Chapter 4 Algorithmic State Machines and Finite State Machines

In this Chapter, we will introduce Algorithmic state machines and consider their use
for description of the behavior of control units. Next, we will use algorithmic state
machines to design Finite State Machines (FSM) with hardly any constraints on the
number of inputs, outputs and states.

4.1 Flowcharts and Algorithmic state machines

4.1.1 Example of ASM. An Algorithmic state machine (ASM) is the directed
connected graph containing an initial vertex (Begin), a final vertex (End) and a finite
set of operator and conditional vertices (Fig. 1). The final, operator and conditional
vertices have only one input, the initial vertex has no input. Initial and operator
vertices have only one output, a conditional vertex has two outputs marked by "1"
and "0". A final vertex has no outputs.

b

Figure 1. Vertices of Algorithmic state machine

As the first example, let us consider a very simple Traffic Light Controller (TLC)
presented in the flowchart in Fig. 2. This controller is at the intersection of a main
road and a secondary road. Immediately after vertex Begin we have a waiting vertex
(one of the outputs of this vertex is connected to its input) with a logical condition
Start. It means that the controller begins to work only when signal Start = 1. At this
time, cars can move along the main road for two minutes. For that, the traffic light at
the main road is green, the traffic light at the secondary road is red and the special
timer that counts seconds is set to zero (main_grn := 1; sec_red := 1; t := 0).

Although our TLC is very simple it is also a little smart — it can recognize an
ambulance on the road. When an ambulance is on the road the signal amb is equal to
one (amb = 1), when there is no ambulance on the road this signal is equal to zero
(amb = 0). First we will discuss the case when there are no ambulances on the road.

Thus, when amb = 0 and t = 120 sec TLC transits into some intermediate state to
allow cars to finish driving along the main road: main_yel := 1; sec_red := 1; t := 0.
TLC is in this state only for three seconds (t = 3 sec), after which cars can move along
the secondary road for 30 seconds: main_red := 1; sec_grn := 1; t := 0.

Thirty seconds later, if there are no ambulances on the road (amb = 0; t = 30 sec),
there is one more intermediate state. Now cars must finish driving along the
secondary road: main_red := 1; sec_yel := 1; t := 0. After three seconds, if, once again,
there are no ambulances on the road, the process reaches vertex End, or, that is the
same, it returns to the beginning vertex Begin.

When there is ambulance on the road (amb = 1) outputs of conditional vertices with
logical condition amb, marked by “1” bring us to the intermediate state to let cars to
finish their driving: main_yel := 1; sec_yel := 1; t := 0. One more logical condition
dmain tells us where the ambulance is — whether it is on the main road or on the
secondary one. If it is on the main road (dmain = 1), after three seconds the traffic

66 — Logic and System Design

light will be green on the main road, otherwise (dmain = 0) the traffic light will be
green on the secondary road.

main gm:=1| Yyl
sec_red := 1 y2
t:=0 y3

Y5
y4 | main_yel := 1
y7 | sec yel:=1 \
y3 t:=0

. main_yel =1 | yq
dmain 1 secred:=1 | y2
0 t:=0 y3

Y3
y5 main_red := 1
Y6 | sec gm:=1
t:=0

main_red := 1
sec_yel :=1
t:=0

Figure 2. A simple Traffic Light Controller

In the flowchart, a logical condition is written in each conditional vertex. It is possible
to write the same logical condition in different conditional vertices. A microinstruction
(an operator), containing one, two, three or more microoperations, is written in each
operator vertex of the flowchart. It is possible to write the same operator in different
operator vertices.

If we replace logical conditions by xi, x2, ... , X1, microoperations by yi, yz, ... , yv and
operators by Yi, Yz, ..., Yr we will get Algorithmic State Machine (ASM). ASM for the
flowchart in Fig. 2 is shown in Fig. 3.

ASM vertices are connected in such a way that:
1. Inputs and outputs of the vertices are connected by arcs directed from an
output to an input, each output is connected with only one input;
2. Each input is connected with at least one output;
3. Each vertex is located on at least one of the paths from vertex “Begin” to
vertex “End”. Hereinafter we will not consider ASMs with subgraphs,
containing an infinite cycle. An example of such a subgraph with an infinite

Chapter 4 Algorithmic state machines and finite state machines — 67

loop between vertices with Y: and Ysis shown in Fig. 4. The dots in this ASM
between vertex “Begin” and the conditional vertex with x: and between this
vertex and vertex “End” mean that ASM has other vertices on the path from
vertex “Begin” to vertex “End”. The vertices in the loop are not on the path
from “Begin”to “End”.

One of the outputs of a conditional vertex can be connected with its input.
We will call such conditional vertices the “waiting vertices”, since they
simulate the waiting process in the system behavior description.

Figure 3. ASM for the flowchart in Fig. 2

%>—>

1
0

o]

<

1 e .
0

Né‘

Ys

Figure 4. Subgraph with an infinite loop

68 — Logic and System Design

One more example of ASM G: with logical conditions X = {xi, ..., x7} and
microoperations Y = {yi, ..., yio} is shown in Fig. 5. This ASM has eight operators Yi,
..., Yg, they are written near operator vertices.

4.1.2 Transition functions. Let us discuss the paths between the vertex “Begin”, the
vertex “End” and operator vertices passing only through conditional vertices. We will
write such paths as follows:

~

Yy Xig Y (1)

In such a path,)~(ir is equal to X if the path proceeds from the conditional vertex
with X;, via output ‘I, and)-Zir is equal to Xi'r if the path proceeds from the
conditional vertex with X; via output ‘O’. For example, we have the following paths

from Y» (vertex Begin) in ASM Gi:

Yy x'1 Yo,

Y» x1x0%'3 Y6;
Yy x1x'2 Yi;
Y x1x2x3 Ys.

Figure 5. ASM G,

Let us match a product of variables in the path (1) from operator vertex Y: to operator
vertex Yj

o = Xy Xig
with this path from Yito Y;. For example, for ASM G: in Fig. 5

a7 =x4X'1;; Qiz=Xx'4; ai4 = X4 X1.

If there exist H paths between Y: and Y; through the conditional vertices, then

Chapter 4 Algorithmic state machines and finite state machines — 69
aj=alj+a+... +all

where a?; (h = 1, ...,H) is the product for the h-th path. Let us call a; a transition
function from operator (microinstruction) Y: to operator (microinstruction) Y;.

Note that for the path YsY7 (operator Y7 follows operator Ys immediately without
conditional vertices) as7 = 1, as the product of an empty set of variables is equal to
one.

4.1.3 Value of ASM at the sequence of vectors. Denote all possible L-component
vectors of the logical conditions xi, ...,xt by A, ...,A’k and define the execution of an
ASM on any given sequence of vectors Ai, ...,Amq beginning from the initial operator
Y». We will demonstrate this procedure by means of ASM G: in Fig. 5 and the
sequence (2) containing eight vectors A, ...,As:

X1 X2 X3 X4 X5 X6 X7
Ar = 1 0 1 0 1 1 1
A~ = 0 1 1 0 1 0 0
As = 1 0 1 0 0 1 0
A« = 0O 1 0 0 0 0 1)
As = 1 1 0 1 1 1 0
As = 1 1 0 0 1 0 1
A7 = 0 1 1 1 0 0 0
As = 0 1 0 1 0 0 1

ASM @Gi;in Fig. 5 contains logical variables x;j,...,x7 and operators Y»,Yy, ...,Ys, Ye. Now
let us find the sequence of operators which would be implemented, if we
consecutively, beginning from Y, give variables the values from these vectors. We
suppose that the values of logical conditions can be changed only during an execution
of operators.

Step 1. Write the initial operator
Yb.

Step 2. Let logical variables xi,...,x7 take their values from vector A;. From the set of
the transition functions asi,..., ars, are we choose such a function ap: that an(A:) = 1.
In our example for the operator Y», the following transition functions are not
identically equal to zero:

ans = X1 X2 X3; are = X1 X2 X'3;, Qb1 = X1 X'2;, ap2 = X'1.
We will call such functions non-trivial transition functions to distinguish them from the
trivial functions, which are identically equal to zero. Function ajis trivial if there is no
path from operator Y: to operator Y In the example at this step, we choose the
function a»i, since only an: is equal to one on the first vector Ai:

Abi1 (Al) = 1.

Write Y7 to the right of Ys:
YrYi.

70 — Logic and System Design

Step 3. Let xi,...,x7 take their values from vector A;. From the set of the transition
functions aii,..., ais, aie we choose non-trivial functions

a4 = X4 X1, a7 = x4 X'1; aiz = x4
and among them - the only function aiz (A2) = 1. Write Y2 to the right of Y»Yi:

YoYi1Yo.
The computational process for the given sequence of vectors may reach its end in two
cases:

1. The final vertex “End” is reached. In this case, the last operator is Ye. The
number of operators in the operator row (without Y» and Ye) is less or equal (if
we reached the final vertex with the last vector) to the number of vectors;

2. The vectors are exhausted but we have not yet reached the final vertex. In this
case, the number of operators in the operator row is equal to the number of
vectors.

In our example, we reached the final vertex “End” at the seventh vector

A7=0111000
and we get the row
YoY: Y2 YaY2Ys YsYe. (3)

The operator row thus obtained is the value of the ASM G for the given sequence of
vectors (2).

4.2 Synthesis of Mealy FSM

We will use Algorithmic state machines to describe the behavior of digital systems,
mainly of their control units. But if we must construct a logic circuit of the control
unit we should use a Finite state machine (FSM). We will consider methods of
synthesis of FSM Mealy, Moore and their combined model implementing a given ASM,
with hardly any constrains on the number of inputs, outputs and states.

4.2.1 Construction of a marked ASM. As an example we will use ASM G;in Fig. 6.
A Mealy FSM implementing given ASM may be constructed in two stages:

Stagel. Construction of a marked ASM,;
Stage 2. Construction of a state diagram (state graph).

At the first stage, the inputs of vertices following operator vertices are marked by
symbols ai, az, ..., an as follows:

1. Symbol a: marks the input of the vertex following the initial vertex “Begin” and
the input of the final vertex “End”;

2. Symbols a, ..., ay mark the inputs of all vertices following operator vertices;

3. Vertex inputs are marked only once;

4. Inputs of different vertices, except the final one, are marked by different
symbols.

Marked ASM G; in Fig. 6 is a result of the first step. Symbols ay, ..., as are used to
mark this ASM. Note, that we mark the inputs not only of conditional vertices but
of operator vertices as well (see mark as at the input of the vertex with operator
Y7). It is important that each marked vertex follows an operator vertex.

Chapter 4 Algorithmic state machines and finite state machines — 71

as v

ZF
O

0

Figure 6. ASM G, marked for the Mealy FSM synthesis

4.2.2 Transition Paths. At the second stage, we will consider the following paths in
the marked ASM:

a X ,.Xo Y, a (P1)

m”mLl*mRm ' g“%s

A X Xyr & (P2)

We call these paths transition paths. Thus, the path PI proceeds from am to as (am = as
is also allowed) and contains only one operator vertex at the end of this path. The

path P2 proceeds from am only to a: without operator vertex. Here, imr =X, if on
the transition path we leave the conditional vertex with X, via output ‘1’ and

Ymr = X'y, if we leave it via output ‘0”. If Rn = 0 on the path PI, two operator vertices
follow one after another and this path turns into
a,Y,a-

There are sixteen transition paths in the marked ASM Gz in Fig. 6:

ai xixzx3 Ys az az xax1 Y4 az as x5 Y3 as as x'sx7 Ys ai
a; xix2x's Ye as az x4x'1 Y7 ae a4 xX'sx1 Y4 az as x'sx'7 ai
a; x1x2 Y1 az az x's Yo a4 a4 x'sx'1 Y7 ae as xe6 Yo au
ar x'1 Yo a4 as Y7 as as xe Y4 az as xX's Y7 as

Note, that the path a2 x«x'' as doesn’t correspond to the transition path PI (the
operator vertex is absent on the path) and to transition path P2 (it isn’t a path to ai).
Thus, it isn’t a transition path and we should go on to get the path az x4x"1 Y7 as. For
the same reason, paths a+ x'sx's as and as x's as are not the transition paths either.

72 — Logic and System Design

4.2.3 Graph of FSM. Next we construct a graph (state diagram) of FSM Mealy with
states (marks) ai, ..., au, obtained at the first stage. We have six such states ay, ..., as
in our example. Thus, the FSM graph contains as many states as the number of
marks we get at the previous stage. Now we should define transitions between these
states.

FSM has a transition from state am to state as with input X(am, as) and output Y, (see

the upper subgraph in Fig. 7) if, in ASM, there is transition path P1
A Xy Xing Vg s -

Here X(am, as) is the product of logical conditions written in this path:
X(am, as) =X Xpr

In exactly the same way, for the path ang a,we have a transition from state am to

m*

state as with input X(am, as) = 1 and output Yy as the product of an empty set of
variables is equal to zero. If, for a certain r (r = 1, ..., Rm), symbol xmr (Or x'm) occurs
several times on the transition path, all symbols xmr (x'm) but one are deleted; if for a
certain r (r = 1, ..., Rm), both symbols xmr and x'mr occur on the transition path, this
path is removed. In such a case X(am, as) = 0.

For the second transition path P2, FSM transits from state am to the initial state a:
with input X(am, a;) and output Yo (see the lower subgraph in Fig. 7). Yo is the
operator containing an empty set of microoperations.

Xam,as Yy @
. X(am,a1) Yo .

Figure 7. Subgraphs for transition paths P1 and P2

As a result, we obtain a Mealy FSM with as many states as the number of marks we
used to mark the ASM in Fig. 6. The state diagram of the Mealy FSM is shown in Fig.
8.

Figure 8. The state diagram of the Mealy FSM

4.2.4 How not to loose transition paths. Sometimes, if ASM contains many
conditional vertices, it is difficult not to loose one or several transition paths. Here

Chapter 4 Algorithmic state machines and finite state machines — 73

we give a very simple algorithm to resolve this problem. This algorithm has only
two steps.

1. Find the first transition path leaving each conditional vertex through output
'1'. For subgraph of ASM in Fig. 9 we will get the following first path from state
az:

az x1x2 x5 Ye as.

2. Invert the last non-inverted variable in the previous path, return to ASM and
continue the path (if it is possible) leaving each conditional vertex through
output 'I'. To construct the second path, we should invert variable xs. We
cannot continue because we reached an operator vertex:

az x1x2x's Yo as.

We should construct paths in the same manner until all variables in a transition path
will be inverted. For our example, we will get the following paths:

az X1 X'2x5x6 Yz as; azx1x'2x's Yoas; azx'1 x'3xe Yz as;

az X1 x'2x5x's x7xa Ysas; az x'1 x3x7 x4 Ys as; azx'1 x'3x'sx7x4 Ys as;
az X1 x'2x5x's x7x'a Y7 aq; azx'1 x3x7x's Y7 as; azx'1x'3x'sx7x'e Y7 a4;
azx1x'2x5x'sx'7Ysas; azx'1x3x'7Ysas; azx'1 x'sx'sx'7 Ysas.

Figure 9. Subgraph of ASM

4.2.5 Transition tables of Mealy FSM. The graph of Mealy FSM in Fig. 8 has only 6
states and 16 arcs. Practically, however, we must construct FSMs with tens of states
and more than one-two hundreds of transitions. In such a case, it is difficult to use a
graph, so we will present it as a table. Table 1 for the same Mealy FSM has five
columns:

am — a current state;

as — a next state;

X(am,as) — an input signal;
Y(am,as) — an output signal;
H — a number of line.

74 - Logic and System Design

Actually, immediately from ASM, we should write transition paths, one after another,
into the transition table. In Table 1, ~x:is used instead of x' for the inversion of x.

Now we will discuss what kind of FSM we have received. Our ASM G; in Fig. 6 which
we used to construct FSM S:; in Table 1, has seven logical conditions and ten
microoperations. FSM S: has seven binary inputs in the column X(am,as) and ten
binary outputs in the column Y(am,as). The input signal of this FSM (Fig. 10) is the 7-
component vector, the output signal of this FSM is the 10-component vector.

Table 1. Direct transition table of Mealy FSM §;

am as X(am,As } Y(Am,ds) H
ai az X1X2X3 Yy1ys 1
as X1X2~X3 Yey7 2
az X1~X2 Yy1yz 3
a4 ~X1 Y4 4
az az X4X1 ysyo 5
as X4~X1 Yy3y4+ 6
a4 ~X4 Y4 7
as as 1 Y3y4 8
as as X5 Ysyey7 9
az ~X5X1 Ysyo 10
as ~X5~X1 Yy3y4 11
as az X6 Ysyo 12
ai ~X6X7 Yysyeyio 13
aj ~X6~X7 - 14
as ai X6 Yey7 15
aes ~X6 Y3y4 16
X1 ——— Y1
Xy ———» —»)2
X7 ——> > Y10

Figure 10. FSM as a black box

Let us take one of the rows from Table 1, for example row 3, and look at the behavior
of FSM presented in this row. Our FSM transits from state a: into state az when the
product x: x'2 = 1. It is clear that such a transition takes place for any input vector in
which the first component is equal to 1, the second component is equal to 0. The
values of other components are not important. Thus, we can say that the third row of
Table 1 presents transitions from a; with any vector which is covered by cube
10xxxxx. In other words, this row presents not one but 25= 32 transitions. In exactly
the same way, the first and the second row present 16 transitions, the fourth row — 64
transitions and the eighth row — 128 transitions.

Two microoperations yi, yz, written in the third row of the output column, mean that
two components y; and yzare equal to I and others are equal to O (yi1=y2=1; ys=ys+ =

. = yi1o0 =0) in the output vector. I remind you that if the operator, written in the
operator vertex of some ASM, contains microoperations ym, Yyn, only these
microoperations are equal to 1 and other microoperations are equal to O during
implementation of this operator.

Let us compare Table 1 with a classical FSM representation in Table 3.7 from Chapter
3. If we would like to present our FSM with six states ai, ..., as and seven inputs xi,
..., X7 in the classical table, this table will have about 6x27 rows, because each row of

Chapter 4 Algorithmic state machines and finite state machines — 75

this table describes only one FSM transition. In our Table 1 from this Chapter, we
have only 16 rows because each row of such table presents lot of transitions.

The specific feature of such FSM is the multiplicity of inputs in the column X(amas),
maybe several tens or even hundreds, but each product in one row contains only few
variables from the whole set of input variables — as a rule, not more than 8 — 10
variables. It means that each time the values of the output variables depend only on
the values of a small number of the input variables. Really, if, for example, FSM has
30 input variables, the total number of input vectors is equal to 230, and if each time
the values of the output variables depended on the values of all the input variables,
no designer could either describe or construct such an FSM.

Let us briefly discuss the correspondence between FSM S: (Table 1) and ASM G: (Fig.
0) which we used to construct FSM Si. In Section 4.1.3 we got the value of ASM Gz

YoY1Y2YsY2Ys5 YsYe
for some random sequence of vectors (2) of logical conditions:

X1 X2 X3 X4 X5 X6 X7

At = 1 0 1 0 1 1 1
A2 = 0 1 1 0 1 0O O
Az = 1 0] 1 0] 0] 1 0
A¢ = 0 1 0 0 0 0 1
As = 1 1 0 1 1 1 0
Ae = 1 1 0 0 1 0 1
A7 = 0 1 1 1 0 0O O
Ag = 0 1 0 1 0 0 1

Now we will find the response of FSM S: in the initial state a: to the same sequence of
input vectors:

State sequence ai az as+ az as+ as ai

Input sequence A1 A2 A3 A4 As As

Response y1yz Y4 Yysyo Y4 Yysyeyrz Yyayeyio 4)
Microinstructions Y: Y2 Ya Y2 Y3 Ys

Let FSM be in the initial state a; with the first vector A; = 1010111 at its input. To
determine the next state and the output we should find such a row in the array of
transitions from a: (Table 1) that the product X(am,as), written in this row, be equal to
one at input vector A;. Since xix2(A1) = 1 (the third row), FSM S: produces output
signal yiy2 = Y1 and transits into state az. Similarly, we find that x'4(A2) is equal to one
at one of transitions from state a2 and FSM transits to the state a+« with the output
signal y+ = Y2 (see row 7 in Table 1) etc. As a result, we get the response of FSM S: in
the initial state a: to the input sequence Ay, ..., As in the fourth row of sequence (4).

As seen from this row, the FSM response is equal to the value of ASM G; for the same
input sequence. Note, that we consider here only the FSM response until its return to
the initial state a: and this response Y: Y2 Y4 Y2 Y5 Ys corresponds to the value of ASM
Gi1between the operator Y» (vertex "Begin") and the operator Ye (vertex "End").

Let us define FSM S as implementing ASM G if the response of this FSM in the state a:
to any input sequence (until its return to the state a:) is equal to the value of ASM G

76 — Logic and System Design

for the same input sequence. From the considered method of synthesis of Mealy FSM
S1 from ASM G; it follows that this FSM S; implements ASM Gu.

4.2.6 Synthesis of Mealy FSM logic circuit. As in Chapter 3, we will construct a
Mealy FSM logic circuit with the structure presented in Fig. 11. To design this circuit
we will use an FSM structure table (Table 2). This table was constructed from the
direct transition table (Table 1) by adding three additional columns:

e K(am) - a code of the current state;
e K(as) — a code of the next state;
e D(amas)— an input memory function.

ﬁ. @ B
L { H
tz‘ dz Nl t2

o [
t3 ds — t3
g |

X7 —> — Y10

Figure 11. The structure for the Mealy FSM logic circuit

Table 2. Structure table of FSM S;

am K(am) ds K(as} X(am,as) Y(am,as) D(am,as) H
ai 001 az 000 X1X2X3 Yy1ys = 1
as 101 X1X2~X3 Yysyz dids 2
az 000 X1~Xx2 Yy1yz = 3
a4 010 ~X1 Y4 dz 4
az 000 az 000 X4X1 ysyo - 5
as 100 X4~X1 Y3y4 di 6
a4 010 ~X4 Y4 dz 7
as 101 as 100 1 Y3y4+ di 8
a4 010 as 110 X5 Yysyeyz didz 9
az 000 ~X5X1 Ysyo = 10
as 100 ~X5~X1 Y3y4 di 11
as 110 az 000 X6 Ysyo = 12
ai 001 ~X6X7 Y3yey1o ds 13
ai 001 ~X6~X7 - ds 14
as 100 ai 001 X6 Yyeyr ds 15
as 100 ~X6 Y3y4 di 16

To encode FSM states we constructed Table 3 where p(as) is the number of
appearances of each state in the next state column as in Table 2. The algorithm for
state assignment is absolutely the same as in Chapter 3. First, we use the zero code
for state a2 with max p(az) = 5. Then codes with one 'l' are used for states as, a:, a+
with the next max appearances and, finally, two codes with two 'ones' are used for the
left states as and as.

To fill column D(am,as) it is sufficient to write there column K{as) because the input of
D flip-flop is equal to its next state. However, here we use the same notation as in
column Y(amas) and write dr in the column Df(amas) if dr is equal to 1 at the

Chapter 4 Algorithmic state machines and finite state machines — 77

corresponding transition (amas) — equal to 1 in column K(as). After that, the shaded
part of Table 2 is something like a truth table with input variables ti, to, 3, x1, ..., X7 in
the columns K(am) and X(amas) and output variables (functions) yi, ..., yio, di, dz, ds in
the columns Y{amas) and D(am,as).

Table 3. State assignment

as plas) titats
ai 3 001
az 5 000
as 1 101
a4 2 010
as 1 110
as 4 100

Let Am be a product, corresponding to the state code K(am), and X be the product of
input variables, written in the column X(amas) in the h row. For example, from the
column K(am): K(ai) = 001, then A; = t'it'sts; K(az) = 000, then Az = t'it'st's; K(as) = 101,
then As = tit'2ts etc. Immediately from the column X(am as) we get:

X1 = x1xox3; Xo = x1x2x'3; X6 = xax'1; Xs = 1; X16 = X's.
We call the term
en =Am Xn

the product corresponding to the h row of the FSM structure table if an is the current
state in this row. For example, from Table 2, we get:

er = t'it'ats xixoxs;
ez = t'1t'ats x1xox'3;
es = t'it'at's xax's;
es = tit'ats;

eie = titat's X'e.

Let H(yn) is the set of rows with y» in the column Y{(am,as). Then, as in the truth table:

yn = zeh'
heH (y,)
For example, ys is written in rows 2, 9, 13, 15 in the column Y(amas). Then

Ys=e2 +eg + ez + eis =tithtsxixex's + t'hitot's x5 + titot's xX'exz + tit'2t's Xe.

In exactly the same way, if H(d) is the set of rows with drin the column D(amas), then

d = Dle,.

heH (d,)
For example, dzis written in rows 4, 7, 9 in the column D(amas). Then
de=es +e7+eo =tttz x'1+ thtaot's x'4 + t'1tot’s xs.

Thus, immediately from Table 1 we can get expressions for outputs of circuit “Logic”
in Fig. 11:

Y1 =e1 + es = t'it'ats xixexs + t'it'ats x1x'2;

78 — Logic and System Design
Y2 = ez = t'1t'ats x1x'2;

ys=ert+tes+es+ert+eisteis=tithtsxixexs + t'ht'ot's xax't + tit'ots +
+ titot's X'sx't + titot's X'ex7 + tit'at's X's;

Yio=ei3 = titot's X'exz;

di=ex+es+es+eo+err+eis=thitasxixex's + t'itat's xax't + titots +
+ t'itot's x5 + t'itot's x'sx't + tit'at's X's;
do=eq+e7+eo=tithtsx'i+ t'itht's x's + t'1tat's xs;
dsz=e2+ ezt ersters=tithtzxixox's + titot'’s x'sx7 + titot's x'sx'7 + tit'ot’s xe.

How many different products are there in these expressions? The answer is very
simple — only sixteen, because we have 16 rows in Table 2 and only one product
corresponds to one row. Thus, we should not write any expressions but can design
the logic circuit immediately from the structure table. For that, it is sufficient to
construct H AND-gates, one for each row, and N+R OR-gates, one for each output
variable yn(n = 1, ..., 10 in our example) and one for each input memory function dr (r
=1, 2, 3 in our example). The logic circuit of Mealy FSM is shown in Fig. 12. We have
constructed 16 AND-gates, as there are 16 rows in its structure table. The number of
OR-gates in this circuit is less than the number of input memory functions and
output functions. Really, if y» or dr (y2and yioin our example) are written only in one
row of the structure table, it is not necessary to construct OR-gate for such y» or dr,
we can get these signals from the corresponding AND-gates. Moreover, we have
constructed one OR-gate for ys and yo since these outputs are always together in the
structure table of Mealy FSM Si.

4.2.7 ASM with waiting vertices. In this section, we will show that the algorithm for
FSM synthesis does not change if ASM contains waiting vertices. In a waiting vertex,
one of its outputs is connected with its input (see the ASM subgraph in Fig. 13). Let
us find all transition paths from the state as. The first two are trivial — see the first two
rows in Table 4.

To find the next path we should invert the variable x7. The output 'O’ for x7 brings us
to the input of this conditional vertex. So, the next paths will be:

as ~x7 X7 X12 (Y11) ais;
as ~X7 X7 ~X12 (Y23, Yz9) a17.

The products of input variables for both of these paths are equal to zero (x'7x7 = 0), so
FSM cannot transit from the state as to any other state when x7 = 0. If FSM cannot
transit into any other state, it remains in the same state as or, we can say, it transits
from as to as with X(as, as) = x'z. No output variables are equal to '1'at this transition,
so we have '-' in the column Y(am, as) in the third row.

The next example (Fig.14) presents a general case. The only difference from the
previous example — the waiting vertex is in the middle of the path. After the third path
in Table 5 we should invert variable x:;; and again return to the input of the
conditional vertex with xi:;. We can construct the following transitions paths:

a0 ~X4 ~X11X11 X27 (Y33) A22;
aio ~X4 ~X11X11 ~X27 (Y7, Y31) ai7.

Chapter 4 Algorithmic state machines and finite state machines — 79

The products for both of these paths are equal to zero. So, when xs = 0, we reached a
waiting vertex with condition xi:. If x1; = O (return to the input), FSM transits from
state aio to state a:o (remains in this state) with input x4 x'1; and each output variable
is equal to zero (the forth row in Table 5).

titots
& 1
es — d
e es —— 1 t1
X1 o — 1D _/
X2 er;— —p C1
X3
& eq 1 d2
e e7 — 0 12/
x1 oL > C1
X2
X3
Y2
1¢]., |
e _
: Tl a ts /
X1 i ers 3 1D
X2 L be1
& T
dq €14 T
X6 — e6
X7 —q es ys
— el |
&
eis €13—]
. o
X6 . Clock
& 1 y7
eie6 eo —] >
X6 -
es 1 ERE)
€10 >
ez

Figure 12. The logic circuit for Mealy FSM S,

as

Table 4. Transitions for subgraph G,

0
mz am | as | Xamas) | Y(amas) | H
l ; X12 as ais X7X12 yl]
s o a7 X7~X12 Y23Yy29
as ~x7 -

Y
Y23 Y29
a7

Figure 13. Subgraph G;with waiting vertex

80 - Logic and System Design

Table 5. Transitions for subgraph G,

an | as | Xfamas) | Y(ama) | H
aio aie X4 Yyis5yz7

az2 ~X4X11X27 y33

a7 ~X4X11~X27 Yy7ysi

aio ~X4~X11 -

Figure 14. Subgraph G,with a waiting vertex

4.3 Synthesis of Moore FSM

As an example, we will use ASM G:in Fig. 15. A Moore FSM, implementing given ASM,
can be constructed in two stages:

Stage 1. Construction of a marked ASM;
Stage 2. Construction of an FSM transition table.

At the first stage, the vertices "Begin", "End" and operator vertices are marked by
symbols ai, az, ..., an as follows:

1. Vertices "Begin" and "End" are marked by the same symbol a;;

2. Operator vertices are marked by different symbols ay, ..., au;

3. All operator vertices should be marked.

Thus, while synthesizing a Moore FSM, symbols of states do not mark inputs of
vertices following the operator vertices (as in the Mealy FSM) but operator vertices
themselves. The number of marks is T+1, where T is the number of operator vertices
in the marked ASM. In our example (Fig. 15), we need marks ajy, ..., aio for ASM Gi.

We will find the following transition paths in the marked ASM:

B Xy Xong, B -

Thus, the transition path is the path between two operator vertices, containing Rm

conditional vertices. Here, as above in the case of Mealy FSM, imr = Xy, if in the
transition path, we leave the conditional vertex with X, via output ‘1’ and imr = X'mlr
if we leave the vertex with X via output ‘0’. If Rn = 0 in such a path, there are no

conditional vertices between two operator vertices, and this path turns into a,a, .

Chapter 4 Algorithmic state machines and finite state machines — 81

as

a1CEnd) Ye
Figure 15. ASM G; marked for the Moore FSM synthesis

At the second stage we construct a transition table (or the state diagram) of the Moore
FSM with states (marks) ai, ..., au, obtained at the first stage. We have ten such states
ai, ..., aio in our example. Thus, the FSM contains as many states as the number of
marks we get at the previous stage. Now we should define transitions between these
states.

Thus, a Moore FSM has a transition from state am to state as with input X(am, as) (see
the upper subgraph in Fig. 16) if, in ASM, there is a transition path amiml“')-zmanav
Here X(am, as) is a product of logical conditions written in this path: X(am, as) =
iml...imRm. In exactly the same way, for the path 4,,a, (see the lower subgraph in Fig.

16) we have a transition from state am to state as with input X(am, as) = 1, because the
product of an empty set of variables is equal to zero. If an marks the operator vertex
with operator Y:, then A(am) = Y3, i.e. we identify the operator Y: written in the operator
vertex with this state am.

Y, .X(am,asl . Y,

Figure 16. Subgraphs to illustrate transitions in the Moore FSM

The transition table for Moore FSM Sz, thus constructed, is presented in Table 6. The
outputs are written in column Y{an) immediately after the column with the current
states. To design the logic circuit for this FSM we will use the structure presented in
Fig. 17. It consists of two logic blocks (Logicl and Logic2) and memory block with four
D flip-flops. Logicl implements input memory functions, depending on flip-flop

82 - Logic and System Design

outputs ti, ..., t4 (feedback) and input variables xi, ..., x7. Logic2 implements output
functions, depending only on flip-flop outputs ti, ..., ta.

Table 6. The transition table of Moore FSM S,

am Y(am) as X(am, as) h
ai - as X1X2X3 1
as X1X2~X3 2
az X1~X2 3
as ~X1 4
az Yyiyz ar X4X1 5
as X4~X1 6
as ~X4 7
as Yey7z as 1 8
a4 y1ys ar X4X1 9
ag X4~X1 10
as ~X4 11
as Y4 as X5 12
ar ~X5X1 13
ag ~X5~X1 14
as Ysysy7z ar X6 15
as ~X6X7 16
ai ~X6~X7 17
ar ysys ar X4X1 18
ag X4~X1 19
as ~X4 20
as Yysyeyio al 1 21
ao Yysy4 aio X6 22
as ~X6 23
aio Yyey7 ai 1 24

To encode FSM states we constructed Table 7 where p(as), as before, is the number of
appearances of each state in the next state column as in Table 6. The algorithm for
state assignment is absolutely the same as in the case of Mealy FSM. First, we use
the zero code for state a¢ with max p(ag) = 6. Then codes with one 'l' are used for
states az, as, a: and a2 with the next max appearences and, finally, five codes with two
'‘ones' are used for the left five states as, a4, as, as and aio.

Table 8 is the structure table of the Moore FSM Sz. Its logic circuit is constructed in
Fig. 18. In this circuit, Am is a product of state variables for the state am (m = 1, ...,
10). As above we construct one AND-gate for one row of the structure table, but we
need not construct the gates for rows 6, 8, 10, 14, 19 and 23, as all input memory
functions are equal to zero in these rows (see the column D(am,as) in Table 8). Neither

Table 7. State assignment
E, di [t as plas) titotsty
Y1

" L @ | = L a 3 0100
. 2 L o a 1 0010
ts ° ds |, |13 ~ as 1 1001

L l Yyi1o
ts ds t c a4 1 0110
- 9 [2 as 4 0001
i as 1 1100
X ar 5 1000
: c as 1 0011
7 1 as 6 0000
aio 1 0101

Figure 17. Moore FSM structure

Chapter 4 Algorithmic state machines and finite state machines — 83

Table 8. The structure table of the Moore FSM §,

am Y(am) K(am) Qs K(as} X(am>as) D(am,as) h
ai - 0100 a4 0110 X1X2X3 dods 1
as 1001 X1X2~X3 dida 2
az 0010 X1~X2 ds 3
as 0001 ~X1 ds+ 4
az yiyz 0010 az 1000 X4X1 di 5
ag 0000 X4~X1 - 6
as 0001 ~X4 ds 7
as Yeyr 1001 ao 0000 1 — 8
a4 y1ys 0110 ar 1000 X4X1 di 9
as 0000 X4~X1 - 10
as 0001 ~X4 d4 11
as Y4 0001 as 1100 X5 didz 12
ar 1000 ~X5X1 di 13
as 0000 ~X5~X1 - 14
as ysyeyz 1100 ar 1000 X6 di 15
as 0100 ~X6X7 d2 16
ai 0011 ~X6~X7 dsds 17
ar ysyo 1000 ar 1000 X4X1 di 18
ao 0000 X4~X1 - 19
as 0001 ~X4 d4 20
as Y3ysy1o 0011 ai 0100 1 do 21
as Ysy4+ 0000 aio 0101 X6 dzds 22
as 0000 ~X6 - 23
aio Yeyz 0101 ai 0100 1 d2 24
N N 4# &
A — 1 | A1
X1 e1 es — | L
eg — A 1|Y1
ol e | & | y2 A, .
L | b P
A—& ors —c1 j A
X ez
o — I o
I — 1 — Ao
d t]
A; [& | es 212 — : 1D : & | As
X1 Alsﬁi L>C1 As Y4
x2—q | L Ao
Aj & | €4 Aro — .y As — 71
X1] —q & As —| y
: Tlds i [-° ﬁ[Y
. A
As ﬂi err — —pC1 L 10 L
X6 1 o
X7 . & Ao 123 —1 1|y~
7 — — — = -
Az & | ers e ds 1D b Azz
X1 -
X4 ’7 —pC1 40? N
A €20 L | A1o
o ﬂ] Clock o

52
o
g

Figure 18. The logical circuit for the Moore FSM S,

84 - Logic and System Design

do we construct the gates for rows 21 and 24, since there are no input variables in
the corresponding terms e2; and e2s: e2: = As and ez2+ = Ao and we use As and Aio
directly as inputs in OR-gate for do.

4.4. Synthesis of Combined FSM model

In this book we will use two kinds of transition tables — direct and reverse. In a direct
table (Table 9), transitions are ordered according to the current state (the first column
in this table) — first we write all transitions from the state ai, then from the state az,
etc. In a reverse table (Table 10), transitions are ordered according to the next state
(the second column in this table) — first we write all transitions to the state a:, then to
the state a2, etc.

Table 9. Direct transition table of Mealy FSM §;

an as X(ap,as) Y(an,as) h
al a2 X6 y8y9 1
al a5 ~X6*X7 y6 2
al ab ~X6*~X7 y3y6y10 3
a2 a2 X4*x1 yly?2 4
a2 a6 xX4*~x1 y3y4 5
a2 a4 ~x4 v4 6
a3 a6 1 y3y5 7
a4 al x5 - 8
a4 a2 ~x5*x1 y8y9 9
a4 a6 ~x5*~x1 y3y4 10
a5 a2 X1*x2*x3 yly3 11
ab a3 x1*x2*~x3 yly4 12
ab a2 X1*~x2 yly?2 13
a5 a4 ~x1 W2 14
a6 a5 X6 yo6y7 15
a6 a6 ~X6 y3y5 16

Now we will discuss the transformation of Mealy FSM into Combined FSM and
synthesis of its logic circuit. I remind here that Combined FSM has two kinds of
output signals:
1. Signals depending on the current state and the current input (as in the Mealy
model);
2. Signals depending only on the current state (as in the Moore model);

As an example, we use the transition table of Mealy FSM in Table 9. Our first step is
to construct a reverse table for this FSM (Table 10).

Fig. 19,a illustrates all transitions into state as of Mealy FSM from Table 10. Here we
have three transitions with different outputs but all of them contain the same output
variable ys. So, we can identify this output variable ys with the state as as a Moore
signal (see Fig. 19,b).

% 4
'//6‘./,70 &J/fo
gy)

a) b)

Figure 19. Transformation from Mealy FSM to Combined FSM

Chapter 4 Algorithmic state machines and finite state machines — 85

Table 10. Reverse transition table of Mealy FSM S;

an as X(ap.as) Y(an,as) H
a4 al X5 - 1
a2 a2 x4*x1 yly?2 2
al a2 X6 y8y9 3
a4 a2 ~x5*x1 y8y9 4
ab a2 X1*x2*x3 yly3 5
a5 a2 X1*~x2 yly2 6
a5 a3 X1*x2*~x3 yly4 7
a2 a4 ~x4 y4 8
ab a4 ~x1 y4 9
al ab ~X6*X7 y6 10
al a5 ~X6*~X7 y3y6y10 11
a6 a5 X6 y6y7 12
a4 a6 ~x5*~x1 y3y4 13
a2 a6 X4*~x1 y3y4 14
a3 a6 1 y3y5 15
a6 a6 ~X6 y3y5 16

After this, the transformation of Mealy FSM into Combined model is trivial. Let us
return to the reverse Table 10 and begin to construct the reverse transition table of
Combined FSM Ss (Table 11 In TablelO, we look at the transitions to each state,
beginning from transitions to state a:. Let Ys be the set of output variables at the
transitions into state as (Ys = {ys, ys, Y7, yio} in Figl9,a or in Table 10) and YsMoore be
the subset of common output variables at all transitions into as (YsMeore = {ys in
Figl19,a or in Table 10). Then, in Table 11, we delete YsMoore from the column Y(amas) at
each row with transition to as and write YsMoore next to asin the column Y{(as). In our
example:

Y Moore = Y,Moore = @; Y3Moore = {y1, y4}; Y. Moore = {y4};

YsMoore = { y6}; YeMoore = { y3}

Table 11. Reverse transition table of Combined FSM S,
an as Y(as) X(ap,as) Y(an,as) H

ad al -- X5 - 1
al a2 -- X6 y8y9 2
a2 a2 -- xX4*x1 yly2 3
ad a2 -—- ~x5*x1 y8y9 4
a5 a2 -- X1*x2*x3 yly3 5
a5 a2 -- X1*~x2 yly?2 6
a5 a3 yly4 x1*x2*~x3 -- 7
a2 a4 vy4 ~x4 - 8
a5 a4 vy4 ~x1 - 9
al a5 y6 ~X6*~X7 y3y1l0 10
al a5 vy6 ~X6*X7 -— 11
a6 a5 vyé6 X6 y7 12
a2 a6 vy3 xX4*~x1 W2 13
a3 a6 vy3 1 y5 14
a4 a6 vy3 ~x5*~x1 v4 15

a6 a6 y3 ~X6 y5 16

86 — Logic and System Design

Now we consider the design of the logic circuit of Combined FSM. For this, let us
return to the Mealy FSM S; with direct transition Table 1. Its reverse transition table
is presented in Table 12. Immediately from this table we construct the direct
transition table of Combined FSM S: (Table 13). To construct the logic circuit for this
FSM we should encode the states and construct FSM structure table. But before state
assignment we will make one more step.

Table 12. Reverse transition table of Mealy FSM §;

am as X(am,as) Y(am,as) H
as ai ~X6X7 Yy3yesyio 1
as ~X6~X7 - 2
as X6 Yyey7 3
ai az X1X2X3 Yy1ys 4
ai X1~X2 Yiyz 5
az X4X1 ysyo 6
a4 ~X5X1 ysyo 7
as X6 ysyo 8
ai as X1X2~X3 yeyz 9
ai as ~X1 Y4 10
az ~X4 y4 11
a4 as X5 Ysysyz 12
az as X4~X1 Y3y+ 13
as 1 Y3y4 14
as ~X5~X1 Y3y4 15
as ~X6 Ysy4 16

Unlike the transition table of the Mealy FSM, Table 13 contains many empty entries
in the column Y{amas). It means that all output variables are equal to zero in these
rows. If, after state assignment, we get an empty entry in column D(amas) for such a
row, we shouldn’t construct a product for this row, because all output variables and
input memory functions are equal to zero in this row. Now we will try to maximize the
number of such rows in the structure table of Ss.

Table 13. Direct transition table of Combined FSM S5

am Y(am) as X(Aam, as} Y(Aam, as) H
ai - az X1X2X3 Yy1ys 1
- as X1X2~X3 - 2
- az X1~X2 yiyz 3
-- a4 ~X1 - 4
az -- az X4X1 ysyo 5
- as X4~X1 - 6
-- as ~X4 - 7
as ysy7z ae 1 - 8
a4 Y4 as X5 - 9
az ~X5X1 Ysyo 10
as ~X5~X1 -- 11
as ysysyrz az X6 ysyo 12
ai ~X6X7 ysyeyio 13
ai ~X6~X7 - 14
as Yysy4+ ar X6 Yey7z 15
as ~X6 - 16

Table 13 contains one row with empty entry in the column Y{amas) for the next states
a: (row 14) and as (row 2), two rows for a+ (rows 4 and 7), one row for as (row 9) and

Chapter 4 Algorithmic state machines and finite state machines — 87

four rows for as (rows 6, 8, 11 and 16). This information is presented in the first two
columns of Table 14, z(as) is the number of empty entries in column Y(amas) for the
next state as in Table 13. So, if we use zero code for states a; or azor as, we shouldn’t
construct a product for one row (z(a:1) = z(as) = z(as) = 1), if we use zero code for state
a4 — for two rows (z(a4) = 2); but if we use zero code for state as, we will construct four
product less (z(as) = 4). Thus, we use code 000 for state as with max z(as). State
assignment for other states is presented in Table 15. We have used here the same
algorithm as we have used previously for Mealy and Moore models.

Table 14. Next states with zero Table 15. State assignment

outputs as plas) titats
as z(as) titots ai 3 010
ai 1 az 5 001
as 1 as 1 101
a4 2 a4 2 100
as 1 as 1 110
as 4 000 as 4 000

Table 16. Structure table of Combined FSM S5

am Y(anm) K(am) as K(as) | X(amas) Y(am,as) D(am,as) H
ai - 010 az 001 X1X2X3 yiys ds 1
- as 101 X1X2~X3 - dids 2
-- az 001 X1~X2 yiyz ds 3
-- as 100 ~X1 - di 4
az - 001 az 001 X4X1 ysyo ds 5
-- as 000 X4~X1 - - 6
-- as 100 ~X4 - di 7
as ysyz 101 as 000 1 - - 8
a4 Y4 100 as 110 X5 - didz 9
az 001 ~X5X1 ysyo ds 10
as 000 ~X5~X1 - - 11
as Ysyeyr 110 az 001 X6 ysyo ds 12
ai 010 ~X6X7 Yysyey1o dz 13
ai 010 ~X6~X7 - do 14
as Ysy4 000 ai 010 X6 ysyz dz 15
as 000 ~X6 - - 16

Table 16 is the structure table of Combined FSM Ss. We have three kinds of output
variables here:

1. Only Mealy signals: yi, yz, ys, Yo, Yyio. They are written in column Y(amas) and
are not written in column Y{(am) in Table 16;

2. Only Moore signals: y4, ys. They are written in the column Y(am) and are not
written in column Y{amas) in Table 16;

3. Combined signals: (both Mealy and Moore type) ys, ys, yz. They are written in
both columns Y(amas) and Y(am) in Table 16.

The logic circuit of FSM Ss is constructed in Fig. 20. In this circuit, Am is a product of
state variables for the state am (m = 1, ..., 6). The left part of this circuit, exactly as in
the synthesis of the Mealy FSM logic circuit, implements input memory functions di,
dz, ds and Mealy signals yi, Yz, ys, Yo, Yio. As above, we construct one AND-gate for
one row of the structure table, but we need not construct the gates for rows 6, 8, 11,

88 — Logic and System Design

16 because all output variables and input memory functions are equal to zero in
these rows in the columns Y{amas) and D(amas) in Table 16. As in the Mealy case, we
do not construct OR gates for yz and yio since they appear only once in the column
Y(am,as}.

Moore signals y4, ys are constructed as in the synthesis of Moore FSM logic circuit.
Signal y+ appears twice near the states a+and as in the column Y(am), so y+ = A+ + As
and we construct OR gate for this signal. Output signal ys appears only once in the
column Y(am) for the state as, so we get it straight from As: ys = As.

Combined signal ys is written in rows 13 and 15 in the column Y{(amas) and near the
states asand as in the column Y{(am), so

Ye =eiz + eis+ Az + As.
Exactly in the same way

ys=e1 tezt+tAs;, yr=eis +Asz+ As

4] — A
X1 €1 ez — 1 y
X2 — — d; As — 1 | Y1
ot €9 1D |tz ° As
A, Py L —>C1 & Az
o ez I A —
X2 — €9 — 1 d2 6 1 y3,
)CB;O
Y2 to
A 1D & | As
x; & | es M —pC1
X2 N L A; — 1
es5 —+— 1 AS — y6
A & | & e | | ds ¢ & | A4
X E 1D B] L]
. —pC1 y
5
As & | ez [L]
o — —{aad
A Ty L As 1|y
xg & | €13 T As
X7 A
: AT | [
ol LT
X7 L Clock
As & | e1s
X6

Figure 20. Logic circuit of Combined FSM S5

4.5. FSM decomposition

In this section, we will discuss a very simple model for FSM decomposition. As an
example, we use Mealy FSM Ss (Table 17) and a partition mon the set of its states:

nt = {A1, Ao, As};
A1 ={az, as, as}; Az = {as4, az, as}; Az = {ai, as, as}.

Chapter 4 Algorithmic state machines and finite state machines — 89

The number of component FSMs in the FSM network is equal to the number of blocks
in partition rt. Thus, in our example, we have three component FSMs SI, S?, S5.

Let Bm is the set of states in the component FSM Sm. Bm contains the corresponding
block of the partition rt plus one additional state bm. So, in our example:

S!has the set of states B! = {az, as, as, bi};
S?has the set of states B2 = { a4, a7, as, b2};
S3has the set of states B3 = { ai, as, as, bs}.

Table 17. Mealy FSM Sg

am Qs X (am,As,) Y(Aam,ds } H
al a3 x1*x2*x3 yly2 1
al a6 x1*x2*~x3 y2yl2 2
al al x1*~x2 yly?2 3
al a5 -~x1 yly2yl2 4
a2 a2 x6 - 5
a2 a3 ~x6 y3y5 6
a3 a3 x10 y3y5 7
a3 a9 ~x10*x4 y10y15 8
a3 a8 ~x10*~x4 y5y8y9 9
a4 a6 x7 y13 10
a4 a4 ~xX7*x9 y13y18 11
a4 a8 ~x7*~x9 y13y14 12
ab a6 x1 y1l6y17 13
a5 a5 ~x1 y7yll 14
a6 al x5 yly?2 15
a6 al ~x5 y16y17 16
a7 a2 x8 y14y18 17
a7 a4 ~x8 y13y18 18
a8 a7 x9 y4y6 19
a8 a4 ~x9 y6 20
a9 a9 x11*x6 y10y15 21
a9 a2 x11*~x6 y5y8y9 22
a9 a3 ~x11 y3y8y9 23

To construct a transition table

for each component FSM we should define the

transitions between the states of these FSMs. For this, each transition between two
states ai and a;j of Mealy FSM Ss from Table 17 should be implemented one after
another as one or two transitions in component FSMs. There are two possible cases:

1. In Mealy FSM Se, there is a transition between a; and a; (Fig. 21, left) and both
of these states are in the same component FSM S™ In such a case, we will
have the same transition in this component FSM S (Fig. 21, right). It means
that we must rewrite the corresponding row from the table of FSM Ss into the
table of component FSM Sm.

FSM Se

FSM Sm

. Xn Y: . . Xn Y: .

Figure 21. Two states «; and a; are in the same component FSM

90 - Logic and System Design

2. Two states a; and a; are in different component FSMs (Fig. 22). Let a; be in the
component FSM S™ (a; € B™) and qg;j be in the component FSM Sr (a; € Bp). In
such a case, one transition of FSM Ss should be presented as two transitions —
one in the component FSM Sm and one in the component FSM Sr:

e FSM Smtransits from aiinto its additional state bm with the same input
Xn. At its output, we have the same output variables from set Y: plus
one additional output variable z, where index j is the index of state a;
in the component FSM Sp.

e FSM Srisin its additional state bp. It transits from this state into state
a; with input signal z;, that is an additional output variable in the
component FSM Sm. The output at this transition is Yo— the signal with
all output variables being equal to zero.

FSM Sm

FSM Ss (i p 2w (b Xo Yz (bm)
@ Xn Y: @

FSM Sp

Figure 22. Two states ; and a; are in the different component FSMs

Thus, the procedure for FSM decomposition is reduced to:
a) Copying the row
ai aj X(ai,q) Y(ai,aj

from the table of the decomposed FSM S to the table of the component FSM S™
if both states a; and a; are the states of S™;

b) Replacing the row
a a X(ai,q) Y(ai,a))

in the table of the decomposed FSM S by the row
ai bm X(ai,a) Y{(ai,q)z
in the table of the component FSM Sm, and by the row
bp aj z --

in the table of the component FSM Sv, if a; is the state of S™ and a; is the state
of Sp.

As a result of decomposition of FSM Ss, we obtain the network with three component
FSMs in Fig. 23. Their transition tables are presented in Tables 18 — 20.

Now we will illustrate some examples of transitions for cases (a) and (b):

e In FSM Se, there is a transition from state a2 to state a3 with input ~x6 and
output y3yS5 (row 6 in Table 17). As both these states a2 and a3 are in the
same component FSM S, in this FSM there is a transition from a2 to a3 with
the same input ~x6 and the same output y3y5 (row 2 in Table 18). Exactly in
the same way, we rewrite row 12 of Table 17 into row 3 of Table 19 and row 2

Chapter 4 Algorithmic state machines and finite state machines — 91

of Table 17 into row 2 of Table 20 because the current states and the next
states are in the same component FSMs.

In FSM Se, there is a transition from state a3 to state a8 with input ~xI10*~x4
and the output y5y8y9 (row 9 in Table 17). Since a3 is the state of component
FSM S? and a8 is the state of another component FSM S2, in FSM S! there is a
transition from a3 to b1 with the same input ~xI10*~x4 and output y5y8y9z8
(row 5 in Table 18). The last output z8 is the input of FSM S? that wakes this
FSM up and transits it from state b2 to state a8 (row 8 in Table 19). Similarly,
we convert row 1 of Table 17 into two rows — the first in Table 20 and the tenth
in Table 18 etc. Note that we add the last row in each FSM table to remain
component FSMs in the state bn when each z;jis equal to zero.

Xa X10 X7 Xg X1 X3
J T J)111 J T J J T J T
S S, S;
az as as b; as az ag bz ai as as bs
l l Zg Z Zs Z3 l l
Y A

Ys Y10 Y VYo vyYiay y7 Y16

Y3 Yo Y5 Yis Ya Y13 VYis Y1Y11 Y2 Yi7Y12

Figure 23. Network with three component FSMs
Table 18. Component FSM §’

am as X(am,as) Y(amas) H
a2 a2 X6 - 1
a2 a3 ~X6 y3y5 2
a3 a3 x10 y3y5 3
a3 a9 ~x10*x4 y1l0y15 4
a3 bl ~x10*~x4 y5y8y9z8 5
a9 a9 x11*x6 y10y15 6
a9 a2 x11*~x6 y5y8y9 7
a9 a3 ~x11 y3y8y9 8
b1 a2 z2 - 9
bl a3 z3 - 10
bl bl ~22*~23 - 11
Table 19. Component FSM §*
am as X(am,as) Y(amas) H
a4 b2 X7 y13z6 1
a4 a4 ~X7*x9 y13y18 2
a4 a8 ~X7*~x9 yl13yl4 3
a7 b2 X8 yl4y18z2 4
a7 a4 ~x8 y13y18 5
a8 ar X9 y4y6 6
a8 a4 ~X9 y6 7
b2 a8 z8 -— 8
b2 b2 ~z8 - 9

92 - Logic and System Design

Let us discuss how this network works. Let al be an initial state in FSM Se. After
decomposition, state a; is in FSM S5, so, at the beginning, just FSM S%is in state al.
Other FSMs are in states bl and b2 correspondingly. It is possible to say that they
“are sleeping” in these states. FSM S5 transits from the state to the state until
x1*x2*x3 = 1 in state al (see row 1 in Table 20). Only at this transition FSM S%
produces output signal z3 and transits into state b3 (sleeping state). This signal z3 is
the input signal of FSM S!. It wakes FSM S! up and transits it from the sleeping state
bl to state a3 (see row 10 in Table 18). Now FSM S! transits from the state to the
state until, in state a3, it transits into state b1 with input signal ~x10*~x4 = 1 and
wakes FSM S? up by signal z8 (see row 5 in Table 18 and row 8 in Table 19).

Table 20. Component FSM §°

am As X(am,as) Y(am,as} H
al b3 X1*X2*x3 yly2z3 1
al a6 X1*x2*~x3 y2yl1l2 2
al al X1*~x2 yly?2 3
al ab ~x1 yly2yl2 4
ab a6 x1 yleyl7 5
ab ab ~x1 y7yll 6
a6 al x5 yly2 7
a6 al ~x5 y1l6y17 8
b3 a6 z6 -]
b3 b3 ~z6 - 10

Unlike FSMs S? and S°, the component FSM S2? has two possibilities to wake other
component FSMs up - in state a4 with input signal x7 = 1 (row 1 of Table 19) and in
state a7 with input signal x8 = 1 (row 4 in the same Table), etc. Thus, each time all
component FSMs, except one, are in the states of type bm and only one of them is in
the state of type a..

Chapter 5 Multilevel and Multioutput Synthesis

In this Chapter, we will concentrate on the multilevel minimization of logic circuits.
Several simple and straightforward methods for obtaining circuit structure with more
than two levels will be considered. In these methods, we will present four procedures
— factoring, term decomposition, full inclusion and equal gates removal. At the end of
the Chapter we will show how to construct optimized multilevel and multioutput
circuits of Finite State Machines using only these four procedures.

5.1 Factoring

5.1.1 Two factoring structures. The first example of factoring is presented in Fig. 1.
The left part of this figure implements the function

J1 = X1x2x'3x4 + X1X2X'5 + X1X2X3X 4. (1)

X1 &
X2 — e]
xs—c
Xq4—

X1 &/ es I 1
X2—]
xX5—9_|

X1 &
X2—]
X3—] es

X4 — a) b)

Figure 1. Factoring from all terms

All AND-gates of this circuit have the common input x:ixz2, so we can factor this
common term (we call it a factor) in function (1):

J1 = x1x2 (x'sx4 + X's + x3x'4) 2)

The corresponding logic circuit is constructed in Fig. 1,b. In this circuit, e";, e"2 and
e"s contain inputs remained after deleting factor xixz from e:, e2 and es, and if there
remains only one letter (x's in our example), it will be an exact input into OR-gate.

Let us suppose again that the cost of a gate is equal to the number of its inputs, and
that the cost of logic circuit is the sum of the costs of gates — the total number of
inputs into all gates. If C; and C:2 are the costs of circuits before and after factoring
then C; - C2is a minimization or a gain of factoring. We can evaluate the gain of
factoring for the common term z by the formula

w(z)=m(n-1)-1+r. (3)

Here m is the number of letters in factor z, n is the number of gates in factoring and r
is the number of gates in which only one letter is left after factoring. In our example
w(z) =2(3-1)-1+ 1 =4. Really, if we count C; and Czin Fig.1, C;— C2 = 4.

One more example of factoring is presented in Fig. 2. Unlike the previous example,
here we can factor the common term x:xsx's only from two AND-gates, not from all of
them:

94 - Logic and System Design

J2 = X1x2x3x'ax5 + Xax6X'7 + X1X'2X3X'4Xs + X'1X'2;
Jf2 = X1x3xX'4 (X2xt5 + X'2x'5) + Xax6x'7 + X'1X'2.

The result of factoring is shown in Fig. 2,b. On the right, we have OR-gate with three
inputs — two of them from all AND-gates that do not take part in factoring (e2, e4 and
the third one — from the output of the factoring structure for e;, es similar to Fig. 1,b.

JC]f&
X2 — er
x\si
X4 —9 —
X5—_| X4—8& ez
X6—
X7— |
ﬁ“ &l ez
6| —
v L] 5 eq@en e £
X5 — 1
X1—/& —
—d L
X2 es Xo—d
X3— X5 — '
X4—q X1 -ﬁ eq
X5—d X2—q
a b
X1—9 €eq))
Xo—d

Figure 2. Factoring not from all terms

Again, we can evaluate the gain of factoring for the common term z by the formula
w(z)=m(n-1)-2 +r. 4)

Here m, n, and r are the same as in expression (3). See if you can understand why “-2”
is used in this formula instead of “-1”.

We discussed here two structures for factoring — structure one in Fig. 1,b (factoring
from all AND-gates) and structure two in Fig. 2,b (factoring from some of AND-gates).
The duality of Boolean functions permits us to use factoring not only for the sum-of-
products, but for the product-of-sum as well (see Fig.3 and Fig. 4).

1 1)
Xo— | €1
x3 —q
X4—_|

X1 1| e 3
X2—
xX5—q_|

.X'Jfl
Xo— [|
X3— |e
x| a b)

Figure 3. The first factoring structure for the product-of-sums

5.1.2 More than one factor. In the previous examples we have only one possible
factor for factoring. Now we will discuss a case with several probable factors. As an

Chapter 5 Multilevel and Multioutput Synthesis — 95

example let us use a two-level logic circuit corresponding to Boolean function f = e: +
e2 + e3 + e4 + e5s with the products:

€] = X1X2X3X4X5X6X7X11, €e4 = X5X6X9,
e2 = X1X2X3X8; e5 = X1X2X5X6X10X12X13.
€3 = X1X2X5X6X10X11X12;

X1 —7
X2 —
X37
X4 —d
X5— X411

€1

- x7—_|
X411 |es

ii :7 & fa 7]

X1—/1 —
X2—9
X3—
X4—9
X5—q

X1—] | €4 a) b)
Xo—d

Figure 4. The second factoring structure for the product-of-sums

Let e: N ej be the intersection between the products e; and e; (the common letters in
these products). Our first step is to form all possible intersections between each pair
of products in f. To do this, we construct Table 1. The first column of this table
contains products ey, ..., es. Intersections between all pairs of products are in the next

columns, for example, e: N ez is in the column e; in the second row, e; N e3 — in the
column e;in the third row etc.

Table 1. Possible factors at the first step

€1 = X1X2X3X4X5X6X7X11 el

€2 = X1X2X3X8 X1X2X3 e2

€3 = X1X2X5X6X10X11X12 X1X2X5X6X11 X1x2 es

€4 = X5X6X9 X5X6 - X5X6 | e4 ‘
€5 = X1X2X5X6X10X12X13 X1X2X5X6 X1XxX2 X1X2X5X6X10X12 X5X6

To find all possible factors, thus constructed, we should extract all different
intersections from Table 1. There are six such factors zj, ..., zs in this table. In this

step, do not pay attention at the information in the parenthesis after each factor in
expression (5):

Z1 = X1x2x3 (e1, e2¥); w(zi1) = 2;
Z2 = X1X2X5X6X11 (€1, es); w(zz) = 3;
Z3 = X5X6 (€1, €3, e4*, es); w(zs) = 5; (5)
Z4 = X1X2X5X6 (€1, e3, es); w(z4) = 6;
Zz5 = X1X2 (€1, e2, es, es); w(zs) = 4;
Z6 = X1X2X5X6X10X12 (€3%, e5¥); w(zs) = 6.

We will use formulas (3) and (4) to evaluate the gain of each factor. To do this we
should find m, n and r for each factor. Here m is the number of letters in the factor, n
is the number of gates in factoring and r is the number of gates in which only one
letter is left after factoring of this factor. m is trivial — for z;, m is equal to 3; for z2, m
is equal to 5 etc. To find n, we should intersect each z: (t = 1, ..., 6) with each e (i = 1,

96 - Logic and System Design

..., 9). If z is contained in e; then 2z is the factor of e; and we write e in the
parenthesis after z:. Thus, for zi1, zzcand zs, n is equal to 2, for zzand zs, nis equal to 4
etc.

While performing such intersections, it is possible to find r as well. For example, when
we intersect z; with ez we see that z; € ez and only one letter is left after factoring z:
from e2, because z: has three letters but ez has four. The symbol * next to ezin the
line for z; means that only one letter is left. We have the same for zz (e+*) and zs (e3*,
es*). When we have m, n and r for each factor, the evaluation is trivial. w(z) for each z
is presented in the second column of (5).

In the first step of factoring, we use a factor with a maximal gain. If we have several
such factors (two in our example — z+ and ze) it is possible to implement one of the
following strategies:

1. Take the first of such factors (the simplest strategy);

2. Take the factor with maximal length from these factors;

3. Take the factor contained in the maximum number of gates;

4. Move one step forward for each such factor and select factor after the

second evaluation step etc.

We will use the first trivial strategy and select z+ with

w(z4) = 6 = max.

X1 — o]
fo& ez
—_— xgi
X3718& X8 —_|
X4— |€'1
X7— 1
X1 —
X11—| &

! X2 — e 1
Z 6
(&l 4 P I f
x10—1 & e”sﬂ X6—]

X11 —] G L
X12—_| 4‘

— X5 &l eq
X10 —I&|e" X6 — —
X12 —| X9 —_|
X13—_|

Figure 5. The circuit after the first step of factoring

The circuit after factoring of z+ is shown in Fig. 5. It implements two functions
presented as sum-of-product:
1. Function fis the sum-of-products with three AND-gates, one of them contains
the factor z4, and two others — the products that do not take part in factoring;
2. Function t; is the sum-of-products with three AND-gates, each of them
corresponds to one of the products that took part in factoring. These ANDs
have inputs remaining after factoring of z..

Fig. 6 presents the factoring process. The first box in this figure contains the set of
products ey, ..., es, the second one — the partitioning of this set into two subsets after
the first step. Thus, we must continue the factoring separately for two functions
presented as sum-of-products — function f containing products ez, es4, es and function
t: containing products e"1, e's, e's. A similar partition will be at each next step so the
process of factoring converges very fast.

Chapter 5 Multilevel and Multioutput Synthesis — 97

Az
2 e, e"s
A 2 e", er

Ao o B2

Z4 e, es3 es ||
el, e, e, €4, €5 >
e e 6 e, es, es

As
B;:)
Z10 €4, €6
1 €2, €8

Bs

Figure 6. Steps of factoring

The subsequent steps of factoring for functions t; and f are presented in Tables 2 and
3. The factoring process comes to the end when there are no factors with the gain
greater than zero. The final circuit after factoring is presented in Fig. 7. The total cost

reduction is equal to

w(z4) +w(zs) + w(zio) = 9.

Table 2. Factoring of function ¢,

e"1 = X3X4X7X11 e

e'"3 = X10X11X12 X11 e's

e's = X10X12X13 - X10X12
z7=x11 (e"1, e"3); w(zz) =-1;

zs = x10Xx12 (€"3% e"s*); w(zs) = 2.

w(zs) = 2 = max.

Table 3. Factoring of function f

€2 = X1X2X3X8 e2
€4 = X5X6X9 - eq
€6 = X1X2X5X6t1 X1Xx2 X5X6
Z9 = x1X2 (€2, es); w(zg) = 0;
Z10 = X5X6 (€4%, es); w(zio) = 1.

w(zi0) = 1 = max.

Figure 7. The circuit after factoring

5.2 Term Decomposition

5.2.1 Simple example. The first example of term decomposition is presented in Fig. 8.

Left part of this figure contains three separate AND-gates implementing three
functions g1, g2 and gs. All gates of this circuit have the common inputs x4, x's, xX's, SO
we can construct additional AND-gate z with these inputs and replace inputs x4, x's,
X'¢ of initial gates with the output of gate z (Fig. 8,b).

98 - Logic and System Design

X1 res
X2 —9
X4
);3] g1 xXs—q 2
4 X6—9 X1 g1
X5—9 Xo—d
X6 — X3
x7—_| xr
X218
X4 — g2 gz
X5—9 X2
X6— |
g3
— L
X4— & g3
X5—q +—»
X6—q
— a) b)

Figure 8. Simple term decomposition

If C; and C: are the costs of circuits before and after term decomposition then C;— C2
is a minimization or a gain of term decomposition. We can evaluate the gain of term
decomposition for the common term z by the formula

w(z)=m(n-1)-n+r. (6)

Here m is the number of letters in the common term z, n is the number of gates in
term decomposition and r is the number of functions (initial AND-gates) equal to the
common term. In our example w(z) = 3(3 - 1) - 3 + 1 = 4. Really, if we count C; and C2
in Fig. 8, Ci1—C2=4.

5.2.2 More than one common term. In the previous example, we had only one
possible term for term decomposition. Now we will discuss the case with several
probable common terms. As an example let us use a circuit in Fig. 9 that corresponds
to the following products:

g1 = X1X2X3X4X5X6X7X11; g4 = X5X6X9;
g2 = X1X2X3X8;
g3 = X1X2X5X6X10X11X12;

g5 = X1X2X5X6X10X12,

X1 S X1 —& X1
X2 — X2 —| X2
X3 — X5 — gz X5 gs
X4 — g1 X6 — —* X6
X5 — X10 — X10
X6 —] X11—] X12
X7 — X12—| |
X11—_|

X1 — X5 —

X2 f&JQ X6 —] J4

X3 — X9 —

X3 — o

Figure 9. Logic circuit before term decomposition

As in factoring, the algorithm of term decomposition consists of several steps. The
first step is to form intersections between each pair of products to find all possible
common terms containing two or more variables (see Table 4). We will use formula (6)
to evaluate the gain of each common term. To do this we should find m, n and r for
each term: m is trivial — it is the number of letters in the common term. For z;, mis

Chapter 5 Multilevel and Multioutput Synthesis — 99

equal to 3; for z;, m is equal to S etc. It is clear that the common term with one
variable makes no sense in term decomposition.

Table 4. Possible common terms at the first step

g1 = X1X2X3X4X5X6X7X11 gi
g2 = X1X2X3X8 X1X2X3 gz
g3 = X1X2X5X6X10X11X12 X1X2X5X6X11 X1X2 gs
g4 = X5X6X9 X5X6 - X5X6 g4 ‘
g5 = X1X2X5X6X10X12 X1X2X5X6 X1X2 X1X2X5X6X10X12 X5X6
Z1 = X1X2X3 (g1, g2); w(zi1) = 1;
Z2 = X1X2X5X6X11 (g1, 93); w(zz2) = 3;
Zz3 = X5X6 (91 g2, G4, g5); w(zs3) = 2; (7)
Z4 = X1X2X5X6 (g1, g3, g5); w(z4) = 5;
Z5 = X1X2 (91,92, 93, g5); w(zs) = 2;
Z6 = X1X2X5X6X10X12 (93, g5*); w(ze) = 5.

To find n, we should intersect each z: (t = 1, ..., 6) with each gi (i = 1, ...,). If zt € g,
then z: is the common term for gi and we write gi in the parenthesis after z. While
performing such an intersection it is possible to find r as well. For example, when we
intersect zs with gs we see that ze = gs. The symbol * near gsin the line for zs means
that the product gsis equal to the common term zs. When we have m, n and r for each
common term, the evaluation is trivial — w(z) for each z: is presented in the second
column of (7).

In the first step of term decomposition, we use a common term with the maximal gain.
If we have several such terms (two in our example — z+ and z¢), as in factoring, it is
possible to implement the following several strategies:

Take the first of such common terms (the simplest strategy);

Take the common term with maximal length from these common terms;

Take the common term contained in the maximum number of gates;

Move one step forward for each such common term and select common term
after the second step evaluation etc.

L=

We will use the first strategy and select z4 with
w(z4) = 5 = max.

The circuit after decomposition of z4 is shown in Fig. 10.

xX3— & X1
2
X4 g1 X2 g.
X7— X3
X1— &|
X11— X
24 11 8

X10—
X11 —

35
=]
le
%
<

X12—

E gs
X10 —

X12 —

Figure 10. Logic circuit after the first step of term decomposition

100 - Logic and System Design

Unlike factoring, where we had a partition of products into two subsets after each
step, there is no partition of initial products is here. Moreover, the common term
taking part in term decomposition should be added to the set of products and will be
used at the next step together with other products. Only the product equal to the
common term should be excluded from the list of products in the next step of term
decomposition.

The next step of term decomposition is presented in Table 5. The process comes to the
end when there are no factors with the gain greater than zero. The final circuit after
term decomposition is shown in Fig. 11, the whole process is illustrated by Fig. 12.

Table 5. The second (final) step of term decomposition

g"1 = X3X4X7X112Z4 g

g2 = X1X2X3X8 - g2

g'3 = X10X11X12Z4 X1124 - g's

g4 = X5X6X9 - - - g4

g's = X10X1224 - - X10X12Z4 - g's ‘
Z4 = X1X2X5X6 X1X2 - X5X6 -
z7=x1124 (9"1, 9"3); w(zi) = 0;

Z8 = X1X2 (g2, Z4); w(zz2) = 0;

Z9 = x10Xx1224 (9"3, g"5%); w(z9) = 2;

Z10 = X5X6 (G4, Z4); w(zio) = 0.

w(zg) = 2 = max.

The total cost reduction is equal to
w(z4) + W(zg) = 7.

X3 /&
X4 —
X7 — Jl
X1 X11 —
X2 Z4
X5 — gs
X6 g
X10 —] 29 S g3
x12—_| xu#j—>
X1 /&
X2 —] JQ
X3 —|
X8 —1_]
X5 —\& g4
X6 — —™
X9 — |

Figure 11. The circuit after t-decomposition

A; Az As
g1, 92, 93, 94, gs ’—254»’ 9"1, 92, 9"3, g4, g's, 24 ’Z—;ﬁ 91, 92, 9"'3, g4, 24, Z9

Figure 12. Steps of t-decomposition

5.2.3 Term decomposition for OR gates. Term decomposition can be applied to OR
gates as well. We will give the next example without any comments and you can fulfill
each step on your own (Fig. 13).

Chapter 5 Multilevel and Multioutput Synthesis — 101

x1—1 x1—1 x1 x5 — 1 f1
x2 — 1 X2 — x2
xX3— —> X3 — x3 7
X4 — x4 — 4 x4 3
x5— | x5 —| X6 — 1 X6 1 f
X6 — x7 X2 1 z3 X
x1 —d7] X8 —
1 X9 —|
X2 —| — 1 f3
X3 —3) s
x5— —» x1 1 5 x6
X6 —| X2 — L
x3 —
igj x4—q | ‘517 x6—1| 14
o . x8
X1—C7 X1—41 X9ﬂ215
x2 —| x2 —| f6 x4—1] B
3 x5— —
x5 —
66— ™ x8 —
8 x9— | a) b) 6
x9 —
x6 — 1 7
x1—1
X2 —d z8 7 x7 I
x3 x4 z11

Figure 13. Term decomposition for OR gates

5.3 Gate inclusion

Let us define gate m as included in gate n, or gate n as covering gate m, if they have
the same type (both AND or both OR) and the set of inputs of gate m is a subset of the
set of inputs of gate n. The simplest case of gate inclusion is presented in Fig 14,a. In
this case, we can replace inputs of gate n, equal to the inputs of gate m (x: and x2 in
our example), with the output of gate m (Fig. 14,b).

X1 n ﬁ n
X2 X3
X1 m
X2
p 71 p
a) o b)

Figure 14. Gate inclusion

5.4 Removal of equal gates

Let us define as gates m and n equal, if they have the same type (both AND or both
OR) and the set of inputs of gate m is equal to the set of inputs of gate n. The circuit
in Fig. 15,a contains four equal two-input AND-gates. In this case, we should

1. Remove all equal gates, except one (gates [, m and n in our example);

2. Connect inputs of gates (¢, p and q) formerly connected to the outputs of
removed gates, with the output of the remained gate (gate k in our
example).

102 - Logic and System Design

The last two procedures — gate inclusion and removal equal gates are covered by term
decomposition. Really, in the first step of term decomposition — pair intersection, we
can find equal gates and gates included into other gates. However, term
decomposition has two problems: (1) the large number of gates taking part in this
procedure; (2) multiple comparisons demand a lot of intersections between sets of
inputs. It is more simple and faster to check gate inclusion and remove equal gates
before term decomposition. Moreover, after these two procedures, only gates with
three and more inputs remain for term decomposition (see if you can understand why
it is so).

il
—

Figure 15. Removal three equal AND-gates

5.5 Multilevel and multioutput circuits for Finite State Machines

In Section 4.2.6 of Chapter 4, we considered a very simple method for synthesis of the
two level FSM logic circuit from its structure table. Recall that we have used the term

en =Am Xn

in accordance with the h row of such a table (h = 1, ..., H). Here Am is a product of
state variables corresponding to the current state am written in the h row, X is a
product of input variables written in the same row, and H is the number of rows in
the structure table. Then we constructed H AND-gates corresponding to terms ey, ...,
en. If the output variable y» appears only once, for example, in row i of the structure
table, we obtain the output y. at the output of AND-gate number i If the output
variable yn is written in several rows, for example, in rows pi, ..., pr of the structure
table, we construct OR-gate with T inputs and connect these inputs with the outputs
of AND-gates pi, ..., pr. The output y» is obtained at the output of this OR-gate. In
exactly the same way, we construct OR-gate for each input memory function which
occurs more than once in the column D(amas) of the structure table. The logic circuit
of FSM thus constructed contains not more than H AND-gates and not more than (N +
R) OR-gates where N and R are the numbers of output variables and input memory
functions in the FSM structure table.

In this section, we will use the reverse structure table. Recall that in such a table all
transitions are ordered according the next state — first we write all transitions to state
ai, then to state az, etc. As an example we will consider the logic synthesis of FSM S,

Chapter 5 Multilevel and Multioutput Synthesis — 103

Table 6 is its reverse structure table. As in four previous sections, we assume that the
circuit cost is equal to the sum of inputs of its gates.

Table 6. The reverse structure table of FSM S

al 001 al 001 x8*x7 y7y9yl4yl5 d3 1
al 001 al 001 x8*~X7*x1*x9*x5 y13 d3 2
al 001 al 001 ~x8*x1*x9*x5 y13 d3 3
a3 011 al 001 x9*x5 y13 ds3 4
ad 000 al 001 x4*~x9*x3 y2y10y12 d3 5
a5 010 al 001 x4 == d3 6
al 001 a2 100 x8*~x7*~x1 yly2y3 di 7
al 001 a2 100 ~Xx8*~x1 yly2y3 di 8
a2 100 a2 100 ~x2 -- di 9
a2 100 a3 011 x2 v4 d2d3 10
a4 000 a3 011 x4*~x9*~x3 y5y6 d2d3 11
a4 000 a3 011 x4*x9 ySy6 d2d3 12
al 001 a4 000 XB*F~XT*X1*~Xx9*X3*~X6 y7y8y9 -— 13
al 001 a4 000 ~X8*x1*x9*~x5 y7y8y9 -- 14
a3 011 a4 000 X9*~x5 y7y8y9 -— 15
a3 011 a4 000 ~X9*x3*~x6 y7y8y9 -- 16
a3 011 a4 000 ~X9*~x3 y7y8y9 -— 17
al 001 a4 000 ~X8*X1*~x9*x3*~x6 y7y8y9 - 18
al 001 a4 000 ~X8*x1*~x9*~x3 y7y8y9 -— 19
al 001 a4 000 X8*~XT*X1*~x9*~x3 y7y8y9 - 20
a4 000 a4 000 -~x4 -- - 21
al 001 ad 000 X8*~XT7*X1*X9*~x5 y7y8y9 - 22
al 001 a5 010 x8*~x7*x1*~x9*x3*x6 y10yl1lyl2 dz2 23
a3 011 a5 010 ~x9*x3*x6 y1l0yl1ly12 dz2 24
al 001 a5 010 ~x8*x1*~x9*x3*x6 y10y1l1ly12 dz2 25
ab 010 a5 010 -x4 -- d2 26

The structure table is divided into M arrays, each of which corresponds to the set of
transitions into one state. For FSM in Table 6, M is equal to five. In several initial
steps, we will separately design logic circuits for transitions into each state. Moreover,
even then we will construct circuits separately for each subset of output signals.

A design of the logic circuit consists of the following steps:

Step 1. Divide each array of transitions to the state as (s = 1, ..., M) into as many
subarrays, as the number of different microinstructions (the subsets of output variables)
in the column Y(am, as) within this array. For example, in Table 6, transitions into state
a: have four microinstructions:

Y7, 49, yl14, y15;

yl13; (8)

y2,ylo, yl2;

.
We should include the empty microinstruction, corresponding to row 6, in this list
because not all of input memory functions are equal to zero at this transition (d3 = I)
and we must construct AND-gate for this row.

Thus, in our example we have four such subarrays containing
1. Row 1 with outputs y7, y9, y14, y15;
2. Rows 2, 3, 4 with output yI13;
3. Row 5 with outputs y2, y10, y12;
4. Row 6 without output signals.

104 - Logic and System Design

Step 2. For each subarray corresponding to one of microinstruction in (8), construct as
many AND-gates as the number of rows in this subarray of the structure table. These
gates implement products AmX(am,as), corresponding to each row. In our example for
the transitions into al we have six such AND-gates (see Fig.16,a).

t1 —CE
2 —9 y7y9yldyls
t3 — 1—»
8 d3
x7— |

t1—q &
t2 —d
t3 —
x8 —
X7 —q
x1 —
X9 —
x5 —

t1—q &
t2 —d

t3 — 1

13
x8 — Y
xI — d3

x9 —
x5 —

t1 —CE
t2 —
t3 — —
X9 —
x5 —

t1 &
2 y2yl0yl2
t3 6—»
x4 as
x9
x3

t1 &
t2

|
t3 7 d3
x4

Figure 16. Logic circuit for transitions into state a;

a) d)

Step 3. If some subarray contains more than one row, connect the outputs of
corresponding AND-gates, constructed at step 2 for the subarray, with OR-gate to form
the signals of microoperations (output variables) and input memory functions written
in the rows of this subarray (rows 2, 3, 4 for y13 - Fig. 16,a).

Step 4. Factor the logic circuits constructed in point 3 using the algorithm described in
Section 5.1 ‘Factoring’. Let us do this for functions y13, d3. Table 7 contains the first
step of this factoring. We made all pair intersections between products corresponding
to rows with y13, d3 and found two possible factors z; and z2. We factor z2 with max
gain (see Fig. 16,b).

It is possible to make one more simplification in the circuit in Fig. 16,b. OR-gate has
input t2 and AND-gates connected with this OR-gate have inputs t2. According
Boolean algebra A + AB = A + B, so we can delete inputs t2 from AND-gates. To make
such minimization we do not have to write any formulas. If some OR-gate has some

Chapter 5 Multilevel and Multioutput Synthesis — 105

input p (p) we should check all AND-gates connected with this OR-gate and remove
inputs p' (p) from these AND-gates.

Table 7. The first step of factoring for y;; and d;

er
t'1t'otsx1xoxs
t'1tsxoxs

e1 = t'1t'atsxsx'7x1x0x5
e2 = t'1t'atzx'sx1x9x5
e3 = t'1tatzxoxs

e2
t'1t3xoxs

z1 = t'it'atsxixoxs (e1, e2”); w(zi) = 6(2-1)-2+1=25;
z2 = t'1tsxoxs (e1, ez, e3”); w(zz2)=43-1)-1+1=8;

w(zz) = 8 = max.

The last step of factoring is shown in Table 8 and Fig. 16,c. After removing input xs
from AND-gate with two inputs we must remove this AND-gate as well, and transfer
input x7into the OR-gate. The final step of factoring is presented in Fig. 16,d.

Table 8. The second steps of factoring for y;;, d;

e’ = xsx'7x1 e'
e's = xX’sxi X1

z3 =x1(e"1,e"2%;, wz3)=12-1)-1+1=1;
w(z3) = 1 = max.

Logic circuit after factoring for transitions into state a; contains seven gates — we
numbered gates after the last step. Each step of circuit factoring for transitions into
states az and as is presented in Fig.17 and Fig. 18. Logic circuits for transitions into
states a+ and aswithout intermediate steps are shown in Fig. 19 and Fig. 20. We have
left the design of these last circuits to our readers as exercise to be done on their own.
At last, we bring all these circuits together in Fig. 21.

t1— g t1—
t2 —
8 y1y2y3

X8 —
dl x8
X7 —q x7—d

x1—q | /

t1 —CE
t2 —
t3 —
x8 —
x1—q |

yly2y3

b)

yly2y3
tl — &
t2 —q
t3— |8 dil
X2 — a) ¢

Figure 17. Logic circuit for transitions into state a,

Step 5. Delete equal gates in the logic circuit thus constructed. If we look at the circuit
after factoring in Fig. 21 we will find that it contains some equal gates. For example,
six two-input OR-gates OR2, OR9, OR:14, OR1s, ORi18 and OR27 are equal because they
have the same type and the same inputs. However, AND-gates ANDs3(x:,2) and
ANDzs(x1,27) are not equal because they have inputs from different gates. To find that
they are also equal we must determine that OR2 and OR27 are equal and change the

106 - Logic and System D

esign

input 27 by input 2 in the description of AND2s. Therefore, to find that two gates are
equal in a multilevel circuit we should find that their preceding gates are equal etc.
For this reason we should rank the gates in the circuit.

t1 &

t2
t3
x2

t1—q &

t2 —q
t3 —q
x4 —
x9 —d
x3—9

t1—q g

t2 —a
t3 —a
x4 —

x9— |

y4
—
11 d2d3

5 yé6
I d2d3
a)

Figure 18.

Figure 20.

q1/18 —

d &
x9— —
x3—

/'

<

Logic circuit for transitions into state a;
. 22— g
& x5—q ——

x9—| 24

t2—d

17 20

| |19 »
9 q
x3—q 1 * 23
x6—q |22

. Logic circuit for transitions into state a,

Logic circuit for transitions into state as

Gates containing only inputs ti, ..., tr (the outputs of the memory elements, in our
example R = 3) and input variables xi, ...,x; (in our example L = 9) are referred to as
gates of the first rank. The gates with inputs t;, ...,tr, input variables and the output
of at least one gate of the first rank are referred to as gates of the second rank etc.
Thus, the i-rank gate can have inputs ti, ...,tr, input variables and the inputs from
outputs of gates with the rank less than (i — 1) and at least one input from the gate

Chapter 5 Multilevel and Multioutput Synthesis — 107

with rank (i — 1). The results of ranking for the circuit in Fig. 21 are presented in Table
9 and Fig.22. In this figure, the rank of gate is written above the gate.

a1 | a2
I
121 1 Lt
:3 9 y7y9yl4 y1s 1z I 12—
x8— |1 d3 B | 413 o8
x7 X5 — R !
| |
- 2 1 x9 d3 |
x7— 1 3 4 L !
x8— |2 i
I
I
Far Eac
- 2ylOoyl2] |
13 — 6y Yoy 13 7 a3 3
x4 — as x4 !
x9 — }
x3— !
,,,,,, Ot
- i
t1 — i
t2 — y4 i
3 11 d2d3 !
x2 !
I
I
I
I
I

Figure 21. Logic circuit after factoring
Table 9. Ranks of gates

Rank AND-gates OR-gates
1 1,6,7,8,11, 24, 31 2,9, 12, 14, 16, 18, 22, 27
2 3,10, 13, 15, 17, 19, 23, 28
3 4, 20, 29
4 5,21, 30
5 25
6 26

It is evident that equal gates can only be of the same rank. The following steps should
be used to find and delete equal gates:
1. Find equal gates with rank i (i = 1, 2, 3, ...) beginning from rank 1, separately
for AND-gates and OR-gates. In our example, we have the following set of
equal first-rank gates:

108 - Logic and System Design

OR2 = OR9 = OR14 = ORi16 = OR1s8 = OR27.

2. Remove all gates except the first one from each such set. Thus, after the first
step we removed five gates ORo, OR14, ORi6, OR1s, OR27. Replace the inputs
from the gates thus removed with the number of the first (not removed) gate
from the corresponding sets.

3. Repeat steps (1) — (3) for the elements of the (i+1)-th rank. We get equal AND-
gates AND3 and ANDzs of the second rank and equal OR-gates ORsand OR29 of
the third one.

The circuit after removal equal gates is shown in Fig. 23.

I
‘
!

12— 7y9yl4yl5 4 !
bt ly y9yldy g |
x8 ds B3 g
x7 3 x5— 5~ !

_ |

; . 2 2 7 x9 a3 |

X7 4 — |
1 3

x8— |2 1

1 1 |

t1—g& t1—4 g i

t2 — t2 — |

2y10yl2 (I

13 — 6—y>y v 34 [7 a3 3

x4 — as x4—_| !
x9 — }
x3— | !

,,,,,, ﬁ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
t1 — i a5
t2 — |
t3 — |
x2— 1

I
|
3 yloyllyl2

30 d2

1
x7j 14 %&
x8 — X9
x6—

x3—]
1

x7116
x8 — X5

x9—

1
x7j]8
x8 — X9

x3—q_|

el |

gv |

Figure 22. Ranking after factoring

Step 6. Repeat factoring and removing equal gates until the circuit cannot be change
any longer. Look at the circuit implementing the transitions into a4 in Fig. 23. We
drew the part of this circuit containing gates ANDis, AND:7, ANDi9 and OR2zo in Fig.
24 ,a. After the removal of the equal gates, logic elements AND;s, AND;7, and ANDj9 got
the same inputs from OR: instead of different inputs from OR:4, ORis, and ORjs.
Thereby, we got new possibilities for repeated factoring — see sequential steps of
factoring in Fig. 24,b,c.

The circuit after the second factoring is shown in Fig. 25. Once again, after factoring
we find the equal gates: OR22 = OR32 and we remove the last one (Fig. 26). Thus, we

Chapter 5 Multilevel and Multioutput Synthesis — 109

should repeat factoring and removing equal gates as long as we get these procedures
are impossible for the circuit.

,, B
a1 i a2
1 |
12— | y7y9yl4yls | o
t3 yrygmyey t1 bt g
x8 Lt2—
x7 ys v g d g
d3 I x2—4
! L
x7 i
x8 i
! —
t1—&
t1—g t1— i
| t2—
2| yoyroyiz 12 L] | Yyly2ys
t3 — t3— |7 d3 | 10 d1
6 d3 S
x4 — x4 ! o
x9 —q ! —
x3 —] !
,, _‘[,,,,,,,,,,,,,,,,,,,,,,,,,
i
t1 & | a5
2 y4 !
g 11 d2d3 b
L3
x9 L x9
L3 yloyllyl2
*** x6 30 d2
t1 — 4
t2
t3—4 | 31 d2
x4 —d
27
x9—
x6—
x3— |
27
x5—
x9—
P
x9— |
x3—_ |19 2—g
x3—41 x9— 23
x6— |22

x9 —a
x6—q |15
x3 —]

x5 —

17

[=]

20
x5 —
x9—_ |

b)

x9 —
x3

a)
Figure 24. Repeated factoring

Step 7. Find the inclusion of gates into other gates. Unfortunately, we do not have such
cases in our rather simple example.

110 - Logic and System Design

t1 —
t3
x9—q

10yl11yl
3 yloyllyl2
*** x6 30 d2
4

|
ISR
&
-
Ole
~
Q'
~ D
«
)

Figure 25. Circuit after the second factoring

Step 8. Make term decomposition for AND-gates. Fig. 27,a contains AND-gates with
three and more inputs which we have selected from the circuit in Fig. 26 for term
decomposition. It is evident that term decomposition makes it possible to find equal
gates and inclusion of some gates into other ones as well. However, if a circuit
contains many gates, term decomposition takes a lot of time and it is faster to
implement steps 5 — 7 before term decomposition.

Let us demonstrate that the term decomposition problem may be divided into several
independent subproblems. For this purpose, we define such a relation ® on the set of
AND-gates that two gates AND; and AND; are in this relation iff they have not less than
two common inputs.

Construct the graph G of this relation (Fig. 28 for the circuit in Fig. 27,a). The
vertices of this graph are the gates in Fig. 27. We connect two vertices by edge if the
corresponding gates have two or more common inputs. From the definition of the
relation @, it is evident that there can be no common factors for the gates from
various subgraphs of G.. Thus, the problem of term decomposition is divided into as
many subproblems as the number of unconnected components in the graph Gw. Even

Chapter 5 Multilevel and Multioutput Synthesis — 111

in our simple example, G» contains five components and there are only 11 vertices
(gates) in the largest component. For a complex FSM, the graph G» contains a large
number of components, since:

1. There is a large number of input variables in a complex FSM and there are not
so many input variables in each row of its structure table (in each term
corresponding to each row);

2. xiand x'are different inputs of gates;

3. The number of gates and the number of inputs in each gate are decreased, as
a result of steps 4 — 7 (factoring, removal equal gates and inclusion of gates
into other ones).

,, e
al i a2
I
|
I
Pt g
L2
P 3 8 di
Pox2
|
|
I
t1
t1 t1—dg, | &
2 2 2 yly2y3
3 83— [7d3 | ;.4 |10 a1
x4 x4— ! 2
x9 !
x3 1
,,]
I
t1 | a5
27 ySy6 |
©® 13 o bt
x2 13 | —
dz2ds3 e
| 9—q
|)’6‘3 yloyllyi2
””””””””””””””””””””””””””””” x6 30 d2
t1 — 4
t2
t3— [31 a2
x4 —q

Figure 26. Circuit after the second removal equal gates

The result of term decomposition in our example is shown in Fig. 27,b. Fig. 29
contains the total circuit after this step.

112 - Logic and System Design

. . 1) 2 —q&
tl1 —q & tl —q g — t1 & . x9
2 —d 3 —| t2 — t1—9& t3 35 t24c& ¢1 x3 6
t3 — |—> x5 — [5 " 8= |, L2, - t3 —
1 x4 — 6 t3 — 7 x1—q 10 36
x8 — x9 — x4
7 | 4 | x9 —q x4 — | 2—]
i L x3 — &
T — 12 a2 ™
& P 13
] — t2 — L
1 gl tl —q g t1 —gl t1—9 & x8— 1
t2 — t2 — |
22—, t3 — —» 2=, t3 — —» X7
t3 —q 8 10 t3 11 13
> x1 —d 2 x4 — o
e = 2 — 12 —| &
T T x5 — T»
4= t1 x2 —
. x9—_| 2 — 8
- tl —d & t 37
tl —9 & t3 — — t3 q
t2 —| X9 — 2 274
35— 31" xs— [30" 9 17 9= 33" 25 26 5 ﬁ =
x9 22 — X
x4 —q_ | x6 — —
4 77
x9—q
x3
- - 6 30
t2 — &y t2 —q & t2 tl —d 4
x5 —q t—=—» xl — +—=—» x9— t3
xo — | 20 — | # 22 28 s 26
a) b)
Figure 27. Term decomposition in our example
17 24 21 8 11
*———0 []
23 33
Qo
5 1 6 13
26 10 30 7 31
Figure 28. The graph G, of relation @
Step 9. Construct OR-gate for each output variable yn (n = 1, ..., 15 in our example) and
for each input memory function dr (r = 1, ..., 3 in our example) which occur more than

once in the circuit after step 8. If we look at Fig. 29 we will find that several outputs
appear more than once in this circuit. For example, y- is written at the outputs of
gates ANDs and ANDjo, d2 is written at the outputs AND;1, ANDi3, AND3o and ANDz3;. It
is evident that FSM has only one output yz, so, first — the circuit in Fig. 29 is not the
final circuit and, second — output yz will be equal to one when the output of ANDs or
the output of AND;o are equal to one. Thus, for y2 and for each output that appears
more than once in Fig. 29, we should construct OR-gate with the inputs connected to
the outputs of gates where these signals are written.

To formalize this process we constructed Table 10 where each row contains the list of
gates for each output. Now we can immediately construct OR-gates for the outputs
which occur more than once in the logic circuit (Fig. 30,a).

Chapter 5 Multilevel and Multioutput Synthesis — 113

I
al | a2
I
t2—d | Y7y9yl4yls | 4 x2—
x8 1 43 | t2—q 8 di
x7 3 34 |37
I
I
| q
1 i 4
. I
I
I

as
yloyllyl2
30 40
Figure 29. Logic circuit after term decomposition
Table 10. Gates for outputs
Outputs Gates Outputs | Gates Outputs Gates
yl el0 y7 el e26 yl3 e5
y2 ebell y8 e26 yl4 el
y3 el0 y9 el e26 yld el
y4 ell ylo eb e30 dl e8el0
yS el3 yll e30 d2 ellel3e30e31
yb el3 yl2 eb6 e30 d3 eleS5ebe7ellell

Step 10. Find equal OR-gates among the gates constructed at step 9. Leave only one
gate in each set of equal gates. The logic circuit after removal of equal gates is shown
in Fig. 30,b.

Step 11. Find the inclusion of OR-gates into other gates among the gates constructed at
steps 10. Unfortunately, we do not have any such cases in our rather simple example.

Step 12. Make term decomposition for all OR-gates. Just as at Step 8 for AND-gates, we
consider here only the gates with not less than three inputs since the minimal
number of inputs in a common term in term decomposition is equal to two (after
removal equal gates and full inclusion). Similar to step 8, we should construct the

114 - Logic and System Design

graph of the relation o for OR-gates. The problem of term decomposition for OR-gates
is divided into as many subproblems as the number unconnected components in the
graph of @. In our rather simple example, we have only two OR-gates with more than
two inputs (see d2 and d3 in Fig. 30,b).

6 — 1 y2 8 1 dl
10— |39 10 44

1 y7 11— 6* y2 111
26*40 PP K 10— [39 13— | a2
30 45
30— [45 e
13 yo 31 — 17 y7y9
26 741 26 — [40
P 11
57
6 —1 y10 S s 6* yloyiz ¢ d3
30 42 g: T 30—] 42 7 76
1 11
6 * yiz 134 1% 44d1 "
30 — |43
a) b)

Figure 30. OR-gates before (a) and after (b) removal equal gates

The final logic circuit is shown in Fig. 31. We have placed the circuit from Fig. 30,b at
the bottom of Fig. 31. Of course, we should remove appearances of the outputs yz, yz,
Y9, Y10, Y12 and input memory functions di, dz, ds from other parts of the logic circuit.
Thus, only the outputs that have one entry in the column “Gates” of Table 10 will be
in the part of the circuit that is above the “OR for outputs and input memory functions”
in Fig. 31.

Step 13. Relax and drink your coffee.

Really, the reason, that we cannot demonstrate gate inclusion and term
decomposition for OR-gates, can be explained not only by the simplicity of our
example, but also a very effective optimization at the previous steps that allows to
decrease the number of inputs in the most gates of our circuit. To overcome some
dissatisfaction of our last steps, let us discuss one more example, from the synthesis
another FSM, presented in Table 11 and Fig. 32 with OR-gates for output variables
and input memory functions which occur more than once in the circuit after Step 9.

Table 11. Gates for outputs in one more example

Outputs Gates Outputs Gates
yl e5e31 e36 e39 y8 e4 e44
y2 e3 e5 e36 y9 el6 e30
y3 e39 e56 eb60 ylo e3el6 e43
y4 e4 e31 e36 e42 dl e56 e60
ys e3el6e43 dz2 e3 e4 e31 e36 e39 e44
yb el6 e30 d3 e3 e4 e31 e42 e43
y7 el6 e44 e56 d4 e3 e4 e5 e42 e43 e44 e56

Step 10a. From Table 11 or Fig. 32 we immediately get that OR7s = ORss and OR7s =
ORs7. We remove OR7s and OR7s and get yo together with ys from ORss and yio
together with ys from ORs7 (Fig. 33).

Chapter 5 Multilevel and Multioutput Synthesis — 115

OR for outputs and input
memory functions

Figure 31. The final logic circuit

Step Ila. We checked full inclusion for OR gates and found thatOR,; c OR,,,
OR70 c OR74 and OR71 C OR65. The circuit after this step is presented in Fig. 34.

Step 12a. For term decomposition, we constructed the graph of relation ® for OR-
gates with three and more inputs (Fig. 35). The problem of term decomposition for
OR-gates is divided into as many subproblems as the number of unconnected
components in the graph of ®. In our example we have two subgraphs and one of
them is nontrivial.

116 - Logic and System Design

5 —1] 3 1 3 —1 3 —1]
5 10
31 —| yl 16 67y 16 —| Y 4 a3
36— [63 43 43 76 31— =
39 - | a2 |73
o 16 7 y6 56 — dl 43
31 e 30— |68 60— [71 _
5 — = 3—1
> [6% ”
- 16 1 y7 3 —1 4
5|
— a 60 4= g 92
39 — 1 3 56 31 d2 93— 74
56 — Y 36 72
65 44—
60 —| s 39
— 4 —1 Y 44 56— |
N 44— |70
4 71
31 — y4 9
36 - [66 ég * Y
42 — | L7

Figure 32. OR-gates for y, and 4, in one more example

]] 6y9
3 1| ysy10 16 yby
68

16 — 30 —
43 67

Figure 33. OR-gate transformation after removal of equal gates

5 —1] 3 —1 3 —1]
1
31 — yI 16— YYI0 5]
= 67 dz
36— |63 43— | 36— —>»
39— | 39— |72
16 —{1] Y6Y9 L
3 1] 30— [es —
y2 — 3—1
> — 62 4 —|
36 — — ds
L 16 1] 47 31— >
o 44— g 42—
39—1] wu3 56 — 43 —|
Yy L] L]
L |65
4 —1] |¥8 3 —1]
4 —1 44— |70 5 —
31 — y4 42— a4
36— [66 ° — a1 43— |74
42 56 —11 9 56 —
= 60— |71

Figure 34. OR-gates after full inclusion

63
L
74 R 64
69
67 °
73 V 66
72

Figure 35. The graph of relation c for OR-gates

31 —1

Chapter 5 Multilevel and Multioutput Synthesis — 117

36 —

39 77

5 —1] yl 56 — 1
—
|63 60 71

5 1 dz
Tl [72
8
7 4 —71 36 —]
31 —
(1] 42 e
5 — d4
42— =
s6_| |74
16 —

Figure 36. Logic circuit after term decomposition

~]

——»
73

——»

67

y5ylo

16 —

16 — 1]

44 —
56 —

~]

y2
64

1] y6y9
30 — | ’

68

~

y7
-
69

The logic circuit after term decomposition is presented in Fig. 36. Its cost is 10 inputs
lower than in the initial circuit in Fig. 32.

118 - Logic and System Design

Chapter 6 Transformation of Algorithmic State Machines

In this Chapter, we consider two more representations of Algorithmic State Machine —
System of transition formulae and Matrix scheme of algorithms. After this, we will
discuss transformation of Algorithmic State Machine — minimization of conditional
and operator vertices and combining of Algorithmic State Machines. We will use these
transformations in the next chapter dedicated to the high level synthesis of digital
systems.

6.1 Various representations of Algorithmic State Machine

6.1.1 System of transition formulae. As an example, we use ASM I"in Fig. 1. Let
us look at operators following operator Y». The facts that operator Ysis implemented
after Y» when xixsxs = 1, operator Y: is implemented after Y» when xixs+ = 1 and
operator Ysis implemented after Y» when xixsx's = 1 or x'1 = 1, can be represented as
the formula

Yb — x1xax3Y3 + xX1x4x'3Y5 + x1x'4Y1 + x'1Ys. (1)

Figure 1. ASM I

In general, the transition formula for the operator Yiis
T+1

i Y, i=h 1,.., T
t=1

Here Yr+; = Ye is the operator, corresponding to the final vertex "End" and ai is the
transition function from Yito Y: (see Section 4.1.2 in Chapter 4). The term aiY: is equal
to Yiif air = 1, and is equal to Oif air = 0.

The transition formulae can be transformed according to the rules of Boolean algebra
and the following additional rules:

1. (a+p)Yi= aYi+BY;
2. apBYi+ ayY; = a(BY: +vY));
3. If a = B then aY: = BY.

120 - Logic and System Design

Here a, 8 and y are Boolean functions and Yiand Y; are operators. The set of transition
formulae for all i = b, 1, 2, . . ., T is called the system of transition formulae. This
system contains seven formulae for ASM I'in Fig. 1:

Yy — x1xax3Y3 + x1x4x'3Y5 + x1x'4Y1 + X'1Y5;

Y1 — x3Y2 + x'3Y4;

Y — X6Ye,'

Ys — xs5x1Y6 + x5x'1Y2 + x'5Y2; (2)
Y4 — x2Y1 + x2Y3;

Y5 — xax3Y3 + x4x'3Ys + x'4Y1;

Y6 — Ye.

The following representation of the transition formula
Yi — xmA + x'mB (3)

is called the expansion of transition formula Y: by variable xm. Here xm is one of the
logical conditions and transition subformulae A and B do not depend on xm. For
example, let us expand formula (1) by variable x::

Yb — x1(X4X3Y3 + xax'3Ys + x'4Y1) + x'1Y5. 4)

If some terms of the transition formula do not depend on xm, then these terms must
be multiplied by expression (xm + X'm) before the expansion of the transition formula by
xm. Thus, any transition formula may be expanded by any variable. For example,
expanding the transition formula (1) by the variable x4 we obtain

Yo — X1x4x3Y3 + X1xax'3Y5 + x1xX'4Y1 + X'1(xa + X4)Ys5 =
=xa(x1x3Ys3 + x1x'3Ys + x'1Ys) + x'4(x1Y1+ xX1Y5). (5)

In expression (3), we can continue expanding subformulae A and B by other variables
until the terms in the internal brackets are as follows:

(xpYm+ X'pYr) (6)

where Ym,Yn € { Y1, ..., Y1, Yr+1}. This expression corresponds to subgraph Gi: in Fig. 2.
The resulting transition formula and the system of such formulae are called the
bracket transition formula and the system of transition formulae in the bracket form
correspondingly.

Figure 2. Subgraph G; corresponding to expression (6)

Let us continue to expand the transition formula for Y»in expression (4):
Y, —)C](X4(X3Y3 + x'3Y5) + X/4Y1) + x'1Ys. (7)
Expression (7) presents the transition formula for Y, in a bracket form. It is easy to

show that there is a one-to-one correspondence between the bracket transition
formula and the ASM subgraph obtained from this formula. To illustrate this,

Chapter 6 Transformation of Algorithmic State machines — 121

consider the construction of ASM subgraph Gz (Fig. 3,a) for transition formula Y5 in
(7).

Figure 3. Subgraphs G, and Gj; corresponding to expansions (7) and (8)

First, draw operator vertex Y». Then construct conditional vertex with x; and link its
input with the output of operator Ys, since first we expanded transition formula Ys
with this variable x:;. Next, construct conditional vertex xs+ and link its input with the
output "I" of the preceding conditional vertex xi, since the expansion by the variable
x4 is implemented in brackets just after x;. Further, construct operator vertex Ys and
link its input with the output ‘0’ of conditional vertex xi, as there are no expansions
by any variables after x';. In exactly the same way construct conditional vertex xs, link
its input with the output "1” of vertex x4, and link the zero output of vertex xs with
operator vertex Y: etc. Thus, at each step we have no alternative and can construct
only one subgraph for a given bracket transition formula.

The ASM subgraph Gs in Fig. 3,b is constructed in a similar way for another
expansion (8) of the same unexpanded transition formula Y in (1). We changed the
order of variables in this expansion:

Yb — xa(x1x3Y3 + x1x'3Y5+ x'1Ys) + x'4(x1Y1+ x'1Y5) =
= xalxi(xsYs + x3Ys) + X'1Y5) + Xafc1 Y1+ X1Ys). (8)

Thus, to obtain a ASM subgraph from a bracket transition formula it is sufficient to
construct chains of conditional vertices in accordance with a sequence of the
transition formula expansion. As seen from Fig. 3,a and Fig. 3,b, the number of
conditional vertices in the subgraph for some transition formula depends on the order
of the expansion of this transition formula. Now it is evident that to transit from a
system of transition formulae to ASM it is necessary to expand this system to the
bracket form and to construct the ASM subgraph for each bracket transition formula.

We will show now that the number of conditional vertices in the ASM, thus
constructed, depends not only on the separate expansion of each transition formula
but also on their joint expansion. Let us rewrite here expression (7) and expand
transition formula for Ys beginning from variable x4

Y, = X (X, (XY, + XY) + X, Y,) + X, Ye; (7)

Y, = X, (XY + XYo) + X, Y, (9)

122 - Logic and System Design

For example, let us construct ASM subgraph G4 for bracket transition formulae Yp
and Ys in (7) and (9). The identical subformulae are underlined in these expressions.
Obviously, one subgraph corresponds to the same subformulae so only one subgraph
is constructed for these subformulae (Fig. 4,a).

Ys [
1
X4 4—0<(3
0 1
1
X4
0
(a) (b)
Y:

Figure 4. Subgraphs G, (a) and G5 (b) corresponding to expansions (7, 9) and (7, 10)
Now we construct the ASM subgraph for the same bracket transition formula for Y»

(7) and the new bracket transition formula Ys, obtained by its expansion beginning

with variable xs:
Y5 — x3(x4Y3 + x'4Y1) + X'3(xaY5+ x'4Y1). (10)

Since there are no identical subformulae in bracket transition formulae (7) and (10)
we derive subgraph Gs (Fig. 4,b) with three additional conditional vertices, compared
to subgraph G«in Fig. 4,a.

At the end of this section, we expand the system of transition formulae, presented in
(2):
Y = X, (X, (X5 + XgVs) + X,Y,) + X,Y;

Y, = XY, + XY,

Y, = XgYe;

Y32 X (X Ye + XY,) + XY (11)
Y, = XY, + XY,

Y, = X, (XY + XYo) + X, Y,

Y = V..

6.1.2. Matrix schemes of algorithms. The matrix scheme of algorithm (MSA) is a
square matrix with rows Ys, Y1,. . ., Yr, and columns Y1,Y2,. . ., Y1, Ye. We write the
transition function from operator Y; to operator Y; at the intersection of row Y; and
column Yjin this matrix. The MSA M for ASM I from Fig. 1 is presented in Table 1.
For simplicity, we do not write the transition functions that are equal to zero in the
matrix scheme of algorithm.

Chapter 6 Transformation of Algorithmic State machines — 123

The transition from ASM to MSA is obvious. We find all transition functions in ASM
and place them into the corresponding entries of MSA. To transit from MSA to ASM
we should obtain a system of transition formulae, a system of bracket transition
formulae and then ASM. Just as for ASM (Section 4.1.3), it is possible to define an
execution of MSA and a value of MSA for any sequence of vectors of logical conditions.

Table 1. MSA M

Y: Yo Y3 Y4 Ys Ys Ye

Yy X1X'4 X1X4X3 X1X4X'3
X'1
Y; X3 X'z
Yo X6
Y3 X5x'1 X5X1
X's

Y4 X2 X2
Ys X'4 X4X3 X4X'3
Ys 1

6.2 Minimization of conditional vertices in Algorithmic state machines

In this section, we will discuss minimization of conditional vertices in ASMs. The
minimization algorithm consists of three steps. In the first step, the initial ASM is

divided into such subgraphsG',...,G®, that for obtaining the minimal ASM it is
sufficient to minimize the number of conditional vertices in each subgraph

independently of one another. In the second step, for each subgraph G*(q=1...,Q)

we will find a set of equivalent ones that contains the minimized subgraph G,?]in . In the

third step, the subgraph Ggﬂn

set of subgraphs found in the second step.

will be obtained by solving the covering problem on the

6.2.1 ASM partitioning into subgraps. As an example for ASM minimization, we
will use ASM I'nonmin in Fig. 5. To partition ASM, choose any operator, except the final

oneY,, from the set of operators {Y b ,Yl,...,YT ,Ye}and find the set of operators towards
which there is a path

YiXig-i XY (12)
from operator vertex Y; (i = b,1,2, ...,T) passing only through conditional vertices with
Here, as before, X, =X, if the path proceeds

if the

path proceeds through the conditional vertex via output ‘O’. Since we can start from
any operator, let us begin with the initial operator Ys. For ASM @nonmin in Fig. 5, there
are paths to Yi, Y4, Ysfrom Y» The arrows from operator Ys (Fig. 6,a) designate these
paths. Next, go to the right side of this subgraph and find the operators, excludingy, ,

the logical conditions X ,...,Xj-

through the conditional vertex with X, via output ‘1’ (r =1,...,R) and Zr =X

ir

from which there are paths (12) leading to operatorsY,,Y,,Y.. We place these
operators (Y,,Y,) under Y, on the left side. For all operators on the left, continue
finding such operators to which there are paths (12), etc., until the set on the left

(Al) and that on the right (Bl) are no longer increasing. Next, choose a new operator

124 - Logic and System Design

Y, € A" (Y; in our example) and construct (A?) and (B?) in a similar way (see Fig.

6,b). The algorithm consists of Q steps, Q<T +1, where T is the number of
operator vertices.

Figure 5. Nonminimal ASM I'},pnmin

Y: Yo
G1
Yb Y: Ys Y3
\ A? B2
Al Y2 Ys B! Ya Ys
Ys=———2Ys5 Ys— I Ye
a) b)

Figure 6. Partition ASM I'},onmin

gq-1
In the (th step (q = 2,...,Q), choose a vertex Y EU A", and continue constructing
i=1

A% and BY etc. until, after Q steps, it is impossible to find an operator, which is not
included in the sets A',..., A°. As a result, ASM is divided into subgraphs G/, ..., GO
where the subgraph GY(A%, B*,P?) is defined by sets A?, B?,P% and by the arcs

between the vertices of these sets. Here P% is the set of conditional vertices between

operators of the sets A" and BY. Two subgraphs G’and G? constructed by partition of
ASM Ionmin in Fig. 5 is shown in Fig. 7.

From the partition of ASM it follows:

Chapter 6 Transformation of Algorithmic State machines — 125

1. For any two subgraphs G! and G=
A'NA' =2 ; B'nB'=g; P'nP' =@
2. The partition is independent of the choice of the first operator at every step.
Since the partition is unique and the sets of conditional vertices in different
subgraphs do not intersect (PP =), the following statement results immediately:

Q
R=> R%.
gq=1

Here R is the number of conditional vertices in ASM and R" is the number of
conditional vertices in the subgraph G4 (q = 1, ..., Q). In one of my previous works I

have proved that if ASM is partitioned into subgraphs G/, ..., G2 and the number Rr?ﬂn

of conditional vertices is minimal in each subgraph G?(q = 1, ..., Q), then the number
of conditional vertices in ASM is also minimal and equal to

Q
Rmin = Z Rr?]in'
q=1

| Y.

‘YG‘ ‘Y:a“Yz‘ b)

Figure 7. Two subgraphs G’ and G” as a result of partition of ASM I'ypnmin

From the last statement, it follows that the problem of expansion for the system of
transition formulae can be also divided into Q independent subproblems in

accordance with the introduced partition of ASM. In our example for ASM I@'nonmin, We
have two such subsystems:
LY, = XX XgYs + XX X6 Y, + XX, Y] + X3 XY, + X5 X, Y5
Y, = XX Ys + X X5 Y, + X5 Y,; (13)
Y; = XgXyYs + X X5 Y, + X Y, .

126 - Logic and System Design

2. Y] > XXY, + XX, Y + X5 XY, + X X, XY + X5 X, X Vs
Y, 2 X, XY + X, X Y, + X X XY + X', X Xg Y, + X, X' Yer (14)
Ys = XY, +X,Y;;
Yo = XX, Y, + XX, Yo +Xg X, Y, +Xg X5 Y.
6.2.2 Constructing a set of equivalent subgraphs. At this stage, we expand each

subsystem of transition formulae, obtained at the previous stage, into the bracket
form. To minimize a subgraph of ASM corresponding to the subsystem of transition

formulae, M versions of expansion for each transition formula Y, should be
constructed:

Y, = X, A, + XimB,,. (15)
Here X,,...,X;, are the first M variables contained maximal times inY,. Then, we

again find Myvariables X, and X, which occur maximal times in A and B . After

pm

that, we continue expansion of A, and B, with X andXg:
Yi = Xin X Cri + Xm Dy) + Xim (X E gy + X pmF).

K
Continuing expansion we get not more than M? ' version of expansion, here K is
the number of expansion levels. In our experiments with very complicated ASMs, we

have seen that it is sufficient to take M = K =3 so as not to lose the minimal
subgraph of ASM.

Now we return to our example and begin with transition formula Y, from the first

subsystem (13). Let us find how many times each variable occurs in the transition
formula forY, :

X1 — S times; x3— 5 times; xs— 2 times.

In our simple example we use M = 2, that is we make four expansions for Y» — two
starting from x; and two starting from xs (two variables with the maximal number of
appearances in transition formula Y»). Let us begin with x::

Yy, = X (XXgYs + X X6 Y, +X5Y,) + X, Y, .

Since the expansion after x'; is impossible, find how many times each variable occurs
in the transition formula after x::
x3 — 3 times; Xg- 2 times.
In our example, we choose x3, xs and get two expansion versions with X; in the first
step. First of them is
Y, > X (Xa(XgYs + X Y,) +X5Y,) + X, Y,. (16)

The result of the second expansion with Xg after X, is:

Y, = X (X (%Y +X5Y,)+ XY,)+ X, Y, . (17)

Now let us return to Fig. 2. In this figure, we marked the input of the conditional
vertex with X, by operator Yq . The following transition formula

Chapter 6 Transformation of Algorithmic State machines — 127

Yo = X, Y0 + X, Y,
corresponds to operator Yq in Fig. 2. We call Yq a derivative operator and denote it by

a circle to distinguish it from primary rectangular operatorsY,,Y,,...,Y;,Y, in the

graph of ASM. For expansion (16) we can write the following derivative operators
beginning with the internal brackets:

Yo = XeYs + X5 Y,;
Y, = XY +X5Y,;
Y, =& XY, +X,Y,.

Derivative operator Y,, coincides with operatorY, . We write the numbers of derivative
operators over the corresponding opening brackets in (16):

2 1 10
Y, = X (X5 (XYs + X5 Y,) + X5Y,)+ XL Y, (18)
and list these operators in the special Table 2. Operators Y,,,Y,,,Y,, are the first three

operators in this table (we use number t instead of Y, in Table 2).

Table 2. The derivative operators for Y;, Y5, ¥;

10 x6 5
11 x3 10
12 x1 11
13 x3 5
14 x6 13
15 x1 14

16 x1 4 1
17 x1 10 1
18 x3 17 16
19 x1 5 1
20 x6 19 16
21 x3 20 16

~ AN RN ~NRN

It is obvious that there is a one-to-one correspondence between the bracket transition
formula and the ASM subgraph obtained from this formula. To illustrate this,
consider the construction of ASM subgraph (Fig. 8) for transition formula Y, in (18).

We see at once that such a construction is reduced to the successive exposure of
derivative operators Y,,,Y,;,Y;, from Table 2. It is possible to present expansion (18)
or the subgraph in Fig. 8 as the first column in Table 3 (vI means versionl). The
number of derivative operators in this column is equal to the number of conditional

vertices in Fig. 8. For now, disregard the parenthesis in the columns of this table.

(%] [w] [v]

Figure 8. Subgraph for expression (18)

128 - Logic and System Design

Table 3. The table of versions for ¥, Y5, ¥;

Yy Y2 Y3
vl v2 v3 v4 v5 v6 v7 v8
12 15 18 21 (11) | (14) || (14) | (11)
(11) | (14) 17 20 || (10) | (13) || (13) | (10)
(10) | (13) 16 19
(10) 16

Exactly in the same way, we implement expansion for each version of Ys, Y2,Ys:

15 14 13
Y, > X (Xg (XYs + X5Y,)+ X, Y,)+ XY,
18 17 10 16
Yo = X3 (X, (XgYs + X6 Y,) + X Y)+ X5 (XY, +X,Y,);
21 20 19 16 16
Yo = X3 (Xg (XY5+ X Y0) + X' (XY, +XY)) + X5 (XY, + X, Y1);
11 10
Y, > X (XYs + X's Y,) + X5 Y,
14 13
Y, > X (XY + X5Y,)+ X' Y,;
14 13
Y, Xg (XY +X5Y,)+ XY,
11 10
Yy Xy (XYs + X'gY,) + X5 Y,.

Having these expressions, we can complete the table for derivative operators (Table 2)
and the table of versions (Table 3). The last table contains four versions for
implementation of transition formulaY,, two versions for transition formula Y, and

two versions for transition formulaY,. In Table 3, the derivative operator for Yj is

enclosed in brackets if it appears at least in one version Y (f # j). Obviously, having

chosen one version for each Y,,Y,, Y, we obtain the subgraph of ASM for the first

subsystem of transition formulae. The number of conditional vertices in such a
subgraph is equal to the number of derivative operators (excluding similar ones) in

the chosen versions. For example, having chosen versions V,,V; andv,, we will

obtain the subgraph with five conditional vertices (Fig. 9). To obtain the subgraph with
a minimal number of conditional vertices in the case of M operatorsY,,...,Y, , we have

to choose one version for each YJ- so, that the total number of derivative operators

should be minimal.

We call this problem the problem of finding a minimal cover for the table of versions.
The total number of possible subgraphs that can be constructed from such a table is

equal toR,; x...xR . Here R j is the number of versions for operatorYJ- . In our simple
example (Table 3), this number is equal to 4x2x2=16.
Without detailed explanations, we give expansions for the second subsystem (14) of

transition formulae, the list of derivative operators (Table 4) and the table of versions
(Table 5):

Chapter 6 Transformation of Algorithmic State machines — 129

Ys 2

~ ~
% S ~
? H
[N -

Figure 9. Subgraph for versions v,, vsand v,

32 31 30
Y, 2 XY, + X5 (X Y5+ X5 (XY + X5 Y,));
35 34

Y—>xY + X' (X (X, Y5+ X', Yg) + X'y (xY +x5Y,));

39 38 37
Y, > X, (xY +X5,Y,) + X', (xY + X' (xY + X'g))'

43

Y, > X, (xY + X' Y)+x (x (xY + X', Yg) + X (xY +x5,Y.));

45 44
Y, > X (X,Y; +X (xY + +X' Y))+x Y.,

49 48 47

Y, > X (x (X,Y5+X',Ys)+ X (xY + X', Y)+ X5 Y,

52 50

Y, > X, (xY + X5 Y,)+ X', (X (xY + X5 Y,)+ X5 Y,)

55 54

Y, > X, (xY + X5 Y,)+ X', (X (xY +X'5 Y)+ XY,)

38
Y. = XY, + X, Ys;

37
Y, > X,Y, + X' (xY + X'g)'

2 a

Y= X5 (XY, + X', Ye) + X (xY +Xx,Y,).

Table 4. The derivative operators for ¥;, ¥, ¥;and ¥,

30 x8 6 e 39 x7 38 37 48 x8 47 46
31 X7 3 30 40 x2 2 e 49 x5 48 e
32 x2 2 31 41 x2 2 6 50 x5 30 e
33 X7 3 e 42 x8 41 40 51 x5 3 e
34 X7 3 6 43 X7 38 42 52 x4 51 50
35 x8 34 33 44 x4 3 30 53 x5 6 e
36 x2 2 35 45 x5 44 e 54 x8 53 e
37 x2 2 30 46 x4 3 e 55 x4 51 54
38 x2 2 3 47 x4 3 6

6.2.3 Finding a minimal cover for the table of versions. We will show that a table

of version may be compressed without a loss of the minimal cover. On the set of
versions {le, o

\Y jRJ_} for operatorYj , we define the partial ordering relation. Assume

130 - Logic and System Design

Table 5. The table of versions for ¥;, ¥, ¥; and Y,

Y; Y4 Ys Yo
vl v2 v3 v4 v5 v6 v7 v5 v6 v7 v8
32 36 39 43 45 49 52 55 (38) (37) (42)
31 35 (38) (38) 44 48 51 51 (30) (41)
(30) 34 (37) (42) (30) 47 50 54 (40)
33 (30) (41) 46 (30) 53
(40)

that vs < vt if the use of vs instead of v+ does not increase the number of derivative
operators in any cover of the table of versions. It is clear that if vs < v, version v: may
be eliminated from the table of versions. It is easy to show that vs < v: if two following

conditions are true:
Ls S Lt,
(Lt-Ls)- |B:\ Bs| 2 0.

Here, Lt and Ls are the lengths of versions wv: and vs (the number of derivative
operators in these versions); Br and Bs are the sets of operators in brackets in versions
vt and vs; | Bt \ Bs| is the number of elements in the difference between set B: and Bs.
Let us compare some versions from Table 3.

(@) viand vs: L1 =3; Ls=4; L:1 < Ls;
(Ls—Li) - |Bs\ Bi| =(4-3)- |{10} \ {11,104 =1-0=1>0;

V1 S V3.

(b) viand va: L1 = 3; La=4; L; < Ly
(La—Li) - |Ba\ B1| = (4-3)- |\ {11,10})| =1-0=1>0;

V1 < V4.

(c) viand va2: L1 =3; Lz= 3; L1 = Lz;
(Lz2—Li) - | B2\ B:| =(3-3)- |{14,13} \ {11,10}| =0-2 =-2 < 0;

v1 not < va.

(d) Check the inverse: ve and vi: L; = 3; L2 = 3; L; = Ls;
(L1—Lg) - |B:r\ B2| =(3-3)- [{11,10} \ {14,13}|] =0-2 =-2 < 0;

v2 not < v1; these two versions are incomparable.

(e) Versions (vs, ve) for Yz and (v7, vs) for Ys are incomparable as well (check it
yourself).

The algorithm for compressing a table of versions is obvious. Comparing the versions
within the columns for each Y; (j =1,...,m), we leave only those versions that are not
worse than the others. Thus, after such a compression, only incomparable versions
will remain in the table of versions. Table 6, which is the result of the first
compression, contains only two versions for Y», Y2 and Ys.

Chapter 6 Transformation of Algorithmic State machines — 131

Table 6. The result of the first compression

Yb Yo Y3
vl v2 v5 v6 v7 v8
12 15 || (11) | (14) || (14) | (11)
(11) | (14) | (10) | (13) || (13) | (10)
(10) | (13)

If there is at least one common version for two operators, we can combine their
versions and consider these two operators as one operator (see Table 7).

Table 7. ¥, and ¥; as one operator

Yb Yo, Y3
vl v2 v5 v6
12 15 || (11) | (14)
(11) | (14) || (10) | (13)
(10) | (13)

The compression procedure should be repeated several times. If after the final
compression more than one version is available for one or several operators Y; (j = 1,
..., T) we can apply any well-known method to obtain a minimal cover for the prime
implicant chart, because the complexity of the problem is essentially reduced. In our
example, we can present the table of version in the sum-of-products form. For Table
7, we present each version as a product of its derivative operators and the set of
version for each operator — as the sum-of-products:

(12%11*10 + 15%14*13) * (11*10 + 14*13) =
= 12%11*10 + 15%14*13*11*10 + 12*11*10%11*10 + 15%14*13 = 12*11*10 + 15*14*13.

After absorption, we get two products with the same length equal to three. It means
that after minimization, the number of derivative operators or, which is the same, the
number of conditional vertices in the first subgraph is equal to three. We use the first
product in the final Table 8. The minimal subgraph is presented in Fig. 10,a. The
corresponding derivative operators are taken from Table 8.

Table 8. The minimal cover of the table of versions

Yb Yo, Y3
vl v3

12 (11)
(11) (10)
(10)

Without detailed explanations, we will present the process of minimization for
subgraph G2. Table 9 contains the results of the first compressing of the table of
versions. The next compressing is not possible, so we use sum-of-products to find a
minimal subgraph:

(32%31*30 + 39*38*37*30 + 43*38*42*41*40) * (45*44*30) * (38) * (37*30 + 42*41%40) =
= (32*31*30 + 39*38*37*30 + 43*38*42*41*40) * (45*44*30*38*37 + 45*44*30*38*42*41*40)=
= 32%31*30*45*44*38*37 + 32*31*30%45*44*38*42*41*40 + 39*38*37*30*45*44 +
+ 39*38*37*30*45*44*42+4 140 + 43*38*42*41*40*45%44*30*37 + 43*38*42*41*40*45%44%30 =
45*44*38*37*32*31*30 + 45%44%42%41%40*38*32*31*30 +

+ 45*44*39*38*37+30 + 45*44*43%42%41*40*38*30.

132 - Logic and System Design

]
45 0O 39
<i:%0 0 4@—37 0 X7
‘ Ys ‘ ‘ Yo ‘ Yz ‘ 1 1
12 Q 4—‘ 44 0 38
1 11 0 X4 0
X1 O»<_X3 1 30$
1
10 Q 0
re——<_ X8 »
G 1
1 -
Ys Y] [v] [¥]
b)

a)

Figure 10. Subgraphs G" and G’ after minimization

After absorption we get four products, the third of them contains the minimal number
(six) of derivative operators. The final cover of the table of versions for the second
subgraph G2 is shown in Table 10. The minimal subgraph G2 is shown in Fig. 10,b.
The minimized ASM I'min is presented in Fig. 11. It contains only 9 conditional vertices

whereas ASM Ionmin in Fig. 5 has 17 conditional vertices.

Table 9. The result of the first compression

Y: Y4 Ys Ys
vl v3 v4 v5 v6 v7 v8
32 39 43 45 (38) (37) (42)
31 (38) (38) 44 (30) (41)
(30) (37) (42) (30) (40)
(30) (41)
(40)

Table 10. The minimal cover of the table of versions

Y: Y4 Ys Ys
v3 v5 v6 v7
39 45 (38) (37)
(38) 44 (30)
(37) (30)

(30)

Chapter 6 Transformation of Algorithmic State machines — 133

"
Ys

1 1 1
: T o @ @ Y10 Y11 Y12

‘ Y1 Y2ys ‘ Y2 Yio Yi2 }47—
0 ’

((End)Ye
Figure 11. Mimimized ASM I,

6.3. Minimization of operator vertices

We will show that to minimize the number of operator vertices in ASM it is necessary
to construct a Moore FSM implementing the given ASM, minimize this FSM and
return from the minimal FSM to the minimal ASM. Thus, the minimization of operator
vertices in ASM is reduced to the minimization of the corresponding Moore FSM. We
will illustrate this technique by means of example of nonminimal ASM in Fig. 12.

As was shown in Chapter 4 (Section 4.3), Moore FSM can be synthesized in two steps:

1.

The construction of a marked ASM. At this step, the vertices Begin and End
are marked by the same symbol a: and all operator vertices are marked by
symbols az, ..., au. These marks are written in Fig. 12 near the corresponding
vertices. Unlike to the marking in Chapter 4, we use symbol ae to mark vertex
End to distinguish the beginning and final vertices while returning from the
minimal FSM to the minimal ASM.

To define the transitions in FSM Moore with the states ai, ..., au, a. we find
the following transition paths between operator vertices in the marked ASM:

amxml"'meas ‘
Here imr = X, if in the transition path, we leave the conditional vertex with

Xy Via output ‘1’ and Ymr = X', if we leave the vertex with X, via output ‘0".

The transition from state amto state aswith input
Xlam, as) = X ---Xr
corresponds to such a path. If an marks the operator vertex with operator Y,

then the output function A(am) = Y3, i.e. we identify operator Y:, written in the
operator vertex with this state am.

134 - Logic and System Design

As a result, we obtain Moore FSM with as many states as the number of symbols that
is needed to mark ASM. In our example, the transition table of Moore FSM S,
implementing ASM I'in Fig. 12, is presented in Table 11. Since in ASM there are no
paths from the final vertex into the other ones, there are no transitions from ae into
the other states (see the last row in this table).

To minimize Moore FSM (I advise you to reread Section 2.6.3 “Minimization of Moore
automaton” from Chapter 2), we find successive partitions mo, m:, ... until me+1 = m
where mr is a partition with blocks of equivalent states. In Table 11, the states with
the same outputs are O-equivalent and they are in the same block of mo. This partition
is presented in Table 12. Column Am of this table contains a block of partition mowith

- Ye Ja

Figure 12. ASM I' with redundant operator vertices

current states, column As contains a block of partition mo with next states from Table
11. In our example:

Ty =;8y,85,89,85,85,8y,87,85;810;41;8, ={A,, AL AL Ay AL AL AT
Two states aiand ajare k-equivalent, if they are (k-1)-equivalent and they transit to

the same blocks of mr; with the same inputs; me:is the partition into the blocks of (k-
1)-equivalent states. From Table 12

7y =8;,8;5,85,89,83,85,8,,8;,8g, 89,8, 8,.
Partition m; is equal to partition mo. This means that m; is the partition with blocks of
equivalent states. Taking one state from each block of m;, we get the minimal set of
states Amin:

Amin = {ai1, az, as, a4, aio, aii, Ae}

Chapter 6 Transformation of Algorithmic State machines — 135

and the minimal Moore FSM (Table 13). It is clear that minimal ASM I'min contains one
beginning vertex (state ai), one final vertex (state ae) and five operator vertices (states
az, as, a4, aio and aii). To construct this minimal ASM we should divide the system of
transition formulae into subsystems — we have four such subsystems in our example
(Fig. 13) — and transform each subsystem into the bracket form:

L. Y, => Y Y, > Y,
2. Y, = XY, + XYy,
3. Y, = X, Y, +x', Y,
4. Y, > Yo Yo = Y,

ASM I'min with the minimal number of operator vertices (Fig. 14) was constructed by
means of this system of bracket transition formulae.

Table 11. FSM Moore for ASM I Table 12. Partition ,

am Y(am) as X(am, as) h Am am Y(am) As X(am, as)
a Y az 1 1 Ao aj Yo Aj 1
az Y; as X1 2 az Y: A2 X1
a4 x's 3 A3 X't
as Yo as 1 4 Ai as Y: Az X2X1
a4 Y3 aio X4 5 As x2x'1
ar x'a 6 A2 X'2X1
as Y: as X2X1 7 As X2X's
ar X2x'1 8 as Y; Az X1
as X'2x1 9 As X
as X'2x'1 10 A2 as Y2 Aj 1
as Yo ao 1 11 as Yo Al 1
ar Ys aio X4 12 a4 Ys A4 X4
ail X's 13 As X'q
as Y3 aio X4 14 A3z az Ys Asq X4
ajl X'4 15 As X'q
as Y: as X1 16 as Y3 Asq x4
as X'1 17 As X'a
ajo Y4 Qe 1 18 A4 aio Y4 As 1
airi Ys Qe 1 19 As | air Ys As 1
Qe Ye Qe 1 20 As | ae Yo | As 1

Table 13. The minimal Moore FSM

am Y(am} as X(am, as} h
ai Yb az 1 1
az Y: as X1 2

a4 X'1 3
as Yo az 1 4
a4 Y3 aio X4 5

aii X'q 6
aio Y4 A, 1 7
aii Ys A, 1 8
Qe Ye Qe 1 9

136 - Logic and System Design

ar Yp ———=s a2 Y: a E
@ Y2 /

a Y ——as Yo

as Yz

as Ys ———— aw v,

ail Ys

aiys /

Figure 13. The partition of transition Figure 14. ASM I,
formulae for the minimal ASM

{aw Y ——=ae. Y.

6.4. ASM combining

When we would like to describe the behavior of a very complicated digital system,
sometimes it is difficult to present it by just one ASM. In these cases, it is possible to
describe separate subbehaviors with ASMs I, ..., [0 and then to combine them into
one combined ASM I

At the beginning, we will show a trivial method for ASM combining. This method will
not be used in the future, but it will help us to understand the combining process. As
an example, we take four ASMs in Fig. 15.

I I I3 Iy
00 01 10 11

Figure 15. Four ASM to combine

p1p2

First, we encode ASMs by vectors of values of new variables p; and p2, these variables
are not in the initial ASMs. The number of such variables depends on the number of
ASMs and, in general case, is equal to N =] log2 Q [. Here Q is the number of ASMs to
combine and | a [is the nearest integer greater than a, or equal to a if a is integer. In
our example, Q =4 and N = 2.

Chapter 6 Transformation of Algorithmic State machines — 137

Figure 16. Trivial combining

The trivial combining method is shown in Fig. 16. We did not change ASMs in this
figure; we only removed their vertices “Begin” and “End” because we can have only
one pair of such vertices in the combined ASM. Paths running through conditional
vertices with variables pi, p2, lead to ASMs with the corresponding codes. We use
these codes here as instruction codes, or mode codes. For example, if p;p2 = 00 - ASM
I'; will be implemented, if pip2 = 01 — ASM Iz will be implemented etc.

Now we will present another method for ASM combining in which we minimize the
numbers of operator and conditional vertices. Let us assume that we have ASMs I,
..., I'o and there are no equal operators within each ASM I; but, of course, there may
be such operators in different ASMs. If two or more equal operators are written in
various operator vertices of one such ASM, we should rename them, beginning with
the second one, by different numbers Yr+:, Yr+2, ... Here F is the maximal number of
operators in all ASMs that should be combined.

As an example we will combine ASMs I, ..., I'+ in Fig. 17. The procedure for ASMs

combining consists of several steps.
"
Y
Y1 y2ys

J o>
1
Ye

‘ Y2 Yio Yi2 }—>

a) I
Yo Y11 Yi2
Ys
x> [ysyeJ— <>
1 1
Y5 Y6
v. [End] or. or, Y[Bnd]

Figure 17. ASMs for combining
1. Construct MSA My for each ASM Iy. The MSAs M, ..., M4 are in Tables 14 — 17.

2. Encode each MSA M; (g = 1, ..., 4) by binary code K(My). Since there are only
four MSAs, two coding variables p; and p2 are enough. Let

138 - Logic and System Design

K(M1) = 00, K(M2) = 01, K(M3) = 10, K(M4) = 11.
Table 14. MSA M,

pip2 Y; Y3 Y4 Ys Ys Ye
Y» 1
Y: X7 X'7X1 x'7x'1
Y3 X6x'3 + X's X6X3
Y4 X5X2 X5X'2X1 xs5x'2x'1 + X's
Ys 1
Ys X1 X1

Table 15. MSA M,

p'ip2 Y: Yo Ys Y4 Ys Ys Ye
Yy 1
Y;: 1
Yo X6X'3 + X'6 X6X3
Ys X6X'3 + X'e X6X3
Y4 X5X2 X5X'2X1 X5x'2x'1 + X's
Ys 1
Ys 1

Table 16. MSA M;

pip2 Y3 Ya4 Ys Ye Ye
Y» X6X'3 + X'e X6X3
Y3 X6X'3 + X'6 X6X3
Y4 X5X2 X5X'2X1 X5x'2x'1 + X5
Ys 1
Yo X1 X'1

Table 17. MSA M,

pip2 || Y2 Ys)2 Ys Ys Ye
Yy X6X'3 + X's X6X3
Yo X6X'3 + X's X6X3
Y3 X6X'3 + X's X6X3
Y4 X5X2 X5X'2X1 X5x'2x'1 + X's
Ys 1
Ys 1

3. Write product P(My) corresponding to K(My) in the left upper corner of Mg:
P(M1) = p'ip'2; P(Mz) = p'ip2; P(Ms) = pip'2; P(M4) = p1pz.
4. Construct combined MSA M. The set of operators Y(M) in this MSA M is
Q
Y (M) =EJ1Y(|V|q),

where Y(My) is the set of operators in MSA M; and Q is the number of separate
MSAs. This is the main idea of our combining. If the same operator Yy occurs

Chapter 6 Transformation of Algorithmic State machines — 139

in the several ASMs, there will be only one copy of this operator in the
combined ASM. In our example:
Y(M1) = {Yp, Y1, Y3, Y4, Y5, Yo, Ye};
Y(M3s) = {Yv, Y3, Y4, Y5, Y6, Ye);

Y(M2) = {Yp, Y1, Yo, Y3, Y4, Y5, Y5, Ye);
Y(M4) = {Yb, Y2, Y3, Y4, Y5, Y6, Ye}.

Thus, in our example we have only eight operators in the combined ASM,
including operators Y» and Ye:

Y(M) = Y(M:) U Y(M2) U Y(Ms) U Y(Ma) = { Y»,Y1, ..., Ys,Ye}.

This combined ASM has seven rows and seven columns (Table 18).

To construct entries in the combined MSA M, we multiply each entry of each
MSA My by its product P(My) written in the left upper corner of this MSA My
and insert it in the corresponding entry of MSA M — at the intersection of the
same row and the same column. In other words, we multiply each MSA My by
its product P(My) and insert it in the combined MSA M.

To check that combined MSA M, thus constructed, implements MSA My when
P(Mg) = 1, it is sufficient to substitute code K(My) in each entry of MSA M. For
example, if you substitute K(M:) = 00 in MSA M in Table 18, you will get MSA
M; in Table 14.

Table 18. Combined MSA M

Y: Y2 Y3 Y4 Ys Yo Ye
Yo | pip2 pip2xex's + pip'ax's | pip2xexs
p'ip2 Pi1p2xeX's + pip2X's | pi1p2xexs
Y: p'ip2 | p'iplaxz p'1p'2x'7x1 p'1p'ax'7x's
Y2 p'1p2xex's + p'ip2x's | p'ipa2xexs
P1p2X6X'3 + p1p2X's | P1p2xeXs3
p'ip2xex's + p'ip'ax's | p'ip'2xexs
Y3 P'ipa2xex's + p'ipax's | p'ip2xexs
pip2xex's + pip'ax's | pip2xexs
Pi1p2X6X'3 + p1p2X's P1p2Xx6X3
p'1p'axsxz p'ipaxsx'ax: | p'ip'axsx'ax't + p'ip'ax’s
Y4 Pp'1p2xsx2 p'ip2xsx'ax: | p'ipaxsx'2x't + p'ip2x's
Ppip'axsxz piplaxsx'ax: | pip'axsx'axt + piplax's
Ppi1p2xsx2 Pip2xsx'oxi | pipe2xsx'ax't + pipe2x's
Ys p'ip2 p'ip-
pip2 pip2
Ys p'ip2 p'ipaxi p'ip2x't
pip2 pipaxi pipax'

Construct combined ASM T.

S5.1. Partition the system of transition formulae into independent subsystems.
Here we should implement techniques similar to ASM partitioning into
subgraphs (Secion 6.2.1). We begin with any operator, for example, from Y3
and find the set of operators towards which there are paths (12) in MSA M (the
columns with entries distinct from zero in row Y. For row Y», they are
operators Yi, Y4, Y5 (see arrows from Y» in Fig. 18,a). Next, we go to the right
side of this subgraph and find operators, other than Y, from which there are
paths (12) leading to operators Yi, Y4, Ys. We place these operators (Yz, Ys3) on
the left side under Y». For all operators on the left, we continue picking such

140 - Logic and System Design

operators to which there are paths in MSA M, etc., until the set on the left (Al)
and that on the right (B!) are no longer increasing. Next we will choose a new

operator Y, & Al (Y: in our example) and construct (A2) and (B?) in a similar

way (see Fig. 18,b). Thus, in our example we have two independent

subsystems of transition formulae derived immediately from MSA M:

G2

Yi——— Y,
Gl
Yp— Y: Ys Y3
\ A2 B2

Al Yo Y+ ¢ B! Ys Ys
Ys——*Ys Ya Ye

a) b)

Figure 18. Partition of operators in MSA M

Subsystem 1

Yo— p'1p2Y1 + p'1p2Y1 + pip'axex'sYs + pip'ox'cYa + pipaxex'sYs + pipox'sYa +
PpP1p2x6x3Ys + pipaxex3Ys;

Yo — p'ipoxex'sYs + p'ipex'sYa + pipaxex'sYs + pipax'sYa + p'ipaxexsYs + pipaxexsYs;

Ys— p'ip2xex'sYs + p'ip'ax'sYa + p'ip2xex'sYs + p'ip2x'sYa + pip'axex'sYs + pip2x'sYa +
Pi1p2xex'3Ya + pipax'sYa + p'1ipoxexsYs + p'ipaxexsYs + pip'axexsYs + pip2 xex3Ys.

Subsystem 2

Yi— p'ip2Ye + p'ip'ax7Y: + p'ipax'7x1Ye + p'ip2x'7zx'1 Ye;

Y4 — p'ip'axsx2Ys + p'ipexsxeYs + pip'axsx2Ys + pipaxsx2Ys + p'ip'axsx'axi Ye +
P'1p2xsx'2x1Ye + pip'axsx'oxi Ye + pipaxsx'axiYe + p'ip'axsx'ax'i Ye +
p'1p'2x'sYe + p'1ipoxsx'ox'iYe + p'ipox'sYe + pip'oxsx'2x'iYe +
pip'ax'sYe + pipoxsx'ox'iYe + pipox'sYe;

Ys— p'ip2Ye + pip2Yo + p'ip2Ys + pip'2Ys;

Y6 — p'1p2Ye + pip2Ye + p'ip2x1Ye + pipoxi1Ye + p'ip'2x'1Ye + pip'ax'i Ye.

5.2. Construct minimal subgraphs. Here we should implement techniques
presented above in Section 6.2.2 “Constructing a set of equivalent subgraphs
and Section 6.2.3 “Finding a minimal cover for the table of versions”. Without
detailed explanation (we advice you to make ASM expansion by yourself) we
give the tables of derivative operators for the first subsystem (Table 19) and
the tables of versions during two compressions (Tables 20 and 21). The

minimal subgraph with operators Y», Y2 and Ysis presented in Table 22.

Chapter 6 Transformation of Algorithmic State machines — 141

Table 19. The derivative operators for Y,, Y, ¥;

8 x3 5
9 x6 8
10 x6 5
11 x3 10
12 pl 9
13 | p1 | 11
14 | pl 8
15 | pl 5

16 | pI 4 1
17 x3 15 16
18 x6 14 16
19 x6 17 16
20 pl 10 1
21 x6 15 16
22 x3 20 16
23 x3 21 16

e N N)

Table 20. The table of versions for ¥, Y,, ¥;

Ys Yo, Y3
vl v2 v3 v4 v5 v6 v7 v8
12 13 18 19 22 23 (9) (11)
(9) (11) 14 17 20 21 (8) (10)
(8) (10) | (8) 15 (10) 15
16 16 16 16

Table 21. The table of versions for ¥,, ¥,, ¥; after compression of Y,

Yy Yo, Y3
vl v2 v7 v8
12 13 (9) (11)
9 | (11) | (8 | (10)
(8) | (10)

Table 22. The final table of versions for Y, Y5, ¥;

Y» Yo, Y3
vl v7
12 (9)
9) (8)
(8)

Tables 23 — 26 contain the same for the second subsystem of transition
formulae. The last table presents the minimal subgraph with operators Y1, Y4,
Ys and Ys. The minimal combined ASM T is shown in Fig. 19.

Table 23. The derivative operators for Y, ¥, ¥;and ¥;

8 x1 6 e 22 p2 2 10 36 x5 3 e
9 x7 3 8 23 x7 15 17 37 x5 8 e
10 x7 3 6 24 p2 2 11 38 x5 6 e
11 x7 3 e 25 x7 15 18 39 x1 38 e
12 x1 10 11 26 x1 22 24 40 x2 36 37
13 p2 2 9 27 x1 22 25 41 x2 36 39
14 p2 2 12 28 x1 23 24 42 x5 31 e
15 p2 2 3 29 x1 23 25 43 x2 36 38
16 p2 2 8 30 x2 3 8 44 x5 32 e
17 | p2 2 6 31 x2 3 6 45 x2 36 e
18 p2 2 e 32 x2 3 e 46 x1 42 44
19 x1 17 18 33 x1 31 32 47 x1 42 45
20 x7 15 16 34 x5 30 e 48 x1 43 44
21 x7 15 19 35 x5 33 e 49 x1 43 45

142 - Logic and System Design

Table 24. The table of versions for ¥, Y, Y5 and Y,

Y: Y4 Ys Ys

vl v2 v3 v4 v5 v6 | V7 | V8 | V9 | VIO | vI] | VI2 || VI3 | vi4 | vI5S
13 14 20 21 26 || 34| 35| 40| 41 | 46 47 | 49 || (15)| (16) | (19)
9 12 | (15) | (15) | 22 | 30| 33| 36| 36| 42 42 43 (8) | (17)
(8) 10 | (16) | (19) 10 | (8| 31 | 37| 39| 3I 31 36 (18)
11 (8) | (17) | 24 32| (8) | 38| 44 45 | 38
(18) 11 32 36 45

Table 25. The compressed table of versions for Y, ¥, ¥;and ¥;

Y: Y4 Ys Ys
vl v3 v4 v6 vl3 vi4 vl5
13 20 21 34 (15) || (16) | (19)
9 (15) | (15) 30 (8) (17)
(8) | (16) | (19) | (8) (18)
(8 | (17)
(18)

Table 26. The final table of versions for Y¥,, ¥, ¥s; and ¥,

Y: Y4 Ys Ys
v3 v6 vl3 vi4

20 | 34 | (15 | (16)

(15 | 30 (8)
(16) || (8)
(8)

Note, that during expansion of transition formulae we can come across two don't care

cases:
.

If the number of ASMs Q is smaller than 2N, i.e. not all possible vectors of
coding variables pi, ..., py are used for encoding of MSAs Mi, ..., Mo, all
transition formulae are not specified on such vectors of variables pi, ..., pyxi,
...,xL, in which first N components correspond to unused combination. We do
not have such a case in our example.

If operator Y: is absent in some MSA My, then transition formula for Y: is not
specified on vectors of variables pi, ..., pv X1, ..., xi, in which first N
components correspond to the code K(Mg) of this MSA My The operator Yz is
not in MSAs M; and M3 in our example, therefore the transition formula for Yz
is not specified for vectors, in which p; = p2= 0 and p: = 1, p2 = 0, since K(Mi) =
00 and K(M3) = 10.

Yo — p'ipaxex'sYs + p'1pox'sYa + pipaxex'sYs + pipax'sYa + p'ipoxexsYs + pipaxexszYs =

= X6(p'1p2x'3Ys + p1p2x'3Ys + p'1p2x3Ys + pip2xsYs) + xX's(p'1p2Ys + pip2Ya) =

= x6(x3(p'1p2Ys + p1p2Ys) + x'3(p'1p2Ya + p1p2Y4)) + X's(p'1p2Y4 + pi1p2Ya).

In the

internal brackets, we couldn’t continue expanding with variable p2, because

this expression does not contain products with p'ip2 and pip'2 corresponding to the
unused codes 00 and 10. Using don’t care we have

p'ip2 + p'ip2=p'i; pip2 + pip’2 = pi

Chapter 6 Transformation of Algorithmic State machines — 143
and finally we get:
Yo— x6(x3(p'1Ys5 + p1Ys) + x'3(p'1Ys + p1Ys)) + X'6(p'1Ys + p1Ys) =

= X6(x3Y5 + x'3Y4) + xX'sYa.

0 1 U pi>1 x6 >0 v4
1 0 1

Figure 19. Combined ASM I

144 - Logic and System Design

