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Abstract—In this paper we propose a game theoretic approach
to the allocation of channels to multiple cognitive users who share
a set of frequencies. The famous Gale-Shapley stable matching
algorithm is utilized to compute the channel allocations. We
analyze the stable matching performance for the case of cognitive
resource allocation and prove that in contrast to the general case,
in the cognitive resource allocation problem there is a unique
stable matching. We then show that the stable matching has
performance very close to the optimal centralized allocation. It
always achieves at least half of the total rate of the centralized
allocation and under Rayleigh fading it achieves about 96%
of the total centralized rate. Comparisons to random channel
allocations are also discussed.

Index Terms—Spectrum optimization, distributed coordina-
tion, game theory, cognitive radio, stable matching.

I. INTRODUCTION

Cognitive radio is a radio system operating over multiple

frequency selective wireless channels in which users can

change their transmission or reception parameters to com-

municate efficiently by avoiding interference with licensed

or unlicensed users. To allow multiple users to share the

frequency band, users have to sense the radio spectrum to

control their own transmission based on the quality of the

channels and the activity in these channels. Such systems can

be implemented by dividing the bandwidth into N orthogonal

sub-bands using Orthogonal Frequency Division Multiplexing

(OFDM). The diversity of channel realizations is advantageous

if the assignment of sub-bands to the users is done efficiently

with a minimum amount of coordination.

Sub-carrier allocation for centrally managed systems was

addressed extensively in the last decade because of the high

demand for efficient spectrum utilization in wireless and

wireline communication systems. The main issue for OFDMA

systems is joint power and sub-carrier allocation in the down-

link direction [1], [2], [3]; and sub-carrier assignment in the

uplink direction [4], [5], [6], [7], [8]. The optimal sub-carrier

assignment can be computed using the well-known Hungarian

method for solving assignment problems [9].

Yin and Liu [10] considered a downlink OFDMA where

the base station allocates sub-carriers, power and data rate per

sub-carrier for each user to maximize the overall transmit data

rate subject to a total power constraint and rate constraints

for each user, assuming a flat channel response for each user.

They proposed a suboptimal two-step algorithm where power

is first allocated and then the Hungarian method is used to

assign sub-carriers to users.

Jang et al. [11] introduced a transmit power adaptation

method that maximizes the total data rate of multiuser OFDM

systems in a downlink transmission, where each sub-carrier

is assigned to the user with the best channel gain for that

sub-carrier and the transmit power is distributed over the sub-

carriers by a water-filling policy. The Hungarian method for

solving the assignment problem has been used extensively as

an optimization method for solving other resource allocation

problems. Zhu et al. [12] applied it to simplify the computation

of a suboptimal solution of the Nash bargaining solution under

total power constraint. Wong et al. [13],[1] and Pietrzyk and

Jannsen [14] applied the Hungarian method to assign sub-

carriers to users based on Quality of Service (QoS) require-

ments while minimizing the total transmitted power. The same

problem has been addressed in optimizing resources in PON

systems [15].

In contrast to cellular and optical systems which have

centralized access management, cognitive radio systems are

inherently distributed. Therefore, there is no way to use an

optimal centralized strategy for channel allocation. When no

controller exists (the case for cognitive radio) distributed

allocation protocols may be the best candidate system and are

the topic of this paper. The simplest approach is to use random

channel allocation. This type of allocation is very simple to

implement through standard random access techniques, and its

convergence time is very fast as shown below. However, for

a large number of users, we also show that the performance

of the random allocation is significantly worse than the best

centralized strategy (the relative loss is 1/ log N , where N is

the number of channels).

Since the loss of random channel allocation is unacceptable,

cognitive approaches that take channel quality functions into

account are needed. An example of a simple approach of

this kind is ‘stable’ allocation. By the Gale-Shapley Stable

Marriage Theorem [16] a stable allocation always exists. The

theorem is very general and states that whenever we have

two sets of N men and N women, where every man and

woman has his or her own preference regarding the opposite

sex players, we can always find a stable matching; i.e., we

cannot find a man and a woman who prefer each other over

their partners in the matching. In the general case, there are

many stable matchings, their number can be quite large, and

the set of stable matchings has a (set theoretic) lattice structure.

However, we show below that in the spectrum allocation

problem there is always a unique stable matching (almost
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surely with respect to channel quality distribution).
The main advantage of the stable matching is that it can

be computed using the Gale-Shapley algorithm, which is de-

centralized by nature. Another advantage is of course stability,

which is desirable in a non-regulated scenario. We prove that

the worst case total rate of the stable allocation is one half

that of the optimal centralized allocation, which is significantly

better than the random allocation. We also show in simulation

that for independent Rayleigh fading channels, the expected

total rate of the stable allocation is much better than the above

theorem and exceeds 96% of the expected total rate of the

optimal allocation, regardless of N . A full statistical analysis

of the Rayleigh case is beyond the scope of this paper.
We also consider the time delay until the desired allocation

is reached. For random allocations we prove that this time

delay is O(log N). We show that the worst case time delay be-

fore reaching the stable allocation is O(N2), and simulations

show that on average this time delay is O(N). Therefore, if

the dynamics is sufficiently slow, reaching the stable allocation

is preferable, especially for large values of N . However for

large N and very fast dynamics random allocation might be

superior due to the very short time until convergence.
The structure of the paper is as follows: In Section II we

describe the basic model, and define the properties of stable

matchings. In Section III we prove that in the special case of

spectral allocation the stable matching is unique. In Section IV

the lower bound on the achievable rate for stable matching as

compared to optimal allocation is given. In Sections V and VI

we address the complexity of the stable and random allocation

algorithms and their relaxation time. Simulation results are

given in Section VII.

II. MODEL FORMULATION

Assume that N users have access to N wireless channels

(the results of this paper can be generalized to the case where

we have unequal number of users and channels). Assume

that each user has N channel utility functions representing

the transmission quality on each channel. We assume that

these utilities are i.i.d. continuous random variables. A simple

example of these channel utility functions are the ergodic

capacities of each user on each channel. We will denote the

utility of channel j when used by user i by ui,j and define the

utility matrix as U = (ui,j). We assume that the uij are i.i.d.

with a continuous probability distribution. Therefore, at any

given time the N2 channel utility functions are almost surely

all different; hence we assume this in what follows. Although

the analysis can be done for arbitrary utility functions we

assume that ui,j represents the rate that user i can achieve

when using channel j.
Assume that each user is capable of transmitting on a single

channel at a time, but can sense all activity on the N channels.

Since we assume the dynamics is slow, we can optimize the

allocation of channels to users. To that end we need some

definitions:

Definition II.1. A spectral matching between users and chan-
nels is a permutation P : [N ]→[N ] where [N ] = {1, ..., N}.

The optimal centralized channel allocation problem is now

formalized as follows:

Find a permutation P : [N ]→[N ] such that

P = arg max
P∈SN

∑
ui,P (i) (1)

where SN is the permutation group on [N]. Although the

problem is discrete and the size of SN is N ! the solution

has complexity O(N3) using the Hungarian method. We also

define the total utility of a matching P by

u(P ) =
∑

ui,P (i) (2)

Before continuing with the channel allocation problem, we

describe the Gale-Shapley theorem. Assume that we have two

sets A, B of men and women each of size N . For each a ∈ A
there is a one-to-one function fa(b) : B→[N ] which ranks the

preferences of a. Similarly, for each b ∈ B there is a one-to-

one function gb(a) : A→[N ] which ranks the preferences of b
where a higher value means a higher preference. A matching

is a one-to-one function from A to B.

Definition II.2. A matching S : A→B is stable iff for every
a ∈ A and b ∈ B satisfying S(a) �= b either fa(S(a)) > fa(b)
or gb(S−1(b)) > gb(a).

More explicitly a matching is stable, if for any pair a and

b �= S(a) either a prefers S(a) over b or b prefers its own

partner over a. The Gale-Shapley theorem states that for any

preference functions there is always a stable matching. As

mentioned before, generally the stable matching is not unique.

As described in the Introduction, when N is large or when

there is no centralized controller we would like to find a

distributed low complexity solution based on stable matching.

Note that in this case the preferences of the users and the

preferences of the channels are defined by the matrix U of

user-channel utility. Hence, we obtain that in our case stability

is defined as follows:

Definition II.3. A spectral matching S is stable iff for every
i, j ∈ [N ] satisfying S(i) �= j either ui,S(i) > ui,j or
uS−1(j),j > ui,j .

In the remainder of the paper we examine the properties of

stable matchings as candidates for channel allocation strate-

gies.

III. UNIQUENESS OF THE STABLE MATCHING

We now analyze stable matching for the cognitive radio

spectral allocation problem.

Proposition III.1. Let U be an N by N matrix whose entries
are all different. If the preferences of all users and channels
are determined by the matrix U then there is a unique stable
matching.

Proof: We prove the Proposition by induction on N ; the

basis N = 1 is trivial. Let ui,j be the maximal entry of the

utility matrix U, and let U′ be the matrix we get by deleting

row i and column j of the matrix U. If S is a stable matching
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for U then clearly S(i) = j, and in addition S \ {(i, j)} must

be a stable matching for U′. By induction there exists a unique

stable matching S′ for the smaller matrix U′, and from the

above remarks we can conclude that S := S′ ∪ {(i, j)} is a

unique stable matching for U.

The proof is constructive and shows that the unique stable

matching is the result of the centralized greedy algorithm

which chooses the best user-channel pair each time, deletes the

corresponding row and column, and continues recursively. This

provides a centralized O(N2 log N) complexity algorithm for

finding the unique stable matching.

Definition III.1. Given a utility matrix U whose entries are
all different, let SU be the stable matching determined by U.

IV. THE ACHIEVABLE RATE OF THE STABLE MATCHING

Since the stable matching is unique we may define the stable
utility to be the total utility of the stable matching. We now

inquire how the stable utility fares compared to the optimal
utility, i.e. the total utility of an optimal matching. The next

proposition shows that in the worst case the ratio is 2.

Proposition IV.1. Let U be an N by N matrix whose entries
are all different and non-negative, and let S = SU denote the
stable matching. Then for any matching P we have u(P ) <
2u(SU), where the function u(P ) is defined in (2).

Proof: Assume without loss of generality that the stable

matching is the identity, i.e. ∀i ∈ [N ] : SU(i) = i, and

define for every k ∈ [N ] vk := uk,k. We can also assume that

∀k < l : vk > vl. Note that vk is the maximal entry in the

submatrix (ui,j)i,j≥k (for any k ∈ [N ]).
Let P be any matching, and assume w1 > w2 > . . . > wN

are such that {wl | l ∈ [N ]} = {ui,P (i) | i ∈ [N ]}. Now

fix some k ∈ [N ]. The entries of U which are outside the

submatrix (ui,j)i,j≥k can be covered by (k − 1) rows and

(k−1) columns. Since each row and column contains at most

one of the wl, we can conclude from the maximality of vk

in (ui,j)i,j≥k that it is smaller than at most 2(k − 1) of the

utilities wl; hence vk > w2k−1. It follows that

u(P ) = w1 + w2 + w3 + w4 + . . . + wN <

< v1 + v1 + v2 + v2 + . . . + v�N/2� ≤

≤ 2(
N∑

k=1

vk) = 2u(SU) (3)

as required.

The following example shows that the worst case can

actually occur.

Example IV.2. Let N = 2M , and assume that for some small
positive Δ and ε(i, j) satisfying ∀i, j : |ε(i, j)| < Δ/2M the
utilities are given by

ui,j =

⎧⎨
⎩

1 + Δ + ε(i, j) : i, j ∈ {1, 2, . . . , M}
|ε(i, j)| : i, j ∈ {M + 1, M + 2, . . . , 2M}
1 + ε(i, j) : otherwise

Then the stable matching SU satisfies 1 ≤ i ≤ M ⇔ 1 ≤
SU(i) ≤ M ; hence its total utility is bounded as follows:
u(SU) ∈ [M(1 + Δ) − Δ, M(1 + Δ) + Δ]. On the other
hand any optimal matching P will satisfy 1 ≤ i ≤ M ⇔
M + 1 ≤ P (i) ≤ 2M ; hence the optimal utility is in the
interval [2M −Δ, 2M + Δ]. When Δ → 0 the ratio between
the stable and optimal utilities approaches 2.

V. DISTRIBUTED IMPLEMENTATION AND COMPLEXITY OF

THE STABLE MATCHING ALLOCATION

The main advantage of the stable matching approach over

finding the optimal matching, in the context of ad-hoc net-

works, is that the implementation of the Gale-Shapley al-

gorithm is decentralized by its very nature. Specifically, the

following is guaranteed to converge to the stable matching:

We initialize by declaring each user to be roaming, and at

every time slot we have two steps. First, each roaming user

attempts to transmit on his best channel out of those he has

not yet tried, and each non-roaming user attempts to transmit

on the same channel as on the previous time slot. Second,

on each channel j the best user out of the set Uj of users

attempting to transmit on j is declared to be non-roaming (in

case Uj is nonempty), while all other users in Uj are declared

to be roaming (the details of the distributed implementation

of this step are omitted).

Finally, the complexity of finding the stable matching is

significantly lower than O(N3), as we describe below. For

any utility matrix U whose entries are all different we denote

by tU the number of time slots required for the Gale-Shapley

algorithm described above to reach the stable matching SU.

Clearly tU depends solely on the relative order of U’s entries,

and therefore does not depend on the specific statistics of the

utilities. First we deal with the worst case: this is known to be

O(N2) for arbitrary preference lists. The next example shows

that the worst case is still O(N2) even in the special case that

all preference lists come from matrix U.

Example V.1. Define the utility matrix U by

ui,j :=
{

N(N + 1) − Ni − j : i ≥ j
N(N + 1) − (N + 1)i + j : i < j

Then the stable matching is SU = Id, and it is easy to
show that user i attempts to transmit on channel i only after
1 + 1 + 2 + 3 + . . . + (i− 1) time slots. Hence tU = 1 + 1 +
2 + 3 + . . . + (N − 1) = 1 + N(N − 1)/2.

We give the details for N = 5 below. The utility matrix
is shown in Table I with the maximal utility for every user
highlighted in bold.

U ch-1 ch-2 ch-3 ch-4 ch-5

user-1 24 23 22 21 20
user-2 19 18 17 16 15
user-3 13 14 12 11 10
user-4 7 8 9 6 5
user-5 1 2 3 4 0

TABLE I
UTILITY MATRIX FOR N = 5
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Table II shows the transmission attempts made by users
before the stable matching is reached.

Time ch-1 ch-2 ch-3 ch-4 ch-5

t=1 1,2 3 4 5
t=2 1 2,3 4 5
t=3 1,3 2 4 5
t=4 1 2 3,4 5
t=5 1 2,4 3 5
t=6 1,4 2 3 5
t=7 1 2 3 4,5
t=8 1 2 3,5 4
t=9 1 2,5 3 4

t=10 1,5 2 3 4
t=11 1 2 3 4 5

TABLE II
GALE-SHAPLEY ALGORITHM AT WORK

The total utility of the stable matching in this example is
u(SU) = 24 + 18 + 12 + 6 + 0 = 60.

VI. RELAXATION TIME OF THE RANDOM ALLOCATION

SCHEME

In this section we show that the expected time required

for a random allocation scheme to stabilize is O(log N). In

this case we compute this time when we have K users and

N ≥ K channels. The random allocation scheme works as

follows: Declare all K users to be roaming and all N channels

to be free. At every time slot each non-roaming user stays on

his channel, and each roaming user attempts to transmit on

a random free channel. Such an access mechanism is easily

achieved using standard random access techniques, assuming

that the users are cognitive, and know the channel state of

each of the N channels. If there is no collision then the user

becomes non-roaming and the channel becomes busy. We now

examine the expected delay until the system stabilizes. We

denote this expected delay by TK,N .

Proposition VI.1. There is some constant C s.t. for every
0 ≤ K ≤ N we have

TK,N ≤ Cln(K + 1) (4)

Proof:
The proposition is proved by induction on K; the case K =

0 is trivial (since T0,N = 0).

For every 0 ≤ i ≤ K let qK,N (i) denote the probability

that, at time t = 1, exactly i of the users stabilize (i.e. become

non-roaming). Then we have

TK,N = 1 +
K∑

i=0

qK,N (i)TK−i,N−i (5)

Let q0 := qK,N (0). By the induction hypothesis we obtain

TK,N =
1

1 − q0
+

K∑
i=1

qK,N (i)
1 − q0

TK−i,N−i ≤

≤ 1
1 − q0

+
K∑

i=1

qK,N (i)
1 − q0

C ln(K − i + 1) (6)

By concavity of the function C ln(x) and since∑K
i=1

qK,N (i)
1−q0

= 1 we get

TK,N ≤ 1
1 − q0

+ C ln
[ K∑

i=1

qK,N (i)
1 − q0

(K − i + 1)
]

(7)

Now let î denote the expected number of users that stabilize

at time t = 1. Then by using symmetry between the K users

and K ≤ N we obtain

K∑
i=0

i · qK,N (i) = î = K · Prob(user 1 stabilizes) =

= K · N(N − 1)K−1

NK
=

= K(1 − 1
N

)K−1 > Ke−1 (8)

From (8) we can conclude that
∑K

i=1
qK,N (i)
1−q0

(K − i+1) =
K + 1 − 1

1−q0

∑K
i=0 i · qK,N (i) < K + 1 − Ke−1

1−q0
, and in

particular K + 1 − Ke−1

1−q0
is positive. Therefore (7) gives us

TK,N ≤ 1
1 − q0

+ C ln
(
K + 1 − Ke−1

1 − q0

)
(9)

In order to show TK,N ≤ C ln(K + 1) it suffices to show

1
1 − q0

≤ C ln(K + 1) − C ln
(
K + 1 − Ke−1

1 − q0

)
=

= −C ln
(
1 − Ke−1

(1 − q0)(K + 1)
)

(10)

Since − ln(1 − x) ≥ x it suffices to show 1
1−q0

≤
C Ke−1

(1−q0)(K+1) , and this indeed holds for all K ≥ 1 for the

constant C = 2e.

VII. SIMULATION RESULTS

As we saw in Example V.1, the delay until the stable

matching is reached is O(N2) in the worst case. However, due

to the dynamic nature of the wireless channel, we are actually

interested in the expected value of tU (where the order of

U’s entries is chosen at random out of the (N2)! possibili-

ties). Figure 1 below shows the result of running the Gale-

Shapley algorithm on random square matrices. For purposes

of comparison we also show the expected convergence time

of the Gale-Shapley algorithm for the general Stable Marriage

Problem; i.e. for 2N random preference lists. The expected
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Fig. 1. Expected convergence time to stable matching

value of tU is approximately αN for some constant α ≈ 0.73.

In contrast to the delay, the stable utility depends on

the channel statistics. Figure 2 below shows the result of

simulating N Rayleigh fading channels, and comparing the

expected stable rate to the optimal centralized rate. We also
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Fig. 2. Rates of optimal, stable and random allocations for Rayleigh fading
channels

include for reference the expected rate of a random matching,

which is defined by:

Ri,random = E

[
log2

(
1 +

|hii|Pi

σ2

)]
(11)

where, Pi is the power used by user i, σ2 is the noise variance

and hii is the fading coefficient. Note that the stable rate is

significantly higher than the rate of the random allocation: the

ratio is already ∼ 1.2 for N = 2, and rises to ∼ 2.4 when

N = 80. Note also that this ratio seems to be roughly linear

in log(N).
In Figure 3 we show the ratio between the expected stable

rate and the expected optimal rate. This ratio is always above

0.96; i.e. we lose at most 4% by using stable matching.

100 101 102 103
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

N = number of users

ra
tio

 b
et

w
ee

n 
st

ab
le

 a
nd

 o
pt

im
al

 c
ap

ac
iti

es
Fig. 3. Ratio of stable to optimal rate for Rayleigh fading channels

VIII. CONCLUSIONS

In this paper we analyzed stable matching for frequency

allocation in cognitive radio systems. We showed that the

stable matching achieves at least half of the centralized

aggregate rate. Furthermore, we showed that on Rayleigh

fading channels the loss is on the order of 4%. We analyzed

the convergence time, and showed that with some additional

cognitive mechanisms the stabilization time is linear in N .
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