→ .

Derivative operator Y12 coincides with operatorYb . We write the numbers of derivative
operators over the corresponding opening brackets in (16):

11434656

10

3

11

1

12
')')'((YxYxYxYxxxYb +++→ (18)

and list these operators in the special Table 2. Operators 121110 ,, YYY are the first three
operators in this table (we use number t instead of Yt in Table 2).

Table 2. The derivative operators for Yb, Y2, Y3

10 x6 5 4 16 x1 4 1
11 x3 10 4 17 x1 10 1
12 x1 11 1 18 x3 17 16
13 x3 5 4 19 x1 5 1
14 x6 13 4 20 x6 19 16
15 x1 14 1 21 x3 20 16

It is obvious that there is a one-to-one correspondence between the bracket transition
formula and the ASM subgraph obtained from this formula. To illustrate this,
consider the construction of ASM subgraph (Fig. 8) for transition formula Yb in (18).
We see at once that such a construction is reduced to the successive exposure of
derivative operators Y Y Y12 11 10, , from Table 2. It is possible to present expansion (18)
or the subgraph in Fig. 8 as the first column in Table 3 (v1 means version1). The
number of derivative operators in this column is equal to the number of conditional
vertices in Fig. 8. For now, disregard the parenthesis in the columns of this table.

Figure 8. Subgraph for expression (18)

128 – Logic and System Design

Table 3. The table of versions for Yb, Y2, Y3

Yb Y2 Y3

v1 v2 v3 v4 v5 v6 v7 v8
12 15 18 21 (11) (14) (14) (11)
(11) (14) 17 20 (10) (13) (13) (10)
(10) (13) 16 19

 (10) 16

Exactly in the same way, we implement expansion for each version of Yb, Y2,Y3:

11464353

13

6

14

1

15
')')'((YxYxYxYxxxYb +++→ ;

);'(')')'((1141

16

3114656

10

1

17

3

18
YxYxxYxYxYxxxYb ++++→

)'('))'(')'((1141

16

31141

16

61151

19

6

20

3

21
YxYxxYxYxxYxYxxxYb +++++→ ;

;')'(434656

10

3

11

2 YxYxYxxY ++→

;')'(464353

13

6

14

2 YxYxYxxY ++→

;')'(464353

13

6

14

3 YxYxYxxY ++→

.')'(434656

10

3

11

3 YxYxYxxY ++→

Having these expressions, we can complete the table for derivative operators (Table 2)
and the table of versions (Table 3). The last table contains four versions for
implementation of transition formulaYb , two versions for transition formula Y2 and

two versions for transition formulaY3 . In Table 3, the derivative operator for Yj is

enclosed in brackets if it appears at least in one version Y f jf ()≠ . Obviously, having

chosen one version for each Y Yb , ,2 Y3 we obtain the subgraph of ASM for the first
subsystem of transition formulae. The number of conditional vertices in such a
subgraph is equal to the number of derivative operators (excluding similar ones) in
the chosen versions. For example, having chosen versions 52 ,vv and v7 , we will
obtain the subgraph with five conditional vertices (Fig. 9). To obtain the subgraph with
a minimal number of conditional vertices in the case of m operators Y Ym1 , ... , , we have

to choose one version for each Yj so, that the total number of derivative operators
should be minimal.

We call this problem the problem of finding a minimal cover for the table of versions.
The total number of possible subgraphs that can be constructed from such a table is
equal to R Rm1× ×... . Here Rj is the number of versions for operatorYj . In our simple

example (Table 3), this number is equal to 4 2 2 16× × = .

Without detailed explanations, we give expansions for the second subsystem (14) of
transition formulae, the list of derivative operators (Table 4) and the table of versions
(Table 5):

Chapter 6 Transformation of Algorithmic State machines – 129

Figure 9. Subgraph for versions v2, v5 and v7

));'('(' 868

30

737

31

222

32

1 eYxYxxYxxYxY +++→

));'(')'((' 737

33

86737

34

8

35

222

36

1 eYxYxxYxYxxxYxY ++++→

));'('(')'(868

30

222

37

73222

38

7

39

1 eYxYxxYxxYxYxxY ++++→

));'(')'((')'(222

40

86222

41

8

42

73222

38

7

43

1 eYxYxxYxYxxxYxYxxY +++++→

;'))'('(5868

30

434

44

5

45

4 ee YxYxYxxYxxY ++++→

;'))'(')'((5434

46

86434

47

8

48

5

49

4 ee YxYxYxxYxYxxxY ++++→

);')'((')'(5868

30

5

50

4535

51

4

52

4 eee YxYxYxxxYxYxxY ++++→

);')'((')'(8565

53

8

54

4535

51

4

55

4 eee YxYxYxxxYxYxxY ++++→

;' 3222

38

5 YxYxY +→

);'(' 868

30

222

37

6 eYxYxxYxY ++→

).'(')'(222

40

86222

41

8

42

6 eYxYxxYxYxxY +++→

Table 4. The derivative operators for Y1, Y4, Y5 and Y6

30 x8 6 e 39 x7 38 37 48 x8 47 46
31 x7 3 30 40 x2 2 e 49 x5 48 e
32 x2 2 31 41 x2 2 6 50 x5 30 e
33 x7 3 e 42 x8 41 40 51 x5 3 e
34 x7 3 6 43 x7 38 42 52 x4 51 50
35 x8 34 33 44 x4 3 30 53 x5 6 e
36 x2 2 35 45 x5 44 e 54 x8 53 e
37 x2 2 30 46 x4 3 e 55 x4 51 54
38 x2 2 3 47 x4 3 6

6.2.3 Finding a minimal cover for the table of versions. We will show that a table
of version may be compressed without a loss of the minimal cover. On the set of
versions { ,..., }v vj jRj1 for operatorYj , we define the partial ordering relation. Assume

130 – Logic and System Design

Table 5. The table of versions for Y1, Y4, Y5 and Y6

Y1 Y4 Y5 Y6
v1 v2 v3 v4 v5 v6 v7 v5 v6 v7 v8
32 36 39 43 45 49 52 55 (38) (37) (42)
31 35 (38) (38) 44 48 51 51 (30) (41)
(30) 34 (37) (42) (30) 47 50 54 (40)

 33 (30) (41) 46 (30) 53
 (40)

that vs ≤ vt if the use of vs instead of vt does not increase the number of derivative
operators in any cover of the table of versions. It is clear that if vs ≤ vt, version vt may
be eliminated from the table of versions. It is easy to show that vs ≤ vt if two following
conditions are true:

Ls ≤ Lt;
(Lt - Ls) - |Bt \ Bs| ≥ 0.

Here, Lt and Ls are the lengths of versions vt and vs (the number of derivative
operators in these versions); Bt and Bs are the sets of operators in brackets in versions
vt and vs; |Bt \ Bs| is the number of elements in the difference between set Bt and Bs.
Let us compare some versions from Table 3.

(a) v1 and v3: L1 = 3; L3 = 4; L1 < L3;
(L3 – L1) - |B3 \ B1| = (4 – 3) - |{10} \ {11,10}| = 1 – 0 = 1 > 0;

v1 ≤ v3.

(b) v1 and v4: L1 = 3; L4 = 4; L1 < L4;

(L4 – L1) - |B4 \ B1| = (4 – 3) - |∅\ {11,10}| = 1 – 0 = 1 > 0;

v1 ≤ v4.

(c) v1 and v2: L1 = 3; L2 = 3; L1 = L2;
(L2 – L1) - |B2 \ B1| = (3 – 3) - |{14,13} \ {11,10}| = 0 – 2 = -2 < 0;

 v1 not ≤ v2.

(d) Check the inverse: v2 and v1: L1 = 3; L2 = 3; L1 = L3;

(L1 – L2) - |B1 \ B2| = (3 – 3) - |{11,10} \ {14,13}| = 0 – 2 = -2 < 0;

v2 not ≤ v1; these two versions are incomparable.

(e) Versions (v5, v6) for Y2 and (v7, v8) for Y3 are incomparable as well (check it
yourself).

The algorithm for compressing a table of versions is obvious. Comparing the versions
within the columns for each Yj (, ... ,)j m= 1 , we leave only those versions that are not
worse than the others. Thus, after such a compression, only incomparable versions
will remain in the table of versions. Table 6, which is the result of the first
compression, contains only two versions for Yb, Y2 and Y3.

Chapter 6 Transformation of Algorithmic State machines – 131

Table 6. The result of the first compression

Yb Y2 Y3
v1 v2 v5 v6 v7 v8
12 15 (11) (14) (14) (11)
(11) (14) (10) (13) (13) (10)
(10) (13)

If there is at least one common version for two operators, we can combine their
versions and consider these two operators as one operator (see Table 7).

Table 7. Y2 and Y3 as one operator

Yb Y2,Y3
v1 v2 v5 v6
12 15 (11) (14)
(11) (14) (10) (13)
(10) (13)

The compression procedure should be repeated several times. If after the final
compression more than one version is available for one or several operators Yj (j = 1,
…, T) we can apply any well-known method to obtain a minimal cover for the prime
implicant chart, because the complexity of the problem is essentially reduced. In our
example, we can present the table of version in the sum-of-products form. For Table
7, we present each version as a product of its derivative operators and the set of
version for each operator – as the sum-of-products:

(12*11*10 + 15*14*13) * (11*10 + 14*13) =
= 12*11*10 + 15*14*13*11*10 + 12*11*10*11*10 + 15*14*13 = 12*11*10 + 15*14*13.

After absorption, we get two products with the same length equal to three. It means
that after minimization, the number of derivative operators or, which is the same, the
number of conditional vertices in the first subgraph is equal to three. We use the first
product in the final Table 8. The minimal subgraph is presented in Fig. 10,a. The
corresponding derivative operators are taken from Table 8.

Table 8. The minimal cover of the table of versions

Yb Y2,Y3
v1 v3
12 (11)
(11) (10)
(10)

Without detailed explanations, we will present the process of minimization for
subgraph G2. Table 9 contains the results of the first compressing of the table of
versions. The next compressing is not possible, so we use sum-of-products to find a
minimal subgraph:

(32*31*30 + 39*38*37*30 + 43*38*42*41*40) * (45*44*30) * (38) * (37*30 + 42*41*40) =
= (32*31*30 + 39*38*37*30 + 43*38*42*41*40) * (45*44*30*38*37 + 45*44*30*38*42*41*40)=
= 32*31*30*45*44*38*37 + 32*31*30*45*44*38*42*41*40 + 39*38*37*30*45*44 +
+ 39*38*37*30*45*44*42*41*40 + 43*38*42*41*40*45*44*30*37 + 43*38*42*41*40*45*44*30 =
45*44*38*37*32*31*30 + 45*44*42*41*40*38*32*31*30 +

+ 45*44*39*38*37*30 + 45*44*43*42*41*40*38*30.

132 – Logic and System Design

Figure 10. Subgraphs G1
 and G2 after minimization

After absorption we get four products, the third of them contains the minimal number
(six) of derivative operators. The final cover of the table of versions for the second
subgraph G2 is shown in Table 10. The minimal subgraph G2 is shown in Fig. 10,b.
The minimized ASM Γmin is presented in Fig. 11. It contains only 9 conditional vertices
whereas ASM Γnonmin in Fig. 5 has 17 conditional vertices.

Table 9. The result of the first compression

Y1 Y4 Y5 Y6

v1 v3 v4 v5 v6 v7 v8
32 39 43 45 (38) (37) (42)
31 (38) (38) 44 (30) (41)
(30) (37) (42) (30) (40)

 (30) (41)
 (40)

Table 10. The minimal cover of the table of versions

Y1 Y4 Y5 Y6
v3 v5 v6 v7
39 45 (38) (37)
(38) 44 (30)
(37) (30)
(30)

Chapter 6 Transformation of Algorithmic State machines – 133

Figure 11. Mimimized ASM minΓ
6.3. Minimization of operator vertices

We will show that to minimize the number of operator vertices in ASM it is necessary
to construct a Moore FSM implementing the given ASM, minimize this FSM and
return from the minimal FSM to the minimal ASM. Thus, the minimization of operator
vertices in ASM is reduced to the minimization of the corresponding Moore FSM. We
will illustrate this technique by means of example of nonminimal ASM in Fig. 12.

As was shown in Chapter 4 (Section 4.3), Moore FSM can be synthesized in two steps:

1. The construction of a marked ASM. At this step, the vertices Begin and End
are marked by the same symbol a1 and all operator vertices are marked by
symbols a2, …, aM. These marks are written in Fig. 12 near the corresponding
vertices. Unlike to the marking in Chapter 4, we use symbol ae to mark vertex
End to distinguish the beginning and final vertices while returning from the
minimal FSM to the minimal ASM.

2. To define the transitions in FSM Moore with the states a1, …, aM, ae we find
the following transition paths between operator vertices in the marked ASM:

smRmm axxa ~...~
1 .

Here mrmr xx =~ if in the transition path, we leave the conditional vertex with

mrx via output ‘1’ and mrmr xx '~ = if we leave the vertex with mrx via output ‘0’.

 The transition from state am to state as with input
X(am, as) = mRm xx ~...~

1
 corresponds to such a path. If am marks the operator vertex with operator Yt,
 then the output function λ(am) = Yt, i.e. we identify operator Yt, written in the
 operator vertex with this state am.

134 – Logic and System Design

As a result, we obtain Moore FSM with as many states as the number of symbols that
is needed to mark ASM. In our example, the transition table of Moore FSM S,
implementing ASM Γ in Fig. 12, is presented in Table 11. Since in ASM there are no
paths from the final vertex into the other ones, there are no transitions from ae into
the other states (see the last row in this table).

To minimize Moore FSM (I advise you to reread Section 2.6.3 “Minimization of Moore
automaton” from Chapter 2), we find successive partitions π0, π1, … until πk +1 = πk
where πk is a partition with blocks of equivalent states. In Table 11, the states with
the same outputs are 0-equivalent and they are in the same block of π0. This partition
is presented in Table 12. Column Am of this table contains a block of partition π0 with

Figure 12. ASM Γ with redundant operator vertices

current states, column As contains a block of partition π0 with next states from Table
11. In our example:

}.,,,,,,{;;;,,;,;,,; 654321011108746395210 AAAAAAAaaaaaaaaaaaa e ==π
Two states ai and aj are k-equivalent, if they are (k-1)-equivalent and they transit to
the same blocks of πk-1 with the same inputs; πk-1 is the partition into the blocks of (k-
1)-equivalent states. From Table 12

.;;;,,;,;,,; 11108746395211 eaaaaaaaaaaaa=π
Partition π1 is equal to partition π0. This means that π1 is the partition with blocks of
equivalent states. Taking one state from each block of π1, we get the minimal set of
states Amin:

Amin = {a1, a2, a3, a4, a10, a11, ae}

Chapter 6 Transformation of Algorithmic State machines – 135

and the minimal Moore FSM (Table 13). It is clear that minimal ASM Γmin contains one
beginning vertex (state a1), one final vertex (state ae) and five operator vertices (states
a2, a3, a4, a10 and a11). To construct this minimal ASM we should divide the system of
transition formulae into subsystems – we have four such subsystems in our example
(Fig. 13) – and transform each subsystem into the bracket form:

1. 1YY b → ; ;12 YY →

2. ;' 31211 YxYxY +→

3. ;' 54443 YxYxY +→

4. eYY →4 ; .5 eYY →

ASM Γmin with the minimal number of operator vertices (Fig. 14) was constructed by
means of this system of bracket transition formulae.

Table 13. The minimal Moore FSM

am Y(am) as X(am, as) h
a1 Yb a2 1 1
a2 Y1 a3 x1 2
 a4 x'1 3

a3 Y2 a2 1 4
a4 Y3 a10 x4 5
 a11 x'4 6

a10 Y4 ae 1 7
a11 Y5 ae 1 8
ae Ye ae 1 9

Table 12. Partition π0

Am am Y(am) As X(am, as)
A0 a1 Yb A1 1
 a2 Y1 A2 x1
 A3 x'1

A1 a5 Y1 A2 x2x1
 A3 x2x'1
 A2 x'2x1
 A3 x'2x'1
 a9 Y1 A2 x1
 A3 x'1

A2 a3 Y2 A1 1
 a6 Y2 A1 1
 a4 Y3 A4 x4
 A5 x'4

A3 a7 Y3 A4 x4
 A5 x'4
 a8 Y3 A4 x4
 A5 x'4

A4 a10 Y4 A6 1
A5 a11 Y5 A6 1
A6 ae Ye A6 1

Table 11. FSM Moore for ASM Γ

am Y(am) as X(am, as) h
a1 Yb a2 1 1
a2 Y1 a3 x1 2
 a4 x'1 3

a3 Y2 a5 1 4
a4 Y3 a10 x4 5
 a11 x'4 6

a5 Y1 a6 x2x1 7
 a7 x2x'1 8
 a6 x'2x1 9
 a8 x'2x'1 10

a6 Y2 a9 1 11
a7 Y3 a10 x4 12
 a11 x'4 13

a8 Y3 a10 x4 14
 a11 x'4 15

a9 Y1 a6 x1 16
 a8 x'1 17

a10 Y4 ae 1 18
a11 Y5 ae 1 19
ae Ye ae 1 20

136 – Logic and System Design

6.4. ASM combining

When we would like to describe the behavior of a very complicated digital system,
sometimes it is difficult to present it by just one ASM. In these cases, it is possible to
describe separate subbehaviors with ASMs Γ1, …, ΓQ and then to combine them into
one combined ASM Γ

At the beginning, we will show a trivial method for ASM combining. This method will
not be used in the future, but it will help us to understand the combining process. As
an example, we take four ASMs in Fig. 15.

Figure 15. Four ASM to combine

First, we encode ASMs by vectors of values of new variables p1 and p2, these variables
are not in the initial ASMs. The number of such variables depends on the number of
ASMs and, in general case, is equal to N =] log2 Q [. Here Q is the number of ASMs to
combine and] a [is the nearest integer greater than a, or equal to a if a is integer. In
our example, Q = 4 and N = 2.

Figure 14. ASM Γmin

Figure 13. The partition of transition

formulae for the minimal ASM

Chapter 6 Transformation of Algorithmic State machines – 137

Figure 16. Trivial combining

The trivial combining method is shown in Fig. 16. We did not change ASMs in this
figure; we only removed their vertices “Begin” and “End” because we can have only
one pair of such vertices in the combined ASM. Paths running through conditional
vertices with variables p1, p2, lead to ASMs with the corresponding codes. We use
these codes here as instruction codes, or mode codes. For example, if p1p2 = 00 – ASM
Γ1 will be implemented, if p1p2 = 01 – ASM Γ2 will be implemented etc.

Now we will present another method for ASM combining in which we minimize the
numbers of operator and conditional vertices. Let us assume that we have ASMs Γ1,
…, ΓQ and there are no equal operators within each ASM Γq but, of course, there may
be such operators in different ASMs. If two or more equal operators are written in
various operator vertices of one such ASM, we should rename them, beginning with
the second one, by different numbers YF+1, YF+2, … Here F is the maximal number of
operators in all ASMs that should be combined.

As an example we will combine ASMs Γ1, …, Γ4 in Fig. 17. The procedure for ASMs
combining consists of several steps.

Begin

0

1
x7

0x1

Y1

y1 y2 y3

1

y5 y6Y3

1
0x6

0
1 x3

Y4

y7 y8 y9

Y5

y10 y11 y12

Y6

y2 y10 y12

1

0
x2

10
x5

End Ye

Yb

Begin

0

1x6
0

1x3

Y4

y7 y8 y9

Y5

y10 y11 y12

Y6

y2 y10 y12

1

0
x2

1

0
x5

EndYe

Yb

y5 y6

Y3

1
0 x1

Begin

0

1x6
0

1x3

Y4

y7 y8 y9

Y5

y10 y11 y12

Y6

y2 y10 y12

1

0
x2

1

0
x5

EndYe

Yb

y5 y6

Y3

1
0 x1

y4

Y2

Begin
Y1

y1 y2 y3

y4Y2

1
0x6

0
1 x3

Y4

y7 y8 y9

y10 y11 y12

Y6

y2 y10 y12

10
x2

10
x5

EndYe

Y5

y5 y6

Y3

1
0 x1

Yb

b) Γ2 a) Γ1

d) Γ4 c) Γ3
Figure 17. ASMs for combining

1. Construct MSA Mq for each ASM Γq. The MSAs M1, …, M4 are in Tables 14 – 17.

2. Encode each MSA Mq (q = 1, …, 4) by binary code K(Mq). Since there are only
four MSAs, two coding variables p1 and p2 are enough. Let

138 – Logic and System Design

K(M1) = 00, K(M2) = 01, K(M3) = 10, K(M4) = 11.

Table 14. MSA M1

Table 15. MSA M2

Table 16. MSA M3

Table 17. MSA M4

3. Write product P(Mq) corresponding to K(Mq) in the left upper corner of Mq:

P(M1) = p'1p'2; P(M2) = p'1p2; P(M3) = p1p'2; P(M4) = p1p2.

4. Construct combined MSA M. The set of operators Y(M) in this MSA M is

U
Q

q
qMYMY

1

)()(
=

= ,

where Y(Mq) is the set of operators in MSA Mq and Q is the number of separate
MSAs. This is the main idea of our combining. If the same operator Yq occurs

p′1p′2 Y1 Y3 Y4 Y5 Y6 Ye

Yb 1
Y1 x7 x′7x1 x′7x′1
Y3 x6x′3 + x′6 x6x3
Y4 x5x2 x5x′2x1 x5x′2x′1 + x′5
Y5 1
Y6 x1 x′1

p′1p2 Y1 Y2 Y3 Y4 Y5 Y6 Ye

Yb 1
Y1 1
Y2 x6x′3 + x′6 x6x3
Y3 x6x′3 + x′6 x6x3
Y4 x5x2 x5x′2x1 x5x′2x′1 + x′5
Y5 1
Y6 1

p1p′2 Y3 Y4 Y5 Y6 Ye

Yb x6x′3 + x′6 x6x3
Y3 x6x′3 + x′6 x6x3
Y4 x5x2 x5x′2x1 x5x′2x′1 + x′5
Y5 1
Y6 x1 x′1

p1p2 Y2 Y3 Y4 Y5 Y6 Ye

Yb x6x′3 + x′6 x6x3
Y2 x6x′3 + x′6 x6x3
Y3 x6x′3 + x′6 x6x3
Y4 x5x2 x5x′2x1 x5x′2x′1 + x′5
Y5 1
Y6 1

Chapter 6 Transformation of Algorithmic State machines – 139

in the several ASMs, there will be only one copy of this operator in the
combined ASM. In our example:
Y(M1) = {Yb, Y1, Y3, Y4, Y5, Y6, Ye}; Y(M2) = {Yb, Y1, Y2, Y3, Y4, Y5, Y6, Ye};
Y(M3) = {Yb, Y3, Y4, Y5, Y6, Ye}; Y(M4) = {Yb, Y2, Y3, Y4, Y5, Y6, Ye}.

Thus, in our example we have only eight operators in the combined ASM,
including operators Yb and Ye:

Y(M) = Y(M1) U Y(M2) U Y(M3) U Y(M4) = { Yb,Y1, …, Y6,Ye}.

This combined ASM has seven rows and seven columns (Table 18).

 To construct entries in the combined MSA M, we multiply each entry of each
 MSA Mq by its product P(Mq) written in the left upper corner of this MSA Mq
 and insert it in the corresponding entry of MSA M – at the intersection of the
 same row and the same column. In other words, we multiply each MSA Mq by
 its product P(Mq) and insert it in the combined MSA M.

 To check that combined MSA M, thus constructed, implements MSA Mq when
 P(Mq) = 1, it is sufficient to substitute code K(Mq) in each entry of MSA M. For
 example, if you substitute K(M1) = 00 in MSA M in Table 18, you will get MSA
 M1 in Table 14.

Table 18. Combined MSA M

 Y1 Y2 Y3 Y4 Y5 Y6 Ye

Yb p′1p′2 p1p′2x6x′3 + p1p′2x′6 p1p′2x6x3
 p′1p2 p1p2x6x′3 + p1p2x′6 p1p2x6x3

Y1 p′1p2 p′1p′2x7 p′1p′2x′7x1 p′1p′2x′7x′1

Y2 p′1p2x6x′3 + p′1p2x′6 p′1p2x6x3
 p1p2x6x′3 + p1p2x′6 p1p2x6x3
 p′1p′2x6x′3 + p′1p′2x′6 p′1p′2x6x3

Y3 p′1p2x6x′3 + p′1p2x′6 p′1p2x6x3
 p1p′2x6x′3 + p1p′2x′6 p1p′2x6x3
 p1p2x6x′3 + p1p2x′6 p1p2x6x3
 p′1p′2x5x2 p′1p′2x5x′2x1 p′1p′2x5x′2x′1 + p′1p′2x′5

Y4 p′1p2x5x2 p′1p2x5x′2x1 p′1p2x5x′2x′1 + p′1p2x′5
 p1p′2x5x2 p1p′2x5x′2x1 p1p′2x5x′2x′1 + p1p′2x′5
 p1p2x5x2 p1p2x5x′2x1 p1p2x5x′2x′1 + p1p2x′5

Y5 p′1p2 p′1p′2
 p1p2 p1p′2

Y6 p′1p2 p′1p′2x1 p′1p′2x′1

 p1p2 p1p′2x1 p1p′2x′1

5. Construct combined ASM Γ.

5.1. Partition the system of transition formulae into independent subsystems.
Here we should implement techniques similar to ASM partitioning into
subgraphs (Secion 6.2.1). We begin with any operator, for example, from Yb
and find the set of operators towards which there are paths (12) in MSA M (the
columns with entries distinct from zero in row Yb). For row Yb, they are
operators Y1, Y4, Y5 (see arrows from Yb in Fig. 18,a). Next, we go to the right
side of this subgraph and find operators, other than Yb, from which there are
paths (12) leading to operators Y1, Y4, Y5. We place these operators (Y2, Y3) on
the left side under Yb. For all operators on the left, we continue picking such

140 – Logic and System Design

operators to which there are paths in MSA M, etc., until the set on the left (А1)
and that on the right (B1) are no longer increasing. Next we will choose a new
operator Y Am ∉ 1 (Y1 in our example) and construct (A2) and (B2) in a similar
way (see Fig. 18,b). Thus, in our example we have two independent
subsystems of transition formulae derived immediately from MSA M:

Figure 18. Partition of operators in MSA M

Subsystem 1

Yb → p'1p'2Y1 + p'1p2Y1 + p1p'2x6x'3Y4 + p1p'2x'6Y4 + p1p2x6x'3Y4 + p1p2x'6Y4 +
 p1p'2x6x3Y5 + p1p2x6x3Y5;

Y2 → p'1p2x6x'3Y4 + p'1p2x'6Y4 + p1p2x6x'3Y4 + p1p2x'6Y4 + p'1p2x6x3Y5 + p1p2x6x3Y5;

Y3 → p'1p'2x6x'3Y4 + p'1p'2x'6Y4 + p'1p2x6x'3Y4 + p'1p2x'6Y4 + p1p'2x6x'3Y4 + p1p'2x'6Y4 +
 p1p2x6x'3Y4 + p1p2x'6Y4 + p'1p'2x6x3Y5 + p'1p2x6x3Y5 + p1p'2x6x3Y5 + p1p2 x6x3Y5.

Subsystem 2

Y1 → p'1p2Y2 + p'1p'2x7Y1 + p'1p'2x'7x1Y6 + p'1p'2x'7x'1Ye;

Y4 → p'1p'2x5x2Y3 + p'1p2x5x2Y3 + p1p'2x5x2Y3 + p1p2x5x2Y3 + p'1p'2x5x'2x1Y6 +
 p'1p2x5x'2x1Y6 + p1p'2x5x'2x1Y6 + p1p2x5x'2x1Y6 + p'1p'2x5x'2x'1Ye +
 p'1p'2x'5Ye + p'1p2x5x'2x'1Ye + p'1p2x'5Ye + p1p'2x5x'2x'1Ye +
 p1p'2x'5Ye + p1p2x5x'2x'1Ye + p1p2x'5Ye;

Y5 → p'1p2Y2 + p1p2Y2 + p'1p'2Y3 + p1p'2Y3;

Y6 → p'1p2Y2 + p1p2Y2 + p'1p'2x1Y6 + p1p'2x1Y6 + p'1p'2x'1Ye + p1p'2x'1Ye.

5.2. Construct minimal subgraphs. Here we should implement techniques
presented above in Section 6.2.2 “Constructing a set of equivalent subgraphs”
and Section 6.2.3 “Finding a minimal cover for the table of versions”. Without
detailed explanation (we advice you to make ASM expansion by yourself) we
give the tables of derivative operators for the first subsystem (Table 19) and
the tables of versions during two compressions (Tables 20 and 21). The
minimal subgraph with operators Yb, Y2 and Y3 is presented in Table 22.

Chapter 6 Transformation of Algorithmic State machines – 141

Table 19. The derivative operators for Yb, Y2, Y3

8 x3 5 4 16 p1 4 1
9 x6 8 4 17 x3 15 16

10 x6 5 4 18 x6 14 16
11 x3 10 4 19 x6 17 16
12 p1 9 1 20 p1 10 1
13 p1 11 1 21 x6 15 16
14 p1 8 1 22 x3 20 16
15 p1 5 1 23 x3 21 16

Table 20. The table of versions for Yb, Y2, Y3

Yb Y2, Y3

v1 v2 v3 v4 v5 v6 v7 v8
12 13 18 19 22 23 (9) (11)
(9) (11) 14 17 20 21 (8) (10)
(8) (10) (8) 15 (10) 15
 16 16 16 16

Table 21. The table of versions for Yb, Y2, Y3 after compression of Yb

Yb Y2, Y3

v1 v2 v7 v8
12 13 (9) (11)
(9) (11) (8) (10)
(8) (10)

Table 22. The final table of versions for Yb, Y2, Y3

Yb Y2, Y3
v1 v7
12 (9)
(9) (8)
(8)

Tables 23 – 26 contain the same for the second subsystem of transition
formulae. The last table presents the minimal subgraph with operators Y1, Y4,
Y5 and Y6. The minimal combined ASM Γ is shown in Fig. 19.

Table 23. The derivative operators for Y1, Y4, Y5 and Y6

8 x1 6 е 22 p2 2 10 36 x5 3 е
9 x7 3 8 23 x7 15 17 37 x5 8 е

10 x7 3 6 24 p2 2 11 38 x5 6 е
11 x7 3 е 25 x7 15 18 39 x1 38 е
12 x1 10 11 26 x1 22 24 40 x2 36 37
13 p2 2 9 27 x1 22 25 41 x2 36 39
14 p2 2 12 28 x1 23 24 42 x5 31 е
15 p2 2 3 29 x1 23 25 43 x2 36 38
16 p2 2 8 30 x2 3 8 44 x5 32 е
17 p2 2 6 31 x2 3 6 45 x2 36 е
18 p2 2 е 32 x2 3 е 46 x1 42 44
19 x1 17 18 33 x1 31 32 47 x1 42 45
20 x7 15 16 34 x5 30 е 48 x1 43 44
21 x7 15 19 35 x5 33 е 49 x1 43 45

142 – Logic and System Design

Table 24. The table of versions for Y1, Y4, Y5 and Y6

Y1 Y4 Y5 Y6
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15
13 14 20 21 26 34 35 40 41 46 47 49 (15) (16) (19)
9 12 (15) (15) 22 30 33 36 36 42 42 43 (8) (17)
(8) 10 (16) (19) 10 (8) 31 37 39 31 31 36 (18)
 11 (8) (17) 24 32 (8) 38 44 45 38
 (18) 11 32 36 45

Table 25. The compressed table of versions for Y1, Y4, Y5 and Y6

Y1 Y4 Y5 Y6
v1 v3 v4 v6 v13 v14 v15
13 20 21 34 (15) (16) (19)
9 (15) (15) 30 (8) (17)
(8) (16) (19) (8) (18)
 (8) (17)
 (18)

Table 26. The final table of versions for Y1, Y4, Y5 and Y6

Y1 Y4 Y5 Y6
v3 v6 v13 v14
20 34 (15) (16)
(15) 30 (8)
(16) (8)
(8)

Note, that during expansion of transition formulae we can come across two don't care
cases:

• If the number of ASMs Q is smaller than 2N, i.e. not all possible vectors of
coding variables p1, …, pN are used for encoding of MSAs M1, …, MQ, all
transition formulae are not specified on such vectors of variables p1, …, pN,x1,
…,xL, in which first N components correspond to unused combination. We do
not have such a case in our example.

• If operator Yt is absent in some MSA Mq, then transition formula for Yt is not
specified on vectors of variables p1, …, pN, x1, …, xL, in which first N
components correspond to the code K(Mq) of this MSA Mq. The operator Y2 is
not in MSAs M1 and M3 in our example, therefore the transition formula for Y2
is not specified for vectors, in which p1 = p2 = 0 and p1 = 1, p2 = 0, since K(M1) =
00 and K(M3) = 10.

Y2 → p'1p2x6x'3Y4 + p'1p2x'6Y4 + p1p2x6x'3Y4 + p1p2x'6Y4 + p'1p2x6x3Y5 + p1p2x6x3Y5 =

 = x6(p'1p2x'3Y4 + p1p2x'3Y4 + p'1p2x3Y5 + p1p2x3Y5) + x'6(p'1p2Y4 + p1p2Y4) =

 = x6(x3(p'1p2Y5 + p1p2Y5) + x'3(p'1p2Y4 + p1p2Y4)) + x'6(p'1p2Y4 + p1p2Y4).

In the internal brackets, we couldn’t continue expanding with variable p2, because
this expression does not contain products with p′1p′2 and p1p′2 corresponding to the
unused codes 00 and 10. Using don’t care we have

p′1p2 + p′1p′2 = p′1; p1p2 + p1p′2 = p1

Chapter 6 Transformation of Algorithmic State machines – 143

and finally we get:

Y2 → x6(x3(p'1Y5 + p1Y5) + x'3(p'1Y4 + p1Y4)) + x'6(p'1Y4 + p1Y4) =

= x6(x3Y5 + x'3Y4) + x'6Y4.

Begin

p1 x61 0x2 Y4

Y1

0

x7 p21

p2

0

Y3

1

x5

x3

Y5

1

x1 0

Y6

End

0

1

0

1

1

0

1

Y2

1

0

0

Figure 19. Combined ASM Γ

144 – Logic and System Design

