
An extended abstract of this paper was published in the proceedings of CT-RSA 2012.

Efficient RSA Key Generation and Threshold Paillier
in the Two-Party Setting

Carmit Hazay∗ Gert Læssøe Mikkelsen†‡ Tal Rabin§ Tomas Toft†

Angelo Agatino Nicolosi¶

Abstract

The problem of generating an RSA composite in a distributed manner without leaking its factoriza-
tion is particularly challenging and useful in many cryptographic protocols. Our first contribution is the
first non-generic fully simulatable protocol for distributively generating an RSA composite with security
against malicious behavior. Our second contribution is a complete Paillier [Pai99] threshold encryption
scheme in the two-party setting with security against malicious attacks. We further describe how to
extend our protocols to the multiparty setting with dishonest majority.

Our RSA key generation protocol is comprised of the following sub-protocols: (i) a distributed
protocol for generation of an RSA composite, and (ii) a biprimality test for verifying the validity of the
generated composite. Our Paillier threshold encryption scheme uses the RSA composite for the public-
key and is comprised of the following sub-protocols: (i) a distributed generation of the corresponding
secret-key shares and, (ii) a distributed decryption protocol for decrypting according to Paillier.

Keywords: Secure Two-Party Computation, RSA Generation, Threshold Encryption Scheme, Paillier
∗Faculty of Engineering, Bar-Ilan University, Israel. Email: carmit.hazay@biu.ac.il
†Department of Computer Science, Aarhus University, Denmark. Email: gertm@cs.au.dk, ttoft@cs.au.dk.
‡The Alexandra Institute, Email: gert.l.mikkelsen@alexandra.dk
§IBM T.J.Watson Research Center, Email: talr@us.ibm.com.
¶YanchWare, Email: angelonicolosi@yanchware.com.

1

1 Introduction

1.1 Distributed Generation of an RSA Composite

Generating an RSA composite N (a product of two primes p and q), and secret keying material (values
related to φ(N)) in a distributed manner is an important question in secure computation. Many cryptographic
protocols require such a composite for which none of the parties knows N ’s prime factorization. A concrete
example where such a protocol is very useful is threshold cryptography, where a number of parties exceeding
some threshold is required to cooperate in order to carry out a cryptographic task such as computing a
decryption or a signature; see [Rab98, Des94, Sho00, CDN01] for just few examples. Specifically, the
public-key of Paillier [Pai99], which is one of the most widely used public-key encryption schemes in
secure computation, is an RSA composite. Paillier is an important building block due to the fact that it is an
additively homomorphic cryptosystem, and is therefore extremely useful. Consequently, it is very important
to design an efficient threshold variant for this construction. Another important application is using RSA
composites as part of the common reference string (CRS) for secure computation in the UC setting [Can01],
as demonstrated for any function in [JS07] or for concrete functions such as the Fiat-Shamir authentication
protocol [FS86, FFS88], set-intersection [JL09] and oblivious pseudorandom functions [JL09].

Typically, generating an RSA composite is comprised from two phases; generating a candidate and
testing its validity (namely, that it is indeed a product of two primes). This task has proven particularly
challenging mainly due to lack of an efficient secure implementation of the later phase. Therefore, most
prior works assume that the composite is generated by a trusted dealer. In a breakthrough result, Boneh
and Franklin [BF01] showed a mathematical method for choosing a composite and verifying that it is of the
proper form. Based on this method they designed a protocol in the multiparty setting with security against
semi-honest adversaries, assuming honest majority (where a semi-honest adversary follows the protocol’s
instructions honestly but tries to learn secret information about the honest parties’ inputs from the com-
munication). Two followup papers [FMY98, NS10] strengthened this result and obtained security against
malicious adversaries (where a malicious adversary follows an arbitrary polynomial-time strategy). We note
that the later result relies on a random oracle. Additional solutions for testing primality in the multiparty
setting appear in [ACS02, DM10].

Security without assuming honest majority, and in particular in the two-party setting, posed additional
barriers even for the semi-honest model. Cocks [Coc97] initiated the study of the shared generation of the
RSA composite in the two-party semi-honest model. Nevertheless, his proposed protocol was later found to
be insecure [Cop97, BBBG98]. The problem was solved by Gilboa [Gil99] who presented a protocol in the
semi-honest model, adapting the [BF01] technique.

In the malicious setting, Blackburn et al. [BBBG98] started examining the setting of an arbitrary adver-
sary, yet they did not provide a proof of security for their protocol. Concurrently, Poupard and Stern [PS98]
proposed a solution that runs in time proportional to the size of the domain from which the primes are sam-
pled, which is exponential in the security parameter. Poupard and Stern made attempts to reduce the running
time by introducing various modifications. However those are not proven, and as they leak some informa-
tion, presenting a proof of security (if at all possible) will not be a trivial thing. A detailed explanation about
this construction and a discussion about the proof complexity appear in Appendix A. This overview implies
that all prior results do not offer an efficient and provable solution for the two-party malicious case.

1.2 Threshold Cryptosystems of Paillier

A threshold cryptosystem is typically involved with two related yet separable components; (1) a distributed
generation of the public-key and sharing of the corresponding secret key of the cryptosystem, and (2) a
decryption/signature computation from a shared representation of the secret key. Threshold schemes are

2

important in settings where no individual party should know the secret key. Prior to this work, solutions
for distributed discrete log-based key generation systems [GJKR07], and threshold encryption/decryption
for RSA [GKR00, Sho00], DSS [GJKR01] and Paillier [FPS00, DJ01, BFP+01] in the multiparty setting,
have been presented. For some cryptosystems (e.g., ElGamal [ElG85]) the techniques from the multiparty
setting can be adapted to the two-party case in a relatively straightforward manner. However, a solution for
a two-party threshold Paillier encryption scheme that is resistant against malicious attacks has proven more
complex and elusive.

Elaborating on these difficulties, we recall that the RSA and Paillier encryption schemes share the same
public/secret keys format of a composite N and its factorization. Moreover, the ciphertexts have a similar
algebraic structure. Thus, it may seem that decryption according to Paillier should follow from the (dis-
tributed) algorithm of RSA, as further discussed in [CGHN01]. Nevertheless, when decrypting as in the
RSA case (i.e., raising the ciphertext to the power of the inverse of N modulo the unknown order), the
decrypter must extract the randomness of the ciphertext in order to complete the decryption. This property
is problematic in the context of simulation based security, because it forces to reveal the randomness of
the ciphertext and does not allow cheating in the decryption protocol. We further recall that by definition,
Paillier’s scheme requires an extra computation in order to complete the decryption (on top of raising the
ciphertext to the power of the secret value) since the outcome from this computation is the plaintext mul-
tiplied with this secret value. In the distributive setting this implies that the parties must keep two types of
shares. Due to these reasons it has been particularly challenging to design a complete threshold system for
Paillier in the two-party setting without the help of a trusted party.

1.3 Our Contribution

In this work, we present the first fully simulatable and complete RSA key generation and Paillier [Pai99]
threshold scheme in the two-party malicious setting. Namely, we define the appropriate functionalities and
prove that our protocols securely realize them. Our formalization further takes into account a subtle issue
in the public-key generation, which was initially noticed by Boneh and Franklin [BF01]. Informally, they
showed that their protocol leaks a certain amount of information about the product, and proved that it does
not pose any practical threat for the security. Nevertheless, it does pose a problem when simulating since the
adversary can influence the distribution of the generated public-key. We therefore also work with a slightly
modified version of the natural definition for a threshold encryption functionality; see the formal definition
in Section 4. In more details, our scheme is comprised of the following protocols:

1. A distributed generation of an RSA composite. We present the first fully simulatable protocol for
securely computing a Blum integer composite as a product of two primes without leaking information
about its factorization (in the sense of [BF01]). Our protocol follows the outlines of [BF01] and
improves the construction suggested by [Gil99] in terms of security level and efficiency; namely we
use an additional trial division protocol on the individual prime candidates which enables us to exclude
many of them earlier in the computation. We note that [Gil99] did not implement the trial division as
part of his protocol, thus our solution is the first for the two-party setting that employs this test. Here
we take a novel approach of utilizing two different additively homomorphic encryption schemes, that
enable to ensure active security at a very low cost. In Appendix C we further show how to extend this
protocol and the biprimality test to the multiparty setting with dishonest majority, presenting the first
actively secure k parties for an RSA generation protocol, that tolerates up to k − 1 corruptions.

2. A distributed biprimality test. We adopt the biprimality test proposed by [BF01] into the malicious
two-party setting and provide a proof of security for this protocol. This test essentially verifies whether
the generated composite is of the correct form (i.e., it is a product of exactly two primes of an appro-
priate length). We further note that the biprimality test by Damgård and Mikkelsen [DM10] has a

3

better error estimate, yet it cannot be used directly in the two-party setting with malicious adversaries.
In Appendix B we adapt their test into the two-party setting when the parties are semi-honest.

3. Distributed generations of the secret key shares. Motivated by the discussion above, we present
a protocol for generating shares for a decryption key of the form d ≡ 1 mod N ≡ 0 mod φ(N).
Specifically, we take the same approach of Damgård and Jurik [DJ01], except that in their threshold
construction the shares are generated by a trusted party. We present the first concrete protocol for this
task with semi-honest security, and then show how to adapt it into the malicious setting.

4. A distributed decryption. Finally, we present a distributed protocol for decrypting according to the
decryption protocol of Damgård and Jurik [DJ01], but for two-parties. Namely, each party raises
the ciphertext to the power of its share and proves consistency. We remark that even though our
decryption protocol is similar to that of [DJ01], there are a few crucial differences: (i) First, since
we only consider two parties, an additive secret sharing suffices. (ii) Secret sharing is done over
the integers rather than attempting to perform a reduction modulo the secret value φ(N) · N . (iii)
Finally, the Damgård-Jurik decryption protocol requires N to be a product of safe-primes to ensure
hardness of discrete logarithms. To avoid this requirement, we ensure equality of discrete logarithms
in different-order groups.

1.4 Efficiency

Distributed RSA Composite. We provide a detailed efficiency analysis for all our subprotocols in Sec-
tion 6. All our subprotocols are round efficient due to parallelization of the generation and testing the
potential RSA composite. This includes the biprimality test and trial division. Moreover, all our zero-
knowledge proofs run in constant rounds and require constant number of exponentiations (except one that
achieves constant complexity on the average). We further note that the probability of finding a random prime
is independent of the method in which it is generated, but rather only depends on the density of the primes
in a given range. We show that due to our optimizations we are able to implement the trial division which
greatly reduces the number of candidates that are expected to be tested, e.g. for a 512 bit prime we would
need to test about 31,000 candidates without the trial division, while the number of candidates is reduced to
484 with the trial division. We give a detailed description of our optimizations in Section 6.

The only alternative to distributively generate an RSA composite with malicious security is using generic
protocols that evaluate a binary or an arithmetic circuit. In this case the circuit must sample the primes
candidates first and test their primality, and finally compute their product. The size of a circuit that tests
primality is polynomial in the length of the prime candidate. Furthermore, the best known binary circuit that
computes the multiplication of two numbers of length n requires O(n log n) gates. This implies a circuit of
polynomial size in n, multiplied withO(n2) which is the required number of trials for successfully sampling
two primes with overwhelming probability. Moreover, generic secure protocols are typically proven in the
presence of malicious attacks using the cut-and-choose technique, which requires sending multiple instances
of the garbled circuit [LP11]. Specifically, the parties repeat the computation a number of times such that
half of these computations are examined in order to ensure correctness. The best cut-and-choose analysis is
due to [Lin13] which requires that the parties exchange 40 circuits (with some additional overhead). This
technique inflates the communication and computation overheads.

Protocols that employ arithmetic circuits [BDOZ11b, DPSZ12] work in the preprocessing model where
the parties first prepare a number of triples of multiplications that is proportional to the circuit’s size, and
then use them for the circuit evaluation in the online phase. Therefore the number of triples is proportional
to the size of the circuit that tests primality times the number of trials. On the other hand, our protocol
presents a relatively simpler approach with a direct design of a key generation protocol without building

4

a binary/arithmetic circuit first, which is fairly complicated for this task. This follows for the multi-party
setting as well since our protocol is the first protocol that achieves security in the malicious setting.

Threshold Paillier. This phase is comprised out of two protocols. First, the generation of the multi-
plicative key shares protocol, which is executed only once, and requires constant overhead and constant
round complexity. The second protocol for threshold decryption is dominated by the invocation of a zero-
knowledge proof which requires constant number of exponentiations for long enough challenge (see more
discussion about this proof in Section 3.2, Item 5). For batch decryption the technique of Cramer and
Damgård [CD09] can be used to achieve amortized constant overhead. Our protocols are the first secure
protocols in the two-party malicious setting.

Additional practical considerations are demonstrated in Section 6.3.

1.5 Experimental Results

We further present an implementation of Protocol 1 with security against semi-honest adversaries. Our
primary goal is to examine the overall time it takes to generate an RSA composite of length 2048 bits in
case the parties do not deviate, and identify bottlenecks. The bulk of our implementation work is related to
reducing the computational overhead of the trial division phase which is the most costly phase. Namely,
based on our study of the resources required by the parties for generating a legal RSA composite, we
concluded that the DKeyGen protocol is too expensive for real world applications (at least 3 hours running
time). We therefore focused on algorithmic improvements of the performance of this phase, which lead to
two optimizations: protocol BatchedDec and protocol LocalTrialDiv; details below. In addition, to improve
the overhead relative to the ElGamal PKE, we implement this scheme on elliptic curves using the MIRACL
library [MIR] and use the elliptic curve P-192 [FIP09] based on Ecrypt II yearly report [ECR11]; see [INI99,
SEC00] for more practical information. A brief background on elliptic curves in found in Section 7.1.1.

BatchedDec protocol The underlying idea of the first optimization is due to the performance analysis of
the decryption operation carried out within our composite generation protocol (executed within the trial divi-
sion protocol). Specifically, we observed that the decryption operation is the most expensive cryptographic
operation. To to improve this overhead we modified the decryption protocol in order to let the parties collect
the results of several trial division rounds and decrypt all the results at once when needed. This implemen-
tation improved the overhead by much and required 40 minutes on the average in order to generate a 2048
bits RSA composite.

LocalTrialDiv protocol The second optimization is focused on reducing the usage of expensive cryp-
tographic operations by taking alternative cheaper approaches. This protocol variant permits to securely
compute a 2048 bits RSA composite in 15 minutes on the average.

Security for our two optimizations follows easily. Our detailed results can be found in Section 7.

2 Preliminaries

We denote the security parameter by n. A function µ(·) is negligible in n (or just negligible) if for every
polynomial p(·) there exists a value m such that for all n > m it holds that µ(n) < 1

p(n) . Let X =

{X(n, a)}n∈N,a∈{0,1}∗ and Y = {Y (n, a)}n∈N,a∈{0,1}∗ be distribution ensembles. Then, we say that X

5

and Y are computationally indistinguishable, denoted X
c≡ Y , if for every non-uniform probabilistic

polynomial-time distinguisher D there exists a negligible function µ(·) such that for every a ∈ {0, 1}∗,

|Pr[D(X(n, a)) = 1]− Pr[D(Y (n, a)) = 1]| < µ(n)

We adopt the convention whereby a machine is said to run in polynomial-time if its number of steps is
polynomial in its security parameter. We use the shorthand PPT to denote probabilistic polynomial-time.

2.1 Hardness Assumptions

Our constructions rely on the following hardness assumptions.

Definition 2.1 (DDH) We say that the decisional Diffie-Hellman (DDH) problem is hard relative to G =
{Gn} if for any PPT algorithm A there exists a negligible function negl such that∣∣∣Pr [A(G, q, g, gx, gy, gz) = 1]− Pr [A(G, q, g, gx, gy, gxy) = 1]

∣∣∣ ≤ negl(n),

where q is the order of G and the probabilities are taken over the choices of g and x, y, z ∈ Zq.

Definition 2.2 (DCR) We say that the decisional composite residuosity (DCR) problem is hard if for any
PPT algorithm A there exists a negligible function negl such that∣∣∣Pr

[
A(N, z) = 1|z = yN mod N2

]
− Pr

[
A(N, z) = 1|z = (N + 1)r · yN mod N2

] ∣∣∣ ≤ negl(n),

where N is a random n-bit RSA composite, r is chosen at random in ZN , and the probabilities are taken
over the choices of N, y and r.

2.2 Public-Key Encryption Schemes

We begin by specifying the definitions of public-key encryption and IND-CPA security. We conclude with
a definition of homomorphic encryption, specifying two encryption schemes that meet this definition.

Definition 2.3 (PKE) We say that Π = (Gen,Enc,Dec) is a public-key encryption scheme if Gen,Enc,Dec
are polynomial-time algorithms specified as follows:

• Gen, given a security parameter n (in unary), outputs keys (pk, sk), where pk is a public-key and sk
is a secret key. We denote this by (pk, sk)← Gen(1n).

• Enc, given the public-key pk and a plaintext message m, outputs a ciphertext c encrypting m. We
denote this by c ← Encpk(m); and when emphasizing the randomness r used for encryption, we
denote this by c← Encpk(m; r).

• Dec, given the public-key pk, secret key sk and a ciphertext c, outputs a plaintext messagem s.t. there
exists randomness r for which c = Encpk(m; r) (or ⊥ if no such message exists). We denote this by
m← Decpk,sk(c).

For a public-key encryption scheme Π = (Gen,Enc,Dec) and a non-uniform adversary A = (A1,A2), we
consider the following IND-CPA game:

(pk, sk)← Gen(1n).

(m0,m1, history)← A1(pk), s.t. |m0| = |m1|.
c← Encpk(mb), where b ∈R {0, 1}.
b′ ← A2(c, history).

A wins if b′ = b.

6

Denote by AdvΠ,A(n) the probability that A wins the IND-CPA game.

Definition 2.4 (IND-CPA) A public-key encryption scheme Π = (Gen,Enc,Dec) is semantically secure, if
for every non-uniform adversaryA = (A1,A2) there exists a negligible function negl such that AdvΠ,A(n) ≤
1
2 + negl(n).

An important tool that we exploit in our construction is homomorphic encryption over an additive group as
defined below.

Definition 2.5 (Homomorphic PKE) A public-key encryption scheme (Gen,Enc,Dec) is homomorphic if
for all n and all (pk, sk) output by Gen(1n), it is possible to define groups M,C such that:

• The plaintext space is M, and all ciphertexts output by Encpk are elements of C.

• For any m1,m2 ∈M and c1, c2 ∈ C with m1 = Decsk(c1) and m2 = Decsk(c2), it holds that

{pk, c1, c1 ·c2} ≡ {pk,Encpk(m1),Encpk(m1 +m2)}

where the group operations are carried out in C and M, respectively, and the encryptions of m1 and
m1 +m2 use independent randomness.

Any additive homomorphic scheme supports the multiplication of a ciphertext by a scalar by computing
multiple additions.

2.2.1 The Paillier Encryption Scheme

The Paillier encryption scheme [Pai99] is an example of a public-key encryption scheme that meets Defini-
tion 2.5. We focus our attention on the following, widely used, variant of Paillier comprised of algorithms
(Gen,Enc,Dec). Namely, the key generation algorithm, Gen, chooses two equal length primes p and q and
outputs a public-key pk that equals N = pq, and a matching secret-key sk = φ(N). We use a simplified
encryption function proposed by Damgård and Jurik [DJ01], where g = N+1 is a generator of the subgroup
of ZN2 of order N . Thereby, encryption of a plaintext m with randomness r ∈R Z∗N (ZN in practice) is
computed by,

EN (m, r) = rN · (N + 1)m mod N2.

Finally, decryption is performed by,

Decsk(c) =
[cφ(N) mod N2]− 1

N
· φ(N)−1 mod N.

The security of Paillier is implied by the Decisional Composite Residuosity Assumption (DCR).

2.2.2 Additively Homomorphic ElGamal Variant

In our protocols we further use an additively homomorphic variation of ElGamal encryption [ElG85].
Namely, let G be a group generated by g of prime order Q, in which the decisional Diffie-Hellman (DDH)
problem is hard. A public-key is then a pair pk = (g, h) and the corresponding secret key is s = logg(h),
i.e. gs = h. Encryption of a message m ∈ ZQ is defined as Encpk(m; r) = (gr, hr · gm) where r is picked
uniformly at random in ZQ. Decryption of a ciphertext (α, β) is then performed as Decsk(α, β) = β · α−s.
Note that decryption yields gm rather than m. As the discrete log problem is hard, we cannot in general
hope to determine m. Fortunately, we only need to distinguish between zero and non-zero values, hence the

7

lack of “full” decryption is not an issue. We abuse notation and write c · c′ to denote the componentwise
multiplication of two ciphertexts c and c′, computed by (α · α′, β · β′), where c = (α, β) and c′ = (α′, β′).

We require that the parties run a threshold version for ElGamal for generating a public-key and additive
shares for the secret key, as well as a distributive decryption protocol. The key generation construction
can be easily obtained based on the Diffie-Hellman protocol [DH76] with additive shares. A distributive
decryption follows easily as well. We denote the distributed key generation protocol by πGEN and the
distributed decryption protocol by πDEC.

2.3 Integer Commitment Schemes

In order to ensure correct behavior of the parties (and do so efficiently), our key generation protocol utilizes
integer commitments which rely on the fact that the committer does not know the order of the group G,
denoted by |G|, from which it picks the committed elements. Therefore, it cannot decommit into two
different values, such as m and m + |G|. This property is crucial for ensuring that the parties’ shares are
indeed smaller than some threshold. An example of such a commitment is the Paillier based scheme of
Damgård and Nielsen [DN02, DN03], which is comprised of the following two algorithms:

1. SETUP. The receiver, R, generates a Paillier key N , i.e. an RSA modulus. It then picks r at random
in Z∗N2 , computes g = rN , and sends N, g to the committing party, C, along with zero-knowledge
proofs that N is an RSA modulus and that g is a Paillier encryption of zero.

2. COMMIT/OPEN. To commit to m ∈ ZN , C picks rm at random in ZN and computes Com (m; rm) =
gm · rNm . To open, C simply reveals rm and m to R.

HIDING/BINDING. The scheme is perfectly hiding, as a commitment is simply a random encryption of zero.
Further, opening to two different values implies an N th root of g (which breaks the underlying assumption
of Paillier, i.e., DCR).

2.4 Σ-Protocols

Definition 2.6 (Σ-protocol) A protocol π is a Σ-protocol for relation R if it is a 3-round public-coin pro-
tocol and the following requirements hold:

• COMPLETENESS: If P and V follow the protocol on input x and private input w to P where (x,w) ∈
R, then V always accepts.

• SPECIAL SOUNDNESS: There exists a polynomial-time algorithm A that given any x and any pair of
accepting transcripts (a, e, z), (a, e′, z′) on input x, where e 6= e′, outputs w such that (x,w) ∈ R.

• SPECIAL HONEST-VERIFIER ZERO KNOWLEDGE: There exists a PPT algorithm M such that{
〈P (x,w), V (x, e)〉

}
x∈LR

≡
{
M(x, e)

}
x∈LR

where M(x, e) denotes the output of M upon input x and e, and 〈P (x,w), V (x, e)〉 denotes the
output transcript of an execution between P and V , where P has input (x,w), V has input x, and
V ’s random tape (determining its query) equals e.

2.5 Security in the Presence of Malicious Adversaries

In this section we briefly present the standard definition for secure two-party computation and refer to [Gol04,
Chapter 7] for more details and motivating discussion.

8

Two-party computation. A two-party protocol problem is cast by specifying a random process that maps
pairs of inputs to pairs of outputs (one for each party). We refer to such a process as a functionality and
denote it f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗, where f = (f1, f2). That is, for every pair of
inputs (x, y), the output-vector is a random variable (f1(x, y), f2(x, y) ranging over pairs of strings where
P0 receives f1(x, y) and P1 receives f2(x, y). We sometimes denote such a functionality by f(x, y) 7→
(f1(x, y), f2(x, y)).

Adversarial behavior. Loosely speaking, the aim of a secure two-party protocol is to protect honest par-
ties against dishonest behavior by other parties. In this section, we outline the definition for malicious
adversaries who control some subset of the parties and may instruct them to arbitrarily deviate from the
specified protocol. We also consider static malicious corruptions.

Security of protocols (informal). The security of a protocol is analyzed by comparing what an adversary
can do in a real protocol execution to what it can do in an ideal scenario that is secure by definition. This is
formalized by considering an ideal computation involving an incorruptible trusted third party to whom the
parties send their inputs. The trusted party computes the functionality on the inputs and returns to each party
its respective output. Loosely speaking, a protocol is secure if any adversary interacting in the real protocol
(where no trusted third party exists) can do no more harm than if it was involved in the above-described ideal
computation. One technical detail that arises when considering the setting of no honest majority is that it is
impossible to achieve fairness or guaranteed output delivery [Cle86]. That is, it is possible for the adversary
to prevent the honest party from receiving outputs. Furthermore, it may even be possible for the adversary
to receive output while the honest party does not.

Execution in the ideal model. In an ideal execution, the parties send their inputs to the trusted party who
computes the output. An honest party just sends the input that it received whereas a corrupted party can
replace its input with any other value of the same length. Since we do not consider fairness, the trusted party
first sends the output of the corrupted parties to the adversary, and the adversary then decides whether the
honest parties receive their (correct) outputs or an abort symbol⊥. Let f be a two-party functionality where
f = (f1, f2), let A be a non-uniform probabilistic polynomial-time machine, and let I ⊆ [2] be the set of
corrupted parties (either P0 is corrupted or P1 is corrupted or neither). Then, the ideal execution of f on
inputs (x, y), auxiliary input z to A and security parameter n, denoted IDEALf,A(z),I(x, y, n), is defined as
the output pair of the honest party and the adversary A from the above ideal execution.

Execution in the real model. In the real model there is no trusted third party and the parties interact
directly. The adversaryA sends all messages in place of the the corrupted party, and may follow an arbitrary
polynomial-time strategy. In contrast, the honest parties follow the instructions of the specified protocol π.

Let f be as above and let π be a two-party protocol for computing f . Furthermore, let A be a non-
uniform probabilistic polynomial-time machine and let I be the set of corrupted parties. Then, the real exe-
cution of π on inputs (x, y), auxiliary input z toA and security parameter n, denoted REALπ,A(z),I(x, y, n),
is defined as the output vector of the honest parties and the adversary A from the real execution of π.

Security as emulation of a real execution in the ideal model. Having defined the ideal and real models,
we can now define security of protocols. Loosely speaking, the definition asserts that a secure party protocol
(in the real model) emulates the ideal model (in which a trusted party exists). This is formulated by saying
that adversaries in the ideal model are able to simulate executions of the real-model protocol.

9

Definition 2.7 Let f and π be as above. Protocol π is said to securely compute f with abort in the
presence of malicious adversaries if for every non-uniform probabilistic polynomial-time adversary A
for the real model, there exists a non-uniform probabilistic polynomial-time adversary S for the ideal model,
such that for every I ⊆ [2],{

IDEALf,S(z),I(x, y, n)
}
x,y,z∈{0,1}∗,n∈N

c≡
{

REALπ,A(z),I(x, y, n)
}
x,y,z∈{0,1}∗,n∈N

where |x| = |y|.

Reactive functionalities. Until now we have considered the secure computation of simple functionalities
that compute a single pair of outputs from a single pair of inputs. However, not all computations are of this
type. Rather, many computations have multiple rounds of inputs and outputs. Furthermore, the input of a
party in a given round may depend on its output from previous rounds, and the outputs of that round may
depend on the inputs provided by the parties in some or all of the previous rounds. In the context of secure
computation, multi-phase computations are typically called reactive functionalities. Such functionalities
can be modeled as a series of functions (f1, f2, . . .) where each function receives some state information
and two new inputs. That is, the input to function f j consists of the inputs (xj , yj) of the parties in this
phase, along with a state input σj−1 output by f j−1. Then, the output of f j is defined to be a pair of outputs
f j1 (xj , yj , σj−1) for P1 and f j2 (xj , yj , σj−1) for P2, and a state string σj to be input into f j+1. We stress that
the parties receive only their private outputs, and in particular do not receive any of the state information; in
the ideal model this is stored by the trusted party.

3 Zero-Knowledge Proofs

In order to cope with malicious adversaries, our protocols employ zero-knowledge (ZK) proofs. In this
section we provide a description of the proofs we use; while some of these proofs are known, others are new
to this work and are interesting by themselves. We note that except from a single proof, all proofs require
a strict constant overhead. Fortunately, since our proofs are employed for multiple instances, the analysis
of [CD09] ensures that the average overhead is constant; details follow.

3.1 Discrete Logarithms

1. The following Σ-protocol, denoted by πDL, demonstrates knowledge of a discrete logarithm. The
proof follows due to Schnorr [Sch91].

RDL = {((G, g, h) , w) | h = gw} .

2. The Σ-protocol πDH demonstrates that a quadruple (g0, g1, h0, h1) is a Diffie-Hellman tuple, i.e. that
logg0(h0) = logg1(h1) for gi, hi ∈ G. This proof is due to Chaum and Pedersen [CP92].

RDH = {((G, g0, g1, h0, h1)w) | hi = gwi for i ∈ {0, 1}} .

3.2 Plaintext Relations

1. Protocol πENC demonstrates knowledge of an encrypted plaintext.

RENC = {((c, pk), (α, r)) | c = Encpk(α; r)} .

The protocols are due to Schnorr [Sch91] (for ElGamal encryption) and Cramer et al. [CDN01] (for
Paillier encryption).

10

2. Protocol πZERO demonstrates that a ciphertext c is an encryption of zero and is captured by the fol-
lowing language.

LZERO = {((c, pk), r) | c = Encpk(0; r)} .
For ElGamal this is merely πDH, demonstrating that the key and ciphertext are a Diffie-Hellman tuple.
For Paillier encryption this is a proof of N th power shown by [DJ01].

3. The zero-knowledge proof of knowledge πMULT proves that the plaintext of c2 is the product of the
two plaintexts encrypted by c0, c1. More formally,

RMULT = {((c0, c1, c2, pk) , (α, rα, r0)) | c1 = Encpk(α; rα) ∧ c2 = cα0 · Encpk(0; r0)} ;

This proof is due to Damgård and Jurik [DJ01] (for both Paillier and ElGamal). A similar proof
of knowledge is possible for commitment schemes, when the contents of all three commitments are
known to the prover, [DN02, DN03]; this is required in πBOUND below.

4. Protocol πBOUND demonstrates boundedness of an encrypted value, i.e. that the plaintext is smaller
than some public threshold B. Formally,

LBOUND = {((c, pk,B), (α, r)) | c = Encpk(α; r) ∧ α < B ∈ N} .

The “classic” solution is to provide encryptions to the individual bits and prove in zero-knowledge
that they are bits using the compound proof of Cramer et al. [CGS97]. The actual encryption is then
constructed from these.

An alternative is to take a detour around integer commitments; this allows a solution requiring only
O(1) exponentiations [Bou00, Lip03, DJ02]. Sketching the solution, the core idea is to commit to α
using a homomorphic integer commitment scheme; the typical suggestion is schemes such as [FO97,
DF02]. The prover then demonstrates that α and B − 1− α are non-negative (using the fact that any
non-negative integer can be phrased as the sum of four squares), implying that 0 ≤ α < B. Finally,
the prover demonstrates that the committed value equals the encrypted value. For simplicity, we use
the commitment scheme of Section 2.3. Note that for small B, the classic approach may be preferable
in practice.

5. The proof πEQ is of correct exponentiation in the group G with encrypted exponent (where the en-
cryption scheme does not utilize the description of G). Formally,

REQ =
{(

(c, pk,G, h, h′), (α, r)
)
| α ∈ N ∧ c = Encpk(α; r) ∧ h, h′ ∈ G ∧ h′ = hα

}
.

The protocol is a simple cut and choose approach; its idea is originates from [CKY09]. Namely,
the prover selects at random s, rs and sends cs = Encpk(s, rs) and hs to the verifier, who returns a
random challenge bit b. The prover then replies with α · b+s and rb ·rs, i.e. it sends either s or s+m.
Privacy of α is ensured as long as the bit length of s is longer than the bit length of α by at least κ
bits, where κ is a statistical parameter (fixing κ = 100 is typically sufficient to mask α). Note that it
is only possible to answer both challenges if the statement is well-formed and thus the proof is also a
proof of knowledge. Finally, we note that the protocol must be repeated in order to obtain negligible
soundness. For a challenge of length 1 inducing soundness 1/2, the number of repetitions must be
ω(log n) for n the security parameter. Reducing the number of repetitions is possible by increasing
the length of the challenge. However, in this case we must ensure that α · b+ s is still private, namely,
s is longer than the bit length of α plus the bit length of b, by at least κ. We point out that we can
obtain constant amortized cost for multiple instances when the proof is instantiated with the technique
of [CD09]. Indeed, we employ this proof multiple times when checking primality and potentially, for
multiple decryptions. In this work, we instantiate Enc with the ElGamal PKE.

11

3.3 Public-Key and Ciphertext Relations

1. We include the folklore protocol πRSA for proving that N and φ(N) are co-prime for some integer N ,
i.e. the protocols demonstrate membership of the language,

LRSA = {(N,φ(N)) | N ∈ N ∧GCD (N,φ(N)) = 1} .

The solution is to let the verifier pick x = yN and prove the knowledge of an N th root (essentially
execute the Paillier version of πZERO). The prover (who generated N) returns an N th root y′. If
GCD (N,φ(N)) = 1, then y is unique, hence y = y′. Otherwise there are multiple candidates, and
the probability that y = y′ is ≤ 1/2. This is repeated (in parallel) until a sufficiently low probability
is reached. We note that this protocol is used only once, therefore its overhead does not dominate the
analysis. Constructing a simulator is straightforward by simply extracting y first and then sending it
to the verifier.

2. We also require a zero-knowledge proof, πMOD, for proving consistency between two ciphertexts in
the sense that one plaintext is the other one reduced modulo a fixed public prime. This proof is
required for proving correctness within the trial division stage included in the key generation protocol
(cf. Section 4). Formally,

LMOD =
{(

(c, c′, p, pk), (α, r, r′)
)
| c = Encpk(α; r) ∧ c′ = Encpk(α mod p; r′)

}
.

Informally, the parties additionally compute c′′ =
(
c · (c′)−1

)p−1

, which is an encryption of α div p
(assuming that c′ is correct). The prover then executes πBOUND twice, on (c′, p) and on (c′′, dM/pe),
whereM is an upper bound on the size of α. This demonstrates that α has been decomposed correctly,
i.e. that the division has been performed correctly.

3. For public Paillier key N , we require Σ-protocol πEXP−RERAND that allows a prover to demonstrate
that ciphertext c′ is in the image of φ : ZN × Z∗N2 7→ Z∗N2 , defined by φ(m, r) = cm · rN mod N2

for a fixed ciphertext c ∈ Z∗N2 . Namely,

LEXP−RERAND =
{((

N, c, c′
)
, (m, r)

)
| c′ = cm · rN

}
In order to demonstrate this, the prover picks v, rv at random, and sends A = φ(v, rv) to the verifier,
who responds with a challenge e < N . The verifier then replies with (z1, z2) = (me+ v, rerv), and
the verifier checks that φ(z1, z2) = (c′)e ·A.

This is a Σ-protocol. To see this, note first that it is straightforward to verify completeness. Special
soundness follows from the fact that for two accepting conversions (A, e, (z1, z2)) and (A, e′, (z′1, z

′
2))

with e 6= e′, we may find integers α, β such that α(e−e′) +βN = 1 using Euclid’s algorithm (unless
(e − e′, N) are not co-prime, which implies that we have found a factor of N). It is easily verified
that (α(z1 − z′1); (z2/z

′
2)α · (c′)β) is a preimage of c′ under φ. Finally, the simulator for the special

honest-verifier zero-knowledge is straightforward: given a commitment, pick (z1, z2) at random and
compute A.

3.3.1 A Zero-Knowledge Proof for πVERLIN

In this section we give the details of ZK proof πVERLIN used in Step 3a of Protocol 1 and in proving cor-
rectness in Protocol 3. Let NP be a public Paillier key, with g = NP + 1 generating the plaintext group.
πVERLIN is a Σ-protocol allowing a prover P to demonstrate to a verifier V that a Paillier ciphertext, cx

12

has been computed based on two other ciphertexts c and c′ as well as a known value, i.e. that P knows a
preimage of cx with respect to

φ(c,c′)

(
x, x′, x′′, rx

)
= cx · c′x

′
· Encpk

(
x′′, rx

)
.

This is done by first picking a, a′, a′′ uniformly at random from ZNP and ra uniformly at random from Z∗NP ,
and sending

ca = φ(c,c′)

(
a, a′, a′′, ra

)
to the verifier, V . V then picks a uniformly random t-bit challenge,1 e, and sends this to P , who replies with
the tuple (

z, z′, z′′, rz
)

=
(
xe+ a, x′e+ a′, x′′e+ a′′, rexra

)
.

V accepts if and only if φ(c,c′) (z, z′, z′′, rz) = cex · ca.

Proposition 3.1 Assuming hardness of the DCR problem, πVERLIN is a Σ-protocol with constants costs.

Proof: We prove that all three properties required for Σ-protocols (cf. Definition 2.6) are met.

Completeness. An honest prover always convinces the verifier, since

φ(c,c′)

(
z, z′, z′′, rz

)
= φ(c,c′)

(
xe+ a, x′e+ a′, x′′e+ a′′, rexra

)
= cxe+a · c′x

′e+a′ · gx′′e+a′′ · (rexra)
NP

=
(
cx · c′x

′
· gx′′ · rNPx

)e
·
(
ca · c′a

′
· ga′′ · rNPa

)
= cex · ca

Special soundness. A preimage of cx may be computed given two accepting conversations with same
initial message, ca, and differing challenges e 6= ē. Denote the final messages of the two executions
(z, z′, z′′, rz) and (z̄, z̄′, z̄′′, rz̄), and compute integers α and β such that

α (e− ē) + β ·NP = 1

using the extended Euclidian algorithm. This is always possible as e − ē and NP are co-prime. It is
straightforward but tedious to verify that(

α (z − z̄) , α
(
z′ − z̄′

)
, α
(
z′′ − z̄′′

)
,
(
rz · r−1

z̄

)α · (cx mod NP)β
)

is a preimage of cx, briefly

φ(c,c′)

(
α (z − z̄) , α

(
z′ − z̄′

)
, α
(
z′′ − z̄′′

)
,
(
rz · r−1

z̄

)α · (cx mod NP)β
)

= (cex · ca)
α /
(
cēx · ca

)α · ((cx mod NP)β
)NP

= cα(e−ē)
x · cβ·NPx

= cx.

1Choose t such that 2t is smaller than any prime factor of NP . This guarantees that the difference between challenges is
co-prime to NP .

13

Special Honest-Verifier Zero-knowledge. Accepting transcripts are easily simulated. Given challenge e,
pick z, z′, z′′ uniformly at random from ZNP and rz uniformly at random from Z∗NP . Then, compute

ca = φ(c,c′)

(
z, z′, z′′, rz

)
· c−ex .

Clearly, this is an accepting conversation. Moreover, for preimage (x, x′, x′′, rx) (i.e., the witness),(
z − ex, z′ − ex′, z′′ − ex′′, rz · r−ex

)
is uniformly random, and a preimage of ca, i.e. it corresponds to the choice of (a, a′, a′′, ra); hence ca is
distributed as in the real protocol. Finally, given this random choice and a witness, (z, z′, z′′, rz) is exactly
the final message that an honest prover would send.

4 A Distributed Generation of an RSA Composite

This section presents a protocol, denoted DKeyGen, for distributively generating an RSA composite without
disclosing any information about its factorization and with security against malicious activities. In this
protocol the parties generate candidates for the potential composite which they run through a biprimality
test for checking its validity. Our protocol is useful for designing distributive variants of the RSA encryption
and signature schemes, as well as other schemes that rely on factoring related hardness assumptions. In
this paper we use this protocol for distributively generating the public-key for Paillier [Pai99] encryption
scheme. The starting point for DKeyGen is the protocols of [BF01, Gil99]. These protocols are designed
to distributively generate an RSA composite N = p · q with an unknown factorization. Specifically, the
protocol by Boneh and Franklin [BF01] assumes honest majority, whereas the protocol by Gilboa [Gil99]
adopts ideas from [BF01] into the two-party setting; both are secure in the semi-honest setting.

Recall that when coping with malicious adversaries it must be assured that the parties follow the proto-
col specifications. In our context this means that the parties’ shares must be of the appropriate length and
that no party gains any information about the factorization of N , even by deviating.2 This challenging task
is typically addressed by adding commitments and zero-knowledge proofs to each step of the protocol. Un-
fortunately, this is usually not very practical since the statements that needed to be proven are complicated,
and therefore leading to highly inefficient protocols. Instead, we will be exploiting specific protocols for
our tasks (some new to this work), that are both efficient and fully secured. By proper analysis of where
to use the zero knowledge proofs, which proofs to use and moreover, by a novel technique of utilizing two
different encryption schemes with different homomorphic properties, we achieve a highly efficient key gen-
eration protocol. It should be noted that except for the setup step which is only executed once we can avoid
expensive zero knowledge proofs based on the cut and choose technique. Additional optimizations can be
found in Section 6.

For the sake of completeness we include a short description of [BF01] as adapted by [Gil99] for the
two-party setting. These protocols consist of the following three steps: (1) Each party Pi generates two
random numbers pi and qi representing shares of p and q, such that p =

∑
i pi, q =

∑
i qi and p ≡ q ≡ 3

(mod 4). We note that [BF01] includes a distributed trial division of p and q for primes less than a boundB,
which greatly improves the efficiency of the protocol. This trial division is not adopted by [Gil99], making
our solution the first two party protocol achieving the significant speedup from this trial division. (2) After

2In some settings, early abort may not be considered as a breach of security (even if the abort occurs as a result of gaining
information about the factorization of the public-key). This is due to the fact that the honest party halts as well, outputting ⊥.
Thus, essentially, no damage was caused. However, this is not true for applications where the shares are chosen based on the
honest party’s secret state. Realizing this functionality requires to incorporate into it a secret state of the users. Unfortunately, our
protocol cannot compute this functionality in a secure manner, as it must be that the composite generation and the biprimality test
run together. Meaning, the parties only learn the composite if it is accepted by the biprimality test.

14

having created the two candidates for being primes the parties execute a secure multiplication protocol to
compute N = (p0 + p1)(q0 + q1). In [BF01] this step is based on standard generic solutions. Here we
take a novel approach of utilizing both ElGamal and Paillier encryption schemes, giving us active security
at a very low cost. Generating the RSA composite this way does not guarantee that the composite is made
of uniformly random primes since the adversary can, in some limited way, influence the distribution of the
primes. This issue was observed in [BF01] and discussed further below. (3) Finally, the candidate N for
being an RSA composite is tested by a distributed biprimality test, which requires p ≡ q ≡ 3 (mod 4). If
the biprimality test rejects N as being a proper RSA modulus, the protocol is restarted.

Typically, the definition for the key generation algorithm requires that the RSA composite would be
a product of two randomly chosen equal length primes p and q. However, in order to use the distributed
biprimality test of Boneh and Franklin N must be a Blum integer (namely, N = pq, where p ≡ q ≡ 3
mod 4). Note that this is a common requirement for distributed biprimality tests and it does not decrease
the security of the constructions that use these type of keys, since about 1/4 of all the RSA modulus are
Blum integers. Moreover, as pointed out by [BF01], the parties can always influence the distribution of the
most significant bit of each prime. This is because p and q are generated by adding shares over the integers
which implies that they are not uniformly random, so that each party has some (limited) knowledge of the
distribution based on its shares.

We will therefore define a new public-key generation algorithm, Gen′, which captures this deviation
and generates N by the same distribution as the protocol. This is obtained by Gen′ receiving additional
two inputs rp and rq, representing potential adversary’s input shares. Gen′ adds this shares to some truly
random chosen shares and ensures that the sum is congruent to 3 mod 4. Formally, let Gen′(1n, rp, rq)
denote a public-key generation that takes two additional inputs besides the security parameter 1n and works
as follows:

1. If rp, rq ≥ 2n−2 output ⊥ and halt.

2. Otherwise, choose a uniform random sp ∈ {0, 1}n−2.

3. Calculate p = 4(rp + sp) + 3 and examine the outcome:

• if p is composite, then goto Step 2 and choose a new value for sp.

• if p is prime, then repeat the process to generate q.

4. Return N = pq, and generate the private key as in Gen.

As proven by Boneh and Franklin, using Gen′ instead of Gen does not give the adversary the ability to
factor N even if it can slightly influence its distribution. We formally state the security statement proven
by [BF01],

Lemma 4.1 (Revised [BF01, Lemma 2.1]) Suppose there exists a PPT algorithm B that chooses values
(rp, rq) as above, then given N ← Gen′(1n, rp, rq) and finally, factors N with probability at least 1/nd.
Then there exists an expected polynomial time algorithm B′ that factors a random RSA modulus with n-bit
factors with probability at least 1/(27nd).

This lemma was originally stated for semi-honest adversaries but holds for the malicious case as well. We
note that protocols with p and q being chosen as uniform random values do exist, however, they are sig-
nificantly less efficient. Therefore, we choose to accept this nonuniform distribution induced by protocol
DKeyGen and let the ideal functionality capture this deviation. Functionality FGEN formalizes this discus-
sion in Figure 1.

We are now ready to describe our protocol which in addition to the above three steps includes a key-
setup step used to generate keys for commitments and encryption schemes used in the protocol. Namely, a

15

Functionality FGEN

Key Generation: Upon receiving from party Pi a (Generate, 1n) message, functionality FTHRES sends a mes-
sage (RandInput) to the adversary and waits for the adversary to reply with (GenInput, ra, rb). FTHRES

then invokes (pk, sk)←Gen′(1n, ra, rb), records sk and sends pk to the adversary. If the adversary replies
allow, the functionality sends pk to the parties, ignoring further messages of this form. Otherwise, it sends
⊥ to the honest party.

Figure 1: The RSA Modulus Generation Functionality

shared key is generated for the distributed additively homomorphic ElGamal encryption scheme and each
party generates a key for standard non-distributive Paillier encryption and integer commitments. We observe
that the reason for using both ElGamal and Paillier is due to efficiency considerations. Namely, most zero-
knowledge proofs used here can be implemented in an efficient manner when applied on ElGamal (with a
known group order), rather than on Paillier. Nevertheless, the plaintext cannot be recovered efficiently and
therefore we use Paillier in a non-distributive fashion. We note that consistency between the encryptions
using Paillier and ElGamal is only proven implicitly, by repeating the computations and verifying that the
two executions give the same result. In addition, the fact that a distributive ElGamal variant can be easily
obtained allows us to design a the trial division test that is run on individual primes and improves the
numbers of trials. In order to cope with malicious adversaries our protocols employ zero-knowledge (ZK)
proofs, some are known, others are new to this work and are interesting by themselves. We note that all the
proofs that participate in Protocol 1 require a strict constant overhead. In Section 3 we specify these proofs
in detail.

Protocol 1 [DKeyGen] A distributed generation of an RSA composite with malicious security:

• Inputs for parties P0, P1: A security parameter 1n and a threshold B for the trial division.

1. Key-Setup.

(a) The parties run protocol πGEN (cf. Section 2.2.2) for generating a public-key pkEG = (g, h) and secret
key shares sk0EG and sk1EG for ElGamal.

(b) Each party Pi generates a Paillier key pair (pkiPa, sk
i
Pa) with a modulus bit length of λ > 2n, and sends

pkiPa = N i
Pa to the other party. Each party proves correctness of N i

Pa by πRSA (cf. Section 3). The Paillier
keys are used for encryptions and commitments (cf. Sections 2.2.1, 2.3)

2. Generate Candidates.

(a) Generate Shares of Candidate. Each party Pi picks a random (n−2)-bit value p̄i, encrypts it and sends
c̄i = EncpkEG(p̄i) to the other party. The parties prove knowledge of the plaintexts, via πENC, and prove
that p̄i < 2n−2 via πBOUND.
In order to ensure that p0 ≡ 3 mod 4, the parties compute c0 ← (c̄0)

4 ·EncpkEG
(3). Similarly, the parties

ensure that p1 ≡ 0 mod 4 by c1 ← (c̄1)
4.

(b) Trial division. For all primes α ≤ B, the parties run a trial division on p = p0 + p1. Each party Pi
sends an encryption c(α)i = EncpkEG(pi mod α) to the other party, and proves the correctness of the
computation using πMOD.

The parties compute c(α) ← c
(α)
0 · c(α)1 and c̃(α) ← c(α) · EncpkEG

(−α). Clearly α divides p if and
only if p(α)0 + p

(α)
1 ∈ {0, α}, i.e. when either c(α) or c̃(α) is an encryption of zero. This is checked by

raising these to secret, non-zero exponents and decrypting. If no prime α < B divides the candidate it is
accepted by trial division.

(c) Repeat. Repeat Steps 2a- 2b until two candidates p and q survive trial division.

16

3. Compute Product (N = pq).

(a) Compute the product. P0 sends P1 encryptions of p̃0 = p0 and q̃0 = q0 under pk0Pa and proves
knowledge of plaintexts using πENC. (Note that a malicious P0 may send encryptions of incorrect values).
Next, P1 computes and sends:

cÑ−p̃0q̃0 ← Encpk0Pa
(p0)q1 · Encpk0Pa

(q0)p1 · Encpk0Pa
(p1q1) = Encpk0Pa

((p0 + p1)(q0 + q1)− p0q0)

Furthermore, P1 proves that cÑ−p̃0q̃0 has been computed as a known linear combination based on
Encpk0Pa

(p̃0) and Encpk0Pa
(q̃0) using πVERLIN. P0 decrypts, thus obtaining the plaintext mÑ−p̃0q̃0 ; from

this Ñ = mÑ−p̃0q̃0 + p̃0q̃0 is computed and sent to P1 along with an encryption cπ = Encpk0Pa
(p̃0q̃0).

Finally, using πMULT and πZERO, P0 proves that cπ contains the product of the two original ciphertexts
and that Ñ is the plaintext of

cÑ−p̃0q̃0cπ = Encpk0Pa
((p̃0 + p1)(q̃0 + q1)).

(b) Verify Multiplication. The parties use the homomorphic property of ElGamal encryption to compute an
encryption of N = (p0 + p1)(q0 + q1) from the ciphertexts generated at Step 2a. The computation is
analogous to that of Step 3a, again using πMULT for proving correct multiplication of (pi · qi)
The parties use secure decryption of distributed ElGamal πDEC (cf. Section 2.2.2) to obtain gN , where
both verify that gÑ = gN , i.e. that N = Ñ and abort if equality does not hold.

4. Biprimality Test.
Execute biprimality test (cf. Section 4.2) and accept N if the test has accepted, otherwise the protocol is
restarted from Step 2a.

Theorem 4.1 Assuming hardness of the DDH and DCR problems, Protocol 1 realizes FGEN in the presence
of malicious adversaries.

A proof overview. Note that if both parties follow the protocol then a valid RSA modulus N is generated
with high probability. Specifically, in the last iteration of the protocol two elements are chosen randomly
and independently of previous generated candidates and are multiplied to produce N . By the correctness of
the biprimality test specified below, N is a product of two primes with overwhelming probability.

We assume the simulator has knowledge of the distribution of the loops in the protocol, from the protocol
returning to step 2a when candidates are rejected. The simulator can simulate the distribution by running the
protocol “in its head”, emulating the role of the honest party. Namely, denoting by Pi the corrupted party,
then upon extractingA’s shares pi, qi, S picks two shares p1−i, q1−i as the honest party would do and checks
whether NS = (pi + p1−i)(qi + q1−i) constitutes a valid RSA composite. If this is not the final iteration of
the protocol, implied by the fact thatNS is not a valid RSA composite, S uses p1−i, q1−i to perfectly emulate
the role of the honest P1−i. If this is the final iteration, S asks the trusted party for FGEN to generate an RSA
composite with pi, qi being the adversary’s input (as specified in Figure 1) and completes the execution by
emulating the role of the honest party on arbitrary shares. The simulation is different for the two corruption
cases as the parties’ roles are not symmetric. For the case that P0 is corrupted, the simulator sends back in
Step 3a the encryption of the composite returned from the trusted party and makes the ElGamal decryption
decrypted into this composite as well. For the case that P1 is corrupted the simulator “decrypts” the Paillier
ciphertext result into that composite and then makes the ElGamal decryption return the same outcome.

In Step 3a, where the parties compute the product, we note that it is insufficient to let P1 complete
the computation over the encrypted shares of P0 without verification of correctness. The problem is that
P1 may attempt to compute N in a different, potentially failing way. Hence if it finds N , this may leak
information. Although this issue does not seem critical for practical considerations we have to deal with it
in order to obtain simulation based security. This makes this corruption case particular challenge since we

17

had to show that an alternative computation in a successful execution implies determining the factors before
the RSA-modulus is revealed.

The complete proof follows.

Proof: The proof is shown in a hybrid model, where a trusted party replaces the protocols πGEN, πENC,
πMOD, πVERLIN, πMULT, πZERO, πDEC and DPrim. We assume the simulator S has knowledge of the distribu-
tion of the loops in the protocol. The simulator can then simulate the distribution by running the protocol
“in its head”, emulating the role of the honest party. Namely, denoting by Pi the corrupted party, then upon
extracting A’s shares pi, qi, S picks two shares p1−i, q1−i as the honest party would do and checks whether
NS = (pi + p1−i)(qi + q1−i) constitutes a valid RSA composite. If this is not the final iteration of the
protocol, implied by the fact that NS is not a valid RSA composite, S uses p1−i, q1−i to perfectly emulate
the role of the honest P1−i. If this is the final iteration, S asks the trusted party for FGEN to generate an RSA
composite with pi, qi being the adversary’s input (as specified in Figure 1) and completes the execution as
follows. We distinguish between three different corruption cases.

No party is corrupted. In this case the adversary only sees the communication exchanged between the
two parties. Specifically, we claim that such an attacker that only eavesdrops the communication cannot
learn meaningful information about the factorization of N . This is because even an adversary that fully
corrupts one of the parties cannot obtain such information. Let alone an adversary that does not control the
secret shares of one of the parties.

P0 is corrupted. LetA denote an adversary controlling party P0. Then, construct a simulator S simulating
the view of the adversary as follows.

1. KEY-SETUP.

(a) S emulates the trusted party FGEN by generating an ElGamal key pair (pkEG, skEG), sharing
skEG to skSEG and skAEG and handing pkEG and skAEG to A.

(b) S generates a Paillier key pair (pkSPa, sk
S
Pa) as described, sends pkSPa to A, and receives a key

pkAPa from A. πRSA is executed to verify that the Paillier keys are well formed.

2. GENERATE CANDIDATES.

(a) GENERATE SHARES OF CANDIDATE. S uses 0 for p̃S , encrypts it and sends c̃S = EncpkEG
(0)

to A, and receives c̃A from A. S emulates the trusted party for FENC, receiving pA and the
randomness used as witness and verifying c̃A. If the verification fails S halts. S stores the share
pA. πBOUND is executed where S once plays the role of the verifier and once the role of the
prover (note that 0 meets the bound requirement made in Step 2a of the protocol).
In order to ensure that p0 ≡ 3 mod 4, the parties compute c0 ← (c̃0)4 · EncpkEG

(3). Similarly,
the parties ensure that p1 ≡ 0 mod 4 by c1 ← (c̃1)4.

(b) TRIAL DIVISION. For primes α ≤ B, S sends an encryption c(α)
S = EncpkEG

(0) to A, and
receives c(α)

A from A. S emulates the trusted party for FMOD, receiving the randomness used for
encrypting c(α)

A as witness and verifying its correctness.

S and A each compute c(α) ← c
(α)
A · c

(α)
S and c̃(α) ← c(α) · EncpkEG

(−α), and raising these to
secret, non-zero exponents.
S simulates decrypting, by emulating the output of FDEC to be either zero or a random nonzero
element in the plaintext space. A nonzero element is output when trial division by α should

18

succeed, and zero is the output when trial division should fail. This is simulated according to the
distribution of the execution.

(c) REPEAT. Repeat step 2a and 2b according to the distribution of execution.

3. COMPUTE PRODUCT (N = pq).

(a) COMPUTE THE PRODUCT. S sends p0 and q0 toFTHRES and receives an RSA compositeN from
FTHRES. If A does not deviate and sends proper encryptions of p0, q0, S simulates cÑ−p̃0q̃0 ←
Encpk0Pa

(N − p0q0) and emulates FVERLIN as accepting. S then receives Ñ and cπ from A
and emulates FMULT and FZERO by receiving the witnesses and verifying the statements. If the
conditions for accepting are not met, S halts, aborting the execution.
If A does not send proper encryptions of p0, q0, S uses p1, q1, picked at the outset of this it-
eration, for completing the execution. (Note that NS = (p0 + p1)(q0 + q1) form a valid RSA
composite. Looking a head, this would imply that the decryption of cÑ−p̃0q̃0 is identically dis-
tributed in both the simulated and hybrid executions since in both cases the adversary sees some
information of shares picked as the honest P1 would).

(b) VERIFY MULTIPLICATION. S simulates the computation of the encrypted N by running the
protocol as specified and emulating FMULT twice; once by receiving the witness and verifying
the statement, and once by emulating an accepting answer for verifying the honest P1’s compu-
tations.
IfA did not deviate in step 3a, then S emulates ideal execution for FDEC as outputting gN = gÑ

where N is the composite returned by FGEN. If A deviated in step 3a, then S emulates FDEC as
outputting gNS 6= gÑ , and aborting the protocol.

4. BIPRIMALITY TEST.

Simulate DPrim as either accepting or rejecting according to the distribution of the protocol run,
which can be done by Theorem 4.2.

Clearly S runs in expected polynomial time. It is left to prove indistinguishability of the simulation in
the ideal world and the hybrid execution of the protocol. This will be done by a series of games.

Game H0. This game corresponds to the original simulation.

Game H1. In this game there is no functionalityFTHRES. Instead, simulator S1 generates the RSA modulus
N by itself the same way FTHRES does it. This means S1 knows the factorization of N . Furthermore, S1

plays the exact same role as S. H1 is clearly perfectly indistinguishable from H0.

Game H2. Simulator S2 does not know the secret ElGamal key. That is, instead of emulating FGEN in
step 1a, S2 receives pkEG from an oracle, generates a random share as skAEG and hands pkEG and skAEG to A.
Since S1 does not use its knowledge of skEG, and since skAEG can be simulated statistically close to the real
value. H2 is statistically indistinguishable from H1.

Game H3. In this game simulator S3 uses N instead of NS in caseA deviates in Step 3a of the simulation
above. Then, the only difference between the views of games H2 and H3 is with respect to this step.
However, since the rest of the messages computed by S2 and S3 are independent of these composites. The
adversary’s view is identically distributed in both games.

19

Game H4. In this game simulator S4 does not simulate the ElGamal ciphertexts by sending encryptions
of 0, rather it sends encryptions of the real shares that yield the right RSA composite N . More specifically,
since S4 extracts the shares p0, q0 of A and since S4 generates N by itself it can compute shares p1, q1 such
that N = (p0 + p1)(q0 + q1), and simulate the execution resulting in an accepted N .

H4 is computationally indistinguishable from H3 which can be proven by a reduction to the sematic
security of ElGamal (according to IND-CPA game specified in Definition 2.4). More formally, the reduction
goes as follows: We assume the existence of an distinguisher D3−4 capable of distinguishing H3 from H4

with more than negligible probability. We now construct an adversary AEG for breaking the security of the
ElGamal encryption scheme. AEG follows S4’s instructions, except instead of encrypting values with the
pkEG it asks an oracle to encrypt either m0 = 0 or m1 being the real share that yields a proper prime. AEG

completes the execution of D3−4 as in game H4. If D3−4 guesses H3 as being executed, then AEG outputs
0, if D3−4 guesses H3 as being executed, then AEG outputs 1.

Game H5. In this game simulator S5 does not extract the shares of the candidates for being primes from
A. Instead, S5 generates the shares as the honest P1 does in the hybrid execution. This implies that the
only difference in A’s view within executions H4 and H5 is with respect to step 3b of the simulation above,
where S4 makes the protocol abort if A deviates in step 3a by not sending proper encryptions of p0, q0.
Note that there are two cases here: (1) A deviates by sending encryptions of values different than p0 and
q0, which leads to a different composite than the one computed using the ElGamal encryptions in Step 2a of
the simulation. (2) A deviates by sending encryptions of values different than p0 and q0, which leads to the
same composite than the one computed using the ElGamal encryptions in Step 2a.

Focusing on (1), we note that the adversary always sees the same view in both games, since in both cases
it sees some information of the real shares picked by P1 that correspond to N , and get caught. Since there is
no match between the two composites. As for (2), we note that as proven in appendix 4.1, honest P1 always
detects such a cheating, implying that H4 is statistically close to H5.

Finally, since H5 corresponds to executing the real protocol in the hybrid model, we conclude that if P0

is corrupted then the real and the ideal executions are computationally indistinguishable.

P1 is corrupted. LetA denote an adversary controlling party P1. Then, construct a simulator S as follows.
All steps except step 3a are analog to the previous simulation.

3. COMPUTE PRODUCT. (N = pq)

(a) COMPUTE THE PRODUCT. S simulates the encryptions of p̃0 and q̃0 as encryptions of 0 under
pkSPa and emulates FENC, as accepting.
S receives cÑ−p̃0q̃0 from A and during emulation of FVERLIN, S extracts the values p1 q1 and
p1q1, and if these values are not consistent with the values extracted in step 2a, then S continues
simulating the protocol using NS and p0, q0.
If A does not deviate, S sends encryption of Ñ = N to A along with an encryption cπ =
Encpk0Pa

(0) and emulates FMULT and FZERO as accepting.

Clearly S runs in expected polynomial time, it is left to prove indistinguishability of the simulation in
the ideal world and the real execution of the protocol. This will be done by a series of games.

Game H0 - H4. These games are identical to games H0 - H4 in the case of the corruption of P0.

Game H5. In this game simulator S5 does not simulate the Paillier encryptions by encryptions of 0. In-
stead, it sends the encryption of p0q0. We claim that H4 and H5 are computationally indistinguishable. The
proof is completely analog to the indistinguishability of H3 and H4.

20

Game H6. In this game simulator S6 does not extract the shares of the prime candidates fromA in steps 2a
and 3a. Instead, S6 generates the shares as the honest P0 does in the hybrid execution. Recall that in the
previous game S5 makes the protocol abort in step 3b if A deviates in step 3a, however, as described in
appendix 4.1 this will also be the case in this game. Therefore, H5 and H6 are statistically close.

Since H6 corresponds to executing the real protocol in the hybrid model, we conclude that if P0 is
corrupted then the real and the ideal executions are computationally indistinguishable.

4.1 Deviation while Computing Ñ is Always Detected

The ZK proofs used in the calculation of Ñ in Step 3a in Protocol 1 ensure that the parties compute Ñ based
on values they know, but not that the correct pi and qi are used for this computation. More specifically, this
step ensures that Ñ ≡ N mod N0, where N0 is the Paillier key picked by P0. However, this does not rule
out from a malicious party, A, supplying wrong values but still getting the right result. For instance, A can
guess the difference δ between p and q and switch the factors around by using pi + δ and qi − δ instead of
pi and qi, respectively. Now, since we have that

p0 + p1 + δ = q, q0 + q1 − δ = p

the product of pi + δ and qi − δ still equals N . Intuitively, this specific attack is infeasible, however, we
must rule out all such attacks. A much worse attack would be one where the attacker could induce failure,
say depending on some specific bit of N (which is of course unknown to A at the time). In a real execution
of the protocol, since N is the output, A simply learns the bit ahead of time, which may not be critical in
practice. However, in the simulated execution,A learns a bit of the simulated modulus,N , which may differ
from the analogous bit of the modulus supplied by the ideal functionality, FGEN. Hence A may be able to
distinguish between the executions.

In this section we show that no such behavior is possible. Specifically, we show that if an execution
with a malicious A results in Ñ = N , then this must have been computed using the correct shares of p
and q. We do this by using A to break the IND-CPA security of either ElGamal or Paillier encryption (cf.
Definition 2.4). We distinct the cases of corrupted P0 and P1.

P0 is corrupted. Let A denote an adversary controlling party P0 and denote by bad the event in which a
malicious P0 sends in Step 3a of Protocol 1 encryptions of p̃ and q̃ with p̃0 6= p0 ∨ q̃0 6= q0 and an honest
P1 does not abort the execution (where p0, q0 are the decryptions of ciphertexts sent in Step 2a using the
ElGamal scheme). Then, conditioned on bad, we have that

q̃0p1 + p̃0q1 + q1p1 + q̃0p̃0 ≡ Ñ mod N0

≡ N mod N0

≡ q0p1 + p0q1 + q1p1 + q0p0 mod N0,

since the execution of πMULT ensures that P0 correctly adds the product of the two initial values in the final
step, and Ñ 6= N would be caught in the following step, causing P1 to abort. This implies that we know
α = q̃0 − q0, β = p̃0 − p0, γ = q̃0p̃0 − q0p0 ∈ ZN0 such that

α · p1 + β · q1 + γ ≡ 0 mod N0

and either α 6= 0 or β 6= 0. These values will be used to determine information about p1 and q1 which may,
in turn, be used to break the IND-CPA security of ElGamal.

More formally, assume bad occurs with probability ε. Then, construct an adversary AEG that breaks
the IND-CPA security of ElGamal with probability 1/2 + ε/2 as follows. Given an ElGamal public-key

21

pk′EG = (g, h′), and a ciphertext cb which is an encryption of b ∈ {0, 1}, AEG simulates the initial key
generation by replacing pkEG with pk′EG (faking the proof that knows part of the decryption key). AEG

then extract p0 and q0 from A’s ElGamal encryptions and generates two independent sets of candidates,
p

(0)
1 , p

(1)
1 , q

(0)
1 , q

(1)
1 which will pass trial division. AEG then computes encryptions of one of the pairs:

c(b)
p1 = (cb)

p
(1)
1 −p

(0)
1 Enc

(
p

(0)
1

)
c(b)
q1 = (cb)

q
(1)
1 −q

(0)
1 Enc

(
q

(0)
1

)
.

Note that in case b = 0, then c(b)
p1 and c(b)

q1 correspond to encryptions of p(0)
1 and q(0)

1 , respectively. Otherwise,
we get encryptions of p(1)

1 and q(1)
1 . AEG then simulates the trial division (which is passed), and finally reach

the step, where it computes Ñ , and extracts p̃0 and q̃0 from A. Note that this allows AEG to compute α, β,
and γ without even completing this step. A outputs 0 if and only if

α · p(0)
1 + β · q(0)

1 + γ ≡ 0 mod N0.

Due to πRSA, it holds that N0 is the product of two large primes with overwhelming probability. Ne-
glecting the event where N0 is a product of more than two primes, it holds that p1 and q1 are co-primes to
N0. In addition, if either GCD(α,N0) 6= 1 or GCD(β,N0) 6= 1, we may compute a factor f of N0, such
that

α 6≡ 0 mod f ∨ β 6≡ 0 mod f

and both α and β co-prime with f unless congruent to 0. Otherwise let f equal the trivial factor, N0. As the
execution would pass if it continued, it must holds that

α · p1 + β · q1 + γ ≡ 0 mod f ,

i.e. we find a linear equation in p1 and q1. However, these will be either p(0)
1 , q

(0)
1 or p(1)

1 , q
(1)
1 depending

on the unknown bit chosen by the ElGamal oracle. Hence, if A can cheat with probability ε, then AEG

breaks the IND-CPA security of ElGamal encryption with probability 1/2 + ε/2 by checking which pair of
candidates gives a linear equation of the form specified above. Formally,

AdvΠEG,AEG
(n)

=
1

2

(
Pr[AEG(c(b)

p1 , c
(b)
q1) = 0|b = 0] + Pr[AEG(c(b)

p1 , c
(b)
q1) = 1|b = 1]

)
=

1

2

∣∣∣Pr[AEG(c(b)
p1 , c

(b)
q1) = 0|b = 0]− Pr[AEG(c(b)

p1 , c
(b)
q1) = 0|b = 1]

∣∣∣+
1

2

= Pr[bad|b = 0]− negl ≥ ε

2
+

1

2

where negl is a negligible function in the security parameter. The reason AEG outputs 0 with negligible
probability in the case where b = 1 is due to the fact that p(0)

1 , q
(0)
1 are independent of p(1)

1 , q
(1)
1 and infor-

mation theoretic hidden from A (as AEG either uses p(0)
1 , q

(0)
1 or p(1)

1 , q
(1)
1). Therefore, the probability that

the outcome forms a linear equation for p(0)
1 , q

(0)
1 is negligible.

P1 is corrupted. Let A denote an adversary controlling party P1 and consider the event bad in which the
honest P0 does not abort even though the malicious P1 computes cÑ−p0q0 differently than specified. Note
that even if A returns a ciphertext cÑ−p0q0 , encrypting N − p0q0 and computed differently than specified in
the protocol, the ZK proof πVERLIN enables to extract values x, x′, x′′ ∈ ZN0 and rx ∈ Z∗N0

such that

cÑ−p0q0 = cx ·
(
c′
)x′ · Enc(x′′, rx),

22

where c is an encryption of p0 and c′ is an encryption of of q0. These values will be used to break either the
IND-CPA security of either ElGamal or Paillier encryptions.

First, construct a distinguisherAPa based onAwhich breaks the semantic security of Paillier encryption.
Specifically, simulate steps 1 and 2 as above but also extract p1 and q1 during the simulation. In step 3, APa

is given a Paillier key to be used as N0 and an encryption cb of a bit b. Similarly to above, we generate two
sets of candidates, p(0)

0 , p
(1)
0 , q

(0)
0 , q

(1)
0 which will pass trial division, and compute encryptions of one of the

pairs:

c
p
(b)
0

= (cb)
p
(1)
0 −p

(0)
0 Enc

(
p

(0)
0

)
c
q
(b)
0

= (cb)
q
(1)
0 −q

(0)
0 Enc

(
q

(0)
0

)
.

We send c
p
(b)
0

and c
q
(b)
0

as the initial messages in the Ñ -computation and fake the proofs of known plaintext.

Once A has returned cÑ−p0q0 (which is an encryption of N − p(b)
0 q

(b)
0 by assumption), we extract x, x′, x′′,

and rx. Again, we do not need to finish this step of the protocol, but may directly use these values to break
the IND-CPA security.

As Ñ = N , we have the following equation in the two unknowns p(b)
0 and q(b)

0

xp
(b)
0 + x′q

(b)
0 + x′′ ≡ q1p

(b)
0 + p1q

(b)
0 + p1q1 mod N0

m

(q1 − x) p
(b)
0 +

(
p1 − x′

)
q

(b)
0 +

(
p1q1 − x′′

)
≡ 0 mod N0

There are two cases:

Case 1: q1 − x = 0 ∨ p1 − x′ = 0. In this case, we can compute either p(b)
0 or q(b)

0 by:

p
(b)
0 =

(
x′′ − p1q1

)
(q1 − x)−1 q

(b)
0 =

(
x′′ − p1q1

)
(p1 − x)−1 .

This calculation requires that the non-zero value is invertible. However, if it is not, then we may compute a
factor of N0 using GCD. This allows us to compute the decryption key ourselves, which trivially breaks the
security of Paillier.

Case 2: q1 − x 6= 0 ∧ p1 − x′ 6= 0. Again, we may assume that both q1 − x and p1 − x′ are invertible.
Similarly to the case of a corrupt P0, we now have a linear equation in p(b)

0 and q(b)
0 , and we can easily check

which pair,
(
p

(0)
0 , q

(0)
0

)
or
(
p

(1)
0 , q

(1)
0

)
, fits the equation; this breaks the security of Paillier encryption as

demonstrated above for ElGamal.
Similarly to the above, we can design a reduction to the security of ElGamal by computing encryptions

of p(b)
0 and q(b)

0 . Then in the computation of Ñ , we obtain x, x′, x′′, and rx, which again splits into two cases
and used to break IND-CPA security.

4.2 The Biprimality Test

The distributed biprimality test for checking the validity of a candidate for being an RSA composite, is based
on a test by Boneh-Franklin [BF01] where the parties first agree on a random element γ ∈ Z∗N with Jacobi
symbol 1, and then raise γ to a power calculated from their shares. The test accepts a number with more
than two prime factors with probability at most 1/2. Therefore, the parties must repeat this test sufficiently
many times in order to decrease the error. We adopt this test for the malicious setting. As a side remark,
we note that although the biprimality test by Damgård and Mikkelsen [DM10] has a better error estimate, it
cannot be used efficiently in the two-party setting with malicious adversaries. In Appendix B we show how
to adapt their test into the two-party setting when the parties are semi-honest.

23

Protocol 2 [DPrim] A distributed biprimality test:

• Inputs: A security parameter 1n, a statistical parameter 1` and a public-key candidate N .

• The Protocol:

1. The parties jointly generate a random element γ ∈ Z∗N with Jacobi symbol J (γ) = 1. By standard
techniques this is made secure against active deviation.

2. The parties compute the encryption e0 = EncpkEG

(
N−(p0+q0)+1

4

)
using the homomorphic property of

ElGamal (P1 knows the encryptions of p0 and q0 from the earlier protocol). Furthermore, P0 sends

γ0 = γ

(
N+1−(p0+q0)

4

)
mod N and proves consistency between e0 and γ0 using πEQ.

3. P1 sends γ1 = γ

(
−(p1+q1)

4

)
mod N to P0 and proves consistency using πEQ to an encryption e1 of

−(p1+q1)
4 , computed as above.

4. Finally, the parties reject N if and only if γ0 · γ1 mod N 6= ±1. We further note that the test by [BF01]
includes an additional step were instead of using γ, the parties randomly pick an element from the group
(ZN [x]/(x2 + 1))∗/Z∗N ; we omit the details due to the similarity of the above test.

5. This test is repeated ` times to achieve sufficiently small error.

Theorem 4.2 Assuming hardness of the DDH problem, Protocol 2 is a distributed Monte Carlo algorithm
such that on a statistical parameter 1` and a random γ, it holds that

• A correctly formed RSA modulus N = pq, where p ≡ q ≡ 3 (mod 4) is always accepted.

• The average case probability of accept if either p or q is a composite, is at most 2−`.

• The protocol is secure (simulatable with abort without knowledge of the factorization of N) in the
presence of malicious adversaries.

Informally, correctness follows from [BF01] and security is proven by simulation where the simulator
is able to simulate the corrupted party’s view by having knowledge of the adversaries shares of p and q,
and thereby being able to calculate γ0 or γ1, respectively. With this knowledge the simulator can simulate
acceptance of a modulus without knowledge of the factorization. A complete proof follows.

Proof: The theorem states both correctness and security. By correctness we mean: If the parties do not de-
viate, then Blum integers are never rejected whereas, numbers with more than two prime factors are rejected
with probability at least 2−`. Since the biprimality test is identical to the one of Boneh and Franklin [BF01],
we refer the reader to [BF01] for a proof of correctness.

Security is proven in the FEQ-hybrid model. We assume that simulator S has knowledge of the shares
of adversary A from protocol DKeyGen for distributively generating an RSA composite. Observe that there
are two possible outcomes of DPrim, either N is rejected, in which case N is not a Blum integer in the real
protocol. This can easily be simulated by S choosing shares on behalf of the honest player such that N is
not a Blum integer and executing the real protocol as the honest party would. It is easy to verify that if A
deviates then it cannot make πEQ accept. In the other case, N is a Blum integer and should be accepted.
Therefore, S has to be able simulate A’s view without knowing the factorization of N , which is possible in
the following way. Assume that P0 is corrupted by A; the simulation is analog to the other corruption case.

1. S emulates the choice of γ by choosing a uniform random value a ∈ Z∗N with Jacobi symbol J (a) =
1 and a uniform random bit b ∈ {0, 1} and fixing γ = a2(−1)b mod N .

24

2. Each player is supposed to calculate e0 = EncpkEG

(
N−(p0+q0)+1

4

)
.

S receives γA from A, and since S has knowledge of the shares p0 and q0 of A, S knows a priori
the expected value of γA. S emulates FEQ, by receiving

(
N−(p0+q0)+1

4

)
as withness, and verifying

whether γA is calculated correct. (Abort if γA is not the expected value)

3. Each player is supposed to calculate e1 = EncpkEG

(
−(p1+q1)

4

)
, we note that this is done with the

simulated values for p1 and q1.

S sends γS = (γA)−1(−1)b mod N to A and emulates FEQ accepting.

4. Finally, the parties rejectsN if and only if γA ·γS mod N 6= ±1 (in this iteration they always accept).

The simulation of the additional test in the group (ZN [x]/(x2 + 1))∗/Z∗N is analog to the simulation
described above.

Note the following:

I. Because N is a Blum integer, the size of the subgroup of quadratic residues QR in Z∗N is half the size
of the subgroup of elements with Jacobi symbol 1 in Z∗N . Furthermore, −1 is a quadratic nonresidue
modulo N with Jacobi symbol J (−1) = 1. This means that γ is a uniform random element of Z∗N
with Jacobi symbol J (γ) = 1. This is the exact distribution in the real execution, since we assumeA
cannot influence the distribution of γ in DPrim.

II. In the real world execution of DPrim the following holds:

γ0 · γ1 ≡ 1 mod N if γ ∈ QR.

γ0 · γ1 ≡ −1 mod N if γ 6∈ QR.

From b, S knows whether γ is in QR or not, and therefore γS is simulated perfectly by γS =
(γA)−1(−1)b mod N .

Finally, since all values except the encryptions e0 and e1 are simulated perfectly A can only distinguish
the real and hybrid executions if it can break the sematic security of ElGamal, and therefore break the DDH
assumption.

5 A Complete Threshold Paillier Cryptosystem

In the following section, we describe our threshold construction in the two-party setting for the Paillier en-
cryption scheme [Pai99]. Our Threshold Paillier Scheme, TPS, is comprised of the following subprotocols:
(i) The protocol DKeyGen (cf. Section 4) for distributed generation of an RSA composite. (ii) A protocol
for distributed generation of the corresponding secret-key shares, denoted by Dsk (cf. Section 5.1.1). (iii)
A protocol for distributed decryption, denoted by DDec, for decrypting according to Paillier’s specifications
while maintaining the randomness of the ciphertext a secret (cf. Section 5.1.2). These protocols rely on
the following standard hardness assumptions: (1) DDH (cf. Definition 2.1), due to employing the ElGamal
scheme [ElG85] and (2) DCR (cf. Definition 2.2), due to employing the Paillier scheme [Pai99] and integer
commitments [DN02, DN03].

Our protocols form the first complete threshold scheme for Paillier in the two-party setting with security
in the presence of malicious adversaries under full simulation based definitions, following the ideal/real
model paradigm. We denote by Π = (Gen′,Enc,Dec) the Paillier encryption scheme that is depicted in

25

Section 2.2.1, with the modified key generation algorithm Gen′ specified in Section 4, encryption algorithm
Enc and decryption algorithm Dec. The formal description of the threshold functionality, FTHRES is found
in Figure 2.

Theorem 5.1 Assuming hardness of the DDH and DCR problems, scheme TPS = (DKeyGen,Dsk,DDec)
computes functionality FTHRES in the presence of malicious adversaries.

Proof: The proof for this theorem follows from the proofs for Theorems 4.1, 4.2, 5.2 and 5.3. That is,
Theorems 4.1 and 4.2 form a complete key generation protocol, where the parties compute an RSA com-
posite without leaking its factorization. Moreover, Theorems 5.2 and 5.3 guarantee that the parties decrypt
according to Paillier in a secure manner.

Functionality FTHRES

KEY GENERATION: Identical to KEY GENERATION in FGEN.

DECRYPTION: Upon receiving a (Decrypt, c,Both) message from party Pi, FTHRES continues as follows:

1. If there exists a recorded secret key, then FTHRES forwards (Decrypt, c,Both) to party P1−i.

(a) If P1−i replies with allow and Both = φ, FTHRES sends Decsk(c) only to Pi.
Otherwise, if Both 6= φ, FTHRES sends Decsk(c) to both parties.

(b) If P1−i replies with disallow, then FTHRES forwards disallow to Pi.

2. If there does not exist a recorded secret key, functionality FTHRES sends disallow to Pi.

Figure 2: The (Paillier) Threshold Functionality

5.1 A Distributed Decryption for Paillier

In this section we present a secure decryption protocol in the distributed setting. We first note that a typical
way to decrypt is to use the algorithm of the RSA scheme, where the decrypter raises the ciphertext to the
power of the inverse of N modulo φ(N), as shown in [CGHN01]. This similarity follows because both
schemes have the same public key of an RSA composite N and a secret key that is the factorization of N .
Furthermore, the ciphertexts in both schemes have similar algebraic structure.

However, in some scenarios this type of algorithm may be problematic, since the decrypter must extract
first the randomness used for computing the ciphertext in order to complete the decryption. As desirable
as this property may be, it is problematic in the context of simulation based secure computation because
the parties have to present the randomness of the ciphertext instead of proving correctness using ZK proofs.
This means that a potential simulator cannot cheat in the decryption by encrypting arbitrary values and
then fake their decryption. We further note that Paillier’s scheme requires extra computation in order to
complete the decryption. This means that on top of raising the ciphertext to the power of the secret value,
the outcome must be multiplied with the inverse of the secret key in order to extract the plaintext. In the
distributive setting this implies that the parties must keep two types of shares. When coping with malicious
behavior it is not immediately clear how to efficiently verify the parties’ computations. Notably, the protocol
of Damgård and Jurik [DJ01] circumvents this technicality by having a trusted party picking a secret d ≡
1 mod N ≡ 0 mod φ(N).

Our protocol offers a distributive decryption for Paillier with simulation based security against malicious
adversaries without randomness extraction. It is comprised of the following two subprotocols: First, the

26

parties produce shares of a value d similarly to the Damgård-Jurik scheme [DJ01]. This protocol is executed
only once. Next, the parties run the distributed decryption algorithm using their shares. As mentioned earlier
we use the simplified encryption function of Damgård and Jurik, i.e., use g = N + 1 as a generator of the
subgroup of Z∗N2 of order N . Encryption of a plaintext m with randomness r is then,

EncN (m, r) = rN · (N + 1)m mod N2.

5.1.1 Generating a Shared Paillier Decryption Key

We now present our protocol for generating a shared Paillier decryption key. As stated, similarly to
Damgård and Jurik [DJ01], we share a decryption exponent as follows

d ≡
{

0 mod φ(N)
1 mod N

However, since there are only two parties, a full threshold sharing is not necessary and we therefore use an
additive sharing. Initially, we focus on the task at hand and present a protocol with semi-honest security
(where the parties are assumed to follow the protocol’s description). This is then compiled into a protocol
with full active security towards both parties by adding zero-knowledge proofs, ensuring that the parties
cannot deviate.

Protocol 3 [Dsk] A distributed generation of a shared Paillier decryption key with passive security:

• Inputs: A public RSA modulus N = pq with unknown factorization, additive shares of φ(N): sk0 = N −p0−
q0 + 1 and sk1 = −p1 − q1 held by P0 and P1 respectively. A public ElGamal key (g, h) with the secret key
shared between the parties. A public Paillier key N0 � N2 with the secret key held by P0.

• The protocol:

1. P0 encrypts sk0 using N0 and sends this to P1.

2. P1 picks r1 ∈ Z?N and rσ ∈ Z2logN+κ uniformly at random (for a statistical parameter κ that enables to
mask the secret key). P1 computes an encryption of

(sk0 + sk1) · r1 +N · rσ

using the homomorphic property of Paillier encryption. This is rerandomized and sent to P0.

3. P0 decrypts, thus obtaining plaintext r0; P0 computes r0−1 mod N and encrypts this as well as plaintext
sk0(r0

−1 mod N) under public-key N0. Both ciphertexts are sent to P1.

4. Based on the encryptions of r0−1 mod N and sk0(r0
−1 mod N), P1 computes an encryption of

d =
(
sk0(r0

−1 mod N) · r1 + (r0
−1 mod N)(sk1 · r1)

)
= r1(sk0 + sk1)(r0

−1 mod N)

= r1 · φ(N) · (r0−1 mod N).

(1)

P1 then picks d̃1 uniformly at random in Z23 logN+κ , and computes and rerandomizes an encryption of
d+ d̃1. This is sent to P0 and finally, P1 sets its share of d to the integer −d̃1.

5. P0 decrypts and obtains d0: its share of d.

27

Correctness. Since no overflow modulo N0 occurs in Eq. (1), all calculations can be viewed to occur
over the integers. Thus, since φ(N) is a factor of d, clearly d ≡ 0 mod φ(N). Moreover, as r0 ≡ φ(N) ·
r1 mod N we also have d ≡ 1 mod N . Finally, as d = d0 + d1 over the integers, clearly we have an
additive sharing of a value with the desired property.

Theorem 5.2 Assuming hardness of the DDH and DCR problems, Protocol 3 computes additive shares of
a value d specified above in the presence of semi-honest adversaries.

Proof: The case follows by two corruption cases.

P0 is corrupted. We demonstrate how to generate a view statistically close to that of P0. During the
protocol, P0 receives two messages: the encryptions of r0 and d0. As the encryptions have been rerandom-
ized, they are indistinguishable from fresh encryptions of the plaintext values. Moreover, both of these are
statistically close to uniformly random:

• r0 mod N is uniformly random in Z∗N due to the multiplication by r1.

• br0/Nc is statistically close to a uniformly random logN + κ bit integer.

• d0 is statistically close to a uniformly random 3 logN + κ bit integer.

Hence, to simulate, it suffices to pick and encrypt values distributed as the masks generated by P1.

P1 is corrupted. We cannot achieve unconditional security towards P1, however, a computationally in-
distinguishable view may be generated. During the protocol, the messages received by P1 consist of three
Paillier encryptions under the key N0. Assuming that Paillier encryption is semantically secure, this is
indistinguishable from three encryptions of 0.

We now demonstrate how to achieve security against malicious adversaries by adding zero-knowledge
proofs to support correct behavior of each party.

ENSURING CORRECTNESS OF P0. First, P0 must show that the plaintexts of the three encryptions sent
in Steps 1 and 3 are as specified by the protocol. Demonstrating that the former encryption contains sk0 is
equivalent to the same task as in the calculation of N (see Protocol 1). Indeed P0 could simply reuse the
encryption from that protocol. Similarly, demonstrating that the later encryption contains the product of the
two first ones is simply obtained by an invocation of πMULT.

The more challenging part is to have P0 demonstrate that the second plaintext is the modulo N inverse
of the encrypted value received in Step 3. This requires P0 to send additional encryptions and execute
zero-knowledge proofs based on the following:

1. P0 executes πBOUND on the encryption of r−1
0 mod N , demonstrating that it is less than N .

2. P0 sends an encryption of r⊥0 = r0 mod N under N0 and uses πBOUND to demonstrate that it is less
than N .

3. P0 sends an encryption of r>0 = br0/Nc under N0 and demonstrates that r⊥0 +N · r>0 equals r0, i.e.,
equals the plaintext of the encryption received from P1, using the zero-knowledge proof πZERO. (I.e.,
the above boils down to proving that the division of two ciphertexts in an N0th root.)

4. P0 sends an encryption of r⊥0 · (r
−1
0 mod N) and demonstrates correct multiplication using πMULT.

28

5. Both parties compute an encryption of (r⊥0 · (r
−1
0 mod N)− 1) ·N−1; P0 executes πBOUND to show

that the value is less than N .

Note that Steps 1, 2 and 3 demonstrate that r⊥0 = r0 mod N . Thus, it remains to demonstrate that the
inversion modulo N has been performed properly. This must be the case, as the execution of πBOUND

in Step 5 only succeeds if N divides (r⊥0 · (r
−1
0 mod N) − 1). Namely, if the product is congruent to

1 mod N . This completes the description of the modified role of P0.

ENSURING CORRECTNESS OF P1. We continue with the description of P1. Security against malicious P1

follows similarly to the security against a malicious P1 during the computation of N . More specifically, P1

is required to prove the correctness of computation specified by the following linear equations (sk0 + sk1) ·
r1 +N · rσ in step 2 and

(
sk0(r0

−1 mod N) · r1 + (r0
−1 mod N)(sk1 · r1)

)
in step 4, where the variables

introduced by P1 are r1, rσ and sk1. This is done as follows:

• Proving honest behavior in step 2:

1. P1 encrypts r1 and rσ using the distributed homomorphic ElGamal scheme, and sends the ci-
phertexts to P0.

2. P1 is using πVERLIN to prove knowledge of the values (sk1 · r1), r1 and (N · rα) and correct
computation of the encryption of (sk0 + sk1) · r1 +N · rσ = sk0 · r1 + sk1 · r1 +N · rσ.

3. After P0 has decrypted r0, P0 and P1 re-execute the computation using the homomorphic El-
Gamal scheme, and using πMULT to prove correct multiplication. The result is decrypted to P0,
which verifies whether the decryption of both schemes results in the same value r0. If this is the
case P1 has been following the protocol honestly.

• Proving honest behavior in step 4:

1. P1 starts by picking d̃1 and encrypting it using the distributed homomorphic ElGamal scheme,
and sends the ciphertexts to P0 along with a proof of knowledge using πENC.

2. P1 is using πVERLIN to prove knowledge of the values (sk1 · r1), r1 and d̃1 and correct computa-
tion of the encryption of

(
sk0(r0

−1 mod N) · r1 + (r0
−1 mod N)(sk1 · r1)

)
+ d̃1.

3. Again P0 and P1 re-execute the computation using the homomorphic ElGamal scheme, and us-
ing πMULT to prove correct multiplication. The result is decrypted to P0, which verifies whether
the decryption of both schemes results in the same value d0. If this is the case P1 has been
following the protocol honestly.

Since P1 does not explicitly prove consistency between the encryptions using the Paillier scheme and
the ElGamal scheme we need to verify that a corrupted P1 cannot return encryptions giving the same re-
sult which are computed using different values. If that was possible it would make simulating the security
impossible. In step 2, it follows easily that if P1 is capable of returning a Paillier Encryption where dif-
ferent values of (sk1 · r1), r1 and (N · rα) are used compared to the ElGamal encryption and that the two
computations give the same result, then P1 is able to compute sk0 from either the Paillier encryption or the
ElGamal encryption, which is a contradiction. In step 4, if P1 is capable of returning a Paillier encryption
and an ElGamal encryptions giving the same result, but using different values for (sk1 · r1), r1 and d̃1, there
are two cases, each described below. In the following we label the values used in the Paillier encryption as
(sk1 · r1)′, r′1 and d̃′1:

1. d̃1 = d̃′1: In this case the corrupt P1 is capable of computing sk0 since: sk0 = (sk1·r1)−(sk1·r1)′

(r′1−r1)
. This

is a contradiction since P1 has only seen encryptions of sk0. (Note, since d̃1 = d̃′1 then r′1 6= r1).

29

2. d̃1 6= d̃′1: In this case P1 is able to compute a value δ which is divisible by (r0
−1 mod N). This

is a contradiction since P1 has only seen semantically secure encryption (Paillier and ElGamal) of
(r0
−1 mod N). The value δ is computed as:

δ = d̃1 − d̃′1 =
(
sk0 · (r′1 − r1) + (sk1 · r1)′ − (sk1 · r1)

)
· (r0

−1 mod N).

5.1.2 Performing a Joint Paillier Decryption

To perform a joint decryption of some ciphertext c, both parties need to raise c to their share of the key, d0

or d1. They then demonstrate that this has been computed correctly using the commitments of the shares.
The plaintext is immediately computable from cd0 and cd1 .

Protocol 4 [DDec] A distributed Paillier decryption with a shared key:

• Inputs: A public Paillier key N = pq with unknown factorization and a ciphertext c = EN (m, r). Party Pi
holds its share di of the secret decryption exponent, d = d0 + d1 where d ≡ 1 mod N ∧ d ≡ 0 mod φ(N).
Finally, the parties hold commitments to (or rather: ElGamal encryptions of) their key-shares.

• The protocol:

1. P0 sends c0 = csk0 mod N2 to P1. Moreover, P0 demonstrates that this has been done correctly by
executing πEQ, i.e., that the committed number equals the discrete log of c0 with base c and the plaintext
encrypted with ElGamal.

2. P1 sends c1 = csk1 mod N2 to P0. Moreover, P1 demonstrates that this has been done correctly by
executing πEQ, i.e., that the committed number equals the discrete log of c1 with base c and the plaintext
encrypted with ElGamal.

3. Finally, both parties compute the plaintext, m = ((c0 · c1) mod N2 − 1)/N .

Theorem 5.3 Assuming that πEQ is a zero-knowledge proof of knowledge that correctly demonstrates equal-
ity of discrete logarithms, Protocol 4 determines the plaintext,m, of ciphertext c in the presence of malicious
adversaries.

Proof: Simulation in a hybrid model with access to FEQ is straightforward. Namely, from P0 viewpoint the
only message received is c1, since the message of πDH are handled by FEQ. This value may be computed
deterministically given the plaintext by:

c1 ← (1 +N)m mod N2 · c−d0 mod N2.

Clearly this is the value sent by P1 during the protocol execution, as

cd1 = cd−d0 = cd · c−d0 ≡ (1 +N)m · c−d0 mod N2.

I.e., c1 can be computed using values known to the simulator. The case of corrupt P1 is equivalent.

6 The Efficiency of Our Protocols

In this section we discuss the efficiency of our protocols. We split our discussion into two parts: a theoretical
analysis with a focus on the asymptotic complexity and optimizations that yield a more practical analysis.

30

6.1 The Number of Failed Attempts

First, the complexity of our protocol depends heavily on the number of failed attempts when generating
the modulus. Recall that without running a trial division the protocol has to restart with two freshly gen-
erated prime candidates after every rejected composite, or otherwise the leaked information would make
factoring an accepted composite easy. Specifically, without the trial division the expected number of tests
is given by the probability of choosing two random primes simultaneously. This can be calculated by the
Prime Number Theorem, making the expected number of executions: 512 bit primes:

(
ln(2512)/2

)2 ≈
31000, 1024 bit primes:

(
ln(21024)/2

)2 ≈ 126000.
Nevertheless, this can be dramatically improved when employing the trial division test. Following the

analysis of [BF01] it can be shown that the probability a generated candidate is a prime, given that it passes
the trial division, is computed due to [DeB] and is as follows,

Pr[p is prime | p passes trial division with threshold B] = 2.57 · ln B

n

(
1 + o

(
1

n

))
which for lnB = 9 (i.e., B = 8103) and n = 1024 is 1/44. This means that our protocol needs to test an
expected number of 1936 candidates if n = 1024. This shows how important the trial division is for the
efficiency of our protocol, which is the first to incorporate this test securely in the two-party setting. Note
that this analysis is independent of the construction used for generating the composite and strictly relies on
the primes density in a given interval.

6.2 Theoretical Efficiency

We remark that all of our zero-knowledge proofs run in constant round and require constant number of
exponentiations; the only exception is πEQ, employed in our threshold decryption protocol, for which there
is an amortized constant analysis due to Cramer and Damgård [CD09].

Key Generation. Ignoring the initial key-setup, the complexity of a single RSA composite generation
attempt (except for the biprimality test that is separately analyzed below), is dominated by the number of
trial divisions; the rest of the secure computation requires only constant work and communication. Each of
the trial divisions require only constantly many invocations of sub-protocols, including πMOD (and hence of
πBOUND) and all these sub-protocols require only a constant number of exponentiations. Thus, we conclude
that the total costs that are incurred by the entire protocol are linear in the number of trial divisions. Further,
all sub-protocols at every step of the full protocol may be run in parallel, hence round complexity is constant.

Biprimality Test. The main part of the biprimality test consists of the verification of the secure exponen-
tiation of the random γ. Further, in the test of [BF01], the parties reach a negligible error probability by
repeating the test ` times – as the test has one-sided error with probability at most 1/2, it must be run e.g. 40
times in order to achieve an error of 2−40. The most expensive part of the test is the execution of πEQ as it is
a cut and choose protocol, i.e. we need O(`) exponentiations overall for each run, where ` is some statistical
security parameter. However, as noted above this may be brought down to amortized constant overhead us-
ing the techniques of Cramer and Damgård [CD09]. Further, as the all ` tests may be run in parallel, round
complexity is constant as well.

Secret-Key Shares. The generation of the multiplicative key shares requires constant overhead and constant
round complexity. The communication/computation complexity is dominated by the multiple invocations of
πBOUND and πVERLIN which obtain negligible soundness with constant overhead. We note that this protocol
is executed only once.

31

Threshold Decryption. This protocol is dominated by the invocation of πEQ which requires constant num-
ber of exponentiations for long enough challenge (see more discussion about this proof in Section 3.2,
Item 5). For batch decryption the technique of Cramer and Damgård [CD09] can be used here as well.

6.3 Practical Considerations

To ease the security proof, we have taken a pessimistic approach above. Namely, zero-knowledge proofs
have been applied at all stages in order to catch cheating players at once. However, a more optimistic
approach allows for a more efficient protocol: All but one of our RSA-composite-generation attempts fail,
and most of the zero-knowledge proofs are only needed for the successful modulus generation – hence they
may be postponed. In addition to this, further optimizations for distributed RSA key generation are possible.
We refer to Boneh and Franklin [BF01] for a list of general optimizations some of which are also applicable
in our setting.

For the failing RSA-composite-generation attempts, we utilize the fact that the encryptions provided
can be viewed as binding commitments. On failure, the parties reveal all random choices, thereby allowing
the other party to verify their correct behavior by “executing” the protocol “in their head” and checking
the correctness of the other party’s messages, e.g. that plaintexts are appropriately bounded. Thus, overall
efficiency of the many failing attempts will not be much more costly than twice that of failing attempts for
the passively secure protocol. Once an attempt succeeds, ZK-proofs are used to ensure that this was correct.
Slightly more formally, the key idea is that the simulator must know that the adversary is cheating (and that
an honest party would detect this later, i.e. that the invocation should fail). We cannot simply postpone all
proofs; care must be taken to allow simulation and to not reveal information that would allow a malicious
party to, e.g., fake some zero-knowledge proof at a later point.

Generating the prime candidate. We may omit the invocations of πBOUND on pi and qi, as this statement
is implicitly shown by the invocations of πMOD in the trial divisions. Further, verification may be postponed
until we believe we have successfully generated an RSA-modulus; we cannot ensure correctness underway,
but the encryption will be the same, thus, we still accept or reject as if we had run πBOUND immediately.

Trial division. We may postpone the invocations of πMOD at the cost of a few extra executions of simple
proofs of knowledge, such as πENC. This ensures that the party knows its input, and that the simulator knows
whether a later invocation of πMOD may be successful (as it knows both what the input should be and what it
actually is). If a trial division fails incorrectly, the honest party learns this when the corrupt party reveals its
random choice, including its share of the random prime and the reduction modulo the trial-division-prime.
If a trial division succeeds incorrectly, this can be discovered easily by performing the same trial-division
on N – indeed at this point we may use a larger bound for the trial division as this can be performed very
efficiently on the public N . The only remaining possibility is the case where the test should succeed, and
did so despite one party providing an incorrect input. This case is handled by executing πMOD for each trial
division once the biprimality test succeeds, at which point the honest party will detect the incorrect behavior.

Computing and verifying the product. For the Paillier computation, we may postpone all checks except
the proof that Ñ was the plaintext of the encryption supplied by P1. Privacy of P0 follows from the security
of Paillier encryption, while privacy for P1 follows from the fact the encryption sent back by P1 only
contains the desired result. Leakage from constructing a potentially incorrect value is eliminated by the
eventual execution of the full zero-knowledge proofs. Alternatively, we may avoid verifying the product
altogether. This may leak a single bit of information, namely whether some function on the shares of the
honest party equals the still hidden modulus, N . Depending on the setting, this leakage may or may not be
acceptable.

Biprimality test. The invocation of πEQ can be postponed. If the test fails, the parties simply reveal their
shares of the candidates; both parties may then verify that the other performed the exponentiations correctly.

32

Figure 3: Probability plot with n = 2048.

On the other hand, if the test succeeds, the parties have either determined an RSA composite or one of them
has cheated. They now execute πEQ to determine which of the two is the case. Since the simulator knows
the shares of the corrupt party, it is straightforward for it to check if the value supplied is the correct one.

7 Experimental Results

In this section we present an implementation of Protocol 1 with security against semi-honest adversaries.
Our primary goal is to examine the overall time it takes to generate an RSA composite of length 2048
bits in case the parties do not deviate, and identify bottlenecks. The bulk of our implementation work is
related to reducing the computational overhead of the trial division which is the most costly phase. To
improve the overhead relative to the ElGamal PKE, we implement this scheme on elliptic curves using the
MIRACL library [MIR] and use the elliptic curve P-192 [FIP09] based on Ecrypt II yearly report [ECR11];
see [INI99, SEC00] for more practical information. A brief background on elliptic curves in found in
Section 7.1.1. We further consider two optimizations detailed below.

7.1 Trial Division Implementation

As pointed out in Section 6.1, the trial division approach dramatically improves the complexity of the overall
key generation process. Viewing the plot from figure 3 (that expresses the classic result of DeBruijn [DeB],
analyzing the probability that a candidate integer is a prime given that it passes the trial division), one can
easily observe the probability growth rate for finding a prime p while using larger thresholds. Specifically,
for larger thresholds the number of comparisons increases, as the interval now covers more primes. Thus,
the overall protocol is slowed down. In Section 7.2 we study some candidates for this threshold.

We further note that while implementing our protocols we noticed that more than 80% of the compu-
tational time is spent on the decryption process. This operation is required in Step 2b of Protocol 1 to test
whether either c(α) or c̃(α) encrypt zero, for α a prime smaller than the trial division threshold B (namely,
decryption is required at the end of each internal trial division check). Our implementations show that run-
ning the trial division in its naive form takes several hours. We therefore design two optimizations that
reduce the running time of our protocol. It is straightforward to verify that the security of our protocol is not
harmed by these modifications and we thus omit the security proofs. We begin with a short introduction on
elliptic curve cryptography.

33

7.1.1 Background on Elliptic Curve Cryptography

In order to improve our performance we implement the ElGamal PKE over the group of points on an elliptic
curve defined over a finite field. For an elementary introduction the reader is referred to [Kob87, KMWZ98]
and for [Sil94, Sil09] for additional treatment. In the following we introduce some basics notations regarding
elliptic curves; for simplicity we only introduce the case where the elliptic curve is defined over the real
numbers R.

Definition 7.1 An elliptic curve over R is the set of points x, y ∈ R which satisfy the equation

y2 = x3 + ax+ b.

The set of points on an elliptic curve form an Abelian group. Moreover, the elliptic curve analogy of
multiplying two elements in G is adding two points on E, where E is an elliptic curve defined over G. Thus,
the analog of raising an element in G to the kth power is a multiplication of a point P ∈ E by an integer k.
We now recall the ElGamal PKE over elliptic curves.

Distributed Key-Generation Protocol:

1. The parties agree on an elliptic curve E and a generator G.

2. Party P0 chooses a random secret key xP0 and sends P1 the value QP0 = xP0G.

3. Party P1 chooses a random secret key xP1 and sends P0 the value QP1 = xP1G.

4. The parties compute the shared key Q = QP0 +QP1 .

Encryption: Let m ∈ G be a message and let E be the set of points over the curve E. Then m must
be mapped to a point in E before encrypted because addition over an elliptic curve is only possible with
points on that curve. Thus integers have to be mapped to corresponding points through a mapping function
h : G→ E. Moreover, this mapping should be homomorphic in the sense,

h(m1 +m2 + · · ·+mn) = h(m1) + h(m2) + · · ·+ h(mn).

Thus, each integer m ∈ G is mapped to a curve point M ∈ E by computing M = h(m) = mG. This
mapping function meets the required homomorphic property as,

M1 +M2 + · · ·+Mn = h(m1 +m2 + · · ·+mn) = (m1 +m2 + · · ·+mn)G = m1G+m2G+ · · ·+mnG.

Let q be the order of the group of points on the curve E, and let r be picked uniformly at random in Zq, then
encrypting the point M is computed as follows:

(C1, C2) = (rG,M + rQ)

Distributed Decryption Protocol:

1. The parties wish to decrypt ciphertext C = (C1, C2).

2. Party P0 computes the secret share D0 = xP0C1 and sends it to party P1.

3. Party P1 computes the secret share D1 = xP1C1 and sends it to party P0.

4. The parties compute the plaintext point M = C2 −D1 −D2.

34

7.1.2 Optimization I: The BatchedDec Protocol

One way to improve the trial division performance is by reducing the number of decryption operations. The
idea is quite simple, the parties do not decrypt c(α) and c̃(α) after each trial division iteration, but instead
they maintain a state S for each T iterations specified by a pair of ciphertexts (Cf , C̃f). These ciphertexts
encrypt the multiplication of the respective T values encrypted within c(α)’s and c̃(α)’s throughout the T
iterations. More specifically, at the beginning of the first iteration the parties set Cf = c(α) and C̃f = c̃(α).
Recalling that p0 and p1 are the respective shares of a prime p, picked by P0 and P1, then for each iteration
i the parties update Cf as follows (the update of C̃f is computed similarly):

1. Party P0 selects a random value r′i and computes R′i = r′iG and K ′i = r′iQ, where Q is the public-key.

2. P0 computes VP0 i = (p0 mod αi)Cf i−1. Let VP0 i = (C1, C2), then P0 computes HP0 i = (C1 +
R′i, C2 +K ′i) and sends HP0 i to P1.

3. P1 computes HP1 i similarly, selecting a random value r′′ and using p1 mod αi. P1 sends HP1 i to P0.

4. The parties compute H = HP0 +HP1 and set Cf = H .

Finally, at the T th iteration the parties decrypt and check whether one of the two ciphertexts is an
encryption of zero. Based on the homomorphic properties of our PKE it holds that either Cf or C̃f are the
encryption of 0 if at least one of the α’s tested during one of the T iterations divided the parties’ candidate.
This approach enables to perform the decryption operation only once every T iterations. Clearly, if T is too
small the software does not get a big performance improvement. On the other hand, when T is too big the
software will have to perform too many rounds before discovering that much of the work is useless. After
some empirical studies we observed that T = 100 is a good threshold candidate.

Correctness (informally). We begin from the first iteration of the new trial division protocol. For sim-
plicity, we only address the second iteration. The general case easily generalizes.

• First iteration: Let α1 be the prime checked during the first iteration, then the parties initialize the
status S = (Cf 1, C̃f1) as follows:

S = (Cf 1, C̃f1) = (c(α1), c̃(α1))

Where:

c(α1) = EncpkEG
(p0 mod α1 + p1 mod α1) = (r1G, r1Q+ (p0 mod α1 + p1 mod α1)G) .

and

c̃(α1) = EncpkEG
(p0 mod α1 + p1 mod α1 − α1) = (rc̃G, rc̃Q+ (p0 mod α1 + p1 mod α1 − α1)G) .

• Second iteration: Using the above notations, and keeping in mind that VP02 = (v1, v2), P0 computes

HP02 = (v1 +R′2, v2 +K ′2)

and sends it to P1. Thus remembering that Cf 1 = (c1, c2) we have:

HP02 =
(
(p0 mod α2)c1 +R′2, (p0 mod α2)c2 +K ′2

)
=

(
(p0 mod α2)r1G+ r′2G, (p0 mod α2)(r1Q+ (p0 mod α1 + p1 mod α1)G+ r′2Q)

)
=

(
((p0 mod α2)r1 + r′2)G, ((p0 mod α2)r1 + r′2)Q+ (p0 mod α2)(p0 mod α1 + p1 mod α1)G

)
.

35

In addition, party P1 computes,

HP12

=
(
((p1 mod α2)r1 + r′′2)G, ((p1 mod α2)r1 + r′′2)Q+ (p1 mod α2)(p0 mod α1 + p1 mod α1)G

)
.

The parties then exchange HP02 and HP12 and compute Cf 2 = HP02 + HP12. It is now trivial to
see that if Cf 2 is an encryption of 0 then α1, α2 or both divide the candidate. The demonstration is
analogous for C̃f2 . This optimization enables to maintain the same level of security while improving
performance. Indeed looking at table 2 the expected running time of the parties is drops into 47
minutes.

7.1.3 Optimization II: The LocalTrialDiv Protocol

In this section we take a different approach and instruct the parties to “abort” the distributed trial division
after a number of checks, continue with the computation of the composite candidate, and only then complete
the trial division test on their own (i.e., without communication). More specifically,

1. For the first X rounds the parties run the trial division as explained in the previous section.

2. The parties then quit the trial division loop and compute Step 3a of Protocol 1, computing Ñ .

3. The parities then locally complete the trial division for Ñ until the threshold B is reached. Namely,
by checking whether α|Ñ or not.

Notably, it has been observed that most of the candidates are rejected at very early stages of the trial division,
namely, before α turns to be higher than 31. The main advantage of this solution is that it enables to avoid
the usage of cryptographic routines for α’s greater than X . This optimization, denoted by LocalTrialDiv,
improves the trial division performance even further; our experimental results are depicted in table 3. In our
experiments we fix X to be 11.

7.2 Performance Results

In order to illustrate the efficiency of our protocols we created a benchmark program that simulates the
behavior of the parties in three different cases: (1) the original protocol, (2) the LocalTrialDiv protocol and
(3) the BatchedDec protocol. In this section we present the performance measures we have observed during
our experiments. These measurements have been computed by running the programs over an Intel Core i5
dual core 2.3 GHz, with 256KB for L2 cache per core, 3 MB for L3 cache, and 8GB of Ram.

7.2.1 Performance Analysis of the Original Protocol

In order to estimate the resources needed to output a legal RSA composite following the original protocol,
we let the parties run 10 trial division tests and calculate the average time the parties spent on a single test.
This value is then multiplied by the overall expected number of iterations of the trial division (specified by
the DeBruijn formula; see figure 3). Observing the results presented in Table 1, one can see that the expected
running time is about 3 hours already for a relatively small threshold value. In the following sections we
present the performance measurements of our two optimized protocols.

36

Round # B = 15973 B = 8117 B = 3181 B = 1129
1 49.30 seconds 16.11 seconds 11.96 seconds 4.18 seconds
2 48.99 seconds 15.16 seconds 6.60 seconds 3.37 seconds
3 47.33 seconds 17.07 seconds 6.32 seconds 3.76 seconds
4 41.23 seconds 13.74 seconds 7.81 seconds 6.64 seconds
5 48.30 seconds 16.08 seconds 7.74 seconds 2.57 seconds
6 54.68 seconds 15.56 seconds 7.15 seconds 2.83 seconds
7 41.38 seconds 15.44 seconds 9.53 seconds 3.98 seconds
8 46.46 seconds 15.25 seconds 6.40 seconds 3.27 seconds
9 41.90 seconds 15.06 seconds 12.35 seconds 2.87 seconds
10 45.56 seconds 14.40 seconds 6.55 seconds 4.03 seconds

Average: 46.51 seconds 15.38 seconds 8.24 seconds 3.75 seconds
Iterations
Expected: 1804 1980 2200 2750
Total Time
Expected: 23.3 hours 8.5 hours 5.0 hours 2.9 hours

Table 1: Experimental results for the original protocol.

7.2.2 Performance Analysis of the BatchedDec Protocol

In table 2 we present our performance analysis of protocol BatchedDec. Each row reports the duration (in
minutes) of a complete execution for different selected values of B. We take into account the set of all
operations performed by the parties during BatchedDec protocol, i.e., from the initialization phase of the
libraries and the key generation steps, to the actual output of the RSA composite. We report the average
time it takes to generate a valid composite, as well as the average number of iterations required throughout
the entire computation, until a valid RSA composite is output.

Observing this data, the reader can see that the theoretical results reported in the previous sections are
partly confirmed. Indeed, the cost of the trial division decreases along with the threshold values for B, yet
the number of rounds increases. Using B = 1129 the parties need more CPU time on the average than for
thresholdB = 3181. This is because the improvement due to using a decreased value ofB cannot “compete”
with the resources needed to perform the increased number of rounds. Indeed, the former threshold doubles
the expected number of rounds. Moreover, increasing the threshold value even further does not improve the
performance.

7.2.3 Performance Analysis of the LocalTrialDiv Protocol

Finally, given the results from table 3, one can observe that a similar scenario described with respect to
Protocol LocalTrialDiv as well. Indeed, setting B = 8117, the average CPU time required in order to
compute an RSA composite is 37 minutes. Increasing the value of B into 15973 makes the CPU time drop
into 15 minutes on the average, yet increasing B even more increases the CPU time beyond that. It can be
seen that the values chosen for B are a bit higher than the values chosen for the previous approach; this is
because this method is much faster. Thus, the parties are able to handle more trial divisions per round before
executing a biprimality test.

37

Run # B = 15973 B = 8117 B = 3181 B = 1129
1 164.27 minutes 12.27 minutes 18.28 minutes 13.08 minutes
2 55.18 minutes 66.57 minutes 68.63 minutes 73.80 minutes
3 1.07 minutes 319.30 minutes 69.42 minutes 15.43 minutes
4 29.23 minutes 41.00 minutes 13.63 minutes 85.38 minutes
5 46.48 minutes 79.88 minutes 4.68 minutes 26.63 minutes
6 17.47 minutes 84.38 minutes 28.55 minutes 29.68 minutes
7 79.88 minutes 81.92 minutes 147.75 minutes 213.27 minutes
8 262.72 minutes 46.68 minutes 17.30 minutes 18.55 minutes
9 344.68 minutes 14.25 minutes 74.42 minutes 3.65 minutes
10 531.68 minutes 32.05 minutes 34.73 minutes 91.55 minutes

Iterations
Observed: 1183 1850 1899 4470
(Average)

Total Time
Observed: 153.27 minutes 77.82 minutes 47.73 minutes 57.10 minutes
(Average)

Table 2: Experimental results for the BatchedDec protocol.

Run # B = 65521 B = 15973 B = 8117
1 27.75 minutes 4.93 minutes 34.37 minutes
2 5.10 minutes 7.70 minutes 20.07 minutes
3 4.58 minutes 23.92 minutes 1.60 minutes
4 11.00 minutes 28.18 minutes 6.2 minutes
5 50.10 minutes 27.05 minutes 7.99 minutes
6 3.13 minutes 4.22 minutes 49.50 minutes
7 2.28 minutes 37.53 minutes 15.91 minutes
8 17.17 minutes 1.80 minutes 16.48 minutes
9 42.07 minutes 13.55 minutes 196.28 minutes
10 22.33 minutes 1.18 minutes 22.12 minutes

Iterations
Observed: 1144 1190 3418
(Average)

Total Time
Observed: 18.55 minutes 15.00 minutes 37.05 minutes
(Average)

Table 3: Experimental results for the LocalTrialDiv protocol.

38

References
[ACS02] J. Algesheimer, J. Camenisch, and V. Shoup. Efficient computation modulo a shared secret with appli-

cation to the generation of shared safe-prime products. In M. Yung, editor, CRYPTO, volume 2442 of
Lecture Notes in Computer Science, pages 417–432. Springer, 2002.

[BB89] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant computing in a constant number of rounds of
interaction. In Piotr Rudnicki, editor, Proceedings of the eighth annual ACM Symposium on Principles
of distributed computing, pages 201–209, New York, 1989. ACM Press.

[BBBG98] S. Blackburn, S. Blake-Wilson, M. Burmester, and S. Galbraith. Shared generation of shared RSA keys.
http://cacr.math.uwaterloo.ca/techreports/1998/corr98-19.ps, 1998.

[BDOZ11a] R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias. Semi-homomorphic encryption and multiparty
computation. In EUROCRYPT, pages 169–188, 2011.

[BDOZ11b] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic encryption and
multiparty computation. In EUROCRYPT, pages 169–188, 2011.

[BF01] D. Boneh and M. K. Franklin. Efficient generation of shared RSA keys. J. ACM, 48(4):702–722, 2001.

[BFP+01] O. Baudron, P. A. Fouque, D. Pointcheval, G. Poupard, and J. Stern. Practical multi-candidate election
system. In In PODC, pages 274–283. ACM Press, 2001.

[Bou00] F. Boudot. Efficient proofs that a committed number lies in an interval. In B. Preneel, editor, EURO-
CRYPT, volume 1807 of Lecture Notes in Computer Science, pages 431–444. Springer, 2000.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS,
pages 136–145, 2001.

[CD09] R. Cramer and I. Damgård. On the amortized complexity of zero-knowledge protocols. In CRYPTO,
pages 177–191, 2009.

[CDN01] R. Cramer, I. Damgård, and J. B. Nielsen. Multiparty computation from threshold homomorphic encryp-
tion. In EUROCRYPT, pages 280–299, 2001.

[CGHN01] D. Catalano, R. Gennaro, N. Howgrave-Graham, and P. Q. Nguyen. Paillier’s cryptosystem revisited. In
ACM Conference on Computer and Communications Security, pages 206–214, 2001.

[CGS97] R. Cramer, R. Gennaro, and B. Schoenmakers. A secure and optimally efficient multi-authority election
scheme. In EUROCRYPT, pages 103–118, 1997.

[CKY09] J. Camenisch, A. Kiayias, and M. Yung. On the portability of generalized schnorr proofs. In EURO-
CRYPT 2009, pages 425–442, 2009.

[Cle86] R. Cleve. Limits on the security of coin flips when half the processors are faulty (extended abstract). In
STOC, pages 364–369, 1986.

[Coc97] C. Cocks. Split generation of RSA parameters with multiple participants. In Proceedings of 6th IMA
conference on Cryptography and Coding, pages 200–212. LNCS 1355, 1997.

[Cop97] D. Coppersmith. Small Exponents to Polynomial Equations, and Low Exponent RSA Vulnerabilities.
Journal of Cryptology, 10:233–260, 1997.

[CP92] David Chaum and Torben P. Pedersen. Wallet databases with observers. In CRYPTO, pages 89–105,
1992.

[DeB] N. DeBruijn. On the number of uncanceled elements in the sieve of eratosthenes. In In Proc. Neder.
Akad. Wetensh., (53),, pages 803–812. (Reviewed in LeVeque Reviews in Number Theory, 4, N-28,
page 221).

[Des94] Y. G. Desmedt. Threshold cryptography. European Transactions on Telecommunications, 5(4):449–457,
July 1994.

39

[DF02] I. Damgård and E. Fujisaki. A statistically-hiding integer commitment scheme based on groups with
hidden order. In ASIACRYPT, pages 125–142, 2002.

[DH76] W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions on Information
Theory, 22(6):644–654, 1976.

[DJ01] I. Damgård and M. Jurik. A generalisation, a simplification and some applications of paillier’s proba-
bilistic public-key system. In Public Key Cryptography, pages 119–136, 2001.

[DJ02] I. Damgård and M. Jurik. Client/server tradeoffs for online elections. In Public Key Cryptography, pages
125–140, 2002.

[DM10] I. Damgård and G. L. Mikkelsen. Efficient, robust and constant-round distributed RSA key generation.
In TCC, pages 183–200, 2010.

[DN02] I. Damgård and J. B. Nielsen. Perfect hiding and perfect binding universally composable commitment
schemes with constant expansion factor. In CRYPTO, pages 581–596, 2002.

[DN03] I. Damgård and J. B. Nielsen. Universally composable efficient multiparty computation from threshold
homomorphic encryption. In CRYPTO, pages 247–264, 2003.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from some-
what homomorphic encryption. In CRYPTO, pages 643–662, 2012.

[ECR11] Ecrypt ii, yearly report on algorithms and keysizes (2010). http://www.ecrypt.eu.org/documents, 2011.

[ElG85] T. ElGamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. IEEE
Trans. Info. Theory, IT 31:469–472, 1985.

[FFS88] U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. J. Cryptology, 1(2):77–94, 1988.

[FIP09] National institute of standards and technology, federal information processing standards: Digital signa-
ture standard. http://csrc.nist.gov/encryption, 2009.

[FMY98] Y. Frankel, P. D. Mackenzie, and M. Yung. Robust efficient distributed RSA-key generation. In stoc98,
pages 663–672. ACM Press, 1998.

[FO97] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular polynomial relations.
In CRYPTO, pages 16–30, 1997.

[FPS00] P.A. Fouque, G. Poupard, and J. Stern. Decryption in the context of voting or lotteries. In Financial
Crypto ’00. Springer-Verlag, 2000.

[FS86] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature prob-
lems. In CRYPTO, pages 186–194, 1986.

[Gil99] N. Gilboa. Two party RSA key generation. In CRYPTO, pages 116–129, 1999.

[GJKR01] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust Threshold DSS Signatures. Information and
Computation, 164(1):54–84, 2001.

[GJKR07] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure Distributed Key Generation for Discrete-Log
Based Cryptosystems. Journal of Cryptology, 20(1):51–83, 2007.

[GKR00] R. Gennaro, H. Krawczyk, and T. Rabin. Robust and Efficient Sharing of RSA Functions. Journal of
Cryptology, 13(2):273–300, 2000.

[Gol04] O. Goldreich. Foundations of Cryptography: Volume 2. Cambridge University Press, 2004. Preliminary
version http://philby.ucsd.edu/cryptolib.html/.

[INI99] National institute of standards and technology, recommended elliptic curves for federal government use.
http://csrc.nist.gov/encryption, 1999.

[JL09] S. Jarecki and X. Liu. Efficient oblivious pseudorandom function with applications to adaptive ot and
secure computation of set intersection. In TCC, pages 577–594, 2009.

40

[JS07] S. Jarecki and V. Shmatikov. Efficient two-party secure computation on committed inputs. In EURO-
CRYPT, pages 97–114, 2007.

[KMWZ98] Neal Koblitz, Alfred J. Menezes, Yi-Hong Wu, and Robert J. Zuccherato. Algebraic aspects of cryptog-
raphy. Springer-Verlag New York, Inc., New York, NY, USA, 1998.

[Kob87] Neal Koblitz. A course in number theory and cryptography. Springer-Verlag New York, Inc., New York,
NY, USA, 1987.

[Lin13] Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert adversaries. In CRYPTO
(2), pages 1–17, 2013.

[Lip03] H. Lipmaa. On diophantine complexity and statistical zero-knowledge arguments. In ASIACRYPT, pages
398–415, 2003.

[LP11] Y. Lindell and B. Pinkas. Secure two-party computation via cut-and-choose oblivious transfer. In TCC,
pages 329–346, 2011.

[MIR] Multiprecision integer and rational arithmetic c/c++ library. http://www.shamus.ie/.

[NS10] Takashi Nishide and Kouichi Sakurai. Distributed paillier cryptosystem without trusted dealer. In WISA,
pages 44–60, 2010.

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT,
pages 223–238, 1999.

[PS98] G. Poupard and J. Stern. Generation of shared RSA keys by two parties. In in Asiacrypt 98, pages 11–24.
Springer-Verlag, 1998.

[Rab80] M. O. Rabin. Probabilistic Algorithm for Testing Primality. Journal of Number Theory, 12:128–138,
1980.

[Rab81] M. O. Rabin. How To exchange Secrets with Oblivious Transfer. Techincal Report TR-81, Aiken
Computation Lab, Harvard University, 1981.

[Rab98] T. Rabin. A simplified approach to threshold and proactive rsa. In CRYPTO, pages 89–104, 1998.

[Sch91] C. P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology, 4:161–174, 1991.

[SEC00] Standards for efficient cryptography group, sec 2: Recommended elliptic curve domain parameters.
SECG2, 2000.

[Sho00] V. Shoup. Practical threshold signatures. In EUROCRYPT, pages 207–220, 2000.

[Sil94] J.H. Silverman. Advanced Topics in the Arithmetic of Elliptic Curves. Graduate Texts in Mathematics.
Springer-Verlag, 1994.

[Sil09] J.H. Silverman. The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics. Springer, 2009.

A Distributed Generation of an RSA Composite [PS98]

In [PS98], Poupard and Stern suggested a protocol that enables two parties to generate an RSA composite
without the help of a trusted dealer. In particular, they showed how to evaluate any algebraic expression as
follows: Let λ0 and λ1 denote the respective inputs of P0 and P1 sampled out of a polynomially bounded
domain Λ, and let f denotes the public function that the parties wish to compute. Then, party P0 chooses
two random values α, β from a predetermined set and computes α · f(λ0, λ) + β for all λ ∈ Λ. Next, the
parties run an oblivious transfer protocol [Rab81] where P0 enters the above set and P1 enters its input λ1

to f . Upon completing this execution, P1 learns y1 = α · f(λ0, λ1) + β. The parties repeat the above with
reversed roles. Denote by y0 = α′ · f(λ0, λ1) + β′, P0’s output from the later oblivious transfer execution.
Then, in the final step, the parties reveal (α, β, y0) and (α′, β′, y1) simultaneously and verify their outputs.

41

This protocol can be utilized to compute N = (p0 + p1)(q0 + q1), where party P0 enters two random
shares denoted by p0, q0 and P1 enters its random shares, p1, q1. Nevertheless, the fact that it incurs linear
costs in the size of the domain makes it impractical for super polynomial domains, as in most cases. In
order to circumvent this problem, Poupard and Stern introduce the following solution. The parties agree
first on M , as the smallest product of prime numbers greater than 2n and compute the function in ZM . Now,
since M can be factored into smaller relatively prime factors, the parties run the protocol for each prime
factor mi of M and then use the Chinese Remainder Theorem to combine these outcomes into the desired
computation modulus M . Apart from the fact that the paper does not introduce a complete simulation based
proof, this technique induces a problem when coping with malicious activity as the protocol does not have
a mechanism which verifies that the parties use consistent inputs either for the multiple oblivious transfer
executions, or even within a single invocation of the original construction. In particular, it is not clear how to
build such a practical mechanism. In addition, the efficiency of the later protocol still relies on the number
of integers in the primes factorization of M and the sizes of the domains that they induce.

B The [DM10] Biprimality Test: The Two-Party Case

This section describes how the biprimality test by Damgård and Mikkelsen [DM10] works, and how it is
applicable in the two-party case in the honest-but-curious setting. It is currently unknown how to adapt the
test to the malicious case without applying generic and rather inefficient zero knowledge proofs. As with
the previous biprimality test the objective is to test a number N = pq, with p ≡ q ≡ 3 (mod 4) to check
whether p and q are both primes. We assume N to be public and p and q to be additively shared between
the two parties. The test is basically the Miller Rabin [Rab80] primaility test, run first on p and afterward on
q, exploiting the fact that N is public to do this efficient. We also assume a distributed ElGamal scheme as
described in section 2.2.2 is set up, and that P0 has generated a paillier key pair.

First we note that using the Miller Rabin [Rab80] primaility test on a number p ≡ 3 (mod 4), all
that is needed to test is whether γ(p−1)/2 ≡ ±1 (mod p) for a randomly picked γ ∈ Z∗p. Next we note
that it does not make a difference if we randomly pick γ ∈ Z∗N . Focusing on p, the test verifies that
γ(p−1)/2 ≡ ±1 mod p for a randomly picked γ ∈ Z∗N . First party Pi computes βi:

β0 = γ(p0−1)/2 mod N, β1 = γ−p1/2 mod N.

We note that:

γ(p−1)/2 ≡ ±1 (mod p) (2)

m
γ(p0−1)/2 ≡ ±γ−p1/2 (mod p) (3)

m
(β0 mod p) = ± (β1 mod p) (4)

where (3) to (4) follows from the fact that p|N ; thus reducing βi modulo p is equivalent to reducing
γ(pi−(1−i))/2 modulo p directly. It remains to be shown how to perform the modulo reductions and check
for equality in (4) securely.

Modulo Reductions an Equality Testing in (4): We first note, that: βi mod p = βi −
⌊
βi
p

⌋
p, and we

assume an approximation a(i) of bβi/pc, where a(i) is held additively shared, a(i)
0 + a

(i)
1 ; we show how to

obtain this below. The rest of the calculation is done distributedly as: P0 sends ElGamal encryptions of β0,

42

p0, a(0)
0 , a(1)

0 , p0 · a(0)
0 , and p0 · a(1)

0 to P1. Using the homomorphic property of the ElGamal scheme this
allows P1 to compute encryptions of:

βi − (p0 · a(i)
0 + p0 · a(i)

1 + p1 · a(i)
0 + p1 · a(i)

1) = βi − (a
(i)
0 + a

(i)
1) (p0 + p1)

= βi −
⌊
βi
p

⌋
· p

= (βi mod p) + kip

for i ∈ {0, 1}, where the ki’s are small integer values due to the fact that the a(i) are only approximations.
If (and only if) β0 ≡ β1 mod p (respectively β0 ≡ −β1 mod p), the difference (respectively sum) will

be a small multiple of p. Hence, we may check whether β0 ≡ ±β1 mod p using a small number of equality
tests (β0 + β1 = 0, (β0 + β1) − p = 0, (β0 + β1) − 2p = 0, etc): First the parties randomly permute
the ciphertexts in question; then they raise each one to a random, non-zero exponent; finally the parties
decrypt each cipher text – if one was an encryption of 0, they conclude that β0 ≡ ±β1 mod p. This leaks
no information due to the (secret) permutation and random exponentiations.

Computing a(i) ≈ bβi/pc: The approximation, a(i), of bβi/pc is obtained by first computing

ã(i) =

⌊
2m

N

⌋
· (q0 + q1) · βi ≈

⌊
2m · (q0 + q1) · βi

N

⌋
=

⌊
2m · βi
p

⌋
which is an approximation of 2ma(i), where m is a bit-length ensuring that a(i) will be sufficiently accurate,
making k, the number of tests, above sufficiently small. For a thoroughly analysis of the size of m, the
reader is referred to [DM10]. An additive sharing of ã(i) over the integers may be computed based on
Paillier encryption with P0’s keys. The Paillier key, has to be sufficiently big, such that the following
calculations, will not lead to an overflow modulo the modulus. This implies that the following calculations
are done over the integers, although they are done modulo the modulus of the Paillier key.

The value b2m

N c is a public value, and the rest is integer computation, thus: P0 sends encryptions of q0,
β0 and q0 · β0 to P1, which for i ∈ {0, 1} computes encryptions of the values:

ã(i) =

⌊
2m

N

⌋
· (q0βi + q1βi)

=

⌊
2m

N

⌋
· q · βi.

Finally P1 picks two uniformly random values ã(i)
1 κ bits longer than the ã(i), where κ is a security

parameter, and returns and encryptions of

ã
(i)
0 = ã(i) − ã(i)

1

to P0 for i ∈ {0, 1}. P0 decrypts and stores both ã(i)
0 as negative integers, i.e. views NPa − x ∈ ZNPa

as −x ∈ Z, NPa denoting the modulus in the Paillier key. The parties then truncate their values (drop the
least significant m bits); denote the truncated values a(i)

0 and a(i)
1 , and note that their sum is the required

approximation, a(i):

a
(i)
0 + a

(i)
1 ≈ ã

(i)/2m

≈
⌊

2m · βi · q
2mN

⌋
≈ bβi/pc .

43

C Generalizing to the Multiparty Case

Our protocol may be generalized to the multiparty case in the setting with dishonest majority and a static
adversary. Our construction is comprised of the following two parts: (1) securely determining the modulus
N , and (2) obtaining a threshold Paillier key. To the best of our knowledge, this is the first multiparty pro-
tocol for a distributed RSA composite generation, which is actively secure against an adversary corrupting
all but one of the parties. Moreover, despite Cramer et al. [CDN01] and Damgård and Nielsen [DN03]
demonstrating efficient, general multiparty computation given only a public Paillier key with a shared secret
key (provided by some third-party, which could be replaced by a secure protocol), previous papers on RSA
composite generation have disregarded the shared Paillier decryption key and focused solely on generating
the modulus. We are the first to present a protocol for generating a full, distributed Damgård-Jurik key3

[DJ01]. For clarity, we take a high-level view of these protocols. Further, as the protocols are described with
clarity, rather than efficiency, in mind, many straightfoward optimizations are possible.

In the following, let k denote the number of parties, P1, . . . , Pk, and let t denote the desired threshold
for the shared Paillier key computation. For both parts, we ensure security against an adversary corrupting
up to t − 1 parties, though naturally, given the threshold key any t parties may perform a decryption or
reconstruct the secret key.

A few remarks are in place here. We first assume that the parties have access to PKI setup. That is,
each party has a public verification key which all parties hold a copy of. Based on this, we may construct
a broadcast channel. In addition, we allow any party to halt the protocol at any time by broadcasting an
abort message. When this occurs, all parties broadcast all messages of the entire protocol (including all
signatures) as well as all randomness used in all key generations, encryptions, etc. At this point it is easy to
verify the behavior of all parties and assign blame. We may do this as there are only random inputs to the
protocol picked by the participants, i.e. leaking them does not compromise any privacy.4

We remark that care must be taken when running sub-protocols in parallel. For example, a rushing
adversary could potentially break the entire protocol by using a ZK-proof of an honest party to fake a ZK-
proof of its own. The issues can be removed, e.g. by using broadcasts to ensure complete synchronization,
and having all parties commit to all messages in a given round before actually sending them.

C.1 Generating an RSA Composite

In this section we describe our protocol for generating as RSA composite N =
(∑k

i=1 pi

)(∑k
i=1 qi

)
, for

pi, qi being the shares picked by the ith party. We note that most of the steps of our multiparty protocol
translate directly from our two-party construction.

1. KEY-SETUP.

• The parties run the k-party generalization of the shared ElGamal key generation: The parties
agree on the group of sufficiently large order, Q, and a generator, g. Each party Pi picks a
uniformly random xi ∈ ZQ, broadcasts hi = gxi , and proves knowledge of a DL of hi to all
others. The ElGamal key is now h =

∏k
i=1 hi. Decryption is analogous to the two-party case.

• Each party Pi generates and broadcasts a Paillier key,Ni � Q2, and proves that it is well-formed
to all other parties.

2. GENERATE CANDIDATES.
3Our key differs slightly, however, the principles and the construction are essentially the same.
4See Footnote 2.

44

• We employ the same idea as used by Boneh and Franklin, [BF01]: Each party Pi generates a
random share pi for p =

∑k
i=1 pi. The parties broadcast ElGamal encryptions of their shares

and prove to all others that they know the plaintexts and that these are of appropriately bounded
size using ZK proofs πENC and πBOUND. Similarly to above, the parties ensure that the share of
P1 is congruent to 3 mod 4, while all others are congruent to 0.

• Trial division is analogous to the two-party protocol. The parties broadcast encryptions of
pi mod α for all primes α < B. Using the homomorphic property, the parties compute an
encryption of the sum, and check if this is an encryption of a multiple of α, i.e. whether it is one
of the values within [0, α, 2α, . . . , (k − 1)α]. Correct behavior is verified with πMOD.

• Repeat the previous steps to generate the second candidate, q, as well.

3. COMPUTE PRODUCT (N = pq).

• This step differs significantly; obtaining gN could easily be done [CDN01], however, Ñ cannot
be computed as in the two-party case, hence we would have to obtain the solution to the DL
problem differently. The main idea here is to have every pair of parties, Pi and Pj , engage in
a protocol to obtain an additive sharing over ZQ of piqj = s

(i)
i,j + s

(j)
i,j instead.5 Note that no

other party receives shares of this value. Each party then locally adds all shares held, thereby
obtaining a share from an additive sharing of

pq =
k∑
i=1

k∑
j=1

piqj =
k∑
i=1

k∑
j=1

(
s

(i)
i,j + s

(j)
i,j

)
. (5)

Additionally, ZK proofs on ElGamal encryptions are used to ensure that parties are committed
to their shares and behave as specified. More formally,

– For 1 ≤ i, j ≤ k, Pj broadcasts an ElGamal encryption of a uniformly random value,
−s(j)

i,j ∈ ZQ, and proves in ZK towards all others that it has known plaintext using πENC.

– For 1 ≤ i, j ≤ k, Pi sends a Paillier encryption cpi,j of pi to Pj under its own key, Ni.6

Moreover, for each one, it proves plaintext knowledge using πENC and that the value is
bounded using πBOUND.

– For 1 ≤ i, j ≤ k, Pj computes a Paillier encryption under key Ni

c̄i,j = (cpi,j)
qj · Enc

(
−s(j)

i,j +Q · ri,j
)

,

where ri,j is a uniformly random n-bit value which statistically masks any overflow modulo
Q in the computation. c̄i,j is then sent to Pi along with a ZK proof that the computation was
done using known values. This can e.g. be done using πVERLIN and an additional dummy
encryption of 0. It is straightforward to construct a simpler protocol similar to πVERLIN;
naturally this would be more efficient.

– For 1 ≤ i, j ≤ k, Pi decrypts c̄i,j , reduces the resulting plaintext moduloQ, and denotes the
result s(i)

i,j . Pi then broadcasts an ElGamal encryption of s(i)
i,j and proves plaintext knowl-

edge, πENC.
– For 1 ≤ i, j ≤ k, the parties verify that everyone is indeed committed to shares of the

products, piqj . Based on the encryption of qj , party Pi computes and broadcasts a fresh

5For i = j, the party in question simply computes a dummy sharing of the known value piqj .
6For efficiency, Pi may send the same encryption to all other parties; we do not demand this behavior, though.

45

encryption of piqj ; correctness is verified by executing πMULT. All parties then compute an
ElGamal encryption of

piqj −
(
s

(i)
i,j + s

(j)
i,j

)
, (6)

using the homomorphic property. This encryption is then decrypted, and all parties verify
that the obtained plaintext equals zero. This demonstrates that s(i)

i,j +s
(j)
i,j = piqj , i.e. that the

sharing was indeed of the product. If any check fails, the parties abort the entire execution.
– For 1 ≤ i ≤ k, all parties compute an ElGamal encryption of

si =
k∑
j=1

s
(i)
i,j + s

(i)
j,i

using the homomorphic property. Pi the broadcasts si, the parties decrypt the encryption of
si (resulting in the value gsi), and finally verify that the broadcast value is correct, i.e. the
DL of the decrypted value.

– The parties compute N =
∑k

i=1 si mod Q.

4. BIPRIMALITY TEST.

• P1 has the share congruent to 3 mod 4, and therefore behaves as P0 in the two-party protocol,
while the rest behave as P1 in the two-party case. Each party broadcasts its γi; P1 proves
consistency towards an encryption of (N−p1−q1+1)/4 using πEQ, while Pi proves consistency
towards −(pi + qi)/4 for 1 < i ≤ k.

Correctness: Except for the computation of N = pq, all steps are essentially the same as in the two-party
protocol. Focusing solely on this step, we note that it is easily verified that the right result is obtained, by
Equation (5), since all parties explicitly verify that the encrypted shares indeed sum to the products, piqj .

Security: Again, as all steps are analogous to the two-party protocol except for the computation of N , the
security of these is shown (essentially) in the same way as security for the two-party protocol. Regarding
the computation of N , we must ensure that no party can deviate from the protocol in any way without
being detected. The computation of the additive sharing of N based on the parties’ Paillier keys can be
viewed as a number of two-party computations (of additive secret sharings of products), which must be
globally verifiable. This is achieved, since it is verified using Equation (6) that the sum of the encrypted
shares of the product equals the encrypted product; the latter is guaranteed to be correct due to the use
of πMULT. Thus, even if both Pi and Pj are corrupt, they will be committed to a sharing of the product.
Further, a corrupt Pi can obtain no information about qj as the addition of −s(j)

i,j + Q · ri,j statistically
masks any information.7 A corrupt Pj on the other hand learns nothing about pi, as it only sees semantically
secure encryptions. Similarly, if both Pi and Pj are honest, then the attacker only sees the semantically
secure encryptions transferred, which leaks no information. Formal simulation is possible by giving the
adversary either fresh, random encryptions or encryptions of random values distributed as the statistical
mask depending on whether it knows the secret key.

7Note that the application of πBOUND on ciphertext cpi,j is critical, as this guarantees an honest Pj that its masking will hide qj .

46

C.2 Computing the Threshold Key

In this section we present a protocol for generating a threshold key for (a slight variation of) the Damgård-
Jurik generalization of Paillier encryption [DJ01]. Recall that decryption consists of raising to the power of
d, where

d ≡
{

0 mod φ(N)
1 mod N

.

Constructing a threshold key essentially consists of computing a Shamir sharing of this. Our solution con-
sists of two steps: 1) First, compute an additive sharing of d. 2) Then, compute Shamir shares of this and
decrypt these toward the relevant parties.

Computing an additive sharing of d: First note that

φ(N) ·
(
φ(N)−1 mod N

)
≡
{

0 modφ(N)
1 modN

(7)

where φ(N) and (φ(N)−1 mod N) are viewed as integers. The key primitive of the construction is to add
secure multiplication and full decryption to the ElGamal scheme by maintaining a secret state based on
additive secret sharing: The parties implicitly hold additive secret sharings of φ(N): P1 holds N + 1 −
(p1 + q1), while Pi holds −(pi + qi) for 1 < i ≤ k. Further, the primary goal here is to compute an additive
sharing of φ(N)−1 mod N . This will then be multiplied with the shared φ(N). To invert φ(N), the parties
utilize the inversion protocol of Bar-Ilan and Beaver, [BB89], simulating ZN arithmetic in ZQ.

Secure multiplication as well as decryption is achieved, by utilizing the ElGamal encryptions as com-
mitments to the shares of the parties. The crucial observation is that when the parties hold additive sharings
(over ZQ) and are committed to those shares – through public ElGamal encryptions of each share – they
may obtain an additive sharing of the product as well as ElGamal encryptions of these shares. The protocol,
which we denote πΠ, is essentially the same as the one used for computing N = pq above. Note that this
construction is similar in structure to the protocols of Bendlin et al. [BDOZ11a].

• For 1 ≤ i ≤ k, party Pi picks ti uniformly at random from ZN and ri uniformly at random from
ZN ·k·2n , where n is a security parameter. Each Pi then broadcasts ElGamal two encryptions, cti of
ti and cri of ri, and demonstrates plaintext knowledge and that they belong to the specified domains
using πENC and πBOUND. These will be viewed as sharings of random values, t =

∑k
i=1 ti and

r =
∑k

i=1 ri.

• The parties execute πΠ, obtaining shares u1, . . . , un of t · φ(N) as well as encryptions cui of those
shares.

• For 1 ≤ i ≤ k, party Pi broadcasts ui +N · ri; the parties then decrypt cui · (cri)N , and verify that Pi
broadcast the share correctly. If all checks succeed, the parties compute

v =
k∑
i=1

ui +N · ri.

Note that due to the restrictions on the ti and ri, v ≡ t · φ(N) mod N .

• Each party locally computes the public value8

v̄ = v−1 mod N ;
8v is invertible except with negligible probability.

47

this is then used to compute an additive sharing of w = t · v̄; Pi locally multiplies ti by v̄ to compute
wi, and all parties raise the encryptions of the ti to v̄ to obtain encryptions of the wi.

• Finally, the parties execute πΠ on the shared values φ(N) and w, thereby obtaining shares di of d
along with encryptions cdi of the di.

Correctness follows from the fact that the shared w =
∑k

i=1wi equals(
(t · φ(N) + r ·N)−1 mod N

)
· t =

(
φ(N)−1 mod N

)
+ zN

for some integer z of at most dlog ke+ dlogNe bits. This implies that

d =
((
φ(N)−1 mod N

)
+ zN

)
· φ(N) = (

(
φ(N)−1 mod N

)
φ(N) + zφ(N)N .

Note that the (at most) dlog ke+3dlogNe-bit value, d, is a proper decryption exponent, as it clearly satisfies

d ≡
{

0 mod φ(N)
1 mod N

Assuming that πΠ securely computes shares of products, then security follows from the fact that the
only possible leak is

v =

k∑
i=1

ui +N · ri.

However, this may be simulated as it is statistically close to a large, random value:

• v mod N ∈ Z∗N is the product of t and φ(N). Since t is the sum of uniformly random values ti < N ,
t mod N is (except with negligible probability) uniformly random in Z∗N , and – as Paillier encryption
requires gcd(N,φ(N)) = 1 – therefore so is v mod N . Note that if t mod N 6∈ Z∗N , then we abort.

• Since bv/Nc = bu/Nc+ r and r is random and n bits longer than bu/Nc, then bv/Nc is statistically
indistinguishable from a random value distributed as r, even if all but one of the parties are corrupt.

Convert the additive sharing of d to a Shamir sharing: Given the additive sharing of dmoduloQ, i.e. di
held by party Pi and the public encryptions cdi of the di, the parties may compute a “Shamir sharing” of
d. Damgård and Jurik do this over the ring ZNφ(N), however, here this must be done over the integers, as
Nφ(N) is unknown. The parties do this by converting the initial sharing of d to an additive sharing over the
integers. In the following, let `d = dlog n+ 3 logNe be the bit-length of d.

1. Conversion to an integer sharing is done by adding a statistically hiding mask to d; the shares then
depend on the masked value and the shares of the mask.

• For 1 ≤ i ≤ k, party Pi picks ri uniformly at random from Z2`d+n , where n is a security
parameter. Pi then broadcasts an ElGamal encryption cri of ri, and proves in ZK that it knows
the plaintext and that ri is of the specified size using πENC and πBOUND.
• For 1 ≤ i ≤ k, party Pi broadcasts mi = di + ri. Moreover, the parties decrypt cdi · cri and

verifies the correctness of the share.
• Party P1 sets its integer share of d to be

d1,Z =

(
k∑
i=1

mi mod Q

)
− r1;

all parties compute an encryption cd1,Z of d1,Z.

48

• For 1 < i ≤ k, party Pi computes its integer share

di,Z = −r1;

all parties compute an encryption cdi,Z of di,Z.

2. Next, the di,Z are threshold shared. Each party Pi threshold-shares di,Z and demonstrates that it has
done this correctly

• For 1 ≤ i ≤ k and 1 ≤ j < t, party Pi picks ai,j uniformly at random in Z22 log(N)+n where n is
the statistical security parameter, and broadcasts an ElGamal encryption cai,j of this. Moreover,
it demonstrates knowledge of the plaintext ai,j and that ai,j < 22 log(N)+n using πENC and
πBOUND. These will be the coefficients used to share di,Z; let

fi(X) = di,Z +

t−1∑
j=1

ai,j ·Xj .

Note that ai,j mod Nφ(N) is statistically close to uniformly random.

• For 1 ≤ i, j ≤ k, the parties compute encryptions cfi(j) of fi(X) evaluated at point j. Further,
Pi additively shares fi(j) over the integers among the players; denote Pι’s share sfi(j),ι. Pi
broadcasts ElGamal encryptions csfi(j),ι of these and demonstrate that the plaintexts are known
and of bounded bit-length, `s:

`s = max
(
`d; (logt n)(2 log(N) + n)(log t)

)
+ n

Moreover, the parties decrypt
(
cfi(j)

)−1 ·
∏k
ι=1 csfi(j),ι and verify that the plaintext is 0, i.e. that

Pi actually shared the evaluation at fi(j).

• For 1 ≤ j ≤ k, the parties compute additive shares of

f(j) =
k∑
i=1

fi(j);

in addition, they use the homomorphic property to compute encryptions, cf(j),ι of these values.

3. Finally, for 1 ≤ j ≤ k, the parties must reveal the jth threshold share to party Pj . Damgård and
Jurik reduce modulo Nφ(N) first, which we cannot do. Hence to ensure no additional information is
revealed, a large, random multiple of Nφ(N) is added to each share.

• Since N is public and an integer-sharing of φ(N) is given, it is simple for the parties to obtain
an integer-sharing of Nφ(N): each party simply multiplies its share by N . Further, the parties
compute ElGamal encryptions of these new shares, by raising the encryptions of the shares of
φ(N) to the power of N .

• For 1 ≤ i, j ≤ k, party Pi broadcast encryptions of uniformly random, (`s+log k−2 logN+n)-
bit values ri,j along with proofs that they are known and of bounded size.

• For 1 ≤ j ≤ k, the parties execute πΠ on the set of ri,j and the sharing ofNφ(N). Each party Pi
then adds its share of f(j) to this, and denote this σi,j . Moreover, the parties compute ElGamal
encryptions cσi,j for all these shares using the homomorphic property.

49

• For 1 ≤ j ≤ k, party Pi sends the share σi,j to Pj . Moreover, the parties decrypt the cσi,j
towards Pj , who verifies that it has received the correct shares; finally each Pj computes its
share of d, σj =

∑k
i=1 σi,j ≡ f(j) mod Nφ(N).

Correctness is straightforward: The polynomial f has been constructed over the integers. Clearly f(0) ≡
d mod Nφ(N). Security follows from the fact that all messages received are either encrypted or random
shares, and thus simulatable. The final values, σj are statistically indistinguishable from points on a random
polynomial over ZNφ(N) plus a sum of uniformly random, (`s + log n − 2 logN + n)-bit multiples of
Nφ(N).

Paillier decryption To perform a Paillier decryption with the new threshold key, the parties must raise
the ciphertext in question to the power of the share of the key. To prevent malicious behavior, each party
must prove in ZK that this has been done correctly – i.e. prove in ZK that the exponent used is also stored
in some commitment. Hence, to conclude the key generation, the parties compute and decrypt the ElGamal
encryptions

∏k
i=1 σi,j for 1 ≤ j ≤ k. They thereby obtain gσj . Using πEQ they parties may show equality of

two exponents, i.e. show that they have raised a ciphertext to their part of the key. This differs from [DJ01]
who perform this secondary exponentiation modulo a power of N .

50

