
 
 

Chapter 4 Algorithmic State Machines and Finite State Machines 
 

In this Chapter, we will introduce Algorithmic state machines and consider their use 
for description of the behavior of control units. Next, we will use algorithmic state 
machines to design Finite State Machines (FSM) with hardly any constraints on the 
number of inputs, outputs and states. 
 

4.1 Flowcharts and Algorithmic state machines 
 
4.1.1 Example of ASM. An Algorithmic state machine (ASM) is the directed 
connected graph containing an initial vertex (Begin), a final vertex (End) and a finite 
set of operator and conditional vertices (Fig. 1). The final, operator and conditional 
vertices have only one input, the initial vertex has no input. Initial and operator 
vertices have only one output, a conditional vertex has two outputs marked by "1" 
and "0". A final vertex has no outputs.  

 
Figure 1. Vertices of Algorithmic state machine 

As the first example, let us consider a very simple Traffic Light Controller (TLC) 
presented in the flowchart in Fig. 2. This controller is at the intersection of a main 
road and a secondary road. Immediately after vertex Begin we have a waiting vertex 
(one of the outputs of this vertex is connected to its input) with a logical condition 
Start. It means that the controller begins to work only when signal Start = 1.  At this 
time, cars can move along the main road for two minutes. For that, the traffic light at 
the main road is green, the traffic light at the secondary road is red and the special 
timer that counts seconds is set to zero (main_grn := 1;  sec_red := 1; t := 0). 
 
Although our TLC is very simple it is also a little smart – it can recognize an 
ambulance on the road. When an ambulance is on the road the signal amb is equal to 
one (amb = 1), when there is no ambulance on the road this signal is equal to zero 
(amb = 0). First we will discuss the case when there are no ambulances on the road. 
 
Thus, when amb = 0 and t = 120 sec TLC transits into some intermediate state to 
allow cars to finish driving along the main road: main_yel := 1;  sec_red := 1; t := 0. 
TLC is in this state only for three seconds (t = 3 sec), after which cars can move along 
the secondary road for 30 seconds: main_red := 1; sec_grn := 1; t := 0. 
 
Thirty seconds later, if there are no ambulances on the road (amb = 0; t = 30 sec), 
there is one more intermediate state. Now cars must finish driving along the 
secondary road: main_red := 1; sec_yel := 1; t := 0. After three seconds, if, once again, 
there are no ambulances on the road, the process reaches vertex End, or, that is the 
same, it returns to the beginning vertex Begin.   
 
When there is ambulance on the road (amb = 1) outputs of conditional vertices with 
logical condition amb, marked by “1” bring us to the intermediate state to let cars to 
finish their driving: main_yel := 1; sec_yel := 1; t := 0. One more logical condition 
dmain tells us where the ambulance is – whether it is on the main road or on the 
secondary one. If it is on the main road (dmain = 1), after three seconds the traffic 
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light will be green on the main road, otherwise (dmain = 0) the traffic light will be 
green on the secondary road. 

 
Figure 2. A simple Traffic Light Controller 

In the flowchart, a logical condition is written in each conditional vertex. It is possible 
to write the same logical condition in different conditional vertices. A microinstruction 
(an operator), containing one, two, three or more microoperations, is written in each 
operator vertex of the flowchart. It is possible to write the same operator in different 
operator vertices.  

 
If we replace logical conditions by x1, x2, … , xL, microoperations by y1, y2, … , yN and 
operators by  Y1, Y2, … , YT we will get Algorithmic State Machine (ASM). ASM for the 
flowchart in Fig. 2 is shown in Fig. 3. 
 
ASM vertices are connected in such a way that: 

1. Inputs and outputs of the vertices are connected by arcs directed from an 
output to an input, each output is connected with only one input;  

2. Each input is connected with at least one output;  
3. Each vertex is located on at least one of the paths from vertex “Begin” to 

vertex “End”. Hereinafter we will not consider ASMs with subgraphs, 
containing an infinite cycle. An example of such a subgraph with an infinite 
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loop between vertices with Y1 and Y3 is shown in Fig. 4. The dots in this ASM 
between vertex “Begin” and the conditional vertex with x1 and between this 
vertex and vertex “End” mean that ASM has other vertices on the path from 
vertex “Begin” to vertex “End”. The vertices in the loop are not on the path 
from “Begin” to “End”. 

4. One of the outputs of a conditional vertex can be connected with its input. 
We will call such conditional vertices the “waiting vertices”, since they 
simulate the waiting process in the system behavior description.  
 

 
          Figure 3. ASM for the flowchart in Fig. 2 

 
Begin

Endx1

.  
.  

.

1 .  .  .

Y1

0

x3 0
1

x2 Y21Y3 0  
Figure 4. Subgraph with an infinite loop 
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One more example of ASM G1 with logical conditions X = {x1, …, x7} and 
microoperations Y = {y1, …, y10} is shown in Fig. 5. This ASM has eight operators Y1, 
…, Y8, they are written near operator vertices.  
 
4.1.2 Transition functions. Let us discuss the paths between the vertex “Begin”, the 
vertex “End” and operator vertices passing only through conditional vertices. We will 
write such paths as follows: 

jiRii YxxY ~...~
1    (1) 

In such a path, irx~  is equal to irx  if the path proceeds from the conditional vertex 

with  irx  via output ‘1’,  and irx~  is equal to '
irx  if the path proceeds from the 

conditional vertex with  irx  via output ‘0’. For example, we have the following paths 
from Yb (vertex Begin) in ASM G1: 

 
Yb x'1 Y2; 
Yb x1x2x'3 Y6; 
Yb x1x'2 Y1; 
Yb x1x2x3 Y5. 

 
Begin

1

x3

1

y1 y3

1

y1 y2 0

x4

x2

x1

y4
0

x5

y5 y6 y7

1

x6

x7

0

0

End

x1

1
0

y8 y91

1
y3 y4

0

x6

y6 y7

1
0

y6 y7
0

0

Yb

Y6

Y1

Y5

Y7

Y4

y3 y6 y10
1 Y8

Y3

Y2

Ye

Y6

 
Figure 5. ASM G1 

 
Let us match a product of variables in the path (1) from operator vertex Yi to operator 
vertex Yj   

iRiij xx ~...~
1=α  

with this path from Yi to Yj. For example, for ASM G1 in Fig. 5 
 

α17 = x4 x'1; α12 = x'4;  α14 = x4 x1.  
 
If there exist H paths between Yi and Yj through the conditional vertices, then  
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αij = α1ij + α2ij + … + αHij 
 
where αhij (h = 1, …,H) is the product for the h-th path. Let us call αij a transition 
function from operator (microinstruction) Yi to operator (microinstruction) Yj.  
 
Note that for the path Y6Y7 (operator Y7 follows operator Y6 immediately without 
conditional vertices) α67 = 1, as the product of an empty set of variables is equal to 
one. 
 
4.1.3 Value of ASM at the sequence of vectors. Denote all possible L-component 
vectors of the logical conditions x1, …,xL by ∆1, …,∆2L and define the  execution of an 
ASM on any given sequence of vectors ∆1, …,∆mq beginning from the initial operator 
Yb. We will demonstrate this procedure by means of ASM G1 in Fig. 5 and the 
sequence (2) containing eight vectors ∆1, …,∆8: 
 

 
 
 
 
 
 
 
 
 
 
 
 
ASM G1 in Fig. 5 contains logical variables x1,…,x7 and operators Yb ,Y1, …,Y8,Ye. Now 
let us find the sequence of operators which would be implemented, if we 
consecutively, beginning from Yb, give variables the values from these vectors. We 
suppose that the values of logical conditions can be changed only during an execution 
of operators.      
 
Step 1. Write the initial operator 

Yb. 
 
Step 2. Let logical variables x1,…,x7  take their values from vector ∆1. From the set of 
the transition functions αb1,…, αb8, αbe we choose such a function αbt  that αbt(∆1) = 1. 
In our example for the operator Yb, the following transition functions are not 
identically equal to zero: 
 

αb5 = x1 x2 x3;        αb6 = x1 x2 x'3; αb1 = x1 x'2; αb2 = x'1.  
        
We will call such functions non-trivial transition functions to distinguish them from the 
trivial functions, which are identically equal to zero. Function αij is trivial if there is no 
path from operator Yi to operator Yj. In the example at this step, we choose the 
function αb1, since only αb1 is equal to one on the first vector ∆1:  
 

αb1 (∆1) = 1. 
 
Write Y1 to the right of Yb: 

YbY1. 

  x1 x2 x3 x4 x5 x6 x7 

∆1 = 1 0 1 0 1 1 1 
∆2 = 0 1 1 0 1 0 0 
∆3 = 1 0 1 0 0 1 0 
∆4 = 0 1 0 0 0 0 1                                (2) 
∆5 = 1 1 0 1 1 1 0 
∆6 = 1 1 0 0 1 0 1 
∆7 = 0 1 1 1 0 0 0 
∆8 = 0 1 0 1 0 0 1 
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Step 3. Let x1,…,x7  take their values from vector ∆2. From the set of the transition 
functions α11,…, α18, α1e we choose non-trivial functions 

α14 = x4 x1;         α17 = x4 x'1;         α12 = x'4 
and among them – the only function α12 (∆2) = 1. Write Y2 to the right of YbY1: 

 
YbY1Y2. 

The computational process for the given sequence of vectors may reach its end in two 
cases:  

1. The final vertex “End” is reached. In this case, the last operator is Ye. The 
number of operators in the operator row (without Yb and Ye) is less or equal (if 
we reached the final vertex with the last vector) to the number of vectors; 

2. The vectors are exhausted but we have not yet reached the final vertex. In this 
case, the number of operators in the operator row is equal to the number of 
vectors.   

 
In our example, we reached the final vertex “End” at the seventh vector  

 
∆7 = 0 1 1 1 0 0 0 

and we get the row 
                            Yb Y1 Y2 Y4 Y2 Y3 Y8 Ye.                                             (3) 

 
The operator row thus obtained is the value of the ASM G1 for the given sequence of 
vectors (2). 

 
4.2 Synthesis of Mealy FSM 

 
We will use Algorithmic state machines to describe the behavior of digital systems, 
mainly of their control units. But if we must construct a logic circuit of the control 
unit we should use a Finite state machine (FSM). We will consider methods of 
synthesis of FSM Mealy, Moore and their combined model implementing a given ASM, 
with hardly any constrains on the number of inputs, outputs and states. 
 
4.2.1 Construction of a marked ASM.  As an example we will use ASM G1 in Fig. 6.  
A Mealy FSM implementing given ASM may be constructed in two stages:  
 
Stage1. Construction of a marked ASM;  
 
Stage 2.  Construction of a state diagram (state graph).  
 
At the first stage, the inputs of vertices following operator vertices are marked by 
symbols a1, a2, …, aM as follows: 
 

1. Symbol a1 marks the input of the vertex following the initial vertex “Begin” and 
the input of the final vertex “End”; 

2. Symbols a2, …, aM mark the inputs of all vertices following  operator vertices; 
3. Vertex inputs are marked only once; 
4. Inputs of different vertices, except the final one, are marked by different 

symbols. 
 

Marked ASM G1 in Fig. 6 is a result of the first step. Symbols a1, …, a6 are used to 
mark this ASM. Note, that we mark the inputs not only of conditional vertices but 
of operator vertices as well (see mark a3 at the input of the vertex with operator 
Y7). It is important that each marked vertex follows an operator vertex. 
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Figure 6. ASM G1 marked for the Mealy FSM synthesis 

 
4.2.2 Transition Paths. At the second stage, we will consider the following paths in 
the marked ASM: 
    sgmmRmm aYxxa ~...~

1    (P1) 
     
    11

~...~ axxa mmRmm     (P2) 
 
We call these paths transition paths. Thus, the path P1 proceeds from am to as (am = as 

is also allowed) and contains only one operator vertex at the end of this path. The 
path P2 proceeds from am only to a1 without operator vertex. Here, mrmr xx =~ , if on 

the transition path we leave the conditional vertex with mrx via output ‘1’ and 

mrmr xx '~ =  if we leave it via output ‘0’. If Rm = 0 on the path P1, two operator vertices 
follow one after another and this path turns into 

sgm aYa . 
There are sixteen transition paths in the marked ASM G2 in Fig. 6:  
 
 
 
 
 
 
Note, that the path a2 x4x'1 a3 doesn’t correspond to the transition path P1 (the 
operator vertex is absent on the path) and to transition path P2 (it isn’t a path to a1). 
Thus, it isn’t a transition path and we should go on to get the path a2 x4x'1 Y7 a6. For 
the same reason, paths a4 x'5x'1 a3 and a6 x'6 a3 are not the transition paths either. 

a1 x1x2x3 Y5 a2 

a1 x1x2x'3 Y6 a3 

a1 x1x'2 Y1 a2 

a1 x'1 Y2 a4 

a2 x4x1 Y4 a2 

a2 x4x'1 Y7 a6 

a2 x'4 Y2 a4 

a3 Y7 a6 

a4 x5 Y3 a5 

a4 x'5x1 Y4 a2 

a4 x'5x'1 Y7 a6 

a5 x6 Y4 a2 

a5 x'6x7 Y8 a1 

a5 x'6x'7 a1 

a6 x6 Y6 a1 

a6 x'6 Y7 a6 
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4.2.3 Graph of FSM. Next we construct a graph (state diagram) of FSM Mealy with 
states (marks) a1, …, aM, obtained at the first stage. We have six such states a1, …, a6 
in our example. Thus, the FSM graph contains as many states as the number of 
marks we get at the previous stage. Now we should define transitions between these 
states.  
 
FSM has a transition from state am to state as with input X(am, as)  and output Yg (see 
the upper subgraph in Fig. 7) if, in ASM, there is transition path P1  

sgmRmm aYxxa
m

~...~
1 . 

Here X(am, as) is the product of logical conditions written in this path:  
X(am, as) = mmRm xx ~...~

1 . 

In exactly the same way, for the path sgm aYa we have a transition from state am to 
state as with input X(am, as) = 1 and output Yg, as the product of an empty set of 
variables is equal to zero. If, for a certain r (r = 1, …, Rm), symbol xmr (or x'mr) occurs 
several times on the transition path, all symbols xmr (x'mr) but one are deleted; if for a 
certain r (r = 1, …, Rm), both symbols xmr and x'mr occur on the transition path, this 
path is removed. In such a case X(am, as) = 0. 
 
For the second transition path P2, FSM transits from state am to the initial state a1 
with input X(am, a1)  and output Y0 (see the lower subgraph in Fig. 7). Y0 is the 
operator containing an empty set of microoperations.            
                                 

 
Figure 7. Subgraphs for transition paths P1 and P2 

As a result, we obtain a Mealy FSM with as many states as the number of marks we 
used to mark the ASM in Fig. 6. The state diagram of the Mealy FSM is shown in Fig. 
8. 

 
Figure 8. The state diagram of the Mealy FSM 

 
4.2.4 How not to loose transition paths. Sometimes, if ASM contains many 
conditional vertices, it is difficult not to loose one or several transition paths. Here 
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we give a very simple algorithm to resolve this problem. This algorithm has only 
two steps. 

 
1. Find the first transition path leaving each conditional vertex through output 

'1'. For subgraph of ASM in Fig. 9 we will get the following first path from state 
a2: 

a2 x1 x2 x5 Y6 a3. 

 

2. Invert the last non-inverted variable in the previous path, return to ASM and 
continue the path (if it is possible) leaving each conditional vertex through 
output '1'. To construct the second path, we should invert variable x5. We 
cannot continue because we reached an operator vertex: 

 
a2 x1 x2 x'5 Y2 a3. 
 

We should construct paths in the same manner until all variables in a transition path 
will be inverted. For our example, we will get the following paths: 

 
 
 
 
 

 

 
Figure 9. Subgraph of ASM 

 
4.2.5 Transition tables of Mealy FSM. The graph of Mealy FSM in Fig. 8 has only 6 
states and 16 arcs. Practically, however, we must construct FSMs with tens of states 
and more than one-two hundreds of transitions. In such a case, it is difficult to use a 
graph, so we will present it as a table. Table 1 for the same Mealy FSM has five 
columns: 

• am – a current state; 
• as – a next state; 
• X(am,as) – an input signal;                           
• Y(am,as) – an output signal; 
• H – a number of line.   

                  

a2 x1 x'2 x5 x6 Y3 a4; 
a2 x1 x'2 x5 x'6 x7 x4 Y5 a5; 
a2 x1 x'2 x5 x'6 x7 x'4 Y7 a4; 
a2 x1 x'2 x5 x'6 x'7 Y5 a5; 
 

a2 x1 x'2 x'5 Y2 a3; 
a2 x'1 x3 x7 x4 Y5 a5; 
a2 x'1 x3 x7 x'4 Y7 a4; 
a2 x'1 x3 x'7 Y5 a5; 

a2 x'1 x'3 x6 Y3 a4; 
a2 x'1 x'3 x'6 x7 x4 Y5 a5; 
a2 x'1 x'3 x'6 x7 x'4 Y7 a4; 
a2 x'1 x'3 x'6 x'7 Y5 a5. 
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Actually, immediately from ASM, we should write transition paths, one after another, 
into the transition table. In Table 1, ~xt is used instead of x't for the inversion of xt. 

Now we will discuss what kind of FSM we have received. Our ASM G1 in Fig. 6 which 
we used to construct FSM S1 in Table 1, has seven logical conditions and ten 
microoperations. FSM S1 has seven binary inputs in the column X(am,as) and ten 
binary outputs in the column Y(am,as). The input signal of this FSM (Fig. 10) is the 7-
component vector, the output signal of this FSM is the 10-component vector. 

Table 1. Direct transition table of Mealy FSM S1 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. FSM as a black box 

Let us take one of the rows from Table 1, for example row 3, and look at the behavior 
of FSM presented in this row. Our FSM transits from state a1 into state a2 when the 
product x1 x'2 = 1. It is clear that such a transition takes place for any input vector in 
which the first component is equal to 1, the second component is equal to 0. The 
values of other components are not important. Thus, we can say that the third row of 
Table 1 presents transitions from a1 with any vector which is covered by cube 
10xxxxx. In other words, this row presents not one but 25 = 32 transitions. In exactly 
the same way, the first and the second row present 16 transitions, the fourth row – 64 
transitions and the eighth row – 128 transitions. 

Two microoperations y1, y2, written in the third row of the output column, mean that 
two components y1 and y2 are equal to 1 and others are equal to 0 (y1= y2 =1; y3 = y4 = 
… = y10 =0) in the output vector. I remind you that if the operator, written in the 
operator vertex of some ASM, contains microoperations ym, yn, only these 
microoperations are equal to 1 and other microoperations are equal to 0 during 
implementation of this operator.  

Let us compare Table 1 with a classical FSM representation in Table 3.7 from Chapter 
3. If we would like to present our FSM with six states a1, …, a6 and seven inputs x1, 
…, x7 in the classical table, this table will have about 6x27 rows, because each row of 

am as X(am,as) Y(am,as) H 
a1 a2 

a3 

a2 

a4 

x1x2x3 

x1x2~x3 

x1~x2 

~x1 

y1y3 

y6y7 

y1y2 

y4 

1 
2 
3 
4 

a2 a2 

a6 

a4 

x4x1 

x4~x1 

~x4 

y8y9 

y3y4 

y4 

5 
6 
7 

a3 a6 1 y3y4 8 
a4 a5 

a2 

a6 

x5 

~x5x1 

~x5~x1 

y5y6y7 

y8y9 

y3y4 

9 
10 
11 

a5 a2 

a1 

a1 

x6 

~x6x7 

~x6~x7 

y8y9 

y3y6y10 

- 

12 
13 
14 

a6 a1 

a6 
x6 

~x6 
y6y7 

y3y4 
15 
16 
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this table describes only one FSM transition. In our Table 1 from this Chapter, we 
have only 16 rows because each row of such table presents lot of transitions. 
 
The specific feature of such FSM is the multiplicity of inputs in the column X(am,as), 
maybe several tens or even hundreds, but each product in one row contains only few 
variables from the whole set of input variables – as a rule, not more than 8 – 10 
variables. It means that each time the values of the output variables depend only on 
the values of a small number of the input variables. Really, if, for example, FSM has 
30 input variables, the total number of input vectors is equal to 230, and if each time 
the values of the output variables depended on the values of all the input variables, 
no designer could either describe or construct such an FSM.  
 
Let us briefly discuss the correspondence between FSM S1 (Table 1) and ASM G1 (Fig. 
6) which we used to construct FSM S1. In Section 4.1.3 we got the value of ASM G1  
 

Yb Y1 Y2 Y4 Y2 Y3 Y8 Ye 
for some random sequence of vectors (2) of logical conditions: 

 
 
 
 
 
 
 
 
 
 
 

 
Now we will find the response of FSM S1 in the initial state a1 to the same sequence of 
input vectors: 
 
State sequence a1 a2 a4 a2 a4 a5 a1   
Input sequence ∆1 ∆2 ∆3 ∆4 ∆5 ∆6    
Response y1y2 y4 y8y9 y4 y5y6y7 y3y6y10   (4) 
Microinstructions Y1 Y2 Y4 Y2 Y3 Y8    
 
Let FSM be in the initial state a1 with the first vector ∆1 = 1010111 at its input. To 
determine the next state and the output we should find such a row in the array of 
transitions from a1 (Table 1) that the product X(am,as), written in this row, be equal to 
one at input vector ∆1. Since x1x′2(∆1) = 1 (the third row), FSM S1 produces output 
signal y1y2 = Y1 and transits into state a2. Similarly, we find that x′4(∆2) is equal to one 
at one of transitions from state a2 and FSM transits to the state a4 with the output 
signal y4 = Y2 (see row 7 in Table 1) etc. As a result, we get the response of FSM S1 in 
the initial state a1 to the input sequence ∆1, …, ∆6 in the fourth row of sequence (4). 
 
As seen from this row, the FSM response is equal to the value of ASM G1 for the same 
input sequence.  Note, that we consider here only the FSM response until its return to 
the initial state a1 and this response Y1 Y2 Y4 Y2 Y3 Y8 corresponds to the value of ASM  
G1 between the operator Yb (vertex "Begin") and the operator Ye (vertex "End"). 
 
Let us define FSM S as implementing ASM G if the response of this FSM in the state a1 

to any input sequence (until its return to the state a1) is equal to the value of ASM G 

  x1 x2 x3 x4 x5 x6 x7 

∆1 = 1 0 1 0 1 1 1 
∆2 = 0 1 1 0 1 0 0 
∆3 = 1 0 1 0 0 1 0 
∆4 = 0 1 0 0 0 0 1                                     
∆5 = 1 1 0 1 1 1 0 

∆6 = 1 1 0 0 1 0 1 
∆7 = 0 1 1 1 0 0 0 
∆8 = 0 1 0 1 0 0 1 
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for the same input sequence. From the considered method of synthesis of Mealy FSM 
S1 from ASM G1 it follows that this FSM S1 implements ASM G1. 

4.2.6 Synthesis of Mealy FSM logic circuit. As in Chapter 3, we will construct a 
Mealy FSM logic circuit with the structure presented in Fig. 11. To design this circuit 
we will use an FSM structure table (Table 2). This table was constructed from the 
direct transition table (Table 1) by adding three additional columns: 

• K(am) – a code of the current state; 
• K(as) – a code of the next state; 
• D(am,as) – an input memory function. 

       

 
Figure 11. The structure for the Mealy FSM logic circuit 

 
Table 2. Structure table of FSM S1 

am K(am) as K(as) X(am,as) Y(am,as) D(am,as) H 
a1 001 a2 

a3 

a2 

a4 

000 
101 
000 
010 

x1x2x3 

x1x2~x3 

x1~x2 

~x1 

y1y3 

y6y7 

y1y2 

y4 

– 
d1d3 

– 

d2 

1 
2 
3 
4 

a2 000 a2 

a6 

a4 

000 
100 
010 

x4x1 

x4~x1 

~x4 

y8y9 

y3y4 

y4 

– 
d1 

d2 

5 
6 
7 

a3 101 a6 100 1 y3y4 d1 8 
a4 010 a5 

a2 

a6 

110 
000 
100 

x5 

~x5x1 

~x5~x1 

y5y6y7 

y8y9 

y3y4 

d1d2 
– 

d1 

9 
10 
11 

a5 110 a2 

a1 

a1 

000 
001 
001 

x6 

~x6x7 

~x6~x7 

y8y9 

y3y6y10 

- 

– 
d3 

d3 

12 
13 
14 

a6 100 a1 

a6 
001 
100 

x6 

~x6 
y6y7 

y3y4 
d3 

d1 
15 
16 

 
To encode FSM states we constructed Table 3 where p(as) is the number of 
appearances of each state in the next state column as in Table 2. The algorithm for 
state assignment is absolutely the same as in Chapter 3. First, we use the zero code 
for state a2 with max p(a2) = 5. Then codes with one '1' are used for states a6, a1, a4 
with the next max appearances and, finally, two codes with two 'ones' are used for the 
left states a3 and a5.     
 
To fill column D(am,as) it is sufficient to write there column K(as) because the input of 
D flip-flop is equal to its next state. However, here we use the same notation as in 
column Y(am,as) and write dr in the column D(am,as) if dr is equal to 1 at the 
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corresponding  transition (am,as) – equal to 1 in column K(as). After that, the shaded 
part of Table 2 is something like a truth table with input variables t1, t2, t3, x1, …, x7 in 
the columns K(am) and X(am,as) and output variables (functions) y1, …, y10, d1, d2, d3 in 
the columns Y(am,as) and D(am,as).    

Table 3. State assignment 

as p(as) t1 t2 t3 

a1 3 0 0 1 
a2 5 0 0 0 
a3 1 1 0 1 
a4 2 0 1 0 
a5 1 1 1 0 
a6 4 1 0 0 

 
Let Am be a product, corresponding to the state code K(am), and Xh be the product of 
input variables, written in the column X(am,as) in the h row. For example, from the 
column K(am): K(a1) = 001, then A1 = t'1t'2t3; K(a2) = 000, then A2 = t'1t'2t'3; K(a3) = 101, 
then A3 = t1t'2t3 etc. Immediately from the column X(am,as) we get:   
 

X1 = x1x2x3; X2 = x1x2x'3; X6 = x4x'1; X8 = 1; X16 = x'6. 
We call the term 

eh = Am Xh 

 
the product corresponding to the h row of the FSM structure table if am is the current 
state in this row. For example, from Table 2, we get: 
 

e1 =  t'1t'2t3 x1x2x3; 
e2 =  t'1t'2t3 x1x2x'3; 
e6 =  t'1t'2t'3 x4x'1; 
e8 =  t1t'2t3; 
e16 =  t1t'2t'3 x'6. 

 
Let H(yn) is the set of rows with yn in the column Y(am,as). Then, as in the truth table: 

.
)(

∑
∈

=
nyHh

hn ey  

For example, y6  is written in rows 2, 9, 13, 15 in the column Y(am,as). Then 
 

y6 = e2 + e9 + e13 + e15 = t'1t'2t3x1x2x'3 + t'1t2t'3 x5 + t1t2t'3 x'6x7 + t1t'2t'3 x6. 
 
In exactly the same way, if H(dr) is the set of rows with dr in the column D(am,as), then 
 

.
)(

∑
∈

=
rdHh

hr ed  

 
For example, d2 is written in rows 4, 7, 9 in the column D(am,as). Then 
 

d2 = e4 + e7 + e9 = t'1t'2t3 x'1+ t'1t'2t'3 x'4 + t'1t2t'3 x5. 
 
Thus, immediately from Table 1 we can get expressions for outputs of circuit “Logic” 
in Fig. 11: 

 
y1 = e1 + e3 = t'1t'2t3 x1x2x3 + t'1t'2t3 x1x'2; 
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y2 = e3 = t'1t'2t3 x1x'2; 
 
y3 = e1 + e6 + e8 + e11 + e13 + e16 = t'1t'2t3 x1x2x3 + t'1t'2t'3 x4x'1 + t1t'2t3 +  
      + t'1t2t'3 x'5x'1 + t1t2t'3 x'6x7 + t1t'2t'3 x'6; 
.  .  . 
y10 = e13 = t1t2t'3 x'6x7;     

 
d1 = e2 + e6 + e8 + e9 + e11 + e16 = t'1t'2t3 x1x2x'3 + t'1t'2t'3 x4x'1 + t1t'2t3 +  
      + t'1t2t'3 x5 + t'1t2t'3 x'5x'1 + t1t'2t'3 x'6; 
d2 = e4 + e7 + e9 = t'1t'2t3 x'1+ t'1t'2t'3 x'4 + t'1t2t'3 x5; 
d3 = e2 + e13 + e14 + e15 = t'1t'2t3 x1x2x'3 + t1t2t'3 x'6x7 + t1t2t'3 x'6x'7 + t1t'2t'3 x6. 

 
How many different products are there in these expressions? The answer is very 
simple – only sixteen, because we have 16 rows in Table 2 and only one product 
corresponds to one row. Thus, we should not write any expressions but can design 
the logic circuit immediately from the structure table. For that, it is sufficient to 
construct H AND-gates, one for each row, and N+R OR-gates, one for each output 
variable yn (n = 1, …, 10 in our example) and one for each input memory function dr (r 
= 1, 2, 3 in our example). The logic circuit of Mealy FSM is shown in Fig. 12. We have 
constructed 16 AND-gates, as there are 16 rows in its structure table. The number of 
OR-gates in this circuit is less than the number of input memory functions and 
output functions. Really, if yn or dr (y2 and y10 in our example) are written only in one 
row of the structure table, it is not necessary to construct OR-gate for such yn or dr,  
we can get these signals from the corresponding AND-gates. Moreover, we have 
constructed one OR-gate for y8 and y9 since these outputs are always together in the 
structure table of Mealy FSM S1.  
 
4.2.7 ASM with waiting vertices. In this section, we will show that the algorithm for 
FSM synthesis does not change if ASM contains waiting vertices. In a waiting vertex, 
one of its outputs is connected with its input (see the ASM subgraph in Fig. 13). Let 
us find all transition paths from the state a8. The first two are trivial – see the first two 
rows in Table 4. 
 
To find the next path we should invert the variable x7. The output '0' for x7 brings us 
to the input of this conditional vertex. So, the next paths will be: 
 

a8 ~x7 x7 x12 (y11) a13; 
a8 ~x7 x7 ~x12 (y23, y29) a17. 

 
The products of input variables for both of these paths are equal to zero (x'7 x7 = 0), so 
FSM cannot transit from the state a8 to any other state when x7 = 0. If FSM cannot  
transit into any other state, it remains in the same state a8 or, we can say, it transits 
from a8 to a8 with X(a8, a8) = x'7. No output variables are equal to '1' at this transition, 
so we have '–' in the column Y(am, as) in the third row.  
 
The next example (Fig.14) presents a general case. The only difference from the 
previous example – the waiting vertex is in the middle of the path. After the third path 
in Table 5 we should invert variable x11 and again return to the input of the 
conditional vertex with x11. We can construct the following transitions paths: 
 

a10 ~x4 ~x11 x11 x27 (y33) a22; 
a10 ~x4 ~x11 x11 ~x27 (y7, y31) a17. 
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The products for both of these paths are equal to zero. So, when x4 = 0, we reached a 
waiting vertex with condition x11. If x11 = 0 (return to the input), FSM transits from 
state a10 to state a10 (remains in this state) with input x'4 x'11 and each output variable 
is equal to zero (the forth row in Table 5).             
 

 
Figure 12. The logic circuit for Mealy FSM S1 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

1

x12

x7

a8

0

y11
1

y23 y29

0a13

a17

 
Figure 13. Subgraph G1 with waiting vertex 

 

Table 4. Transitions for subgraph G1 

am as X(am,as) Y(am,as) H 
.   .   . 

a8 a13 

a17 

a8 

x7x12 

x7~x12 
~x7 

y11 

y23y29 

– 
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4.3 Synthesis of Moore FSM 
 

As an example, we will use ASM G1 in Fig. 15. A Moore FSM, implementing given ASM, 
can be constructed in two stages: 
 
 Stage 1.  Construction of a marked ASM;  
 Stage 2.  Construction of an FSM transition table. 
 
At the first stage, the vertices "Begin", "End" and operator vertices are marked by 
symbols a1, a2, …, aM as follows: 

1. Vertices "Begin" and "End" are marked by the same symbol a1; 

2. Operator vertices are marked by different symbols a2, …, aM; 

3. All operator vertices should be marked. 

Thus, while synthesizing a Moore FSM, symbols of states do not mark inputs of 
vertices following the operator vertices (as in the Mealy FSM) but operator vertices 
themselves. The number of marks is T+1, where T is the number of operator vertices 
in the marked ASM. In our example (Fig. 15), we need marks a1, …, a10  for ASM G1. 

 
We will find the following transition paths in the marked ASM: 
 

smRmm axxa
m

~...~
1 . 

 
Thus, the transition path is the path between two operator vertices, containing Rm 
conditional vertices. Here, as above in the case of Mealy FSM, mrmr xx =~ , if in the 

transition path, we leave the conditional vertex with mrx via output ‘1’ and mrmr xx '~ =  

if we leave the vertex with mrx via output ‘0’. If Rm = 0 in such a path, there are no 

conditional vertices between two operator vertices, and this path turns into smaa . 
 

 
Figure 14. Subgraph G2 with a waiting vertex 

Table 5. Transitions for subgraph G2 

am as X(am,as) Y(am,as) H 
.   .   . 

a10 a16 

a22 

a17 

a10 

x4 

~x4x11x27 

~x4x11~x27 

~x4~x11 

y15y27 

y33 

y7y31 

– 
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Figure 15. ASM G1 marked for the Moore FSM synthesis 

At the second stage we construct a transition table (or the state diagram) of the Moore 
FSM with states (marks) a1, …, aM, obtained at the first stage. We have ten such states 
a1, …, a10 in our example. Thus, the FSM contains as many states as the number of 
marks we get at the previous stage. Now we should define transitions between these 
states.  
 
Thus, a Moore FSM has a transition from state am to state as with input X(am, as) (see 

the upper subgraph in Fig. 16) if, in ASM, there is a transition path smRmm axxa
m

~...~
1 . 

Here X(am, as) is a product of logical conditions written in this path: X(am, as) =

mmRm xx ~...~
1 . In exactly the same way, for the path smaa (see the lower subgraph in Fig. 

16) we have a transition from state am to state as with input X(am, as) = 1, because the 
product of an empty set of variables is equal to zero. If am marks the operator vertex 
with operator Yt, then λ(am) = Yt, i.e. we identify the operator Yt written in the operator 
vertex with this state am. 
 

 
Figure 16. Subgraphs to illustrate transitions in the Moore FSM 

The transition table for Moore FSM S2, thus constructed, is presented in Table 6. The 
outputs are written in column Y(am) immediately after the column with the current 
states. To design the logic circuit for this FSM we will use the structure presented in 
Fig. 17. It consists of two logic blocks (Logic1 and Logic2) and memory block with four 
D flip-flops. Logic1 implements input memory functions, depending on flip-flop 
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outputs t1, …, t4 (feedback) and input variables x1, …, x7. Logic2 implements output 
functions, depending only on flip-flop outputs t1, …, t4.  

Table 6. The transition table of Moore FSM S2 

am Y(am) as X(am, as) h 
a1  –   a4 

a3 

a2 

a5 

x1x2x3 

x1x2~x3 

x1~x2 

~x1 

1 
2 
3 
4 

a2 y1y2 a7 

a9 

a5 

x4x1 

x4~x1 

~x4 

5 
6 
7 

a3 y6y7 a9 1 8 
a4 y1y3 a7 

a9 

a5 

x4x1 

x4~x1 

~x4 

9 
10 
11 

a5 y4 a6 

a7 

a9 

x5 

~x5x1 

~x5~x1 

12 
13 
14 

a6 y5y6y7 a7 

a8 

a1 

x6 

~x6x7 

~x6~x7 

15 
16 
17 

a7 y8y9 a7 

a9 

a5 

x4x1 

x4~x1 

~x4 

18 
19 
20 

a8 y3y6y10 a1 1 21 
a9 y3y4 a10 

a9 
x6 

~x6 
22 
23 

a10 y6y7 a1 1 24 

To encode FSM states we constructed Table 7 where p(as), as before, is the number of 
appearances of each state in the next state column as in Table 6. The algorithm for 
state assignment is absolutely the same as in the case of Mealy FSM. First, we use 
the zero code for state a9 with max p(a9) = 6. Then codes with one '1' are used for 
states a7, a5, a1 and a2 with the next max appearences and, finally, five codes with two 
'ones' are used for the left five states a3, a4, a6, a8 and a10.    

Table 8 is the structure table of the Moore FSM S2. Its logic circuit is constructed in 
Fig. 18. In this circuit, Am is a product of state variables for the state am (m = 1, …, 
10). As above we construct one AND-gate for one row of the structure table, but we 
need not construct the gates for rows 6, 8, 10, 14, 19 and 23, as all input memory 
functions are equal to zero in these rows (see the column D(am,as) in Table 8). Neither 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 17. Moore FSM structure 

Table 7. State assignment 

as p(as) t1t2t3t4 
a1 3 0100 
a2 1 0010 
a3 1 1001 
a4 1 0110 
a5 4 0001 
a6 1 1100 
a7 5 1000 
a8 1 0011 
a9 6 0000 
a10 1 0101 
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Table 8. The structure table of the Moore FSM S2  
 

am Y(am) K(am) as K(as) X(am,as) D(am,as) h 
a1 – 0100 a4 

a3 

a2 

a5 

0110 
1001 
0010 
0001 

x1x2x3 

x1x2~x3 

x1~x2 

~x1 

d2d3 

d1d4 

d3 

d4 

1 
2 
3 
4 

a2 y1y2 0010 a7 

a9 

a5 

1000 
0000 
0001 

x4x1 

x4~x1 

~x4 

d1 

– 

d4 

5 
6 
7 

a3 y6y7 1001 a9 0000 1 – 8 
a4 y1y3 0110 a7 

a9 

a5 

1000 
0000 
0001 

x4x1 

x4~x1 

~x4 

d1 

– 

d4 

9 
10 
11 

a5 y4 0001 a6 

a7 

a9 

1100 
1000 
0000 

x5 

~x5x1 

~x5~x1 

d1d2 

d1 

– 

12 
13 
14 

a6 y5y6y7 1100 a7 

a8 

a1 

1000 
0100 
0011 

x6 

~x6x7 

~x6~x7 

d1 

d2 

d3d4 

15 
16 
17 

a7 y8y9 1000 a7 

a9 

a5 

1000 
0000 
0001 

x4x1 

x4~x1 

~x4 

d1 

– 

d4 

18 
19 
20 

a8 y3y6y10 0011 a1 0100 1 d2 21 
a9 y3y4 0000 a10 

a9 
0101 
0000 

x6 

~x6 
d2d4 

– 
22 
23 

a10 y6y7 0101 a1 0100 1 d2 24 
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Figure 18. The logical circuit for the Moore FSM S2 
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do we construct the gates for rows 21 and 24, since there are no input variables in 
the corresponding terms e21 and e24: e21 = A8 and e24 = A10 and we use A8 and A10 
directly as inputs in OR-gate for d2.  

4.4. Synthesis of Combined FSM model 
In this book we will use two kinds of transition tables – direct and reverse. In a direct 
table (Table 9), transitions are ordered according to the current state (the first column 
in this table) – first we write all transitions from the state a1, then from the state a2 , 
etc.  In a reverse table (Table 10), transitions are ordered according to the next state 
(the second column in this table) – first we write all transitions to the state a1, then to 
the state a2 , etc. 

Table 9. Direct transition table of Mealy FSM S3 

am      as   X(am,as)     Y(am,as)    h 
----------------------------------- 
a1   a2   x6          y8y9      1 
a1   a5   ~x6*x7      y6        2 
a1   a5   ~x6*~x7     y3y6y10   3 
a2   a2   x4*x1       y1y2      4 
a2   a6   x4*~x1      y3y4      5 
a2   a4   ~x4         y4        6 
a3   a6   1           y3y5      7 
a4   a1   x5          --        8 
a4   a2   ~x5*x1      y8y9      9 
a4   a6   ~x5*~x1     y3y4      10 
a5   a2   x1*x2*x3    y1y3      11 
a5   a3   x1*x2*~x3   y1y4      12 
a5   a2   x1*~x2      y1y2      13 
a5   a4   ~x1         y4        14 
a6   a5   x6          y6y7      15 
a6   a6   ~x6         y3y5      16 
 

Now we will discuss the transformation of Mealy FSM into Combined FSM and 
synthesis of its logic circuit. I remind here that Combined FSM has two kinds of 
output signals: 

1.  Signals depending on the current state and the current input (as in the Mealy 
model); 

2.  Signals depending only on the current state (as in the Moore model); 
 
As an example, we use the transition table of Mealy FSM in Table 9. Our first step is 
to construct a reverse table for this FSM (Table 10). 
 
Fig. 19,a illustrates all transitions into state a5 of Mealy FSM from Table 10. Here we 
have three transitions with different outputs but all of them contain the same output 
variable y6. So, we can identify this output variable y6 with the state a5 as a Moore 
signal (see Fig. 19,b). 

 
Figure 19. Transformation from Mealy FSM to Combined FSM 
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Table 10. Reverse transition table of Mealy FSM S3 

am     as   X(am,as)     Y(am,as)    H 
--------------------------------- 
a4   a1   x5          --        1 
a2   a2   x4*x1       y1y2      2 
a1   a2   x6          y8y9      3 
a4   a2   ~x5*x1      y8y9      4 
a5   a2   x1*x2*x3    y1y3      5 
a5   a2   x1*~x2      y1y2      6 
a5   a3   x1*x2*~x3   y1y4      7 
a2   a4   ~x4         y4        8 
a5   a4   ~x1         y4        9 
a1   a5   ~x6*x7      y6        10 
a1   a5   ~x6*~x7     y3y6y10   11 
a6   a5   x6          y6y7      12 
a4   a6   ~x5*~x1     y3y4      13 
a2   a6   x4*~x1      y3y4      14 
a3   a6   1           y3y5      15 
a6   a6   ~x6         y3y5      16 

 
After this, the transformation of Mealy FSM into Combined model is trivial. Let us 
return to the reverse Table 10 and begin to construct the reverse transition table of 
Combined FSM S4 (Table 11 In Table10, we look at the transitions to each state, 
beginning from transitions to state a1. Let Ys be the set of output variables at the 
transitions into state as (Y5 = {y3, y6, y7, y10} in Fig19,a or in Table 10) and YsMoore be 
the subset of common output variables at all transitions into as (Y5Moore = {y6} in 
Fig19,a or in Table 10). Then, in Table 11, we delete YsMoore from the column Y(am,as) at 
each row with transition to as and write YsMoore next to as in the column Y(as). In our 
example: 

Y1Moore = Y2Moore = Ø; Y3Moore = { y1, y4}; Y4Moore = { y4};    
Y5Moore = { y6};  Y6Moore = { y3}.  

 

Table 11. Reverse transition table of Combined FSM S4 

am   as Y(as)  X(am,as)   Y(am,as)  H 
--------------------------------- 
a4  a1  --    x5         --     1 
a1  a2  --    x6         y8y9   2 
a2  a2  --    x4*x1      y1y2   3 
a4  a2  --    ~x5*x1     y8y9   4 
a5  a2  --    x1*x2*x3   y1y3   5 
a5  a2  --    x1*~x2     y1y2   6 
a5  a3  y1y4  x1*x2*~x3  --     7 
a2  a4  y4    ~x4        --     8 
a5  a4  y4    ~x1        --     9 
a1  a5  y6    ~x6*~x7    y3y10  10 
a1  a5  y6    ~x6*x7     --     11 
a6  a5  y6    x6         y7     12 
a2  a6  y3    x4*~x1     y4     13 
a3  a6  y3    1          y5     14 
a4  a6  y3    ~x5*~x1    y4     15 
a6  a6  y3    ~x6        y5     16 
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Now we consider the design of the logic circuit of Combined FSM. For this, let us 
return to the Mealy FSM S1 with direct transition Table 1. Its reverse transition table 
is presented in Table 12. Immediately from this table we construct the direct 
transition table of Combined FSM S1 (Table 13). To construct the logic circuit for this 
FSM we should encode the states and construct FSM structure table. But before state 
assignment we will make one more step.  

Table 12. Reverse transition table of Mealy FSM S1 

 

 

 

 

 

 

 

 

 

 

 

 

Unlike the transition table of the Mealy FSM, Table 13 contains many empty entries 
in the column Y(am,as). It means that all output variables are equal to zero in these 
rows. If, after state assignment, we get an empty entry in column D(am,as) for such a 
row, we shouldn’t construct a product for this row, because all output variables and 
input memory functions are equal to zero in this row. Now we will try to maximize the 
number of such rows in the structure table of S5. 

Table 13. Direct transition table of Combined FSM S5 

 
 
 
 

 
 
 

 
 
 
 
 
 
 

Table 13 contains one row with empty entry in the column Y(am,as) for the next states 
a1 (row 14) and a3 (row 2), two rows for a4 (rows 4 and 7), one row for a5 (row 9) and 

am as X(am,as) Y(am,as) H 
a5 

a5 

a6 

a1 

 
~x6x7 

~x6~x7 

x6 

y3y6y10 

- 
y6y7 

1 
2 
3 

a1 

a1 

a2 

a4 

a5 

a2 

 
x1x2x3 

x1~x2 

x4x1 

~x5x1 

x6 

y1y3 

y1y2 

y8y9 

y8y9 

y8y9 

4 
5 
6 
7 
8 

a1 a3 x1x2~x3 y6y7 9 
a1 

a2 
a4 ~x1 

~x4 
y4 

y4 
10 
11 

a4 a5 x5 y5y6y7 12 
a2 

a3 

a4 

a6 

a6 

 
x4~x1 

1 
~x5~x1 

~x6 

y3y4 

y3y4 

y3y4 

y3y4 

13 
14 
15 
16 

am Y( am) as X(am,as) Y(am,as) H 
a1 -- 

-- 
-- 
-- 

a2 

a3 

a2 

a4 

x1x2x3 

x1x2~x3 

x1~x2 

~x1 

y1y3 

-  
y1y2 

- 

1 
2 
3 
4 

a2 -- 
-- 
-- 

a2 

a6 

a4 

x4x1 

x4~x1 

~x4 

y8y9 

- 
- 

5 
6 
7 

a3 y6y7 a6 1 - 8 
a4 y4 a5 

a2 

a6 

x5 

~x5x1 

~x5~x1 

- 
y8y9 

-- 

9 
10 
11 

a5 y5y6y7 

 
a2 

a1 

a1 

x6 

~x6x7 

~x6~x7 

y8y9 

y3y6y10 

- 

12 
13 
14 

a6 y3y4 a1 

a6 
x6 

~x6 
y6y7 

- 
15 
16 
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four rows for a6 (rows 6, 8, 11 and 16). This information is presented in the first two 
columns of Table 14, z(as) is the number of empty entries in column Y(am,as) for the 
next state as in Table 13. So, if we use zero code for states a1 or a3 or a5, we shouldn’t 
construct a product for one row (z(a1) = z(a3) = z(a5) = 1), if we use zero code for state 
a4 – for two rows (z(a4) = 2); but if we use zero code for state a6, we will construct four 
product less (z(a6) = 4). Thus, we use code 000 for state a6 with max z(as). State 
assignment for other states is presented in Table 15. We have used here the same 
algorithm as we have used previously for Mealy and Moore models. 

 

 

 

 

 

 

 

Table 16. Structure table of Combined FSM S5 

am Y(am) K(am) as K(as) X(am,as) Y(am,as) D(am,as) H 
a1 -- 

-- 
-- 
-- 

010 a2 

a3 

a2 

a4 

001 
101 
001 
100 

x1x2x3 

x1x2~x3 

x1~x2 

~x1 

y1y3 

- 
y1y2 

- 

d3 

d1d3 

d3 

d1 

1 
2 
3 
4 

a2 -- 
-- 
-- 

001 a2 

a6 

a4 

001 
000 
100 

x4x1 

x4~x1 

~x4 

y8y9 

- 
- 

d3 

- 
d1 

5 
6 
7 

a3 y6y7 101 a6 000 1 - - 8 
a4 y4 100 a5 

a2 

a6 

110 
001 
000 

x5 

~x5x1 

~x5~x1 

- 
y8y9 

- 

d1d2 
d3 

- 

9 
10 
11 

a5 y5y6y7 

 
110 a2 

a1 

a1 

001 
010 
010 

x6 

~x6x7 

~x6~x7 

y8y9 

y3y6y10 

- 

d3 

d2 

d2 

12 
13 
14 

a6 y3y4 000 a1 

a6 
010 
000 

x6 

~x6 
y6y7 

- 
d2 

- 
15 
16 

 
Table 16 is the structure table of Combined FSM S5. We have three kinds of output 
variables here: 
 

1. Only Mealy signals: y1, y2, y8, y9, y10. They are written in column Y(am,as) and 
are not written in column Y(am)  in Table 16;    

2. Only Moore signals: y4, y5. They are written in the column Y(am) and are not 
written in column Y(am,as)  in Table 16; 

3. Combined signals: (both Mealy and Moore type) y3, y6, y7. They are written in 
both columns Y(am,as) and Y(am)  in Table 16. 

 
The logic circuit of FSM S5 is constructed in Fig. 20. In this circuit, Am is a product of 
state variables for the state am (m = 1, …, 6). The left part of this circuit, exactly as in 
the synthesis of the Mealy FSM logic circuit, implements input memory functions d1, 
d2, d3 and Mealy signals y1, y2, y8, y9, y10. As above, we construct one AND-gate for 
one row of the structure table, but we need not construct the gates for rows 6, 8, 11, 

Table 14. Next states with zero 
outputs  

as z(as) t1 t2 t3 

a1 1  
a3 1  
a4 2  
a5 1  
a6 4 0 0 0 

 

Table 15. State assignment 

as p(as) t1 t2 t3 

a1 3 0 1 0 
a2 5 0 0 1 
a3 1 1 0 1 
a4 2 10 0 
a5 1 1 1 0 
a6 4 0 0 0 

 



88 – Logic and System Design  
 

16 because all output variables and input memory functions are equal to zero in 
these rows in the columns Y(am,as)  and D(am,as) in Table 16. As in the Mealy case, we 
do not construct OR gates for y2 and y10 since they appear only once in the column 
Y(am,as).  
 
Moore signals y4, y5 are constructed as in the synthesis of Moore FSM logic circuit. 
Signal y4 appears twice near the states a4 and a6 in the column Y(am), so y4 = A4 + A6 

and we construct OR gate for this signal. Output signal y5 appears only once in the 
column Y(am) for the state a5, so we get it straight from A5: y5 = A5.             
 

Combined signal y6 is written in rows 13 and 15 in the column Y(am,as) and near the 
states a3 and a5 in the column Y(am), so        

y6 = e13 + e15 + A3 + A5. 

Exactly in the same way 

y3 = e1 + e13 + A6;    y7 = e15 + A3 + A5. 

 
Figure 20. Logic circuit of Combined FSM S5 

 
4.5. FSM decomposition 

 
In this section, we will discuss a very simple model for FSM decomposition. As an 
example, we use Mealy FSM S6 (Table 17) and a partition π on the set of its states: 
 

π = {A1, A2, A3}; 
A1 = {a2, a3, a9}; A2 = {a4, a7, a8}; A3 = {a1, a5, a6}. 
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The number of component FSMs in the FSM network is equal to the number of blocks 
in partition π. Thus, in our example, we have three component FSMs S1, S2, S3.  
 
Let Bm is the set of states in the component FSM Sm. Bm contains the corresponding 
block of the partition π plus one additional state bm. So, in our example: 
 

S1 has the set of states B1 =  {a2, a3, a9, b1}; 
S2 has the set of states B2 =  { a4, a7, a8, b2}; 
S3 has the set of states B3 =  { a1, a5, a6, b3}. 

Table 17. Mealy FSM S6 

am      as           X(am,as)       Y(am,as)      H 
------------------------------------------------------- 
a1  a3  x1*x2*x3   y1y2     1 
a1  a6  x1*x2*~x3  y2y12    2 
a1  a1  x1*~x2     y1y2     3 
a1  a5  ~x1        y1y2y12  4 
a2  a2  x6         --       5 
a2  a3  ~x6        y3y5     6 
a3  a3  x10        y3y5     7 
a3  a9  ~x10*x4    y10y15   8 
a3  a8  ~x10*~x4   y5y8y9   9 
 a4  a6  x7         y13      10 
 a4  a4  ~x7*x9     y13y18   11 
 a4  a8  ~x7*~x9    y13y14   12 
 a5  a6  x1         y16y17   13 
 a5  a5  ~x1        y7y11    14 
 a6  a1  x5         y1y2     15 
 a6  a1  ~x5        y16y17   16 
 a7  a2  x8         y14y18   17 
 a7  a4  ~x8        y13y18   18 
 a8  a7  x9         y4y6     19 
 a8  a4  ~x9        y6       20 
 a9  a9  x11*x6     y10y15   21 
 a9  a2  x11*~x6    y5y8y9   22 
 a9  a3  ~x11       y3y8y9   23 

 
To construct a transition table for each component FSM we should define the 
transitions between the states of these FSMs. For this, each transition between two 
states ai and aj of Mealy FSM S6 from Table 17 should be implemented one after 
another as one or two transitions in component FSMs. There are two possible cases:  
 

1. In Mealy FSM S6, there is a transition between ai and aj (Fig. 21, left) and both 
of these states are in the same component FSM Sm. In such a case, we will 
have the same transition in this component FSM Sm (Fig. 21, right). It means 
that we must rewrite the corresponding row from the table of FSM S6 into the 
table of component FSM Sm.     
 

 
Figure 21. Two states ai and aj are in the same component FSM 
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2. Two states ai and aj are in different component FSMs (Fig. 22). Let ai be in the 
component FSM Sm (ai  ∈ Bm) and aj be in the component FSM Sp  (aj  ∈ Bp). In 
such a case, one transition of FSM S6 should be presented as two transitions – 
one in the component FSM Sm  and one in the component FSM Sp: 

• FSM Sm transits from ai into its additional state bm with the same input 
Xh. At its output, we have the same output variables from set Yt plus 
one additional output variable zj, where index j is the index of state aj 

in the component FSM Sp.  
• FSM Sp is in its additional state bp. It transits from this state into state 

aj with input signal zj, that is an additional output variable in the 
component FSM Sm. The output at this transition is Y0 – the signal with 
all output variables being equal to zero.    

 
Figure 22. Two states ai and aj are in the different component FSMs 

Thus, the procedure for FSM decomposition is reduced to: 
a) Copying the row  

ai   aj   X(ai ,aj)   Y(ai ,aj) 
 

from the table of the decomposed FSM S to the table of the component FSM Sm 
if both states ai and aj are the states of Sm; 

 
b) Replacing the row  

ai   aj   X(ai ,aj)   Y(ai ,aj) 
 
in the table of the decomposed FSM S by the row  

 
ai   bm   X(ai ,aj)   Y(ai ,aj) zj 

 
in the table of the component FSM Sm, and by the row  
 

bp   aj    zj  -- 
 
in the table of the component FSM Sp, if ai  is the state of Sm and aj  is the state 
of Sp.  
 

As a result of decomposition of FSM S6, we obtain the network with three component 
FSMs in Fig. 23. Their transition tables are presented in Tables 18 – 20. 
 
Now we will illustrate some examples of transitions for cases (a) and (b): 

 
• In FSM S6, there is a transition from state a2 to state a3 with input ~x6 and 

output y3y5 (row 6 in Table 17). As both these states a2 and a3 are in the 
same component FSM S1, in this FSM there is a transition from a2 to a3 with 
the same input ~x6 and the same output y3y5 (row 2 in Table 18). Exactly in 
the same way, we rewrite row 12 of Table 17 into row 3 of Table 19 and row 2 
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of Table 17 into row 2 of Table 20 because the current states and the next 
states are in the same component FSMs. 
 

• In FSM S6, there is a transition from state a3 to state a8 with input ~x10*~x4 
and the output y5y8y9 (row 9 in Table 17). Since a3 is the state of component 
FSM S1 and a8 is the state of another component FSM S2, in FSM S1 there is a 
transition from a3 to b1 with the same input ~x10*~x4 and output y5y8y9z8 
(row 5 in Table 18). The last output z8 is the input of FSM S2 that wakes this 
FSM up and transits it from state b2 to state a8 (row 8 in Table 19). Similarly, 
we convert row 1 of Table 17 into two rows – the first in Table 20 and the tenth 
in Table 18 etc. Note that we add the last row in each FSM table to remain 
component FSMs in the state bm when each zj is equal to zero.   

 

 
Figure 23. Network with three component FSMs 

Table 18. Component FSM S1 

am              as               X(am,as)           Y(am,as)          H 
--------------------------------------------------------------------- 
a2     a2     x6         --         1 
a2     a3     ~x6        y3y5       2 
a3     a3     x10        y3y5       3 
a3     a9     ~x10*x4    y10y15     4 
a3     b1     ~x10*~x4   y5y8y9z8   5 
a9     a9     x11*x6     y10y15     6 
a9     a2     x11*~x6    y5y8y9     7 
a9     a3     ~x11       y3y8y9     8 
b1     a2     z2         --         9 
b1     a3     z3         --         10 
b1     b1     ~z2*~z3    --         11 

Table 19. Component FSM S2 

am              as               X(am,as)           Y(am,as)          H 
--------------------------------------------------------------------- 
a4     b2     x7        y13z6      1 
a4     a4     ~x7*x9    y13y18     2 
a4     a8     ~x7*~x9   y13y14     3 
a7     b2     x8        y14y18z2   4 
a7     a4     ~x8       y13y18     5 
a8     a7     x9        y4y6       6 
a8     a4     ~x9       y6         7 
b2     a8     z8        --         8 
b2     b2     ~z8       --         9 
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Let us discuss how this network works. Let a1 be an initial state in FSM S6. After 
decomposition, state a1 is in FSM S3, so, at the beginning, just FSM S3 is in state a1. 
Other FSMs are in states b1 and b2 correspondingly. It is possible to say that they 
“are sleeping” in these states. FSM S3 transits from the state to the state until 
x1*x2*x3 = 1 in state a1 (see row 1 in Table 20). Only at this transition FSM S3 
produces output signal z3 and transits into state b3 (sleeping state). This signal z3 is 
the input signal of FSM S1. It wakes FSM S1 up and transits it from the sleeping state 
b1 to state a3 (see row 10 in Table 18). Now FSM S1 transits from the state to the 
state until, in state a3,  it transits into state b1 with input signal ~x10*~x4 = 1 and 
wakes FSM S2 up by signal z8 (see row 5 in Table 18 and row 8 in Table 19). 

 

    Table 20. Component FSM S3 

am              as               X(am,as)           Y(am,as)          H 
--------------------------------------------------------------------- 
a1     b3     x1*x2*x3    y1y2z3    1 
a1     a6     x1*x2*~x3   y2y12     2 
a1     a1     x1*~x2      y1y2      3 
a1     a5     ~x1         y1y2y12   4 
a5     a6     x1          y16y17    5 
a5     a5     ~x1         y7y11     6 
a6     a1     x5          y1y2      7 
a6     a1     ~x5         y16y17    8 
b3     a6     z6          --        9 
b3     b3     ~z6         --        10 

 
Unlike FSMs S1 and S3, the component FSM S2 has two possibilities to wake other 
component FSMs up – in state a4 with input signal x7 = 1 (row 1 of Table 19) and in 
state a7 with input signal x8 = 1 (row 4 in the same Table), etc. Thus, each time all 
component FSMs, except one, are in the states of type bm and only one of them is in 
the state of type ai. 



 
 

Chapter 5 Multilevel and Multioutput Synthesis 
 

In this Chapter, we will concentrate on the multilevel minimization of logic circuits. 
Several simple and straightforward methods for obtaining circuit structure with more 
than two levels will be considered. In these methods, we will present four procedures 
– factoring, term decomposition, full inclusion and equal gates removal. At the end of 
the Chapter we will show how to construct optimized multilevel and multioutput 
circuits of Finite State Machines using only these four procedures. 
 

5.1 Factoring 
 
5.1.1 Two factoring structures. The first example of factoring is presented in Fig. 1. 
The left part of this figure implements the function 
 

f1 = x1x2x'3x4 + x1x2x'5 + x1x2x3x'4.  (1) 
 

 
Figure 1. Factoring from all terms 

All AND-gates of this circuit have the common input x1x2, so we can factor this 
common term (we call it a factor) in function (1): 
 

                         f1 = x1x2 (x'3x4 + x'5 + x3x'4)           (2) 
 

The corresponding logic circuit is constructed in Fig. 1,b. In this circuit, e"1, e"2 and 
e"3 contain inputs remained after deleting factor x1x2 from e1, e2 and e3, and if there 
remains only one letter (x'5 in our example), it will be an exact input into OR-gate.  
 
Let us suppose again that the cost of a gate is equal to the number of its inputs, and 
that the cost of logic circuit is the sum of the costs of gates – the total number of 
inputs into all gates. If C1 and C2 are the costs of circuits before and after factoring 
then C1 – C2 is a minimization or a gain of factoring. We can evaluate the gain of 
factoring for the common term z by the formula 
 

  w(z) = m(n - 1) - 1 + r.                       (3)        
 
Here m is the number of letters in factor z, n is the number of gates in factoring and r 
is the number of gates in which only one letter is left after factoring. In our example 
w(z) = 2(3 - 1) - 1 + 1 = 4. Really, if we count C1 and C2 in Fig.1, C1 – C2 = 4.    
 
One more example of factoring is presented in Fig. 2. Unlike the previous example, 
here we can factor the common term x1x3x'4 only from two AND-gates, not from all of 
them: 
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f2 = x1x2x3x'4x5 + x4x6x'7 + x1x'2x3x'4x'5 + x'1x'2; 
f2 = x1x3x'4 (x2x5 + x'2x'5) + x4x6x'7 + x'1x'2. 

     
The result of factoring is shown in Fig. 2,b. On the right, we have OR-gate with three 
inputs – two of them from all AND-gates that do not take part in factoring (e2, e4) and 
the third one – from the output of the factoring structure for e1, e3 similar to Fig. 1,b. 
 

 
Figure 2. Factoring not from all terms 

Again, we can evaluate the gain of factoring for the common term z by the formula 
 

w(z) = m(n - 1) - 2 + r.     (4) 
 

Here m, n, and r are the same as in expression (3). See if you can understand why “-2” 
is used in this formula instead of “-1”.       
 
We discussed here two structures for factoring – structure one in Fig. 1,b (factoring 
from all AND-gates) and structure two in Fig. 2,b (factoring from some of AND-gates). 
The duality of Boolean functions permits us to use factoring not only for the sum-of-
products, but for the product-of-sum as well (see Fig.3 and Fig. 4).  
 

 
Figure 3. The first factoring structure for the product-of-sums 

5.1.2 More than one factor. In the previous examples we have only one possible 
factor for factoring. Now we will discuss a case with several probable factors. As an 
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example let us use a two-level logic circuit corresponding to Boolean function f = e1 + 
e2 + e3 + e4 + e5 with the products: 

e1 = x1x2x3x4x5x6x7x11;  e4 = x5x6x9; 
e2 = x1x2x3x8;    e5 = x1x2x5x6x10x12x13. 
e3 = x1x2x5x6x10x11x12; 

 

 
Figure 4. The second factoring structure for the product-of-sums 

Let ei ∩ ej be the intersection between the products ei and ej (the common letters in 
these products). Our first step is to form all possible intersections between each pair 
of products in f. To do this, we construct Table 1. The first column of this table 
contains products e1, …, e5. Intersections between all pairs of products are in the next 
columns, for example, e1 ∩ e2 is in the column e1 in the second row, e1 ∩ e3 – in the 
column e1 in the third row etc.  

Table 1. Possible factors at the first step 

e1 = x1x2x3x4x5x6x7x11 e1 

e2  = x1x2x3x8 x1x2x3 e2 
e3 = x1x2x5x6x10x11x12 x1x2x5x6x11 x1x2 e3 
e4  = x5x6x9 x5x6 - x5x6 e4 
e5 = x1x2x5x6x10x12x13 x1x2x5x6 x1x2 x1x2x5x6x10x12 x5x6 

 
To find all possible factors, thus constructed, we should extract all different 
intersections from Table 1. There are six such factors z1, …, z6 in this table. In this 
step, do not pay attention at the information in the parenthesis after each factor in 
expression (5): 

z1 = x1x2x3 (e1, e2*);   w(z1) = 2; 
z2 = x1x2x5x6x11 (e1, e3);  w(z2) = 3; 
z3 = x5x6 (e1, e3, e4*, e5);  w(z3) = 5;  (5) 
z4 = x1x2x5x6 (e1, e3, e5);  w(z4) = 6; 
z5 = x1x2 (e1, e2, e3, e5);  w(z5) = 4; 
z6 = x1x2x5x6x10x12 (e3*, e5*); w(z6) = 6. 

 
We will use formulas (3) and (4) to evaluate the gain of each factor. To do this we 
should find m, n and r for each factor. Here m is the number of letters in the factor, n 
is the number of gates in factoring and r is the number of gates in which only one 
letter is left after factoring of this factor. m is trivial – for z1, m is equal to 3; for z2, m 
is equal to 5 etc. To find n, we should intersect each zt (t = 1, …, 6) with each ei (i = 1, 
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…, 5). If zt is contained in ei, then zt is the factor of ei and we write ei in the 
parenthesis after zt. Thus, for z1, z2 and z6, n is equal to 2, for z3 and z5, n is equal to 4 
etc. 
 
While performing such intersections, it is possible to find r as well. For example, when 
we intersect z1 with e2  we see that z1 є e2 and only one letter is left after factoring z1 
from e2, because z1  has three letters but e2  has four. The symbol * next to e2 in the 
line for z1 means that only one letter is left. We have the same for z3 (e4*) and z6 (e3*, 
e5*). When we have m, n and r for each factor, the evaluation is trivial. w(zt) for each zt  
is presented in the second column of (5). 
 
In the first step of factoring, we use a factor with a maximal gain. If we have several 
such factors (two in our example – z4 and z6) it is possible to implement one of the 
following strategies: 

1. Take the first of such factors (the simplest strategy); 
2. Take the factor with maximal length from these factors; 
3. Take the factor contained in the maximum number of gates; 
4. Move one step forward for each such factor and select factor after the 

second evaluation step etc. 
 
We will use the first trivial strategy and select z4 with  
  

w(z4) = 6 = max. 

 
Figure 5. The circuit after the first step of factoring 

The circuit after factoring of z4 is shown in Fig. 5. It implements two functions 
presented as sum-of-product: 

1. Function f is the sum-of-products with three AND-gates, one of them contains 
the factor z4, and two others – the products that do not take part in factoring; 

2. Function t1 is the sum-of-products with three AND-gates, each of them 
corresponds to one of the products that took part in factoring. These ANDs 
have inputs remaining after factoring of z4. 

 
Fig. 6 presents the factoring process. The first box in this figure contains the set of 
products e1, …, e5, the second one – the partitioning of this set into two subsets after 
the first step. Thus, we must continue the factoring separately for two functions 
presented as sum-of-products – function f containing products e2, e4, e6 and function 
t1 containing products e''1, e''3, e''5. A similar partition will be at each next step so the 
process of factoring converges very fast.      
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Figure 6. Steps of factoring 

The subsequent steps of factoring for functions t1 and f are presented in Tables 2 and 
3. The factoring process comes to the end when there are no factors with the gain 
greater than zero. The final circuit after factoring is presented in Fig. 7. The total cost 
reduction is equal to 

w(z4) +w(z8) + w(z10) = 9. 

Table 2. Factoring of function t1 

 
 
 

 
z7 = x11 (e"1, e"3);  w(z7) = -1; 
z8 = x10x12 (e"3*, e"5*); w(z8) = 2. 

 
w(z8) = 2 = max. 

Table 3. Factoring of function f 

e2  = x1x2x3x8 e2  
e4  = x5x6x9 - e4 
e6 = x1x2x5x6t1 x1x2 x5x6 

 
z9  = x1x2 (e2, e6);  w(z9) = 0; 
z10 = x5x6 (e4*, e6);   w(z10) = 1. 

 
w(z10) = 1 = max. 

 
Figure 7. The circuit after factoring 

 
5.2 Term Decomposition 

 
5.2.1 Simple example. The first example of term decomposition is presented in Fig. 8. 
Left part of this figure contains three separate AND-gates implementing three 
functions g1, g2 and g3. All gates of this circuit have the common inputs x4, x'5, x'6, so 
we can construct additional AND-gate z with these inputs and replace inputs x4, x'5, 
x'6 of initial gates with the output of gate z (Fig. 8,b).  

e"1 = x3x4x7x11 e"1  
e"3 = x10x11x12 x11 e"3 
e"5 = x10x12x13 - x10x12 
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Figure 8. Simple term decomposition 

If C1 and C2 are the costs of circuits before and after term decomposition then C1 – C2 

is a minimization or a gain of term decomposition. We can evaluate the gain of term 
decomposition for the common term z by the formula 
 

     w(z) = m(n - 1) - n + r.                 (6)        
 
Here m is the number of letters in the common term z, n is the number of gates in 
term decomposition and r is the number of functions (initial AND-gates) equal to the 
common term. In our example w(z) = 3(3 - 1) - 3 + 1 = 4. Really, if we count C1 and C2 

in Fig. 8, C1 – C2 = 4.    
 
5.2.2 More than one common term. In the previous example, we had only one 
possible term for term decomposition. Now we will discuss the case with several 
probable common terms. As an example let us use a circuit in Fig. 9 that corresponds 
to the following products: 
 
 
 
 

 
Figure 9. Logic circuit before term decomposition 

As in factoring, the algorithm of term decomposition consists of several steps. The 
first step is to form intersections between each pair of products to find all possible 
common terms containing two or more variables (see Table 4). We will use formula (6) 
to evaluate the gain of each common term. To do this we should find m, n and r for 
each term: m is trivial – it is the number of letters in the common term. For z1, m is  
 
 

g1 = x1x2x3x4x5x6x7x11; 
g2 = x1x2x3x8; 
g3 = x1x2x5x6x10x11x12; 

g4 = x5x6x9; 
g5 = x1x2x5x6x10x12. 



Chapter 5 Multilevel and Multioutput Synthesis – 99 
 

  

equal to 3; for z2, m is equal to 5 etc. It is clear that the common term with one 
variable makes no sense in term decomposition. 

Table 4. Possible common terms at the first step 

g1 = x1x2x3x4x5x6x7x11 g1 

g2  = x1x2x3x8 x1x2x3 g2 
g3 = x1x2x5x6x10x11x12 x1x2x5x6x11 x1x2 g3 
g4  = x5x6x9 x5x6 - x5x6 g4 
g5 = x1x2x5x6x10x12 x1x2x5x6 x1x2 x1x2x5x6x10x12 x5x6 

 
z1 = x1x2x3 (g1, g2);    w(z1) = 1; 
z2 = x1x2x5x6x11 (g1, g3);    w(z2) = 3; 
z3 = x5x6 (g1 g2, g4, g5);   w(z3) = 2;   (7) 
z4 = x1x2x5x6 (g1, g3, g5);   w(z4) = 5; 
z5 = x1x2 (g1,g2, g3, g5);            w(z5) = 2; 
z6 = x1x2x5x6x10x12 (g3, g5*);     w(z6) = 5. 

 
To find n, we should intersect each zt (t = 1, …, 6) with each gi (i = 1, …, 5). If zt є gi, 
then zt is the common term for gi and we write gi in the parenthesis after zt. While 
performing such an intersection it is possible to find r as well. For example, when we 
intersect z6 with g5 we see that z6 = g5. The symbol * near g5 in the line for z6 means 
that the product g5 is equal to the common term z6. When we have m, n and r for each 
common term, the evaluation is trivial – w(zt) for each zt  is presented in the second 
column of (7). 
 
In the first step of term decomposition, we use a common term with the maximal gain. 
If we have several such terms (two in our example – z4 and z6), as in factoring, it is 
possible to implement the following several strategies: 
 

1. Take the first of such common terms (the simplest strategy); 
2. Take the common term with maximal length from these common terms; 
3. Take the common term contained in the maximum number of gates; 
4. Move one step forward for each such common term and select common term 

after the second step evaluation etc. 
 
We will use the first strategy and select z4 with  
 

w(z4) = 5 = max.
  

The circuit after decomposition of z4 is shown in Fig. 10. 

 
Figure 10. Logic circuit after the first step of term decomposition 
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Unlike factoring, where we had a partition of products into two subsets after each 
step, there is no partition of initial products is here. Moreover, the common term 
taking part in term decomposition should be added to the set of products and will be 
used at the next step together with other products. Only the product equal to the 
common term should be excluded from the list of products in the next step of term 
decomposition. 
 
The next step of term decomposition is presented in Table 5. The process comes to the 
end when there are no factors with the gain greater than zero. The final circuit after 
term decomposition is shown in Fig. 11, the whole process is illustrated by Fig. 12. 

Table 5. The second (final) step of term decomposition 

 
g"1 = x3x4x7x11z4 g"1 

g2  = x1x2x3x8 - g2 
g"3  = x10x11x12z4 x11z4 - g"3   
g4  = x5x6x9 - - - g4 
g"5  = x10x12z4 - - x10x12z4 - g"5   
z4  = x1x2x5x6  x1x2 - x5x6 - 
 
z7 = x11z4 (g"1, g"3);            w(z1) = 0; 
z8 = x1x2 (g2, z4);                w(z2) = 0; 
z9 = x10x12z4 (g"3, g"5*);      w(z9) = 2; 
z10 = x5x6 (g4, z4);              w(z10) = 0. 
 

w(z9) = 2 = max. 
 
The total cost reduction is equal to  

w(z4) + w(z9) = 7. 
 

 
Figure 11. The circuit after t-decomposition 

 
Figure 12. Steps of t-decomposition 

5.2.3 Term decomposition for OR gates. Term decomposition can be applied to OR 
gates as well. We will give the next example without any comments and you can fulfill 
each step on your own (Fig. 13).  
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Figure 13. Term decomposition for OR gates 

 
5.3 Gate inclusion 

 
Let us define gate m as included in gate n, or gate n as covering gate m, if they have 
the same type (both AND or both OR) and the set of inputs of gate m is a subset of the 
set of inputs of gate n. The simplest case of gate inclusion is presented in Fig 14,a. In 
this case, we can replace inputs of gate n, equal to the inputs of gate m (x1 and x2 in 
our example), with the output of gate m (Fig. 14,b).  
 

 
Figure 14. Gate inclusion 

 
5.4 Removal of equal gates 

 
Let us define as gates m and n equal, if they have the same type (both AND or both 
OR) and the set of inputs of gate m is equal to the set of inputs of gate n. The circuit 
in Fig. 15,a contains four equal two-input AND-gates. In this case, we should  
 

1. Remove all equal gates, except one (gates l, m and n in our example);  
2. Connect inputs of gates (t, p and q) formerly connected to the outputs of 

removed gates, with the output of the remained gate (gate k in our 
example). 
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The last two procedures – gate inclusion and removal equal gates are covered by term 
decomposition. Really, in the first step of term decomposition – pair intersection, we 
can find equal gates and gates included into other gates. However, term 
decomposition has two problems: (1) the large number of gates taking part in this 
procedure; (2) multiple comparisons demand a lot of intersections between sets of 
inputs. It is more simple and faster to check gate inclusion and remove equal gates 
before term decomposition. Moreover, after these two procedures, only gates with 
three and more inputs remain for term decomposition (see if you can understand why 
it is so).    

 
Figure 15. Removal three equal AND-gates 

 
5.5 Multilevel and multioutput circuits for Finite State Machines 

 
In Section 4.2.6 of Chapter 4, we considered a very simple method for synthesis of the 
two level FSM logic circuit from its structure table. Recall that we have used the term 
 

eh = Am Xh 

 

in accordance with the h row of such a table (h = 1, …, H). Here Am is a product of 
state variables corresponding to the current state am written in the h row, Xh is a 
product of input variables written in the same row, and H is the number of rows in 
the structure table. Then we constructed H AND-gates corresponding to terms e1, …, 
eH. If the output variable yn appears only once, for example, in row i of the structure 
table, we obtain the output yn at the output of AND-gate number i. If the output 
variable yn is written in several rows, for example, in rows p1, …, pT of the structure 
table, we construct OR-gate with T inputs and connect these inputs with the outputs 
of AND-gates p1, …, pT. The output yn is obtained at the output of this OR-gate. In 
exactly the same way, we construct OR-gate for each input memory function which 
occurs more than once in the column D(am,as) of the structure table. The logic circuit 
of FSM thus constructed contains not more than H AND-gates and not more than (N + 
R) OR-gates where N and R are the numbers of output variables and input memory 
functions in the FSM structure table. 

In this section, we will use the reverse structure table. Recall that in such a table all 
transitions are ordered according the next state – first we write all transitions to state 
a1, then to state a2 , etc. As an example we will consider the logic synthesis of FSM S, 
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Table 6 is its reverse structure table. As in four previous sections, we assume that the 
circuit cost is equal to the sum of inputs of its gates. 

Table 6. The reverse structure table of FSM S 
a1   001   a1   001   x8*x7                  y7y9y14y15   d3     1 
a1   001   a1   001   x8*~x7*x1*x9*x5        y13          d3     2 
a1   001   a1   001   ~x8*x1*x9*x5           y13          d3     3 
a3   011   a1   001   x9*x5                  y13          d3     4 
a4   000   a1   001   x4*~x9*x3              y2y10y12     d3     5 
a5   010   a1   001   x4                     --           d3     6 
a1   001   a2   100   x8*~x7*~x1             y1y2y3       d1     7 
a1   001   a2   100   ~x8*~x1                y1y2y3       d1     8 
a2   100   a2   100   ~x2                    --           d1     9 
a2   100   a3   011   x2                     y4           d2d3   10 
a4   000   a3   011   x4*~x9*~x3             y5y6         d2d3   11 
a4   000   a3   011   x4*x9                  y5y6         d2d3   12 
a1   001   a4   000   x8*~x7*x1*~x9*x3*~x6   y7y8y9       --     13 
a1   001   a4   000   ~x8*x1*x9*~x5          y7y8y9       --     14 
a3   011   a4   000   x9*~x5                 y7y8y9       --     15 
a3   011   a4   000   ~x9*x3*~x6             y7y8y9       --     16 
a3   011   a4   000   ~x9*~x3                y7y8y9       --     17 
a1   001   a4   000   ~x8*x1*~x9*x3*~x6      y7y8y9       --     18 
a1   001   a4   000   ~x8*x1*~x9*~x3         y7y8y9       --     19 
a1   001   a4   000   x8*~x7*x1*~x9*~x3      y7y8y9       --     20 
a4   000   a4   000   ~x4                    --           --     21 
a1   001   a4   000   x8*~x7*x1*x9*~x5       y7y8y9       --     22 
a1   001   a5   010   x8*~x7*x1*~x9*x3*x6    y10y11y12    d2     23 
a3   011   a5   010   ~x9*x3*x6              y10y11y12    d2     24 
a1   001   a5   010   ~x8*x1*~x9*x3*x6       y10y11y12    d2     25 
a5   010   a5   010   ~x4                    --           d2     26  
 
The structure table is divided into M arrays, each of which corresponds to the set of 
transitions into one state. For FSM in Table 6, M is equal to five. In several initial 
steps, we will separately design logic circuits for transitions into each state. Moreover, 
even then we will construct circuits separately for each subset of output signals. 
 
A design of the logic circuit consists of the following steps: 
 
Step 1. Divide each array of transitions to the state as (s = 1, …, M) into as many 
subarrays, as the number of different microinstructions (the subsets of output variables) 
in the column Y(am, as) within this array. For example, in Table 6, transitions into state 
a1 have four microinstructions: 

y7, y9, y14, y15;  
y13;     (8) 
y2, y10, y12; 
∅ . 

We should include the empty microinstruction, corresponding to row 6, in this list 
because not all of input memory functions are equal to zero at this transition (d3 = 1) 
and we must construct AND-gate for this row.  

 
Thus, in our example we have four such subarrays containing  

1. Row 1 with outputs y7, y9, y14, y15; 
2. Rows 2, 3, 4 with output y13; 
3. Row 5 with outputs y2, y10, y12; 
4. Row 6 without output signals. 
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Step 2. For each subarray corresponding to one of microinstruction in (8), construct as 
many AND-gates as the number of rows in this subarray of the structure table. These 
gates implement products AmX(am,as), corresponding to each row. In our example for 
the transitions into a1 we have six such AND-gates (see Fig.16,a).  
 

 
Figure 16. Logic circuit for transitions into state a1 

Step 3. If some subarray contains more than one row, connect the outputs of 
corresponding AND-gates, constructed at step 2 for the subarray, with OR-gate to form 
the signals of microoperations (output variables) and input memory functions written 
in the rows of this subarray (rows 2, 3, 4 for y13 – Fig. 16,a).  
 
Step 4. Factor the logic circuits constructed in point 3 using the algorithm described in 
Section 5.1 ‘Factoring’. Let us do this for functions y13, d3. Table 7 contains the first 
step of this factoring. We made all pair intersections between products corresponding 
to rows with y13, d3 and found two possible factors z1 and z2. We factor z2 with max 
gain (see Fig. 16,b).  
 
It is possible to make one more simplification in the circuit in Fig. 16,b. OR-gate has 
input t2 and AND-gates connected with this OR-gate have inputs t′2. According 
Boolean algebra A + A'B = A + B, so we can delete inputs t′2 from AND-gates. To make 
such minimization we do not have to write any formulas. If some OR-gate has some 
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input p (p') we should check all AND-gates connected with this OR-gate and remove 
inputs p' (p) from these AND-gates. 

 

Table 7. The first step of factoring for y13 and d3 

e1 = t'1t'2t3x8x'7x1x9x5 e1 

e2  = t'1t'2t3x'8x1x9x5 t'1t'2t3x1x9x5 e2 
e3 = t'1t2t3x9x5 t'1t3x9x5 t'1t3x9x5 

 
 z1 = t'1t'2t3x1x9x5 (e1, e2*); w(z1) = 6(2 - 1) - 2 + 1 = 5; 
 z2 = t'1t3x9x5 (e1, e2, e3*); w(z2) = 4(3 - 1) - 1 + 1 = 8; 

 
     w(z2) = 8 = max. 

 
The last step of factoring is shown in Table 8 and Fig. 16,c. After removing input x8 
from AND-gate with two inputs we must remove this AND-gate as well, and transfer 
input x′7 into the OR-gate. The final step of factoring is presented in Fig. 16,d. 

Table 8. The second steps of factoring for y13, d3 

e′′1  = x8x′7x1 e′′1 
e′′2  = x’8x1 x1 

 
 z3  = x1 (e′′1, e′′2*); w(z3) = 1(2 – 1) – 1 + 1 = 1; 

 
     w(z3) = 1 = max. 

 
Logic circuit after factoring for transitions into state a1 contains seven gates – we 
numbered gates after the last step. Each step of circuit factoring for transitions into 
states a2 and a3 is presented in Fig.17 and Fig. 18. Logic circuits for transitions into 
states a4 and a5 without intermediate steps are shown in Fig. 19 and Fig. 20. We have 
left the design of these last circuits to our readers as exercise to be done on their own. 
At last, we bring all these circuits together in Fig. 21. 
 

 
Figure 17. Logic circuit for transitions into state a2 

Step 5. Delete equal gates in the logic circuit thus constructed. If we look at the circuit 
after factoring in Fig. 21 we will find that it contains some equal gates. For example, 
six two-input OR-gates OR2, OR9, OR14, OR16, OR18 and OR27 are equal because they 
have the same type and the same inputs. However, AND-gates AND3(x1,2) and 
AND28(x1,27) are not equal because they have inputs from different gates. Тo find that 
they are also equal we must determine that OR2 and OR27  are equal and change the 
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input 27 by input 2 in the description of AND28. Therefore, to find that two gates are 
equal in a multilevel circuit we should find that their preceding gates are equal etc. 
For this reason we should rank the gates in the circuit. 
 

 
 

Figure 18. Logic circuit for transitions into state a3 
 

 
Figure 19. Logic circuit for transitions into state a4 

 

 
Figure 20. Logic circuit for transitions into state a5 

Gates containing only inputs t1, …, tR (the outputs of the memory elements, in our 
example R = 3) and input variables x1, …,xL (in our example L = 9) are referred to as 
gates of the first rank. The gates with inputs t1, …,tR, input variables and the output 
of at least one gate of the first rank are referred to as gates of the second rank etc. 
Thus, the i-rank gate can have inputs t1, …,tR, input variables and the inputs from 
outputs of gates with the rank less than (i  – 1) and at least one input from the gate 
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with rank (i – 1). The results of ranking for the circuit in Fig. 21 are presented in Table 
9 and Fig.22. In this figure, the rank of gate is written above the gate. 
 

 
Figure 21. Logic circuit after factoring 

Table 9. Ranks of gates 

 
 

 
 
 
 
 
 
It is evident that equal gates can only be of the same rank. The following steps should 
be used to find and delete equal gates: 

1. Find equal gates with rank i (i = 1, 2, 3, ...) beginning from rank 1, separately 
for AND-gates and OR-gates. In our example, we have the following set of 
equal first-rank gates: 

Rank AND-gates OR-gates 
1 1, 6, 7, 8, 11, 24, 31 2 , 9, 12, 14, 16, 18, 22, 27 
2 3, 10, 13, 15, 17, 19, 23, 28  
3  4, 20, 29 
4 5, 21, 30  
5  25 
6 26  
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OR2 = OR9 = OR14 = OR16 = OR18 = OR27. 
2. Remove all gates except the first one from each such set. Thus, after the first 

step we removed five gates OR9, OR14, OR16, OR18, OR27. Replace the inputs 
from the gates thus removed with the number of the first (not removed) gate 
from the corresponding sets. 

3. Repeat steps (1) – (3) for the elements of the (i+1)-th rank. We get equal AND-
gates AND3 and AND28 of the second rank and equal OR-gates OR4 and OR29 of 
the third one. 

The circuit after removal equal gates is shown in Fig. 23. 
 

 
Figure 22. Ranking after factoring 

Step 6. Repeat factoring and removing equal gates until the circuit cannot be change 
any longer. Look at the circuit implementing the transitions into a4 in Fig. 23. We 
drew the part of this circuit containing gates AND15, AND17, AND19 and OR20 in Fig. 
24,a. After the removal of the equal gates, logic elements AND15, AND17, and AND19 got 
the same inputs from OR2 instead of different inputs from OR14, OR16, and OR18. 
Thereby, we got new possibilities for repeated factoring – see sequential steps of 
factoring in Fig. 24,b,c.  
 
The circuit after the second factoring is shown in Fig. 25. Once again, after factoring 
we find the equal gates: OR22 = OR32 and we remove the last one (Fig. 26). Thus, we  
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should repeat factoring and removing equal gates as long as we get these procedures 
are impossible for the circuit. 
 

 
Figure 23. Logic circuit after removal equal gates 

 
Figure 24. Repeated factoring 

Step 7. Find the inclusion of gates into other gates. Unfortunately, we do not have such 
cases in our rather simple example.  
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Figure 25. Circuit after the second factoring  

Step 8. Make term decomposition for AND-gates. Fig. 27,a contains AND-gates with 
three and more inputs which we have selected from the circuit in Fig. 26 for term 
decomposition. It is evident that term decomposition makes it possible to find equal 
gates and inclusion of some gates into other ones as well. However, if a circuit 
contains many gates, term decomposition takes a lot of time and it is faster to 
implement steps 5 – 7 before term decomposition. 
 
Let us demonstrate that the term decomposition problem may be divided into several 
independent subproblems. For this purpose, we define such a relation ω on the set of 
AND-gates that two gates ANDi and ANDj are in this relation iff they have not less than 
two common inputs. 
 
Construct the graph Gω of this relation (Fig. 28 for the circuit in Fig. 27,a). The 
vertices of this graph are the gates in Fig. 27. We connect two vertices by edge if the 
corresponding gates have two or more common inputs. From the definition of the 
relation ω, it is evident that there can be no common factors for the gates from 
various subgraphs of Gω. Thus, the problem of term decomposition is divided into as 
many subproblems as the number of unconnected components in the graph Gω. Even 
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in our simple example, Gω contains five components and there are only 11 vertices 
(gates) in the largest component. For a complex FSM, the graph Gω contains a large 
number of components, since: 
 

1. There is a large number of input variables in a complex FSM and there are not 
so many input variables in each row of its structure table (in each term 
corresponding to each row); 

2. xi and x′i are different inputs of gates; 
3. The number of gates and the number of inputs in each gate are decreased, as 

a result of steps 4 – 7 (factoring, removal equal gates and inclusion of gates 
into other ones). 

 

 
 

Figure 26. Circuit after the second removal equal gates 

The result of term decomposition in our example is shown in Fig. 27,b. Fig. 29 
contains the total circuit after this step. 
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Figure 27. Term decomposition in our example 

 
 

 
Figure 28. The graph Gω of relation ω 

Step 9. Construct OR-gate for each output variable yn (n = 1, …, 15 in our example) and 
for each input memory function dr (r = 1, …, 3 in our example) which occur more than 
once in the circuit after step 8. If we look at Fig. 29 we will find that several outputs 
appear more than once in this circuit. For example, y2 is written at the outputs of 
gates AND6 and AND10, d2 is written at the outputs AND11, AND13, AND30 and AND31. It 
is evident that FSM has only one output y2, so, first – the circuit in Fig. 29 is not the 
final circuit and, second – output y2  will be equal to one when the output of AND6 or 
the output of AND10 are equal to one. Thus, for y2 and for each output that appears 
more than once in Fig. 29, we should construct OR-gate with the inputs connected to 
the outputs of gates where these signals are written.  
 
To formalize this process we constructed Table 10 where each row contains the list of 
gates for each output. Now we can immediately construct OR-gates for the outputs 
which occur more than once in the logic circuit (Fig. 30,a).           
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Figure 29. Logic circuit after term decomposition 

Table 10. Gates for outputs  

 
Step 10. Find equal OR-gates among the gates constructed at step 9. Leave only one 
gate in each set of equal gates. The logic circuit after removal of equal gates is shown 
in Fig. 30,b. 
 
Step 11. Find the inclusion of OR-gates into other gates among the gates constructed at 
steps 10. Unfortunately, we do not have any such cases in our rather simple example.  
 
Step 12. Make term decomposition for all OR-gates. Just as at Step 8 for AND-gates, we 
consider here only the gates with not less than three inputs since the minimal 
number of inputs in a common term in term decomposition is equal to two (after 
removal equal gates and full inclusion). Similar to step 8, we should construct the 

Outputs Gates Outputs Gates Outputs Gates 
y1 e10 y7 e1 e26 y13 e5 
y2 e6 e10 y8 e26 y14 e1 
y3 e10 y9 e1 e26 y15 e1 
y4 e11 y10 e6 e30 d1 e8 e10 
y5 e13 y11 e30 d2 e11 e13 e30 e31 
y6 e13 y12 e6 e30 d3 e1 e5 e6 e7 e11 e13 
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graph of the relation ω for OR-gates. The problem of term decomposition for OR-gates 
is divided into as many subproblems as the number unconnected components in the 
graph of ω. In our rather simple example, we have only two OR-gates with more than 
two inputs (see d2 and d3 in Fig. 30,b).  
 

 
Figure 30. OR-gates before (a) and after (b) removal equal gates 

The final logic circuit is shown in Fig. 31. We have placed the circuit from Fig. 30,b at 
the bottom of Fig. 31. Of course, we should remove appearances of the outputs y2, y7, 
y9, y10, y12 and input memory functions d1, d2, d3 from other parts of the logic circuit. 
Thus, only the outputs that have one entry in the column “Gates” of Table 10 will be 
in the part of the circuit that is above the “OR for outputs and input memory functions” 
in Fig. 31. 
 
Step 13. Relax and drink your coffee.  
 
Really, the reason, that we cannot demonstrate gate inclusion and term 
decomposition for OR-gates, can be explained not only by the simplicity of our 
example, but also a very effective optimization at the previous steps that allows to 
decrease the number of inputs in the most gates of our circuit. To overcome some 
dissatisfaction of our last steps, let us discuss one more example, from the synthesis 
another FSM, presented in Table 11 and Fig. 32 with OR-gates for output variables 
and input memory functions which occur more than once in the circuit after Step 9. 
 

Table 11. Gates for outputs in one more example 

 
Step 10a. From Table 11 or Fig. 32 we immediately get that OR75 = OR68 and OR76 = 
OR67. We remove OR75 and OR76 and get y9 together with y6 from OR68 and y10 
together with y5 from OR67 (Fig. 33). 
 
 

Outputs Gates Outputs Gates 
y1 e5 e31 e36 e39 y8 e4 e44 
y2 e3 e5 e36 y9 e16 e30 
y3 e39 e56 e60 y10 e3 e16 e43 
y4 e4 e31 e36 e42 d1 e56 e60 
y5 e3 e16 e43 d2 e3 e4 e31 e36 e39 e44 
y6 e16 e30 d3 e3 e4 e31 e42 e43 
y7 e16 e44 e56 d4 e3 e4 e5 e42 e43 e44 e56 
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Figure 31. The final logic circuit 

 
Step 11a. We checked full inclusion for OR gates and found that 7270 OROR ⊂ , 

7470 OROR ⊂  and 6571 OROR ⊂ . The circuit after this step is presented in Fig. 34. 
 
Step 12a. For term decomposition, we constructed the graph of relation ω for OR-
gates with three and more inputs (Fig. 35). The problem of term decomposition for 
OR-gates is divided into as many subproblems as the number of unconnected 
components in the graph of ω. In our example we have two subgraphs and one of 
them is nontrivial. 
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Figure 32. OR-gates for yn and dr in one more example 

 

 
Figure 33. OR-gate transformation after removal of equal gates 

 

 
Figure 34. OR-gates after full inclusion 

 
Figure 35. The graph of relation ω for OR-gates 
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Figure 36. Logic circuit after term decomposition 

 
The logic circuit after term decomposition is presented in Fig. 36. Its cost is 10 inputs 
lower than in the initial circuit in Fig. 32. 
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Chapter 6 Transformation of Algorithmic State Machines 
 

In this Chapter, we consider two more representations of Algorithmic State Machine – 
System of transition formulae and Matrix scheme of algorithms. After this, we will 
discuss transformation of Algorithmic State Machine – minimization of conditional 
and operator vertices and combining of Algorithmic State Machines. We will use these 
transformations in the next chapter dedicated to the high level synthesis of digital 
systems.  
 

6.1 Various representations of Algorithmic State Machine 
 
6.1.1 System of transition formulae. As an example, we use ASM Γ in Fig. 1. Let 
us look at operators following operator Yb. The facts that operator Y3 is implemented 
after Yb when x1x4x3 = 1, operator Y1 is implemented after Yb when x1x'4 = 1 and 
operator Y5 is implemented after Yb when x1x4x'3 = 1 or x'1 = 1, can be represented as 
the formula 

  Yb → x1x4x3Y3 + x1x4x'3Y5 + x1x'4Y1 + x'1Y5.                       (1) 

 

 
Figure 1. ASM Γ 

In general, the transition formula for the operator Yi is 

∑
+

=

→
1

1

T

t
titi YY α , i = b, 1, …, T.  

Here YT+1 = Ye is the operator, corresponding to the final vertex "End" and αit is the 
transition function from Yi to Yt (see Section 4.1.2 in Chapter 4). The term αitYt is equal 
to Yt if αit = 1, and is equal to 0 if αit = 0.    
 
The transition formulae can be transformed according to the rules of Boolean algebra 
and the following additional rules:  
 

1. (α + β)Yi =  αYi + βYi;  
2. αβYi + αγYj = α(βYi + γYj); 
3. If α = β then αYi = βYi.  
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Here α, β and γ are Boolean functions and Yi and Yj are operators. The set of transition 
formulae for all i = b, 1, 2, . . ., T is called the system of transition formulae. This 
system contains seven formulae for ASM Γ in Fig. 1:  
 

Yb → x1x4x3Y3 + x1x4x'3Y5 + x1x'4Y1 + x'1Y5;  
Y1 → x3Y2 + x'3Y4;  
Y2 → x6Ye; 
Y3 → x5x1Y6 + x5x'1Y2 + x'5Y2;                                             (2) 
Y4 → x2Y1 + x'2Y3; 
Y5 → x4x3Y3 + x4x'3Y5 + x'4Y1; 
Y6 → Ye. 

 
The following representation of the transition formula  
     

Yi → xmA + x'mB                                                                 (3) 
  
is called the expansion of transition formula Yi by variable xm. Here xm is one of the 
logical conditions and transition subformulae A and B do not depend on xm. For 
example, let us expand formula (1) by variable x1:  
 

Yb → x1(x4x3Y3 + x4x'3Y5 + x'4Y1) + x'1Y5 .                                    (4) 
 
If some terms of the transition formula do not depend on xm, then these terms must 
be multiplied by expression (xm + x'm) before the expansion of the transition formula by 
xm. Thus, any transition formula may be expanded by any variable. For example, 
expanding the transition formula (1) by the variable x4 we obtain  
 

Yb → x1x4x3Y3 + x1x4x'3Y5 + x1x'4Y1 + x'1(x4 + x'4)Y5 = 
= x4(x1x3Y3 + x1x'3Y5 + x'1Y5) + x'4(x1Y1+ x'1Y5).                         (5) 

  
In expression (3), we can continue expanding subformulae A and B by other variables 
until the terms in the internal brackets are as follows:  
  

(xpYm+ x'pYn)                            (6)            
 
where Ym,Yn є { Y1, …, YT, YT+1}. This expression corresponds to subgraph G1 in Fig. 2. 
The resulting transition formula and the system of such formulae are called the 
bracket transition formula and the system of transition formulae in the bracket form 
correspondingly.  

 
Figure 2. Subgraph G1 corresponding to expression (6) 

Let us continue to expand the transition formula for Yb in expression (4): 
 

Yb → x1(x4(x3Y3 + x'3Y5) + x'4Y1) + x'1Y5.                                        (7) 
 
Expression (7) presents the transition formula for Yb in a bracket form. It is easy to 
show that there is a one-to-one correspondence between the bracket transition 
formula and the ASM subgraph obtained from this formula. To illustrate this, 
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consider the construction of ASM subgraph G2 (Fig. 3,a) for  transition formula Yb in 
(7).  

 

 
 

Figure 3. Subgraphs G2 and G3 corresponding to expansions (7) and (8) 

First, draw operator vertex Yb. Then construct conditional vertex with x1 and link its 
input with the output of operator Yb, since first we expanded transition formula Yb 
with this variable x1. Next, construct conditional vertex x4 and link its input with the 
output "1" of the preceding conditional vertex x1, since the expansion by the variable 
x4 is implemented in brackets just after x1. Further, construct operator vertex Y5 and 
link its input with the output ‘0’ of conditional vertex x1, as there are no expansions 
by any variables after x'1. In exactly the same way construct conditional vertex x3, link 
its input with the output "1" of vertex x4, and link the zero output of vertex x4 with 
operator vertex Y1 etc. Thus, at each step we have no alternative and can construct 
only one subgraph for a given bracket transition formula.  
 
The ASM subgraph G3 in Fig. 3,b is constructed in a similar way for another 
expansion  (8) of the same unexpanded transition formula Yb in (1). We changed the 
order of variables in this expansion: 
 

Yb → x4(x1x3Y3 + x1x'3Y5+ x'1Y5) + x'4(x1Y1+ x'1Y5) = 
      = x4(x1(x3Y3 + x'3Y5) + x'1Y5) + x'4(x1Y1+ x'1Y5).                (8) 

 
Thus, to obtain a ASM subgraph from a bracket transition formula it is sufficient to 
construct chains of conditional vertices in accordance with a sequence of the 
transition formula expansion. As seen from Fig. 3,a and Fig. 3,b, the number of 
conditional vertices in the subgraph for some transition formula depends on the order 
of the expansion of this transition formula. Now it is evident that to transit from a 
system of transition formulae to ASM it is necessary to expand this system to the 
bracket form and to construct the ASM subgraph for each bracket transition formula.  
 
We will show now that the number of conditional vertices in the ASM, thus 
constructed, depends not only on the separate expansion of each transition formula 
but also on their joint expansion. Let us rewrite here expression (7) and expand 
transition formula for Y5 beginning from variable x4: 
 

;))(( 5
'
11

'
45

'
33341 YxYxYxYxxxYb +++→              (7) 

;)( 1
'
45

'
33345 YxYxYxxY ++→                                  (9) 
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For example, let us construct ASM subgraph G4 for bracket transition formulae Yb 
and Y5 in (7) and (9). The identical subformulae are underlined in these expressions. 
Obviously, one subgraph corresponds to the same subformulae so only one subgraph 
is constructed for these subformulae (Fig. 4,a).  
 

 
 

Figure 4. Subgraphs G4 (a) and G5 (b) corresponding to expansions (7, 9) and (7, 10) 
Now we construct the ASM subgraph for the same bracket transition formula for Yb 
(7) and the new bracket transition formula Y5, obtained by its expansion beginning 
with variable x3:  

Y5 → x3(x4Y3 + x'4Y1) + x'3(x4Y5+ x'4Y1).                  (10)              
 
Since there are no identical subformulae in bracket transition formulae (7) and (10) 
we derive subgraph G5 (Fig. 4,b) with three additional conditional vertices, compared 
to subgraph G4 in Fig. 4,a. 
 
At the end of this section, we expand the system of transition formulae, presented in 
(2): 

;))(( 5
'
11

'
45

'
33341 YxYxYxYxxxYb +++→  

;4
'
3231 YxYxY +→  

Y x Y2 6→ e ; 
;)( 2

'
52

'
16153 YxYxYxxY ++→                                 (11)                                    

;3
'
2124 YxYxY +→  

;)( 1
'
45

'
33345 YxYxYxxY ++→  

Y Y6 → e . 
 
6.1.2. Matrix schemes of algorithms. The matrix scheme of algorithm (MSA) is a 
square matrix with rows Yb, Y1,. . ., YT, and columns Y1,Y2,. . ., YT, Ye. We write the 
transition function from operator Yi to operator Yj at the intersection of row Yi and 
column Yj in this matrix. The MSA M for ASM Г from Fig. 1 is presented in Table 1. 
For simplicity, we do not write the transition functions that are equal to zero in the 
matrix scheme of algorithm.  
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The transition from ASM to MSA is obvious. We find all transition functions in ASM 
and place them into the corresponding entries of MSA. To transit from MSA to ASM 
we should obtain a system of transition formulae, a system of bracket transition 
formulae and then ASM. Just as for ASM (Section 4.1.3), it is possible to define an 
execution of MSA and a value of MSA for any sequence of vectors of logical conditions.  
 

Table 1. MSA M 

 
6.2 Minimization of conditional vertices in Algorithmic state machines 

 
In this section, we will discuss minimization of conditional vertices in ASMs. The 
minimization algorithm consists of three steps. In the first step, the initial ASM is 
divided into such subgraphs G GQ1, ..., , that for obtaining the minimal ASM it is 
sufficient to minimize the number of conditional vertices in each subgraph 
independently of one another. In the second step, for each subgraph G q Qq( ,..., )=1  

we will find a set of equivalent ones that contains the minimized subgraph Gq
min . In the 

third step, the subgraph Gq
min will be obtained by solving the covering problem on the 

set of subgraphs found in the second step. 
 
6.2.1 ASM partitioning into subgraps. As an example for ASM minimization, we 
will use ASM Γnonmin in Fig. 5. To partition ASM, choose any operator, except the final 
oneYe , from the set of operators },,...,,{ 1 eTb YYYY and find the set of operators towards 
which there is a path  

                   Y x x Yi i i iR j
~ ... ~

1                                         (12)                                    

from operator vertex Yi  (i = b,1,2, …,T) passing only through conditional vertices with 
the logical conditions x xi iR1 , ... , . Here, as before, ~x xir ir=  if the path proceeds 

through the conditional vertex with xir  via output ‘1’ ( , ... , )r R= 1  and irir xx '~ =  if the 
path proceeds through the conditional vertex via output ‘0’. Since we can start from 
any operator, let us begin with the initial operator Yb. For ASM Γnonmin in Fig. 5, there 
are paths to Y1, Y4, Y5 from Yb. The arrows from operator Yb (Fig. 6,a) designate these 
paths. Next, go to the right side of this subgraph and find the operators, excludingYb , 
from which there are paths (12) leading to operatorsY Y Y1 4 5, , . We place these 

operators ( , )Y Y2 3  under bY  on the left side. For all operators on the left, continue 
finding such operators to which there are paths (12), etc., until the set on the left 
( )A1  and that on the right ( )B1  are no longer increasing. Next, choose a new operator 

 Y1 Y2 Y3 Y4 Y5 Y6 Ye 

Yb x1x'4  x1x4x3  x1x4x'3 

x'1 
  

Y1  x3  x'3    
Y2       x6 
Y3  x5x'1  

x'5 
   x5x1  

Y4 x2  x'2     
Y5 x'4  x4x3  x4x'3   
Y6       1 
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Y Am ∉
1  (Y1 in our example) and construct ( )A2  and ( )B2  in a similar way (see Fig. 

6,b). The algorithm consists of Q steps, Q T≤ + 1 , where T  is the number of 
operator vertices.  
 

Begin
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Figure 5. Nonminimal ASM Γnonmin 

 

Figure 6. Partition ASM Γnonmin 

In the q th step ( , ... , )q Q= 2 , choose a vertex Y Af
i

i

q

∉
=

−

1

1

U , and continue constructing 

Aq  and Bq  etc. until, after Q  steps, it is impossible to find an operator, which is not 

included in the sets A AQ1, ..., . As a result, ASM is divided into subgraphs G1, …, GQ 

where the subgraph G A B Pq q q q( , , )  is defined by sets Aq , Bq , Pq  and by the arcs 

between the vertices of these sets. Here Pq  is the set of conditional vertices between 
operators of the sets Aq  and Bq . Two subgraphs G1 and G2 constructed by partition of 
ASM Γnonmin in Fig. 5 is shown in Fig. 7. 
 
From the partition of ASM it follows: 
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1. For any two subgraphs G1 and G2: 
          ∅=∩ ji AA ; ∅=∩ ji BB ;  P Pi j∩ =∅. 

2. The partition is independent of the choice of the first operator at every step. 
Since the partition is unique and the sets of conditional vertices in different 
subgraphs do not intersect ( P Pi j∩ =∅ ), the following statement results immediately: 

R Rq

q

Q

=
=
∑

1
. 

Here R  is the number of conditional vertices in ASM and Rq  is the number of 
conditional vertices in the subgraph Gq (q = 1, …, Q). In one of my previous works I 

have proved that if ASM is partitioned into subgraphs G1, …, Gq and the number qRmin
of conditional vertices is minimal in each subgraph Gq (q = 1, …, Q), then the number 
of conditional vertices in ASM is also minimal and equal to  

R Rq

q

Q

min min .=
=
∑

1
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Figure 7. Two subgraphs G1
 and G2 as a result of partition of ASM Γnonmin 

From the last statement, it follows that the problem of expansion for the system of 
transition formulae can be also divided into Q  independent subproblems in 
accordance with the introduced partition of ASM. In our example for ASM Γnonmin, we 
have two such subsystems: 
 

1. ;''''' 11341311346135613 YxxYxxYxxYxxxYxxxYb ++++→  

;'' 434635632 YxYxxYxxY ++→         (13) 

464365363 '' YxYxxYxxY ++→ .  
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2. ;''''''' 82768272273272271 eYxxxYxxxYxxYxxYxxY ++++→  

;'''''' 548546854543544 eee YxxYxxxYxxxYxxYxxY ++++→  (14)                                     

;' 32225 YxYxY +→  

.'''' 282286282286 eYxxYxxYxxYxxY +++→  
 

6.2.2 Constructing a set of equivalent subgraphs. At this stage, we expand each 
subsystem of transition formulae, obtained at the previous stage, into the bracket 
form. To minimize a subgraph of ASM corresponding to the subsystem of transition 
formulae, M versions of expansion for each transition formula Yt  should be 
constructed: 

.'
mimmimt BxAxY +→                                     (15) 

 
Here x xi iM1 , ... ,  are the first M  variables contained maximal times inYt . Then, we 

again find M variables xnm  and xpm  which occur maximal times in Am and Bm . After 

that, we continue expansion of Am  and Bm  with xnm  and xpm : 

).()( '''
pmpmpmpmimnmnmnmnmimt FxExxDxCxxY +++→  

Continuing expansion we get not more than M
K2 1−  version of expansion, here K  is 

the number of expansion levels. In our experiments with very complicated ASMs, we 
have seen that it is sufficient to take M K= = 3  so as not to lose the minimal 
subgraph of ASM. 
 
Now we return to our example and begin with transition formula Yb  from the first 
subsystem (13). Let us find how many times each variable occurs in the transition 
formula forYb : 

x1 –  5 times; x3 –  5 times;  x6 –  2 times. 
 

In our simple example we use M = 2 , that is we make four expansions for Yb – two 
starting from x1 and two starting from x3 (two variables with the maximal number of 
appearances in transition formula Yb). Let us begin with x1: 
 

11434635631 ')''( YxYxYxxYxxxYb +++→ . 
 
Since the expansion after x'1 is impossible, find how many times each variable occurs 
in the transition formula after x1:  

x3 – 3 times;      x 6 -   2 times. 

In our example, we choose x3, x6 and get two expansion versions with 1x  in the first 
step. First of them is  

1143465631 ')')'(( YxYxYxYxxxYb +++→ .            (16) 

The result of the second expansion with 6x after x1 is: 

1146435361 ')')'(( YxYxYxYxxxYb +++→ .             (17) 
 
Now let us return to Fig. 2. In this figure, we marked the input of the conditional 
vertex with xp  by operatorYq . The following transition formula 
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npmpq YxYxY '+→  

corresponds to operator Yq  in Fig. 2. We call Yq  a derivative operator and denote it by 

a circle to distinguish it from primary rectangular operatorsY Y Y Yb T e, , ... , ,1  in the 
graph of ASM. For expansion (16) we can write the following derivative operators 
beginning with the internal brackets: 
 

465610 ' YxYxY +→ ;    

4310311 ' YxYxY +→ ; 

1111112 ' YxYxY +→ . 
 
Derivative operator Y12  coincides with operatorYb . We write the numbers of derivative 
operators over the corresponding opening brackets in (16): 
 

11434656

10

3

11

1

12
')')'(( YxYxYxYxxxYb +++→   (18) 

and list these operators in the special Table 2. Operators 121110 ,, YYY  are the first three 
operators in this table (we use number t instead of Yt  in Table 2). 
 

Table 2. The derivative operators for Yb, Y2, Y3 

10 x6 5 4 16 x1 4 1 
11 x3 10 4 17 x1 10 1 
12 x1 11 1 18 x3 17 16 
13 x3 5 4 19 x1 5 1 
14 x6 13 4 20 x6 19 16 
15 x1 14 1 21 x3 20 16 

 
It is obvious that there is a one-to-one correspondence between the bracket transition 
formula and the ASM subgraph obtained from this formula. To illustrate this, 
consider the construction of ASM subgraph (Fig. 8) for transition formula Yb  in (18). 
We see at once that such a construction is reduced to the successive exposure of 
derivative operators Y Y Y12 11 10, ,  from Table 2. It is possible to present expansion (18) 
or the subgraph in Fig. 8 as the first column in Table 3 (v1 means version1). The 
number of derivative operators in this column is equal to the number of conditional 
vertices in Fig. 8. For now, disregard the parenthesis in the columns of this table. 
 

 
Figure 8. Subgraph for expression (18) 
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Table 3. The table of versions for Yb, Y2, Y3 

 
Yb Y2 Y3 

v1 v2 v3 v4 v5 v6 v7 v8 
12 15 18 21 (11) (14) (14) (11) 
(11) (14) 17 20 (10) (13) (13) (10) 
(10) (13) 16 19     

  (10) 16     
 
Exactly in the same way, we implement expansion for each version of Yb, Y2,Y3: 
 

11464353

13

6

14

1

15
')')'(( YxYxYxYxxxYb +++→ ; 

);'(')')'(( 1141

16

3114656

10

1

17

3

18
YxYxxYxYxYxxxYb ++++→

)'('))'(')'(( 1141

16

31141

16

61151

19

6

20

3

21
YxYxxYxYxxYxYxxxYb +++++→ ; 

;')'( 434656

10

3

11

2 YxYxYxxY ++→  

;')'( 464353

13

6

14

2 YxYxYxxY ++→  

;')'( 464353

13

6

14

3 YxYxYxxY ++→  

.')'( 434656

10

3

11

3 YxYxYxxY ++→  
 
Having these expressions, we can complete the table for derivative operators (Table 2) 
and the table of versions (Table 3). The last table contains four versions for 
implementation of transition formulaYb , two versions for transition formula Y2  and 

two versions for transition formulaY3 . In Table 3, the derivative operator for Yj  is 

enclosed in brackets if it appears at least in one version Y f jf ( )≠ . Obviously, having 

chosen one version for each Y Yb , ,2 Y3  we obtain the subgraph of ASM for the first 
subsystem of transition formulae. The number of conditional vertices in such a 
subgraph is equal to the number of derivative operators (excluding similar ones) in 
the chosen versions. For example, having chosen versions 52 ,vv  and v7 , we will 
obtain the subgraph with five conditional vertices (Fig. 9). To obtain the subgraph with 
a minimal number of conditional vertices in the case of m  operators Y Ym1 , ... , , we have 

to choose one version for each Yj  so, that the total number of derivative operators 
should be minimal.  
 
We call this problem the problem of finding a minimal cover for the table of versions. 
The total number of possible subgraphs that can be constructed from such a table is 
equal to R Rm1× ×... . Here Rj  is the number of versions for operatorYj . In our simple 

example (Table 3), this number is equal to 4 2 2 16× × = . 
  
Without detailed explanations, we give expansions for the second subsystem (14) of 
transition formulae, the list of derivative operators (Table 4) and the table of versions 
(Table 5): 
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Figure 9. Subgraph for versions v2, v5 and v7 
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Table 4. The derivative operators for Y1, Y4, Y5 and Y6 

30 x8 6 e 39 x7 38 37 48 x8 47 46 
31 x7 3 30 40 x2 2 e 49 x5 48 e 
32 x2 2 31 41 x2 2 6 50 x5 30 e 
33 x7 3 e 42 x8 41 40 51 x5 3 e 
34 x7 3 6 43 x7 38 42 52 x4 51 50 
35 x8 34 33 44 x4 3 30 53 x5 6 e 
36 x2 2 35 45 x5 44 e 54 x8 53 e 
37 x2 2 30 46 x4 3 e 55 x4 51 54 
38 x2 2 3 47 x4 3 6     

6.2.3 Finding a minimal cover for the table of versions. We will show that a table 
of version may be compressed without a loss of the minimal cover. On the set of 
versions { ,..., }v vj jRj1  for operatorYj , we define the partial ordering relation. Assume 
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Table 5. The table of versions for Y1, Y4, Y5 and Y6 

Y1 Y4 Y5 Y6 
v1 v2 v3 v4 v5 v6 v7 v5 v6 v7 v8 
32 36 39 43 45 49 52 55 (38) (37) (42) 
31 35 (38) (38) 44 48 51 51  (30) (41) 
(30) 34 (37) (42) (30) 47 50 54   (40) 

 33 (30) (41)  46 (30) 53    
   (40)        

 
that vs ≤ vt if the use of vs instead of vt does not increase the number of derivative 
operators in any cover of the table of versions. It is clear that if vs ≤ vt, version vt may 
be eliminated from the table of versions. It is easy to show that vs ≤ vt if two following 
conditions are true: 

Ls ≤ Lt;   
(Lt - Ls) - |Bt \ Bs| ≥ 0. 

 
Here, Lt and  Ls are the lengths of versions  vt and vs  (the number of derivative 
operators in these versions); Bt and Bs are the sets of operators in brackets in versions 
vt and vs; |Bt \ Bs| is the number of elements in the difference between set Bt and Bs. 
Let us compare some versions from Table 3. 
 

(a) v1 and v3: L1 = 3; L3 = 4; L1 < L3; 
(L3 – L1) - |B3 \ B1| = (4 – 3) - |{10} \ {11,10}| = 1 – 0 = 1 > 0; 

 
v1 ≤ v3. 

 
(b) v1 and v4: L1 = 3; L4 = 4; L1 < L4; 

(L4 – L1) - |B4 \ B1| = (4 – 3) - |∅\ {11,10}| = 1 – 0 = 1 > 0; 
 

v1 ≤ v4. 
 

(c) v1 and v2: L1 = 3; L2 = 3; L1 = L2; 
(L2 – L1) - |B2 \ B1| = (3 – 3) - |{14,13} \ {11,10}| = 0 – 2 = -2 < 0; 
                           
   v1 not ≤ v2. 

 
(d) Check the inverse: v2 and v1: L1 = 3; L2 = 3; L1 = L3; 

(L1 – L2) - |B1 \ B2| = (3 – 3) - |{11,10} \ {14,13}| = 0 – 2 = -2 < 0; 
 

v2 not ≤ v1; these two versions are incomparable. 
 

(e) Versions (v5, v6) for Y2 and (v7, v8) for Y3 are incomparable as well (check it 
yourself). 

 
The algorithm for compressing a table of versions is obvious. Comparing the versions 
within the columns for each Yj ( , ... , )j m= 1 , we leave only those versions that are not 
worse than the others. Thus, after such a compression, only incomparable versions 
will remain in the table of versions. Table 6, which is the result of the first 
compression, contains only two versions for Yb, Y2 and Y3.  
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Table 6. The result of the first compression 

Yb Y2 Y3 
v1 v2 v5 v6 v7 v8 
12 15 (11) (14) (14) (11) 
(11) (14) (10) (13) (13) (10) 
(10) (13)     

 
If there is at least one common version for two operators, we can combine their 
versions and consider these two operators as one operator (see Table 7). 

Table 7. Y2 and Y3 as one operator 

Yb Y2,Y3 
v1 v2 v5 v6 
12 15 (11) (14) 
(11) (14) (10) (13) 
(10) (13)   

 
The compression procedure should be repeated several times. If after the final 
compression more than one version is available for one or several operators Yj (j = 1, 
…, T) we can apply any well-known method to obtain a minimal cover for the prime 
implicant chart, because the complexity of the problem is essentially reduced. In our 
example, we can present the table of version in the sum-of-products form. For Table 
7, we present each version as a product of its derivative operators and the set of 
version for each operator – as the sum-of-products: 
 

(12*11*10 + 15*14*13) * (11*10 + 14*13) = 
= 12*11*10 + 15*14*13*11*10 + 12*11*10*11*10 + 15*14*13 = 12*11*10 + 15*14*13. 

 
After absorption, we get two products with the same length equal to three. It means 
that after minimization, the number of derivative operators or, which is the same, the 
number of conditional vertices in the first subgraph is equal to three. We use the first 
product in the final Table 8. The minimal subgraph is presented in Fig. 10,a. The 
corresponding derivative operators are taken from Table 8.  

Table 8. The minimal cover of the table of versions 

Yb Y2,Y3 
v1 v3 
12 (11) 
(11) (10) 
(10)  

 
Without detailed explanations, we will present the process of minimization for 
subgraph G2. Table 9 contains the results of the first compressing of the table of 
versions. The next compressing is not possible, so we use sum-of-products to find a 
minimal subgraph: 
 
(32*31*30 + 39*38*37*30 + 43*38*42*41*40) * (45*44*30) * (38) * (37*30 + 42*41*40) =  
= (32*31*30 + 39*38*37*30 + 43*38*42*41*40) *  (45*44*30*38*37 + 45*44*30*38*42*41*40)= 
= 32*31*30*45*44*38*37 + 32*31*30*45*44*38*42*41*40 +  39*38*37*30*45*44 + 
+ 39*38*37*30*45*44*42*41*40 + 43*38*42*41*40*45*44*30*37 + 43*38*42*41*40*45*44*30 = 
45*44*38*37*32*31*30 + 45*44*42*41*40*38*32*31*30 + 

+ 45*44*39*38*37*30 + 45*44*43*42*41*40*38*30.   
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Figure 10. Subgraphs G1
 and G2 after minimization 

 
After absorption we get four products, the third of them contains the minimal number 
(six) of derivative operators. The final cover of the table of versions for the second 
subgraph G2 is shown in Table 10. The minimal subgraph G2 is shown in Fig. 10,b. 
The minimized ASM Γmin is presented in Fig. 11. It contains only 9 conditional vertices 
whereas ASM Γnonmin in Fig. 5 has 17 conditional vertices.   
 

Table 9. The result of the first compression 

 
Y1 Y4 Y5 Y6 

v1 v3 v4 v5 v6 v7 v8 
32 39 43 45 (38) (37) (42) 
31 (38) (38) 44  (30) (41) 
(30) (37) (42) (30)   (40) 

 (30) (41)     
  (40)     

 
Table 10. The minimal cover of the table of versions 

 
Y1 Y4 Y5 Y6 
v3 v5 v6 v7 
39 45 (38) (37) 
(38) 44  (30) 
(37) (30)   
(30)    
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Figure 11. Mimimized ASM minΓ  
6.3. Minimization of operator vertices 

 
We will show that to minimize the number of operator vertices in ASM it is necessary 
to construct a Moore FSM implementing the given ASM, minimize this FSM and 
return from the minimal FSM to the minimal ASM. Thus, the minimization of operator 
vertices in ASM is reduced to the minimization of the corresponding Moore FSM. We 
will illustrate this technique by means of example of nonminimal ASM in Fig. 12. 
 
As was shown in Chapter 4 (Section 4.3), Moore FSM can be synthesized in two steps: 
 

1. The construction of a marked ASM. At this step, the vertices Begin and End 
are marked by the same symbol a1 and all operator vertices are marked by 
symbols a2, …, aM. These marks are written in Fig. 12 near the corresponding 
vertices. Unlike to the marking in Chapter 4, we use symbol ae to mark vertex 
End to distinguish the beginning and final vertices while returning from the 
minimal FSM to the minimal ASM. 
 

2. To define the transitions in FSM Moore with the states a1, …, aM, ae we find 
the following transition paths between operator vertices in the marked ASM: 

smRmm axxa ~...~
1 . 

Here mrmr xx =~ if in the transition path, we leave the conditional vertex with 

mrx via output ‘1’ and mrmr xx '~ =  if we leave the vertex with mrx via output ‘0’.  
 

  The transition from state am to state as with input 
X(am, as) = mRm xx ~...~

1  
  corresponds to such a path. If am marks the operator vertex with operator Yt, 
  then the output function λ(am) = Yt, i.e. we identify operator Yt, written in the 
  operator vertex with this state am.   
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As a result, we obtain Moore FSM with as many states as the number of symbols that 
is needed to mark ASM. In our example, the transition table of Moore FSM S, 
implementing ASM Γ in Fig. 12, is presented in Table 11. Since in ASM there are no 
paths from the final vertex into the other ones, there are no transitions from ae into 
the other states (see the last row in this table). 
 
To minimize Moore FSM (I advise you to reread Section 2.6.3 “Minimization of Moore 
automaton” from Chapter 2), we find successive partitions π0, π1, … until πk +1 = πk 
where πk  is a partition with blocks of equivalent states. In Table 11, the states with 
the same outputs are 0-equivalent and they are in the same block of π0. This partition 
is presented in Table 12. Column Am of this table contains a block of partition π0 with  
 

 
Figure 12. ASM Γ with redundant operator vertices 

current states, column As contains a block of partition π0 with next states from Table 
11. In our example: 
 

}.,,,,,,{;;;,,;,;,,; 654321011108746395210 AAAAAAAaaaaaaaaaaaa e ==π  
Two states ai and aj are k-equivalent, if they are (k-1)-equivalent and they transit to 
the same blocks of πk-1 with the same inputs; πk-1 is the partition into the blocks of (k-
1)-equivalent states. From Table 12 
 

.;;;,,;,;,,; 11108746395211 eaaaaaaaaaaaa=π  
Partition π1 is equal to partition π0. This means that π1 is the partition with blocks of 
equivalent states. Taking one state from each block of π1, we get the minimal set of 
states Amin: 

Amin = {a1, a2, a3, a4, a10, a11, ae} 
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and the minimal Moore FSM (Table 13). It is clear that minimal ASM Γmin contains one 
beginning vertex (state a1), one final vertex (state ae) and five operator vertices (states 
a2, a3, a4, a10 and a11). To construct this minimal ASM we should divide the system of 
transition formulae into subsystems – we have four such subsystems in our example 
(Fig. 13) – and transform each subsystem into the bracket form: 

1. 1YY b → ;  ;12 YY →  

2. ;' 31211 YxYxY +→  

3. ;' 54443 YxYxY +→  

4. eYY →4 ;  .5 eYY →  

ASM Γmin with the minimal number of operator vertices (Fig. 14) was constructed by 
means of this system of bracket transition formulae. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 13. The minimal Moore FSM 

am Y(am) as X(am, as) h 
a1 Yb a2 1 1 
a2 Y1 a3 x1 2 
  a4 x'1 3 

a3 Y2 a2 1 4 
a4 Y3 a10 x4 5 
  a11 x'4 6 

a10 Y4 ae 1 7 
a11 Y5 ae 1 8 
ae Ye ae 1 9 

 
 
 

Table 12. Partition π0 

Am am Y(am) As X(am, as) 
A0 a1 Yb A1 1 
 a2 Y1 A2 x1 
   A3 x'1 

A1 a5 Y1 A2 x2x1 
   A3 x2x'1 
   A2 x'2x1 
   A3 x'2x'1 
 a9 Y1 A2 x1 
   A3 x'1 

A2 a3 Y2 A1 1 
 a6 Y2 A1 1 
 a4 Y3 A4 x4 
   A5 x'4 

A3 a7 Y3 A4 x4 
   A5 x'4 
 a8 Y3 A4 x4 
   A5 x'4 

A4 a10 Y4 A6 1 
A5 a11 Y5 A6 1 
A6 ae Ye A6 1 

 

Table 11. FSM Moore for ASM Γ 

am Y(am) as X(am, as) h 
a1 Yb a2 1 1 
a2 Y1 a3 x1 2 
  a4 x'1 3 

a3 Y2 a5 1 4 
a4 Y3 a10 x4 5 
  a11 x'4 6 

a5 Y1 a6 x2x1 7 
  a7 x2x'1 8 
  a6 x'2x1 9 
  a8 x'2x'1 10 

a6 Y2 a9 1 11 
a7 Y3 a10 x4 12 
  a11 x'4 13 

a8 Y3 a10 x4 14 
  a11 x'4 15 

a9 Y1 a6 x1 16 
  a8 x'1 17 

a10 Y4 ae 1 18 
a11 Y5 ae 1 19 
ae Ye ae 1 20 
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6.4. ASM combining 
 

When we would like to describe the behavior of a very complicated digital system, 
sometimes it is difficult to present it by just one ASM. In these cases, it is possible to 
describe separate subbehaviors with ASMs Γ1, …, ΓQ and then to combine them into 
one combined ASM Γ 
 
At the beginning, we will show a trivial method for ASM combining. This method will 
not be used in the future, but it will help us to understand the combining process. As 
an example, we take four ASMs in Fig. 15. 

 
Figure 15. Four ASM to combine 

First, we encode ASMs by vectors of values of new variables p1 and p2, these variables 
are not in the initial ASMs. The number of such variables depends on the number of 
ASMs and, in general case, is equal to N = ] log2 Q [. Here Q is the number of ASMs to 
combine and ] a [ is the nearest integer greater than a, or equal to a if a is integer. In 
our example, Q = 4 and N = 2.  

 

 
Figure 14. ASM Γmin 

 

 
Figure 13. The partition of transition 

formulae for the minimal ASM 
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Figure 16. Trivial combining 

The trivial combining method is shown in Fig. 16. We did not change ASMs in this 
figure; we only removed their vertices “Begin” and “End” because we can have only 
one pair of such vertices in the combined ASM. Paths running through conditional 
vertices with variables p1, p2, lead to ASMs with the corresponding codes. We use 
these codes here as instruction codes, or mode codes. For example, if p1p2 = 00 – ASM 
Γ1 will be implemented, if p1p2 = 01 – ASM Γ2 will be implemented etc. 
 
Now we will present another method for ASM combining in which we minimize the 
numbers of operator and conditional vertices. Let us assume that we have ASMs Γ1, 
…, ΓQ and there are no equal operators within each ASM Γq but, of course, there may 
be such operators in different ASMs. If two or more equal operators are written in 
various operator vertices of one such ASM, we should rename them, beginning with 
the second one, by different numbers YF+1, YF+2, … Here F is the maximal number of 
operators in all ASMs that should be combined.  
 
As an example we will combine ASMs Γ1, …, Γ4 in Fig. 17. The procedure for ASMs 
combining consists of several steps. 
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Figure 17. ASMs for combining 

1. Construct MSA Mq for each ASM Γq. The MSAs M1, …, M4 are in Tables 14 – 17.  
 

2. Encode each MSA Mq (q = 1, …, 4) by binary code K(Mq). Since there are only 
four MSAs, two coding variables p1 and p2 are enough. Let 
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K(M1) = 00, K(M2) = 01, K(M3) = 10, K(M4) = 11. 

Table 14. MSA M1 

 

Table 15. MSA M2 

 

Table 16. MSA M3 

 

Table 17. MSA M4 

 
3. Write product P(Mq) corresponding to K(Mq) in the left upper corner of Mq: 

 
P(M1) = p'1p'2; P(M2) = p'1p2; P(M3) = p1p'2; P(M4) = p1p2.  

 
4. Construct combined MSA M. The set of operators Y(M) in this MSA M is 

U
Q

q
qMYMY

1

)()(
=

= , 

where Y(Mq) is the set of operators in MSA Mq and Q is the number of separate 
MSAs. This is the main idea of our combining. If the same operator Yq occurs 

p′1p′2 Y1 Y3 Y4 Y5 Y6 Ye 

Yb 1      
Y1  x7   x′7x1 x′7x′1 
Y3   x6x′3 + x′6 x6x3   
Y4  x5x2   x5x′2x1 x5x′2x′1 + x′5 
Y5  1     
Y6     x1 x′1 

p′1p2 Y1 Y2 Y3 Y4 Y5 Y6 Ye 

Yb 1       
Y1  1      
Y2    x6x′3 + x′6 x6x3   
Y3    x6x′3 + x′6 x6x3   
Y4   x5x2   x5x′2x1 x5x′2x′1 + x′5 
Y5  1      
Y6  1      

p1p′2 Y3 Y4 Y5 Y6 Ye 

Yb  x6x′3 + x′6 x6x3   
Y3  x6x′3 + x′6 x6x3   
Y4 x5x2   x5x′2x1 x5x′2x′1 + x′5 
Y5 1     
Y6    x1 x′1 

p1p2 Y2 Y3 Y4 Y5 Y6 Ye 

Yb   x6x′3 + x′6 x6x3   
Y2   x6x′3 + x′6 x6x3   
Y3   x6x′3 + x′6 x6x3   
Y4  x5x2   x5x′2x1 x5x′2x′1 + x′5 
Y5 1      
Y6 1      
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in the several ASMs, there will be only one copy of this operator in the 
combined ASM. In our example: 
Y(M1) = {Yb, Y1, Y3, Y4, Y5, Y6, Ye};    Y(M2) = {Yb, Y1, Y2, Y3, Y4, Y5, Y6, Ye};  
Y(M3) = {Yb, Y3, Y4, Y5, Y6, Ye};          Y(M4) = {Yb, Y2, Y3, Y4, Y5, Y6, Ye}. 
 
Thus, in our example we have only eight operators in the combined ASM, 
including operators Yb and Ye: 

 
Y(M) = Y(M1) U Y(M2) U Y(M3) U Y(M4) = { Yb,Y1, …, Y6,Ye}. 

 
This combined ASM has seven rows and seven columns (Table 18).  

 
   To construct entries in the combined MSA M, we multiply each entry of each 
   MSA Mq by its product P(Mq)  written in the left upper corner of this MSA Mq 
   and insert it in the corresponding entry of MSA M – at the intersection of the 
   same row and the same column. In other words, we multiply each MSA Mq by 
   its product P(Mq)  and insert it in the combined MSA M. 

 
 To check that combined MSA M, thus constructed, implements MSA Mq when 
 P(Mq) = 1, it is sufficient to substitute code K(Mq) in each entry of MSA M. For 
 example, if you substitute K(M1) = 00  in MSA M in Table 18, you will get MSA 
 M1 in Table 14. 

Table 18. Combined MSA M 

 Y1 Y2 Y3 Y4 Y5 Y6 Ye 

Yb p′1p′2   p1p′2x6x′3 + p1p′2x′6 p1p′2x6x3   
 p′1p2   p1p2x6x′3 + p1p2x′6 p1p2x6x3   

Y1  p′1p2 p′1p′2x7   p′1p′2x′7x1 p′1p′2x′7x′1 

Y2    p′1p2x6x′3 + p′1p2x′6 p′1p2x6x3   
    p1p2x6x′3 + p1p2x′6 p1p2x6x3   
    p′1p′2x6x′3 + p′1p′2x′6 p′1p′2x6x3   

Y3    p′1p2x6x′3 + p′1p2x′6 p′1p2x6x3   
    p1p′2x6x′3 + p1p′2x′6 p1p′2x6x3   
    p1p2x6x′3 + p1p2x′6 p1p2x6x3   
   p′1p′2x5x2   p′1p′2x5x′2x1 p′1p′2x5x′2x′1 + p′1p′2x′5 

Y4   p′1p2x5x2   p′1p2x5x′2x1 p′1p2x5x′2x′1 + p′1p2x′5 
   p1p′2x5x2   p1p′2x5x′2x1 p1p′2x5x′2x′1 + p1p′2x′5 
   p1p2x5x2   p1p2x5x′2x1 p1p2x5x′2x′1 + p1p2x′5 

Y5  p′1p2 p′1p′2     
  p1p2 p1p′2     

Y6  p′1p2    p′1p′2x1 p′1p′2x′1 

  p1p2    p1p′2x1 p1p′2x′1 

 
5. Construct combined ASM Γ. 

 
5.1. Partition the system of transition formulae into independent subsystems. 
Here we should implement techniques similar to ASM partitioning into 
subgraphs (Secion 6.2.1). We begin with any operator, for example, from Yb 
and find the set of operators towards which there are paths (12) in MSA M (the 
columns with entries distinct from zero in row Yb). For row Yb, they are 
operators Y1, Y4, Y5 (see arrows from Yb in Fig. 18,a). Next, we go to the right 
side of this subgraph and find operators, other than Yb, from which there are 
paths (12) leading to operators Y1, Y4, Y5. We place these operators (Y2, Y3) on 
the left side under Yb. For all operators on the left, we continue picking such 
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operators to which there are paths in MSA M, etc., until the set on the left (А1) 
and that on the right (B1) are no longer increasing. Next we will choose a new 
operator Y Am ∉ 1  (Y1 in our example) and construct (A2) and (B2) in a similar 
way (see Fig. 18,b). Thus, in our example we have two independent 
subsystems of transition formulae derived immediately from MSA M: 
 

 
Figure 18. Partition of operators in MSA M 

 
Subsystem 1 
 
Yb → p'1p'2Y1 + p'1p2Y1 + p1p'2x6x'3Y4 + p1p'2x'6Y4 + p1p2x6x'3Y4 + p1p2x'6Y4 + 
        p1p'2x6x3Y5 + p1p2x6x3Y5;  
 
Y2 → p'1p2x6x'3Y4 + p'1p2x'6Y4 + p1p2x6x'3Y4 + p1p2x'6Y4 + p'1p2x6x3Y5 + p1p2x6x3Y5; 
 
Y3 → p'1p'2x6x'3Y4 + p'1p'2x'6Y4 + p'1p2x6x'3Y4 + p'1p2x'6Y4 + p1p'2x6x'3Y4 + p1p'2x'6Y4 + 
        p1p2x6x'3Y4 + p1p2x'6Y4 + p'1p'2x6x3Y5 + p'1p2x6x3Y5 + p1p'2x6x3Y5 + p1p2 x6x3Y5.  
 
Subsystem 2 
 
Y1 → p'1p2Y2 + p'1p'2x7Y1 + p'1p'2x'7x1Y6 + p'1p'2x'7x'1Ye;  
 
Y4 → p'1p'2x5x2Y3 + p'1p2x5x2Y3 + p1p'2x5x2Y3 + p1p2x5x2Y3 + p'1p'2x5x'2x1Y6 +  
        p'1p2x5x'2x1Y6 + p1p'2x5x'2x1Y6 + p1p2x5x'2x1Y6 + p'1p'2x5x'2x'1Ye +  
        p'1p'2x'5Ye + p'1p2x5x'2x'1Ye + p'1p2x'5Ye + p1p'2x5x'2x'1Ye +  
        p1p'2x'5Ye + p1p2x5x'2x'1Ye + p1p2x'5Ye;  
 
Y5 → p'1p2Y2 + p1p2Y2 + p'1p'2Y3 + p1p'2Y3;  

 

Y6 → p'1p2Y2 + p1p2Y2 + p'1p'2x1Y6 + p1p'2x1Y6 + p'1p'2x'1Ye + p1p'2x'1Ye. 
 

5.2. Construct minimal subgraphs. Here we should implement techniques 
presented above in Section 6.2.2 “Constructing a set of equivalent subgraphs” 
and Section 6.2.3 “Finding a minimal cover for the table of versions”. Without 
detailed explanation (we advice you to make ASM expansion by yourself) we 
give the tables of derivative operators for the first subsystem (Table 19) and 
the tables of versions during two compressions (Tables 20 and 21). The 
minimal subgraph with operators Yb, Y2 and Y3 is presented in Table 22.  
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Table 19. The derivative operators for Yb, Y2, Y3 

8 x3 5 4 16 p1 4 1 
9 x6 8 4 17 x3 15 16 

10 x6 5 4 18 x6 14 16 
11 x3 10 4 19 x6 17 16 
12 p1 9 1 20 p1 10 1 
13 p1 11 1 21 x6 15 16 
14 p1 8 1 22 x3 20 16 
15 p1 5 1 23 x3 21 16 

 
Table 20. The table of versions for Yb, Y2, Y3 

 
Yb Y2, Y3 

v1 v2 v3 v4 v5 v6 v7 v8 
12 13 18 19 22 23 (9) (11) 
(9) (11) 14 17 20 21 (8) (10) 
(8) (10) (8) 15 (10) 15   
  16 16 16 16   

 
Table 21. The table of versions for Yb, Y2, Y3 after compression of Yb 

 
Yb     Y2, Y3 

v1 v2 v7 v8 
12 13 (9) (11) 
(9) (11) (8) (10) 
(8) (10)   

 
Table 22. The final table of versions for Yb, Y2, Y3 

 
Yb Y2, Y3 
v1 v7 
12 (9) 
(9) (8) 
(8)  

 
Tables 23 – 26 contain the same for the second subsystem of transition 
formulae. The last table presents the minimal subgraph with operators Y1, Y4, 
Y5 and Y6. The minimal combined ASM Γ is shown in Fig. 19. 

Table 23. The derivative operators for Y1, Y4, Y5 and Y6 

8 x1 6 е 22 p2 2 10 36 x5 3 е 
9 x7 3 8 23 x7 15 17 37 x5 8 е 

10 x7 3 6 24 p2 2 11 38 x5 6 е 
11 x7 3 е 25 x7 15 18 39 x1 38 е 
12 x1 10 11 26 x1 22 24 40 x2 36 37 
13 p2 2 9 27 x1 22 25 41 x2 36 39 
14 p2 2 12 28 x1 23 24 42 x5 31 е 
15 p2 2 3 29 x1 23 25 43 x2 36 38 
16 p2 2 8 30 x2 3 8 44 x5 32 е 
17 p2 2 6 31 x2 3 6 45 x2 36 е 
18 p2 2 е 32 x2 3 е 46 x1 42 44 
19 x1 17 18 33 x1 31 32 47 x1 42 45 
20 x7 15 16 34 x5 30 е 48 x1 43 44 
21 x7 15 19 35 x5 33 е 49 x1 43 45 
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Table 24. The table of versions for Y1, Y4, Y5 and Y6 

Y1 Y4 Y5 Y6 
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15 
13 14 20 21 26 34 35 40 41 46 47 49 (15) (16) (19) 
9 12 (15) (15) 22 30 33 36 36 42 42 43  (8) (17) 
(8) 10 (16) (19) 10 (8) 31 37 39 31 31 36   (18) 
 11 (8) (17) 24  32 (8) 38 44 45 38    
   (18) 11     32 36 45    

 

Table 25. The compressed table of versions for Y1, Y4, Y5 and Y6 

Y1 Y4 Y5 Y6 
v1 v3 v4 v6 v13 v14 v15 
13 20 21 34 (15) (16) (19) 
9 (15) (15) 30  (8) (17) 
(8) (16) (19) (8)   (18) 
 (8) (17)     
  (18)     

 

Table 26. The final table of versions for Y1, Y4, Y5 and Y6 

Y1 Y4 Y5 Y6 
v3 v6 v13 v14 
20 34 (15) (16) 
(15) 30  (8) 
(16) (8)   
(8)    

 
Note, that during expansion of transition formulae we can come across two don't care 
cases: 

• If the number of ASMs Q is smaller than 2N, i.e. not all possible vectors of 
coding variables p1, …, pN are used for encoding of MSAs M1, …, MQ, all 
transition formulae are not specified on such vectors of variables p1, …, pN,x1, 
…,xL, in which first N components correspond to unused combination. We do 
not have such a case in our example. 

• If operator Yt is absent in some MSA Mq, then transition formula for Yt is not 
specified on vectors of variables p1, …, pN, x1, …, xL, in which first N 
components correspond to the code K(Mq) of this MSA Mq. The operator Y2 is 
not in MSAs M1 and M3 in our example, therefore the transition formula for Y2 
is not specified for vectors, in which p1 = p2 = 0 and p1 = 1, p2 = 0, since K(M1) = 
00 and K(M3) = 10.  

 
Y2 → p'1p2x6x'3Y4 + p'1p2x'6Y4 + p1p2x6x'3Y4 + p1p2x'6Y4 + p'1p2x6x3Y5 + p1p2x6x3Y5 = 
 
        = x6(p'1p2x'3Y4 + p1p2x'3Y4 + p'1p2x3Y5 + p1p2x3Y5) + x'6(p'1p2Y4 + p1p2Y4) = 
 
       = x6(x3(p'1p2Y5 + p1p2Y5) + x'3(p'1p2Y4 + p1p2Y4)) + x'6(p'1p2Y4 + p1p2Y4). 
 
In the internal brackets, we couldn’t continue expanding with variable p2, because 
this expression does not contain products with p′1p′2 and p1p′2 corresponding to the 
unused codes 00 and 10. Using don’t care we have  
 

p′1p2 + p′1p′2 = p′1;  p1p2 + p1p′2 = p1 
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and finally we get: 
 

Y2 → x6(x3(p'1Y5 + p1Y5) + x'3(p'1Y4 + p1Y4)) + x'6(p'1Y4 + p1Y4) = 
 

= x6(x3Y5 + x'3Y4) + x'6Y4. 
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Figure 19. Combined ASM Γ 
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