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1 Introduction

Efficient secure two-party computation. Secure two-party computation enables two parties to mutually
run a protocol that computes some function f on their private inputs, while preserving a number of security
properties. Two of the most important properties are privacy and correctness. The former implies data confi-
dentiality, namely, nothing leaks by the protocol execution but the computed output. The latter requirement
implies that the protocol enforces the integrity of the computations made by the parties, namely, honest
parties learn the correct output. Feasibility results are well established [Yao86, GMW87, MR91, Bea91],
proving that any efficient functionality can be securely computed under full simulation-based definitions
(following the ideal/real paradigm). Security is typically proven with respect to two adversarial models: the
semi-honest model (where the adversary follows the instructions of the protocol but tries to learn more than
it should from the protocol transcript), and the malicious model (where the adversary follows an arbitrary
polynomial-time strategy), and feasibility holds in the presence of both types of attacks.

Following these works, many constructions focused on improving the efficiency of the computational
and communication costs. Conceptually, this line of works can be split into two sub-lines: (1) Improved
generic protocols that compute any boolean/arithmetic circuit; see [ST04, IPS08, NO09, LOP11, LP11,
BDOZ11, DPSZ12, NNOB12] for just a few examples. (2) Protocols for concrete functionalities. In the
latter approach attention is given to constructing efficient protocols for specific functions while exploiting
their internal structure. This approach has been proven useful for many different functions in both the
semi-honest and malicious settings. Notable examples are calculating the kth ranked element [AMP04],
pattern matching and related search problems [HT10, Ver11], set-intersection [JL09, HN12] and oblivious
pseudorandom function (PRF) evaluation [FIPR05].

In this paper we study the two fundamental functionalities oblivious polynomial evaluation in the ex-
ponent and set-intersection and introduce a new technique for designing efficient secure protocols for these
problems in the presence of semi-honest and malicious attacks with simulation-based security proofs. We
further demonstrate that our technique is useful for various search functionalities.

Algebraic PRFs. Informally, an algebraic pseudorandom function (PRF) is a PRF with a range that forms
an Abelian group such that group operations are efficiently computable. In addition, certain algebraic op-
erations on these outputs can be computed significantly more efficiently if one possesses the key of the
pseudorandom function that was used to generate them. This property is denoted by closed form efficiency
and allows to compute a batch of l PRF values much more efficiently than by computing the l values sep-
arately and then combing them. Algebraic PRFs were exploited in [BGV11] to achieve faster verifiable
polynomial evaluations (in the exponent). Specifically, in their setting, a client outsources a d-degree poly-
nomial to an untrusted server together with some authenticating information, while the client stores a short
secret key. Next, when the client provides an input for this polynomial the server computes the result and an
authentication message that allows the client to verify this computation in sub-linear time in d.

More concretely, let Q(·) = (q0, . . . , qd) be the polynomial stored on the server in the clear. Then the
client additionally stores a vector of group elements {gaqi+ri}di=0 where a← Zp and p is a prime, and ri is
the ith coefficient of a polynomial R(·) of the same degree as Q(·). Then for every client’s input t the server
returns y = Q(t) and u = gaQ(t)+R(t) and the client accepts u if and only if u = gay+R(t). Interestingly, in
case gri = PRFK(i), where PRF is an algebraic PRF, the closed form efficiency property enables the client
to compute the value gR(t) in sub-linear time in d. Stated differently, verifiability is achieved by viewing
gaqi+ri as a (one-time) message authentication code (MAC) for gqi where batch verification of multiple
MACs can be computed more efficiently than verifying each MAC separately.

In this work we demonstrate the usefulness of algebraic PRFs for various two-party problems by de-
signing secure protocols based on this primitive. In particular, we modify the way [BGV11] use algebraic
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PRFs so that instead of achieving verifiability in the outsourced setting, we achieve privacy in the standard
two-party setting. It is worth noting that although the main focus of [BGV11] is correctness, they do discuss
how to achieve one-sided privacy by encrypting the coefficients of the polynomial (since the polynomial
must be specified explicitly). Nevertheless, it is not clear how to maintain the privacy of the input to the
polynomial in their protocol. In this work, we use algebraic PRFs to mask the polynomial in a different
way that does not allow the verifiability of the polynomial evaluation but allows the extractability of the
polynomial more easily, and demonstrate an alternative way to achieve correctness. We focus our attention
on the plain model where no trusted setup is required.

Oblivious polynomial evaluation. The oblivious polynomial evaluation (OPE) functionality is an im-
portant functionality in the field of secure two-party computation. It considers a setting where party P0

holds a polynomial Q(·) and party P1 holds an element t, and the goal is that P1 obtains Q(t) and noth-
ing else while P0 learns nothing. OPE has proven to be a useful building block and can be used to
solve numerous cryptographic problems; e.g., secure equality of strings, set-intersection, approximation
of a Taylor series, RSA key generation, oblivious keyword search, set membership, data entanglement and
more [Gil99, LP02, FNP04, FIPR05, NP06, ADDV12].

Despite its broad applicability the study of OPE was demonstrated using only few concrete secure proto-
cols, initiated in [NP99] and further continued in [CL05, ZB05, HL09]. In particular, the only protocol with
a complete simulation-based proof in the presence of malicious attacks is the protocol in [HL09]. This proto-
col evaluates a d-degree polynomial over a composite order group ZN with O(sd) modular exponentiations,
where N is an RSA composite and s is a statistical security parameter.

The general (and currently the most practical) approach of [DPSZ12, DKL+13] for arithmetic circuits
follows the preprocessing model: in an offline phase some shared randomness is generated independently
of the function and the inputs; in an online phase the actual secure computation is performed. One of
the main advantages of these protocols is that the basic operations are almost as cheap as those used in
the passively secure protocols. To get good performance, these protocols use the somewhat-homomorphic
SIMD approach that handles many values in parallel in a single ciphertext, and thus more applicable for large
degree polynomials. Similarly, protocols for Boolean circuits apply the cut-and-choose technique which
requires to repeat the computation s times in order to prevent cheating except with probability 2−s [Lin13].

In some applications such as password-based authenticate key exchange protocols or when sampling an
element from a d-wise independence space, the polynomial degree is typically small and even a constant. In
these cases, our protocols have clear benefits since they are much simpler, efficient and easily implementable.

Secure set-intersection. In the set-intersection problem parties P0, P1, holding input sets X,Y of sizes
mX and mY , respectively, wish to compute X∩Y . This problem has been intensively studied by researchers
in the last few years mainly due to its potential applications for dating services, datamining, recommendation
systems, law enforcement and more; see [FNP04, KS05, DSMRY09, JL09, JL10, HL10a, HN12] for a few
examples. For instance, consider two security agencies that wish to compare their lists of suspects without
revealing their contents, or an airline company that would like to check its list of passengers against the list
of people that are not allowed to go abroad.

Two common approaches are known to solve this problem securely in the plain model: (1) oblivi-
ous polynomial evaluation and (2) committed oblivious PRF evaluation. In the former approach party P0

computes a polynomial Q(·) such that Q(x) = 0 for all x ∈ X . This polynomial is then encrypted using ho-
momorphic encryption and sent to P1, that computes the encryption of ry ·Q(y)+y for all y ∈ Y , and using
fresh randomness ry. This approach (or a variant of it) was taken in [FNP04, KS05, DSMRY09, HN12].

The second approach uses a secure implementation of oblivious pseudorandom function evaluation.
Namely, P0 chooses a PRF key K and computes the set PRFX = {PRFK(x)}x∈X . The parties then

2



execute an oblivious PRF protocol where P0 inputs K, whereas P1 inputs the set Y and learns the set
PRFY = {PRFK(y)}y∈Y . Finally, P0 sends the set PRFX to P1 that computes PRFX ∩PRFY and extracts
the actual intersection. This idea was introduced in [FIPR05] and further used in [HL10a, JL09, JL10].
Other solutions in the random oracle model such as [CT10, CKT10, ACT10] take a different approach by
applying the random oracle on (one of) the sets members, or apply oblivious transfer extension [DCW13].

In a recent result [PSZ14], the authors overview exiting solutions for set-intersection in the semi-honest
setting and compare their efficiency. One of their conclusions is that OPE-based approaches are inferior to
oblivious-transfer extension based approaches. It is an interesting question to test whether this conclusion
also for the case for the malicious setting as well.

To the best of our knowledge, the most efficient protocol in the malicious plain model that does not
require a trusted setup or rely on non-standard assumptions is the protocol of [HN12] that incurs computation
of O(mX +mY log(mX +mY )) modular exponentiations. A more efficient protocol with O(mX +mY )
communication and computational costs was introduced by [JL09] in the common reference string (CRS)
model (where the CRS includes a safe RSA composite that determines the group order and implies high
overhead when mutually produced). Another drawback of this protocol is that its security proof runs an
exhaustive search on the input domain of the PRF in order to extract P0’s input. This implies that the proof
only works for small domain PRFs and that the complexity of the simulator grows linearly with the size of
the PRF’s input domain.

Committed oblivious PRF evaluation. The oblivious PRF evaluation functionality FPRF that obliviously
evaluates a PRF is defined by (K,x) 7→ (−,PRFK(x)). This functionality is very important in the context of
secure computation since it essentially implements a random oracle. That is, the party with the PRF key, say
P0, mimics the random oracle role via interaction. Therefore, if the protocol that realizesFPRF is simulation-
based secure then both desirable properties of a random oracle, programmability and observability, can be
achieved by this protocol. First, since the simulator can force any output for a corrupted P1, it essentially
programs the function’s output. In addition, it can also observe (via extraction) the input to the functionality.
Nevertheless, the usefulness of oblivious PRF evaluation is reflected via an additional property of committed
key that implies that the same key is used for multiple PRF evaluations.

Committed oblivious PRF (CPRF) evaluation has been used to compute secure set-intersection [JL09,
HL10a], oblivious transfer with adaptive queries [FIPR05], keyword search [FIPR05], pattern matching
[HL10a, FHV13] and more. It is therefore highly important to design efficient protocols for this function-
ality. Current implementations of the [NR97] algebraic PRF, discussed in this paper, employ an oblivious
transfer protocol for each input bit [FIPR05, HL10a] and are only secure for a single PRF evaluation. Con-
sequently, the protocol of [HL10a] does not achieve full security against malicious adversaries. In addition,
the protocol from [JL09] (that implements a variant of the [DY05] PRF) requires a trusted setup of a safe
RSA composite and suffers from the drawbacks specified above.

1.1 Our Results

In this paper we use algebraic PRFs to design alternative simple and efficient protocols for polynomial eval-
uation, set-intersection, committed oblivious PRF evaluation and search problems. Below, we demonstrate
the broad usefulness of our technique for the different functionalities.

Oblivious polynomial evaluation (Section 3). We present secure protocols in the plain model for OPE
in the exponent with simulation-based security against semi-honest and malicious attacks. We stress that
evaluating a polynomial in the exponent has strong applicability in the context of set membership where the
goal is to privately verify membership in some secret set, as well as achieving d-wise independence. We use

3



algebraic PRFs to build simple two-phases OPE protocols as follows. In the first phase party P0, holding
the polynomial gQ(·), publishes its masked polynomial gQ(·)+R(·) where the set gR(·) is determined by an
algebraic PRF. Next, P1 locally computes gQ(t)+R(t) and the parties run an unmasking secure computation
for obliviously evaluating gR(t) for P1.

The efficiency of the latter phase is dominated by the overhead of the closed form efficiency property
of the specific PRF. In this work, we consider two PRF implementations used by [BGV11]: (1) a PRF with
security under the strong-DDH assumption. (2) The Naor-Reingold PRF [NR97] with security under the
DDH assumption. More concretely, the efficiency of our protocols is only d+1 modular exponentiations for
the first phase of sending the masked polynomial, and d+1+O(1) (resp. O(log d)) modular exponentiations
for the second phase of obliviously evaluating the pseudorandom polynomial under the strong-DDH (resp.
DDH) assumption. For simplicity, we only consider univariate polynomials. Our technique can be applied
for multivariate polynomials as well (with total degree d or of degree d in each variable); see [BGV11]
for further details. To the best of our knowledge, our protocols are the first to obliviously evaluate both
univariate and multivariate polynomials that efficiently.

Secure set-intersection (Section 4). In this work we demonstrate that algebraic PRFs are useful for both
approaches of OPE and committed oblivious PRF that enable to design set-intersection protocols. We first
show that our protocols for OPE readily induce secure protocols for set-intersection. That is, first P0 en-
codes the set X by a polynomial gQ(·) as specified above, and masks it. Next, for each y ∈ Y party
P1 verifies whether the masked polynomial evaluation of y equals the evaluation gR(y), and concludes
whether the element is in the intersection. We stress that this naive approach requires a multiplicative over-
head (in the sets sizes) since for each element in its input Y , P1 needs to evaluate a polynomial of degree
mX . To reduce the computational overhead, Freedman et al. [FNP04] introduced a balanced allocation
scheme [ABKU99] into their protocol that splits the elements into B = mX

log logmX
bins, with maximum

number ofM = O(mX/B + log logB) = O(log logmX) elements in each bin. In that case, the elements
mapped by P0 to a certain bin must only be compared to those mapped by P1 to the same bin. Therefore,
P1 should only evaluate an M -degree polynomial for each y ∈ Y , rather than a polynomial of degree mX .
Nevertheless, their solution with hash functions is only applicable in the semi-honest setting. Following
that, Hazay and Nissim [HN12] introduced a maliciously secure protocol which implies the computation
of O(mX + mY log(mX + mY )) modular exponentiations. Their construction is fairly complicated and
combines both approaches of OPE and oblivious PRF evaluation.

We introduce the hashing technique into our constructions and provide a generic description that can be
instantiated with different hash functions. Our protocols are far less complicated and maintain a modular
description. Specifically, we devise an alternative zero-knowledge proof for verifying the correctness of the
hashed polynomials while exploiting the algebraic properties of the PRF. Under the strong-DDH assumption
our protocol matches the communication overhead of the protocol from [JL09] (that also relies on a dynamic
hardness assumption) and implies the computation of O(mX +mY log logmX) exponentiations, with the
benefits that it operates over prime order groups, it does not require a trusted setup and the proof complexity
does not depend on the PRF’s input domain size. Under the DDH assumption our protocol, using hash
functions, implies the computation of O(mX +mY logmX) exponentiations which improves the overhead
of the [HN12] protocol. Next we show that algebraic PRFs are useful for applications that rely on committed
oblivious PRF evaluation. Our results for set-intersection are summarized in Table 1.

Committed oblivious PRF evaluation (Section 5). Observing that the batch computation for l PRF values
PRF′K(x) =

∏l
i=0[PRFK(i)]x

i
is a PRF as well (by fixing l properly), we derive new PRF constructions

in prime order groups and more interestingly, simple committed oblivious PRF evaluation protocols. Our
strong-DDH based PRF requires constant overhead, and our DDH-based protocol is the first committed
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Hardness Overhead
Reference Modeling Assumption (Number of Exp.)

[JL09] CRS of a safe prime Decisional d-DHI O(mX +mY )

[HN12] plain model DDH O(mX +mY log(mX +mY ))

[DCW13] random oracle random oracle O(n), where n is sec. parameter
This Work – OPE plain model d-strong DDH O(mX +mY log logmX)

This Work – OPE plain model DDH O(mX +mYlog mX)

This Work – CPRF plain model d-strong DDH O(mX +mY)

This Work – CPRF plain model DDH O((mX +mY ) log(mX +mY ))

Table 1: Comparisons with secure set-intersection constructions. We highlight the constructions with the
best performance under each assumption.

oblivious PRF implementation for the [NR97] function. Our protocols using committed oblivious PRF
imply set-intersection protocols with O(mX +mY ) costs under the strong-DDH assumption and ((mX +
mY ) log(mX +mY )) communication and computation costs under the DDH assumption, where the former
analysis matches the overhead from [JL09]. In particular, plugging-in our protocols for committed oblivious
PRF evaluation in the protocols cited above implies malicious security fairly immediately. Finally, we note
that committed oblivious PRF evaluation is also useful for search functionalities that support database search
and data retrievals, such as in keyword search and oblivious transfer with adaptive queries.

1.2 A Publication Note

An abridged version of this paper appeared in the proceedings of TCC 2015 [Haz15]. In this version we
include the complete proofs and the complete descriptions of all our results.

2 Preliminaries

2.1 Basic Notations

We denote the security parameter by n. We say that a function µ : N→ N is negligible if for every positive
polynomial p(·) and all sufficiently large n it holds that µ(n) < 1

p(n) . We use the abbreviation PPT to denote
probabilistic polynomial-time. We further denote by a ← A the random sampling of a from a distribution
A, by [d] the set of elements (1, . . . , d) and by [0, d] the set of elements (0, . . . , d).

We now specify the definition of computationally indistinguishable.

Definition 2.1 Let X = {X(a, n)}a∈{0,1}∗,n∈N and Y = {Y (a, n)}a∈{0,1}∗,n∈N be two distribution en-

sembles. We say that X and Y are computationally indistinguishable, denoted X
c≈ Y , if for every PPT

machine D, every a ∈ {0, 1}∗, every positive polynomial p(·) and all sufficiently large n:∣∣Pr [D(X(a, n), 1n) = 1]− Pr [D(Y (a, n), 1n) = 1]
∣∣ < 1

p(n)
.

We define a d-degree polynomial Q(·) by its set of coefficients (q0, . . . , qd), or simply write Q(x) = q0 +
q1x+ . . . qdx

d. Typically, these coefficients will be picked from Zp for a prime p. We further write gQ(·) to
denote the coefficients of Q(·) in the exponent of a generator g of a multiplicative group G of prime order p.
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2.2 Hardness Assumptions

All our constructions rely on the following hardness assumptions.

DECISIONAL DIFFIE-HELLMAN. The classic decisional Diffie-Hellman assumpion is stated as follows.

Definition 2.2 (DDH) We say that the decisional Diffie-Hellman (DDH) problem is hard relative to G, if for
any PPT distinguisher D there exists a negligible function negl such that∣∣∣Pr [D(G, p, g, gx, gy, gz) = 1]− Pr [D(G, p, g, gx, gy, gxy) = 1]

∣∣∣ ≤ negl(n),

where (G, p, g)← G(1n) and the probabilities are taken over the choices of x, y, z ←R Zp.

STRONG DIFFIE-HELLMAN. The strong Diffie-Hellman family of assumptions is parameterized by a pa-
rameter d, and states that any PPT distinguisher cannot distinguish elements g, gx, gx

2
, . . . , gx

d
from a

sequence of random elements in a prime order group G. More formally,

Definition 2.3 (d-SDDH) We say that the d-strong Diffie-Hellman problem is hard relative to G if for any
PPT distinguisher D there exists a negligible function negl such that∣∣∣Pr [D(G, p, g, gx, gx

2
, . . . , gx

d
) = 1

]
− Pr [D(G, p, g, gx1 , gx2 , . . . , gxd) = 1]

∣∣∣ ≤ negl(n),

where (G, p, g)← G(1n) and the probabilities are taken over the choices of x, x1, . . . , xd ←R Zp.

We refer the reader to [BGV11] for further discussions and related work regarding the strong Diffie-Hellman
assumption. Fixing the parameter d appropriately enables [BGV11] to evaluate a special class of polyno-
mials of degree d in constant time. Specifically, there is a tight correlation between the value of d and the
efficiency of their construction; the stronger the assumption is, the larger the class of polynomials that can
be evaluated in constant time. In what follows, we also fix the parameter d in this assumption according to
the degree of evaluated polynomial.

2.3 Public Key Encryption (PKE)

We specify the definitions of public key encryption and IND-CPA.

Definition 2.4 (PKE) We say that Π = (Gen,Enc,Dec) is a public key encryption scheme if Gen,Enc,Dec
are polynomial-time algorithms specified as follows:

• Gen, given a security parameter n (in unary), outputs keys (PK, SK), where PK is a public key and
SK is a secret key. We denote this by (PK, SK)← Gen(1n).

• Enc, given the public key PK and a plaintext message m, outputs a ciphertext c encrypting m. We
denote this by c ← EncPK(m); and when emphasizing the randomness r used for encryption, we
denote this by c← EncPK(m; r).

• Dec, given the public key PK, secret key SK and a ciphertext c, outputs a plaintext message m s.t.
there exists randomness r for which c = EncPK(m; r) (or ⊥ if no such message exists). We denote
this by m← DecPK,SK(c).
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For a public key encryption scheme Π = (Gen,Enc,Dec) and a non-uniform adversary A = (A1,A2),
we consider the following IND-CPA game:

(PK, SK)← Gen(1n).

(m0,m1, history)← A1(PK), s.t. |m0| = |m1|.
c← EncPK(mb), where b←R {0, 1}.
b′ ← A2(c, history).

A wins if b′ = b.

Denote by AdvΠ,A(n) the probability that A wins the IND-CPA game.

Definition 2.5 (IND-CPA) A public key encryption scheme Π = (Gen,Enc,Dec) has indistinguishable
encryptions under chosen plaintext attacks (IND-CPA), if for every non-uniform adversary A = (A1,A2)
there exists a negligible function negl such that AdvΠ,A(n) ≤ 1

2 + negl(n).

2.3.1 Additively Homomorphic PKE

A public key encryption scheme is additively homomorphic if given two ciphertexts c1 = EncPK(m1; r1)
and c2 = EncPK(m2; r2) it is possible to efficiently compute EncPK(m1 +m2; r) with independent r, and
without the knowledge of the secret key. Clearly, this assumes that the plaintext message space is a group;
we actually assume that both the plaintext and ciphertext spaces are groups (with respective group operations
+ or ·). We abuse notation and use EncPK(m) to denote the random variable induced by EncPK(m; r) where
r is chosen uniformly at random. We have the following formal definition,

Definition 2.6 (Homomorphic PKE) We say that a public key encryption scheme (Gen,Enc,Dec) is ho-
momorphic if for all k and all (PK, SK) output by Gen(1n), it is possible to define groups M, C such
that:

• The plaintext space isM, and all ciphertexts output by EncPK(·) are elements of C.1

• For every m1,m2 ∈M it holds that

{PK, c1 = EncPK(m1), c1 · EncPK(m2)} ≡ {PK,EncPK(m1),EncPK(m1 +m2)}

where the group operations are carried out in C and M, respectively, and the randomness for the
distinct ciphertexts are independent.

Note that any such a scheme supports a multiplication of a plaintext by a scalar.

2.4 The El Gamal PKE

A useful implementation of homomorphic PKE is the El Gamal [Gam85] scheme that has two variations of
additive and multiplicative definitions (where the former is only useful for small domains plaintexts). In this
paper we exploit the additive variation. Let G be a group of prime order p in which DDH is hard. Then the
public key is a tuple PK = ⟨G, p, g, h⟩ and the corresponding secret key is SK = s, s.t. gs = h. Encryption
is performed by choosing r ← Zp and computing EncPK(m; r) = ⟨gr, hr · gm⟩. Decryption of a ciphertext
C = ⟨α, β⟩ is performed by computing gm = β · α−s and then finding m by running an exhaustive search.

1The plaintext and ciphertext spaces may depend on PK; we leave this implicit.
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2.4.1 Distributed El Gamal

In a distributed scheme, the parties hold shares of the secret key so that the combined key remains a secret.
In order to decrypt, each party uses its share to generate an intermediate computation which are eventually
combined into the decrypted plaintext. We consider two functionalities: One for securely generating a secret
key while keeping it a secret from both parties, whereas the second functionality jointly decrypts a given
ciphertext. We denote the key generation functionality by FKEY, which is defined as follows,

(1n, 1n) 7→
(
(PK, SK1), (PK, SK2)

)
where (PK, SK) ← Gen(1n), and SK1 and SK2 are random shares of SK. The decryption functionality
FDEC is defined by,

(c, PK) 7→
(
(m : c = EncPK(m)),−

)
.

In El Gamal the parties first agree on a group G of order p and a generator g. Then, each party Pi picks
si ← Zp and sends hi = gsi to the other. Finally, the parties compute h = h1h2 and set PK = ⟨G, p, g, h⟩.
Clearly, the secret key s = s1 + s2 associated with this public key is correctly shared amongst the parties.
In order to ensure correct behavior, the parties must prove knowledge of their si by running on (g, hi) the
zero-knowledge proof πDL, specified in Section 2.5. To ensure simulation based security, P1 must commit to
its share first and decommit this commitment after P2 sends its share. Moreover, decryption of a ciphertext
c = ⟨c1, c2⟩ follows by computing c2 · (cx1

1 · c
x2
1 )−1, where each party sends ci to the power of its share.

We denote these protocols by πKEY and πDEC, respectively, and assume that they can be carried out with
simulation-based security in the presence of malicious attacks.

2.5 Zero-Knowledge Proofs

To prevent malicious behavior, the parties must demonstrate that they are well-behaved. To achieve this,
our protocols utilize zero-knowledge (ZK) proofs of knowledge. Our proofs are Σ-protocols with a constant
overhead. A generic efficient technique that enables to transform any Σ-protocol into a zero-knowledge
proof of knowledge can be found in [HL10b]. This transformation requires additional 6 exponentiations.

1. πDL, for demonstrating the knowledge of a solution x to a discrete logarithm problem [Sch89].

RDL = {((G, g, h), x) | h = gx} .

2. πDDH, for demonstrating that an El Gamal ciphertext is an encryption of zero [CP92].

RDDH = {((G, g, h, g1, h1), x) | g1 = gx ∧ h1 = hx} .

3. πMULT, for proving that a ciphertext c2 encrypts a product of two plaintexts values. Namely,

RMULT =

{
((G, PK, c0, c1, c2), (a0, a1, r0, r1, r2, )) |

ci = EncPK(ai; ri) for i ∈ {0, 1} ∧
c2 = EncPK(a0 · a1; r2)

}
where multiplication is performed in the corresponding plaintext group. A zero-knowledge proof
for the El Gamal PKE, that is based on the Damgård and Jurik technique [DJN10], can be found
in [HN12].
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4. πEq, for demonstrating equality of two exponentiations. Namely,

REq =
{
((PK, c1, c

′
1, c2, c

′
2), (m, r1, r2)) | c′1 = cm1 · EncPK(0; r1) ∧ c′2 = cm2 · EncPK(0; r2)

}
where exponentiation, as well as multiplication with an encryption of zero, are computed componen-
twise. A variant of this zero-knowledge proof was presented and discussed in [HMRT12] for Paillier
encryption scheme and can be easily extended for this relation as well. We specify the details of this
proof for the El Gamal encryption scheme (in a honest verifier format).

Protocol 1 (Zero-knowledge proof of knowledge forREq):

• Joint statement: Public key PK and ciphertexts (c1, c′1, c2, c
′
2) over group G of prime order p.

• Auxiliary input for the prover: Elements (m, r1, r2) such that the conditions withinREq are met.
• The protocol:

(a) P chooses at random t, s1, s2 ← Zp and sets c̃1 = ct1 · EncPK(0; s1) and c̃2 = ct2 · EncPK(0; s2).
That is, let c1 = ⟨c11, c21⟩ and c2 = ⟨c12, c22⟩, then c̃1 = ⟨(c11)t · gs1 , (c21)t · hs1⟩ and c̃2 = ⟨(c12)t ·
gs2 , (c22)

t · hs2⟩. P sends V the values c̃1 = ⟨c̃11, c̃21⟩, c̃2 = ⟨c̃12, c̃22⟩.
(b) V chooses c← Zp at random and sends it to P .
(c) P responds with cm+ t, cr1 + s1 and cr2 + s2.
(d) Upon receiving z1, z2 and z3, V accepts if

– ⟨(c11)z1 · gz2 , (c21)z1 · hz2⟩ = ⟨(c′11 )c · c̃11, (c′21 )c · c̃21⟩ and
– ⟨(c12)z1 · gz3 , (c22)z1 · hz3⟩ = ⟨(c′12 )c · c̃12, (c′22 )c · c̃22⟩,

where c′1 = ⟨c′11 , c′21 ⟩ and c′2 = ⟨c′12 , c′22 ⟩.

Proposition 2.1 Protocol 1 is a zero-knowledge honest verifier proof forREq.

Proof: Completeness is easy to verify since the conditions that the verifier checks are always met.
Next, we prove zero-knowledge by designing a simulator SEq as follows. SEq fixes the last message
z1, z2, z3 ← Zp at random and sets

c̃11 = (c11)
z1 · gz2/(c′11 )c, c̃21 = (c21)

z1 · hz2/(c′21 )c

c̃12 = (c12)
z1 · gz3/(c′12 )c, c̃22 = (c22)

z1 · hz3/(c′22 )c.

Note that the simulated c̃11 equals (c11)
z1−mc · gz2−r1c since c′11 = (c11)

m · gr1 . A similar argument can
be made for c̃21 and c̃2. Finally, soundness holds due to the fact that the proof is a proof of knowledge
as well, where two views with the same pair of messages (c̃1, c̃2) and two challenges c, c′ enable to
extract m, r1, r2.

3 Protocols for Oblivious Polynomial Evaluation

In this section we introduce our new constructions for oblivious polynomial evaluation (OPE) in the expo-
nent, implementing functionality FOPE : (gQ(·), t) 7→ (−, gQ(t)) for Q(·) = (q0, . . . , qd). In particular, we
assume common knowledge of the public parameters: a multiplicative group G of order p and a generator
g for G, and that the polynomial coefficients are in Zp. In our solution, party P0 generates these parameters
and publishes its masked polynomial gQ(·)+R(·), where the set of values gR(·) is determined by an algebraic
PRF that has a closed form efficient computation for univariate polynomials (see Section 3.1). Next, P1

computes gQ(t)+R(t) and the parties run an unmasking secure computation for obliviously evaluating gR(t)

for P1. Importantly, the closed form efficiency property of the PRF allows the parties to mutually com-
pute gR(t) in sub-linear time in d. Before presenting our OPE constructions we formally define algebraic
pseudorandom functions.
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3.1 Algebraic Pseudorandom Functions [BGV11]

Algebraic PRFs are PRFs with two additional algebraic properties. First, they map their inputs into some
Abelian group, where certain algebraic operations on these outputs can be computed signicantly faster if one
possesses the PRF key. These properties were exploited in [BGV11] to achieve faster polynomial evaluations
(in the exponent), where the coefficients of these polynomials lie in the PRF range. Several constructions,
implying different overheads, were introduced in [BGV11]; we focus our attention on their constructions
for univariate polynomials. Our protocols can be applied for multivariate polynomials as well (with total
degree d or of degree d in each variable). We begin with the formal definition of algebraic PRFs.

Definition 3.1 (Algebraic PRFs) We say that PRF = (KeyGen,PRF,CFEval), is an algebraic PRF if
KeyGen,PRF are polynomial-time algorithms specified as follows:

• KeyGen, given a security parameter 1n, and a parameter m ∈ N that determines the domain size of
the PRF, outputs a pair (K, param)← Kn, where Kn is the key space for a security parameter n. K
is the secret key of the PRF, and param encodes the public parameters.

• PRF, given a key K, public parameters param, and an input x ∈ {0, 1}m, outputs a value y ∈ Y ,
where Y is some set determined by param.

• In addition, the following properties hold:

Pseudorandomness. We say that PRF is pseudorandom if for every PPT adversary A, and every
polynomial m = m(n), there exists a negligible function negl such that

|Pr[APRFK(·)(1n, param) = 1]− Pr[Afn(·)(1n, param) = 1]| ≤ negl(n),

where (K, param)← KeyGen(1n,m) and fn : {0, 1}m 7→ Y is a random function.

Algebraic. We say thatPRF is algebraic if the range Y of PRFK(·) for every n ∈ N and (K, param)←
Kn forms an Abelian multiplicative group. We require that the group operation on Y be effi-
ciently computable given param.

Closed form efficiency. Let N be the order of the range sets of PRF for security parameter n. Let
z = (z1, . . . , zl) ∈ ({0, 1}m)l, k ∈ N, and efficiently computable h : Zk

N 7→ Zl
N with h(x) =

⟨h1(x), . . . , hl(x)⟩. We say that (h, z) is closed form efficient for PRF if there exists an algorithm
CFEvalh,z such that for every x ∈ Zk

N ,

CFEvalh,z(x,K) =
l∏

i=1

[PRFK(zi)]
hi(x)

and the running time of CFEval is polynomial in n,m, k but sublinear in l.

The last property is very important for our purposes since it allows to run certain computations very fast
when the secret key is known. We next describe two implementations for algebraic PRFs introduced
in [BGV11].

3.1.1 Algebraic PRFs From Strong DDH

Let G be a computational group scheme. The following construction PRF1 is an algebraic PRF with
polynomial sized domains.
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KeyGen(1n,m): Generate a group description (G, p, g)← G(1n). Choose k0, k1 ← Zp. Output param =
(m, p, g,G),K = (k0, k1).

PRFK(x): Interpret x as an integer in {0, . . . , D = 2m} where D is polynomial in n. Compute and output
gk0k

x
1 .

Closed form efficiency for polynomials of degree d. We now show an efficient closed form for PRF1 for
polynomials of the form (where evaluation is computed in the exponent)

Q(x) = PRFK(0) · PRFK(1)x · . . . · PRFK(d)x
d
=

d∏
i=0

PRFK(i)x
i

where d ≤ D. Let h : Zp 7→ Zd+1
p , be defined as h(x)

def
= (1, x, . . . , xd) and (z0, . . . , zd) = (0, . . . , d).

Then, we can define

CFEvalh(x,K)
def
= g

k0(k
d+1
1 xd+1−1)

k1x−1 .

Specifically, we write
d∏

1=0

[PRFK(zi)]
hi(x) =

d∏
i=0

[gk0k
i
1 ]x

i
= gk0

∑d
i=0 k

i
1x

i
.

Correctness of CFEval follows by the identity
∑d

i=0 k0k
i
1x

i = k0((k1x)d+1−1)
k1x−1 .

Theorem 3.2 ([BGV11]) Suppose that the D-Strong DDH assumption holds. Then, PRF1 is a pseudoran-
dom function.

3.1.2 Algebraic PRFs From DDH

Let G be a computational group scheme. Define PRF2 as follows.

KeyGen(1n,m): Generate a group description (p, g,G) ← G(1n). Choose k0, k1, . . . , km ← Zp. Output
param = (m, p, g,G),K = (k0, k1, . . . km).

PRFK(x): Interpret x = (x1, . . . , xm) as an m-bit string. Compute and output gk0
∏m

i=1 k
xi
i .

This function is known by the Naor-Reingold function [NR97].

Closed form for polynomials of degree d. We describe an efficient closed form for PRF2 for computing
polynomials of the same form as above. That is,

Q(x) = PRFK(0) · PRFK(1)x · . . . · PRFK(d)x
d
=

d∏
i=0

PRFK(i)x
i
.

Let h : Zp 7→ Zd+1
p , defined as h(x) = (1, x, . . . , xd) and let z = (z1, . . . , zl) = (0, . . . , d) then

CFEvalh,z(x,K)
def
= gk0(1+k1x)(1+k2x2)...(1+kmx2m )

with m = ⌈log d⌉ (clearly, d must be a power of 2).

Theorem 3.3 ([NR97]) Suppose that the DDH assumption holds. Then, PRF2 is a pseudorandom func-
tion.

To this end, we only consider z = (0, . . . , d) and omit z from the subscript, writing CFEvalh(x,K) instead.
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3.2 Our OPE Constructions

We describe our protocol for oblivious polynomial evaluation in the FMaskPoly-hybrid setting, where the
parties have access to a trusted party that computes functionality FMaskPoly : (K, t) 7→ (−, gR(t)) relative
to some prime order group G and generator g that are picked by P0, for gR(·) =

(
gr0 , . . . , grd

)
and gri =

PRFK(i) for all i. For simplicity, we first describe a semi-honest variant of our protocol and then show how
to enhance its security into the malicious setting. Formally, let PRF = ⟨KeyGen,PRF,CFEval⟩ denote an
algebraic PRF with a range group G (cf. Definition 3.1), then our semi-honest protocol follows.

Protocol 2 (Protocol πOPE with semi-honest security.)

• Input: Party P0 is given a d-degree polynomial gQ(·) = (gq0 , . . . , gqd) with coefficients qi’s from Zp with
respect to prime order group G and generator g. Party P1 is given an element t from Zp. Both parties are given
a security parameter 1n, group description G, p and g.

• The protocol:

1. Masking the polynomial. P0 invokes (K, param) ← KeyGen(1n, ⌈log d⌉) where param includes a
group description G of prime order p and a generator g. It next defines a sequence of d elements R̃(·) =
(r̃0, . . . , r̃d) over G where r̃i = PRFK(i) for all i.
P0 sends P1 param and the masked polynomial C(·) =

(
gq0 r̃0, . . . , g

qd r̃d
)
, where multiplication is

implemented (componentwise) in G.

2. Unmasking the result. Upon receiving the masked polynomial C(·) = (c0, . . . , cd), party P1 computes
the polynomial evaluation C(t) =

∏d
i=0(ci)

ti . I.e., C(·) is evaluated in the exponent. Next, the parties
invoke an ideal execution of FMaskPoly where the input of P0 is K and the input of P1 is t. Let Z denote
the output of P1 from this ideal call, then P1’s output is C(t)/Z where division in implemented in G.

Note first that correctness holds since party P1 computes in Step 2 the polynomial evaluation

C(t) =

d∏
i=0

(ci)
ti =

d∏
i=0

(gqi r̃i)
ti =

d∏
i=0

(gqigr
′
i)t

i
= gQ(t)+R(t)

and then “fixes” its computation by dividing out Z = gR(t). In addition, privacy holds due to the pseudo-
randomness of PRF that hides the coefficients of Q(·). We prove the following theorem,

Theorem 3.4 Assume PRF = ⟨KeyGen,PRF,CFEval⟩ is an algebraic PRF, then Protocol 2 securely
realizes functionality FOPE in the presence of semi-honest adversaries in the FMaskPoly-hybrid model.

Proof: We prove security for each corruption case separately.

P0 is corrupted. Let A be a PPT adversary corrupting party P0, we design a PPT simulator SIM that
invokesA by playing the role of the honest P1 and generating a view that is indistinguishable from a hybrid
view. More concretely,

1. Given input (1n, gQ(·), z), SIM invokesA on this input and receivesA’s first message, (G, p, g) and
a d-degree polynomial C(·) (where d is also the degree of Q(·)).

2. SIM emulates the ideal calls of FMaskPoly, playing the role of the trusted party that receives from A
a PRF key K.

3. SIM outputs whatever A does.
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We prove the following claim,

Claim 3.1 For any tuple of inputs (t, gQ(·)) and auxiliary input z,

{IDEALFOPE,SIM(z)(n, (t, g
Q(·)))}n∈N ≡ {HYBRID

π
FMaskPoly ,A(z)

(n, (t, gQ(·)))}n∈N.

Proof: It is trivial to verify that A’s view in the hybrid execution is identically distributed to its view in the
ideal execution, since it does not receive any message in the hybrid execution. Now, since correctness holds
due to the above argument, then the joint output distribution of both parties is identical in both executions.
�

P1 is corrupted. Let A be a PPT adversary corrupting party P1, we design a PPT simulator SIM that
invokesA by playing the role of the honest P0 and generating a view that is indistinguishable from a hybrid
view. More concretely,

1. Given input (1n, t, gQ(t), z), SIM invokes A on (1n, t, z) and continues as follows.

2. SIM invokes first (G, p, g) ← KeyGen(1n, ⌈log d⌉). It then picks a random d-degree polynomial
S(·) = gS

′(·) in G (we assume that d is part of A’s auxiliary input, alternatively, d can be part of P1’s
output within FOPE), and sends it to A.

3. SIM then emulates the ideal call of FMaskPoly by playing the role of the trusted party that receives t
from A. SIM replies with gS

′(t)/gQ(t).

4. SIM outputs whatever A does.

We prove the following claim,

Claim 3.2 For any tuple of inputs (t, gQ(·)) and auxiliary input z,

{IDEALFOPE,SIM(z)(n, (t, g
Q(·)))}n∈N

c≈ {HYBRID
π
FMaskPoly ,A(z)

(n, (t, gQ(·)))}n∈N.

Proof: We now prove that the adversary’s view in both hybrid and ideal executions is computationally
indistinguishable by a reduction to the security of PRF . First, define a modified simulator SIM′ that
generates A’s view as follows. Assume that SIM′ knows the polynomial in the exponent gQ(·), then
SIM′ first picks a truly random d-degree polynomial T (·) in Zp and sendsA the coefficients of the masked
polynomial gQ(·)+T (·). Later, it hands A the value gT (t) within FMaskPoly. We claim that A’s view in the
modified simulation with SIM′ is identical to its view in the simulation above with SIM. This is because
the random polynomial S(·) = gS

′(·) is distributed identically to gT (·)+Q(·) for some polynomial T (·) in Zp.
Therefore, the message gS

′(t)/gQ(t) sent by simulator SIM within FMaskPoly, is identically distributed to
gT (t)+Q(t)/gQ(t) = gT (t).

Next, we prove that the adversary’s view in the simulation and in the hybrid execution is computationally
indistinguishable, relying on the pseudorandomness of PRF . More specifically, assume by contradiction
the existence of an adversaryA and a distinguisher DOPE that distinguishesA’s simulated and hybrid views
for infinitely many n’s, construct a distinguisher DF that distinguishes F from a truly random function f
that maps {0, 1}m to G, for infinitely many n’s. Namely, upon given access to an oracle O that implements
either F or f , and auxiliary input (1n, gQ(·), t, z), DF invokes A on 1n, t, z. It then computes the first
message of protocol ΠOPE as follows. It first invokes its oracle on the set (0, . . . , d); let f0, . . . , fd be
the oracle responses. DF then sends A the coefficients {gqifi}di=0, for gQ(·) = (gq0 , . . . , gqd). Next, DF
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emulates the trusted party for FMaskPoly, receiving a value t fromA and replying with
∏d

i=0 f
ti
i . Finally, DF

invokes DOPE on A’s view and outputs whatever DOPE does.
Note that if oracle O implements function F , then A’s view distributes as in the hybrid execution.

On the other hand, if O implements f then A’s view distributes as in the simulation. Therefore, any gap in
distinguishing these two views is immediately translated into a gap distinguishing F from f . This concludes
the proof. �

Efficiency. In the first phase P0 computes d + 1 modular exponentiations as it can first compute the
PRF evaluations in Zp (using the PRF key K) and then raise the outcomes to the power of g. Next, P0

multiplies each PRF evaluation PRFK(i) with gqi (where these computations can be combined into a single
exponentiation per index i). Efficiency of the second phase is dominated by the degree of Q(·) and the
implementation of functionality FMaskPoly. In Section 3.3 we discuss several ways to realize FMaskPoly. (1)
Assuming the strong-DDH assumption, our protocol requires a constant number of modular exponentiations.
(2) Assuming the DDH assumption our protocol requires O(log d) modular exponentiations. Therefore, the
overall cost is 2(d+ 1) +O(1) (resp. O(log d) exponentiations.

Extension for a reactive OPE functionality. In a more realistic setting, we may consider a reactive variant
of the OPE functionality where P0 first commits to its polynomial once, similarly to the first message in
πOPE, and then receives multiple requests for polynomial evaluations. These requests can be adaptively sent
by either a single or distinct parties. In this case, the amortized work of P0 would be O(1) (resp. O(log d))
exponentiations for O(d) evaluation requests. Note that such a reactive functionality captures a broader
class of applications, e.g., when a single authority communicates with several different entities that wish to
securely check membership in the authority’s list. This further implies that correctness must be enforced by
ensuring that P0 uses the same PRF key for all of its evaluations; see further discussion in Section 4.

3.2.1 Security in the Presence of Malicious Adversaries

We next prove the security of Protocol 2 in the presence of malicious attacks. We observe that if the protocol
that implementsFMaskPoly is secure in the presence of malicious corruptions then the entire protocol is secure
against malicious attacks as well. Intuitively, security against a corrupted P1 is immediately implied since
a corrupted P1 does not learn anything beyond gR(t′), where t′ is P1’s input to FMaskPoly. More concretely,
in the security proof the simulator publishes a random polynomial S̃(·) = gS(·) first, and then extracts P1’s
input t′ to πMaskPoly. Finally, the simulator forces P1’s output within πMaskPoly to be gS(t

′)/gQ(t′).
In case P0 is corrupted we need to demonstrate how to extract the coefficients of gQ(·). This is achieved

by the fact that P0 is committed to the PRF key K within FMaskPoly. Specifically, extraction is obtained by
first calculating the sequence of values R̃(·) using K, and then dividing them out (component-wise) from
the polynomial C(·) sent by P0 within the first message. The technical part is to prove that P1 indeed learns
the same value in both ideal and real executions. Intuitively, by the correctness of the ideal execution for
functionality FMaskPoly we are ensured that P1 learns gR(t) such that R̃(x) = gR(x) = r̃0 · r̃x1 · . . . · r̃x

d

d where
r̃i = PRFK(i) for all i and K is the PRF key as above. This implies that P1 outputs C(t)/gR(t), which
corresponds to a polynomial evaluation with the same coefficients as defined above by the simulator.

To conclude, in order to obtain malicious security the only modification we need to consider with respect
to πOPE is to employ a maliciously secure implementation of functionality FMaskPoly. In the hybrid setting
this does not make a difference for the protocol description. In Section 3.3 we discuss secure implementa-
tions of functionality FMaskPoly. The proof for the following theorem formalizes the intuition above.
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Theorem 3.5 Assume PRF = ⟨KeyGen,PRF,CFEval⟩ is an algebraic PRF, then Protocol 2 securely
realizes functionality FOPE in the presence of malicious adversaries in the FMaskPoly-hybrid model.

Proof: We prove security for each corruption case separately.

P0 is corrupted. Let A be a PPT adversary corrupting party P0, we design a PPT simulator SIM that
extracts the coefficients ofA’s input polynomial in the exponent of some generator g, and sends them to the
trusted party. We prove that the joint output distribution in both ideal and hybrid executions is computation-
ally indistinguishable.

1. Given input (1n, gQ(·), z), SIM invokesA on this input and receivesA’s first message, (G, p, g) and
a d-degree polynomial C(·) = (c0, . . . , cd).

2. SIM emulates the ideal calls of FMaskPoly, playing the role of the trusted party that receives from A
a PRF key K.

3. SIM defines polynomial gQ
′(·) with the following set of coefficients. Namely, SIM fixes gq

′
i =

ci/r̃i for all 0 ≤ i ≤ d where r̃i = PRFK(i). SIM sends the trusted party the set {gq′i}i.

4. SIM outputs whatever A does.

Note that A receives no messages in the hybrid version of our protocol. Therefore security is implied by
correctness of the closed form efficiency property that implies that the coefficients defined by the simulator
implies a polynomial evaluation that is consistent with the real result.

P1 is corrupted. Let A be a PPT adversary corrupting party P1, we design a PPT simulator SIM that
generates the view of A as in the semi-honest case with the following difference. SIM invokes A(1n, t, z)
and sends it (G, p, g) and a random polynomial S̃(·) = gS(·). Upon receiving the adversary’s input t′ to
FMaskPoly, SIM forwards it to the trusted party for FOPE. Let Z denotes the output returned by the trusted
party, then SIM completes the simulation, forcing the output of FMaskPoly to be gS(t

′)/Z. We note that
security follows exactly as in the semi-honest proof since A sees the same message distribution.

3.3 Secure Protocols for πMaskPoly

In this section we describe a concrete protocol that implements functionalityFMaskPoly : (K, t) 7→ (−, gR(t)),
used as a subprotocol within our main protocol πOPE for oblivious polynomial evaluation from Section 3.2.
This computation corresponds to the polynomial evaluation R̃(x) = PRFK(0) ·PRFK(1)x · . . . ·PRFK(d)x

d

with respect to function PRF. In what follows, we discuss a detailed secure implementation for PRF1 that
is described in Section 3.1.1 and then briefly discuss how to implement function PRF2, formally described
in Section 3.1.2, using similar ideas.

We recall that when implementing functionality FMaskPoly relative to PRF1 the parties compute the

value g
∑d

i=0 k0k
i
1x

i
= g

k0((k1x)
d+1−1)

k1x−1 , so that P0 enters a PRF key K = (k0, k1) and learns nothing and
P1 enters x = t and learns this outcome. This is a simple computation that requires a constant number of
exponentiations and can be easily implemented securely. Achieving malicious security requires to ensure
correctness of computations which we obtain using simple zero-knowledge proofs of knowledge. Loosely
speaking, the parties first generate a joint public key for the additive El Gamal PKE such that no party knows
the secret key (this protocol is discussed in Section 2.4.1). Next, each party commits to its input and the
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parties jointly compute k1t. A slight complication arises since the parties need to compute the inverse of
k1t− 1. Relying on the fact that (k1t− 1)−1 = (k1t− 1)p−2 mod p and that

k0((k1t)
d+1 − 1)

k1t− 1
=

k0(k1t)
d+1 − k0

k1t− 1
=

k0(k1t)
d+1

k1t− 1
− k0

k1t− 1
=

k0k
d+1
1 td+1

k1t− 1
− k0

k1t− 1
,

we let the parties compute the inverse of k1t− 1 first and then complete the computation by multiplying the
result with k0(k1t)

d+1 and k0. Formally, our protocol uses the following tools:

1. Distributed additive El Gamal; see Section 2.4 for the details of these schemes. We denote this scheme
by Π = (πKeyGen,Enc, πDEC).

2. Zero-knowledge proofs of knowledge: πDL for proving a discrete logarithm and πEq for proving con-
sistency of exponents, which are formally stated in Section 2.5. For simplicity, we implicitly assume
that the parties continue to the next step only if all the proofs were verified correctly thus far.

Finally, we implicity assume that a party rerandomizes its homomorphic computations on the cipher-
texts. Such that rerandomization is carried out by multiplying the outcome with a random encryption of
zero. We now describe our protocol is details.

Protocol 3 (Protocol πMaskPoly with malicious security.)

• Input: Party P0 is given a PRF key K = (k0, k1). Party P1 is given an element t. Both parties are given a
security parameter 1n, a polynomial degree d and (G, p, g) for a group description G of prime order p and a
generator g.

• Convention: Homomorphic operations on ciphertexts are computed componentwise.

• The protocol:

1. Distributed key generation. P0 and P1 run protocols πKeyGen(1
n, 1n) in order to generate additive

El Gamal public key PK = ⟨G, p, g, h⟩ for which the corresponding shares of the secret key SK are
(SK0, SK1). P0 then sends P1 encryptions of k0 and k1, denoted by ck0 and ck1 , and proves their
knowledge using πDL.

2. Computing encryption of k1t. Upon receiving ciphertexts ck0 and ck1 , P1 sends P0 an encryption of its
input t, denoted by ct. It further computes the encryption of k1t, denoted by ck1t, and proves consistency
relative to ct and ck1t using the zero-knowledge proof πEq.

3. Computing encryptions of kd+1
1 and td+1. P0 computes the encryption of kd+1

1 , denoted by ckd+1
1

, and

proves consistency between gd+1 and ckd+1
1

using πEq. Similarly, P0 computes the encryption of td+1,
denoted by ctd+1 , and proves correctness.

4. Computing encryption of (k1t− 1)−1. The parties compute the inverse of (k1t−1), by first computing
the encryption of k1t − 1 given ciphertext ck1t from above, and then raising the result to the power of
p− 2. Let cinv denote the outcome.

5. Computing encryptions of k0(k1t− 1)−1 and k0k
d+1
1 (k1t− 1)−1. Given ciphertexts cinv , ckd+1

1

and ck0 , P0 computes the encryptions of k0(k1t − 1)−1 and k0k
d+1
1 (k1t − 1)−1 and proves consistency

relative to cinv, ckd+1
1

and ck0 using πEq (where the proof of the later computation involves running πEq

twice). Let c0 and c′0 denote the respective outcomes.

6. Computing encryption of k0k
d+1
1 td+1(k1t− 1)−1. Given ciphertexts ctd+1 and c′0, P1 computes the

encryption of k0kd+1
1 td+1(k1t − 1)−1 and proves consistency using πEq. Let c1 denote the respective

outcome.

7. Outcome. Finally, the parties decrypt c1/c0 for P1 that outputs the result.
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Theorem 3.6 Assume Π = (πKeyGen,Enc, πDEC), πDL and πEq are as above, then Protocol 3 securely real-
izes functionality FMaskPoly with respect to PRF1 in the presence of malicious adversaries.

Proof Sketch: Informally, simulation follows since the parties are forced to prove their computations using
ZK proofs which guarantees correctness. In addition, privacy is implied by the fact that all the computations
are carried out on ciphertexts. More concretely, whenever P0 is corrupted, the simulator extracts k0 and k1
from the ZK proof πDL, and sends these values to the trusted party. It further plays the role of the honest P1

using an arbitrary input and aborts if one of the proofs is not verified correctly. Security is easily reduced
to the CPA-IND security of the distributed El Gamal PKE since P0 does not learn any output. On the other
hand, whenever P1 is corrupted simulation follows similarly by having the simulator use an arbitrary PRF
key and extract t from the proof that verifies the computation of k1t, except that the simulator also cheats
in the mutual decryption in the final step and forces the result to be the output it received from the trusted
party. Security in this case follows due to the CPA-IND security of the distributed El Gamal PKE and the
security of protocol πDEC. Finally, we note that the complexity of our protocol is constant.

The implementation of PRF PRF2 follows similarly. Namely, recall that the parties compute the value
gk0(1+k1,x)(1+k2x2)...(1+kmx2m ) which can be carried out in O(m) time as follows. First, P0 commits to its
key (k0, k1, . . . , km), whereas P1 commits to the elements (x, x2, . . . , x2

m
) together with a ZK proof of

consistency. Next, given the product g̃ = gk0(1+k1,x)(1+k2x2)...(1+k′mx2m
′
) for some integer m′ < m, the

parties mutually compute

g̃ · g̃km′+1x
2(m

′+1)

= g̃(1+km′+1x
2(m

′+1)
) = gk0(1+k1,x)(1+k2x2)...(1+km′+1x

2(m
′+1)

)

where ĝ = g̃km′+1 is carried out by P0 and proven correct with respect the commitment of gkm′+1 . This com-

putation is followed by P1 computing ĝx
2(m

′+1)

which is also verified against the commitment of gx
2(m

′+1)

where the commitment is realized using El Gamal. See the ZK proof πEq for more details.

4 Secure Set-Intersection

One important application that benefits from our OPE construction is the set-intersection functionality which
is defined by having each party’s input consists of a set of elements from domain {0, 1}t. Formally:

Definition 4.1 Let X and Y be subsets of a predetermined arbitrary domain {0, 1}t and mX and mY the
respective upper bounds on the sizes of X and Y .2 Then functionality F∩ is defined by:

(X,Y ) 7→ (mY , (X ∩ Y,mX)).

To achieve a secure set-intersection protocol, we modify protocol πOPE from Section 3.2.1 as follows. First,
P0 prepares a polynomial Q(·) with coefficients in Zp and the set of roots X . It then masks Q(·) as in
Protocol 2 using the sequence of pseudorandom elements R̃(·). The parties then interact with a trusted party
that computes functionality FEqMask, which is a slight variation of functionality FMaskPoly. Namely, instead
of implementing FMaskPoly the functionality checks for equality with respect to P1’s polynomial evaluations
of gQ(·)R̃(·) and R̃(·) on the set Y . This modification in the functionality’s description is required due to
the fact that we cannot let P1 learn Q(y) for arbitrary y ∈ Y (even if P1 is honest), since that would leak

2In order to deal with a proof technicality, where a corrupted party inputs less elements than its set size, prior constructions
assume a super polynomial lower bound on the input domain sizes. Since we do not wish to restrict the input domains, we assume
that the set sizes are not strict and may denote some upper bound on the actual numbers of elements.
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information about X . More specifically, FEqMask is defined by (K, {(yi, Ti)}yi∈Y ) 7→ (−, {bi}i), where
bi = 1 only if Ti = gR(yi) and 0 otherwise, gR(·) =

(
gr0 , . . . , grmX

)
and gri = PRFK(i) for all i. Stated

differently, bi = 1 if and only if Q(yi) = 0 (or yi ∈ X ∩ Y ) with overwhelming probability. Finally, P1

outputs the set of elements Z ⊆ Y for which bi = 1.
Our implementation for FMaskPoly from Section 3.3 easily supports this functionality, since P0 can run

its zero-knowledge proofs with respect to a single set of ciphertexts encrypting its PRF key. In addition, in
order to enable the extraction of the set X by the simulator we add zero-knowledge proofs of knowledge for
the relation RDL, formally defined in Section 2.5. This technicality arises because P0 sends elements in G
yet the polynomial Q(·) +R(·) is evaluated in the exponent, implying that X and Y must be sampled from
Zp as well. Note that P0 may fix X and its masked polynomial in G. Nevertheless, P1 needs to know the
discrete logarithms of Y with respect to some group generator g in order to evaluate the masked polynomial.

Formally, let d = mX − 1, then define our set-intersection protocol as follows,

Protocol 4 (Protocol π∩ with malicious security.)

• Input: Party P0 is given a set X of size mX . Party P1 is given a set Y of size mY . Both parties are given a
security parameter 1n.

• The protocol:

1. Masking the input polynomial. P0 defines an d-degree polynomial Q(·) = (q0, . . . , qd) with coefficients
in Zp and the set of roots X , for d = mX − 1. It then invokes (K, param) ← KeyGen(1n, d) where
param includes a group description G of prime order p and a generator g, and defines a new d-degree
polynomial R̃(·) = (r̃0, . . . , r̃d) over G, where ri is defined by PRFK(i) for all i.
P0 sends P1 param and the masked polynomial C(·) =

(
gq0 r̃0, . . . , . . . , g

qd r̃d
)
, where multiplication is

implemented in G. P0 further proves the knowledge of the discrete logarithm of ci = gqi r̃i for all i with
respect to a generator g, by invoking an ideal execution of FDL on input {((g, ci), logg ci)}i∈[0,d].3 The
input of P1 for FDL is {(g, ci)}i∈[0,d].

2. Unmasking the result. Upon receiving the masked polynomial C(·) = (c0, . . . , cd) and upon receiving
from FDL the value 1, denoting “accept” for all i, party P1 computes the polynomial evaluation C(y) =∏d

i=0(ci)
yi

for all y ∈ Y (picked in a random order). I.e., C(·) is evaluated in the exponent.
Next, the parties invoke an ideal execution of FEqMask, where the input of P0 is K and the input of P1 is
the set {(y, C(y))}y∈Y . P1 outputs y if and only if the output from FEqMask on (y, C(y)) is 1.

Correctness follows easily since P1 outputs only elements in Y that zeros polynomial Q(·), whom its roots
are the set X . Next, we prove the following theorem.

Theorem 4.2 Assume PRF = ⟨KeyGen, F,CFEval⟩ is an algebraic PRF, then Protocol 4 securely realizes
functionality F∩ in the presence of malicious adversaries in the {FDL,FEqMask}-hybrid model.

The proof follows similarly to the proof of Protocol 2. Formally,

Proof: We prove security for each corruption case separately.

P0 is corrupted. Let A be a PPT adversary corrupting party P0, we design a PPT simulator SIM that
simulates the view A, playing the role of the honest P1 while extracting A’s input set X , details follow.

1. Given input (1n, X, z), SIM invokes A on this input and receives A’s first message, (G, p, g) and a
d-degree polynomial C(·) = (c0, . . . , cd).

3We implicitly assume that P0 knows the discrete logarithms of the ri’s by its knowledge of K. This is the case for all PRF
implementations presented in [BGV11].
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2. SIM emulates the ideal calls of FDL by playing the role of the trusted party that receives from A
tuples {((g, ci), c′i)}i∈[0,d] and records these values. SIM verifies whether ci = gc

′
i for all i and

records 1 only if these conditions are met, and 0 otherwise. In case SIM records 0 it aborts and
outputs whatever A does.

3. SIM defines the input set X ′ as follows. For every i let r̃i = PRFK(i) and ri = logg r̃i and let
q′i = c′i − ri.4 SIM fixes polynomial Q′(·) = (q′0, . . . , q

′
d) and defines X ′ to be the set of roots

of Q′(·). SIM computes X ′ by factoring Q′(·) over Zp and sends the set X ′ to the trusted party,
receiving back mY .

4. SIM emulates the ideal call of FMaskPoly by playing the role of the trusted party that receives from
A a PRF key K.

5. SIM outputs whatever A does.

Note that the adversary’s view is identical to its view in the hybrid execution since it does not get any
output from the internal ideal calls as well as from F∩. We now claim that P1’s output is identical with
overwhelming probability in both executions due to the following. In the hybrid execution the correctness
of the ideal call for FEqMask ensures that P1 obtains the correct equality bit for every y ∈ Y . Namely,
if C(y) ̸= R̃(y) then the honest P1 obtains 0 from FEqMask and does not output y. On the other hand, if
C(y) = R̃(y) then P0 receives 1 and returns y. Stating differently, P1 returns y ∈ Y only if C(y)/R̃(y) = 1
where division is computed component-wise. Next, in the simulation SIM defines the input set X ′ of the
adversary as the set of roots with respect to the unmasked polynomial C(·)/R̃(·) (computed component-
wise), where the masking is defined by the PRF key K input by the adversary to FEqMask. Therefore the
intersection is computed with respect to the same set X ′.

P1 is corrupted. Let A be a PPT adversary corrupting party P1, we design a PPT simulator SIM that
generates the view of A as follows. SIM first sends a random polynomial S̃(·). Next, upon receiving the
adversary’s set of elements Y ′ to FMaskPoly, SIM forwards it to the trusted party for F∩. Let Z ′ denotes the
output returned by the trusted party, then SIM completes the simulation by forcing the output of A within
FEqMask to be consistent with the set Z. More formally,

1. Given input (1n, Y, z), SIM invokes A on this input and sends it (G, p, g).

2. SIM picks a random d-degree polynomial S̃(·) =
(
s̃0, . . . , s̃d

)
=
(
gs0 , . . . , gsd

)
with coefficients

in G and sends it to A. (We assume that the simulator knows mX as part of its auxiliary information.
This can also be assured by modifying the definition of the functionality, given mX to P1 as part of
its input).

3. SIM emulates the ideal calls of FDL by playing the role of the trusted party that receives from A
tuples {(g, s̃i)}i∈[0,d] and sends A the value 1 for all i (denoting accept calls).

4. SIM then emulates the ideal call of FEqMask by playing the role of the trusted party that receives
fromA the set {(y′j , Ty′j

)}j∈[mY ]. SIM sends the set Y ′ = {y′j}j∈[mY ] to the trusted party, receiving
back the intersection Z = X ∩ Y ′.

For all y′j ∈ Z, SIM emulates the ideal response of FEqMask as follows. If Ty′j
= gS(y

′
j) then SIM

sends A the value 1. Otherwise it sends 0. For all y′j /∈ Z, SIM always replies with 0.

4See Footnote 3.
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5. SIM outputs whatever A does.

Note that the protocol never verifies that A’s inputs to FEqMask are consistent pairs {(y′j , Ty′j
)}j of which

Ty′j
= gS(y

′
j) for all j ∈ [mY ]. We prove that this is not required. Specifically, the differences between the

hybrid and simulated executions are as follows. First, SIM sends in the simulation a random polynomial
instead of a real masked polynomial. In addition, SIM fixes the output of FEqMask based on the correctness
of A’s computations which deviates from the way this functionality is defined. Consider a hybrid game
Hyb where the simulator SIMHyb uses the real input X of P0 to define polynomial Q(·), but decides on
the output of FEqMask according to the strategy specified in the simulation. Namely for every pair (y′j , Ty′j

),
SIMHyb verifies first whether Ty′j

= C(y′j) and returns 1 if equality holds. Clearly, the views induced in
Hyb and in the simulation are computationally indistinguishable due to the pseudorandomness of F . This
argument is similar to the argument presented in the proof of Protocol 2. Next, we claim that the distributions
induced by the views of the hybrid execution and game Hyb are statistically close.

Formally, for every y′j consider two cases. (i) y′j /∈ X which implies that y′j is not in the intersection and
that bj = 0 in the simulation of Hyb. Next, define a Bad event in which A receives bj = 1 from the trusted
party for FEqMask in the hybrid execution. Clearly, this event holds only if Ty′j

= CFEval(y′j ,K) = gR(y′j)

for K the PRF key entered by the honest P0, which implies that A must correctly guess CFEval(y′j ,K).
We claim that the probability this event occurs is negligible due to the pseudorandomness of F and CFEval
(in Section 5 we discuss the pseusorandomness of CFEval). Specifically, any successful guess with a non-
negligible probability implies an attack on the PRF. Thus, the probability that Bad occurs is negligible. It
therefore holds that the adversary’s views are statistically close condition on the event that y′j is not in the
intersection. (ii) y′j ∈ X which implies that y′j is in the intersection. Nevertheless, here there is no analogue
bad event. This is because bj = 1 only when Ty′j

= C(y′j) = CFEval(y′j ,K), which implies that bj = 1 in
both executions due to correctness of FEqMask.

This concludes the proof.

Efficiency. As in Protocol 2, the efficiency of Protocol 4 is dominated by the implementation of function-
ality FEqMask. Our protocols from Section 3.3 can be easily modified to support this functionality without
significantly effecting their overhead, since the parties can first compute the encryption of the closed form
efficiency of the PRF and then compare it with the input of P1. Therefore, the overall communication com-
plexity is O(mX) group elements for sending the first message and O(mY ) (resp. O(mY logmY )) group
elements for the second phase of implementing FEqMask for each y ∈ Y , depending on the underlying PRF.
In particular, the number of modular exponentiations implies multiplicative costs in the sets sizes since P1

evaluates its masked polynomial for each element in Y . Next, we demonstrate how to reduce this cost using
hash functions.

4.1 Improved Constructions Using Hash Functions

We now show how to reduce the computational overhead using hash functions by splitting the set elements
into smaller bins. Our protocol is applicable for different hash functions such as: simple hashing, balanced
allocations [ABKU99] and Cuckoo hashing [KMW08]. For simplicity, we first describe our protocol for the
simple hashing case; see Section 4.1.3 for a discussion about extensions to the other two hashing. Informally,
the parties first agree on a hash function that is picked from a family of hash functions and induces a set
of bins with some upper bound on the number of elements in each bin. Next, P0 maps its elements into
these bins and generates a polynomial for each such bin, which is computed as in Protocol 4 but with a
smaller degree. Finally, P0 masks all the polynomials and sends them to P1. Upon receiving the masked
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polynomials, P1 maps its elements into the same set of bins and evaluates the masked polynomials for these
mapped bins. In the last step, the parties unmask these evaluations. To be precise, we need to specify how
the masking procedure works and ensure that the parties do not deviate from the instructions of the protocol.

We fix some notations first. We denote by h the hash function picked by the parties, by B the number of
bins and byM the maximum number of elements allocated to any single bin (whereB andM are parameters
specified by the concrete hash function in use and further depend on mX ). Note that the potential number
of allocated elements is bounded by BM which may be higher than the exact number mX . This implies
that the protocol must ensure that P0 does not take advantage of that and introduce more set elements
into the protocol execution. In addition, it must be ensured that a corrupted P0 does not mask the zero
polynomial, which would imply that P1 accepts any value it substitutes in the masked polynomial. On the
other hand, the protocol must ensure that a corrupted P1 does not gain any information by entering incorrect
values. Verifying that a polynomial is not all zeros can be easily done by substitution a random element in
it and checking that the result is different than zero. In Section 4.1.1 we demonstrate how to enforce P0’s
correct behaviour by designing a new proof that exploits the algebraic properties of the underlying PRF. The
verification procedure for P1 is even simpler as demonstrated below.

Next, we explain how the masking procedure is computed. Denote by Qj(·) the polynomial associated
with the jth bin. If the degree of Qj(·) is smaller thanM−1 then P0 fixes the values of theM1−deg(Qj(·))
leading coefficients to be zeros. It then masks the ith coefficient of Qj(·) by multiplying it with PRFK((j−
1) · M + i) for i ∈ [0,M− 1]. Furthermore, unmasking is computed by comparing the evaluation of the
jth polynomial to the following computation

jM−1∏
i=0

PRFK(i)x
i
/ (j−1)M−1∏

i=0

PRFK(i)x
i
= PRFK((j − 1)M)x

(j−1)M · . . . · PRFK(jM− 1)x
jM−1

,

which is exactly the set of PRF values that mask polynomial Qj(·).
More formally, our protocol uses two functionalities in order to ensure correctness. First, the parties

call functionality FBins for proving that the masked polynomials sent by P0 are correctly defined. Namely,
FBins : (K, {Cj(·) = (cj0, . . . , c

j
M−1)}j∈[B]) 7→ (−, b) and b = 1 only if none of the unmasked polynomials

{Qj(·)}j is the zero polynomial and the overall degrees of these polynomials {Qj(·)}j is bounded by mX .
In addition, the parties call functionality FEqMaskHash in order to correctly unmask polynomial evaluations
{Ch(y)(y)}y∈Y for P1. We continue with the detailed description of our set-intersection protocol in the
hybrid model. In Sections 4.1.1 and 4.1.2 we discuss how to securely implement these functionalities.

Protocol 5 (Protocol π∩ with malicious security and hash functions.)

• Input: Party P0 is given a set X of size mX . Party P1 is given a set Y of size mY . Both parties are given a
security parameter 1n.

• The protocol:

1. Fixing the parameters of the hash function. The parties fix the parameters B and M of the hash
function and picks a hash function h : {0, 1}t 7→ [B]. P0 invokes (K, param) ← KeyGen(1n,M− 1)
where param includes a group description G of prime order p and a generator g.

2. Masking the input polynomial. For every x ∈ X , P0 maps x into bin h(x). Let Bj denote the set of
elements mapped into bin j. Next, P0 constructs a polynomial Qj(·) = (qj0, . . . , q

j
d) with coefficients in

Zp and the set of roots Bj . If |Bj | <M, P0 fixes the leadingM− |Bj | − 1 coefficients to zero.

For each bin j ∈ [B], P0 defines a new (M− 1)-degree polynomial R̃j(·) = (r̃j0, . . . , r̃
j
M−1) over G,

where r̃ji is defined by PRFK((j − 1)M+ i) for all i ∈ [0,M− 1]. P0 sends P1 param and the masked
polynomials {Cj(·)}j = {gq

j
0 r̃j0, . . . , . . . , g

qjM−1 r̃jM−1}j , where multiplication is implemented in G.
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P0 further proves the knowledge of the discrete logarithm of cji = gq
j
i r̃ji for all i and j with respect to

a generator g, by invoking an ideal execution of FDL on input {((g, cji ), logg c
j
i )}i∈[0,M−1],j∈[B].5 The

input of P1 for FDL is {(g, cji )}i∈[0,M−1],j∈[B].
Finally, P0 proves correctness using FBins where P0 enters K and P1 enters the masked polynomials.

3. Unmasking the result. Upon receiving the masked polynomials {Cj(·) = (cj0, . . . , c
j
M−1)}j∈[B] and

upon receiving accepting messages from FDL,FBins, party P1 computes the following for every y ∈ Y
(picked in a random order). It first maps y into bin h(y) and then computes the polynomial evaluation
Ch(y)(y) =

∏h(y)M−1
i=(h(y)−1)M(c

h(y)
i )y

i

. I.e., Ch(y)(·) is evaluated in the exponent.
Next, the parties invoke an ideal execution of FEqMaskHash, where the input of P0 is K and the input of P1

is the set {(y, h(y), Ch(y)(y))}y∈Y .
P1 outputs y only if the output from FEqMaskHash on (y, h(y), Ch(y)(y)) is 1.

Theorem 4.3 Protocol 5 securely realizes functionality F∩ in the presence of malicious adversaries in the
{FDL,FBins,FEqMaskHash}-hybrid model.

Security follows easily from the secure implementations ofFBins andFEqMaskHash and the proof of Protocol 4.
We discuss these protocols next. We stress that P1 needs to ensure in Protocol 5 that P0 indeed uses the
same PRF key for both sub-protocols (for instance by ensuring that P0 enters the same commitment of K).

4.1.1 A Secure Protocol for FBins

In this section we design a protocol πBins for securely implementing functionality FBins : (K, {Cj(·)}j∈[B])
7→ (−, b) for which b = 1 only if none of the unmasked polynomials {Qj(·)}j is the zero polynomial and
the overall degrees of all polynomials {Qj(·)}j is bounded by mX . To prove that none of the polynomials is
the all zeros polynomial we evaluate each masked polynomial on a random element and then verify that the
result is different than zero. In particular, for each j the parties first agree on a random element zj and then
compute the polynomial evaluation Cj(zj). Next, the parties verify whether Cj(zj) = R̃j(zj) where R̃j(·)
is the masking polynomial of Cj(·). Note that if Qj(·) is not the all zeros polynomial then Cj(zj) ̸= R̃j(zj)
with overwhelming probability over the choice of zj . This is because there exists a coefficient qi,j ̸= 0

which implies that for Cj(zj) = Qj(zj) · R̃j(zj). Now since Qj(zj) ̸= 0 it holds that Cj(zj) ̸= R̃j(zj). On
the other hand, in case Qj(·) is the zero polynomial then it holds that Cj(zj) = R̃j(zj) for all zj . This is
because Qj(zj) = 0 as all its coefficients equal zero.

The more challenging part is to prove that the overall degrees of all polynomials {Qj(·)}j is bounded by
mX +B.6 Our proof ensures that as follows. First, P0 picks a PRF key K and forwards P1 a commitment of
K together with encryptions of f =

(
f0 = PRFK(0), . . . , fBM−1 = PRFK(BM− 1)

)
(that are encrypted

using the El Gamal encryption scheme; see Section 2.4). Next, P0 proves that it computed the sequence f
correctly. This can be achieved by exploiting the closed form efficiency property of the PRF. Namely, the
parties mutually compute the encryption of

∏BM−1
i=0 PRFK(i)z

i
for some random z, and then compare it

with the encryption of
∏BM−1

i=0 fzi
i . In particular, the latter computation is carried out on the ciphertexts

that encrypt the corresponding values from f by utilizing the homomorphic property of El Gamal. Then,
equality is verified such that P0 proves that the two ciphertexts encrypt the same value. Finally, the parties
divide the vector of ciphertexts f with the polynomials coefficients {Cj(·)}j∈[B] component-wise (note that
both vectors have the same length). P0 then proves that the overall degrees of the polynomials is as required
using a sequence of zero-knowledge proofs. The last part of our proof borrows ideas from [HN12]. We
continue with the formal description of our protocol.

5See Footnote 3.
6For technical reasons, we require that in case of an empty bin, P0 fixes the polynomial that is associated with this bin to be 1.
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Protocol 6 (Protocol πBins with malicious security.)

• Input: Party P0 is given a PRF key K for function PRF. Both parties are given a security parameter 1n,
masked polynomials {Cj(·) = (cj0, . . . , c

j
M−1)}j∈[B], (G, p, g) for a group description G of prime order p and

a generator g, and an integer mX .

• The protocol:

1. Setup. P0 generates (PK, SK) ← Gen(1n) for the El Gamal encryption scheme for group G. It then
computes the set f =

(
f0 = PRFK(0), . . . , fBM−1 = PRFK(BM− 1)

)
and sends to P1 their encryp-

tions under PK, denoted by (e0, . . . , eBM−1) , as well as PK.

2. Proving the correctness of f . The parties pick z ← Zp at random and then compute ef =
∏MB−1

i=0 ez
i

i .
Next, the parties compute the encryption of the product

∏BM−1
i=0 PRFK(i)z

i

, denoted by ePRF, which
corresponds to the closed form efficiency function of PRF. Finally, P0 proves that the two ciphertexts
encrypt the same plaintext by proving that ef/ePRF is a Diffie-Hellman tuple using πDL (see Section 2.5).

3. Proving a bound mX on the overall degrees. If πDL is verified correctly, the parties compute the
differences with respect to the masked polynomials {Cj(·)}j and plaintexts f , component-wise. Namely,
for all j ∈ [B] and i ∈ [0,M− 1] the parties compute the encryption of cji/f(j−1)M+i. We denote the
result vector of ciphertexts by cDiff .
P0 then sets Zi,j = 1 for 0 ≤ i ≤ deg(Qj(·)), and otherwise Zi,j = 0. P0 computes zi,j = EncPK(Zi,j)
and sends {zi,j}i,j to P1. P0 proves that Z0,j , Z1,j , . . . , ZM−1,j is monotonically non-increasing. For
that, P0 and P1 compute encryptions of Zi,j − Zi+1,j and Zi,j − Zi+1,j − 1, and P0 proves that Zi,j −
Zi+1,j ∈ {0, 1} by showing that one of these encryptions denotes a Diffie-Hellman tuple using πDDH.
P0 completes the proof that the values Zi,j were constructed correctly by proving for all i, j that one of
the encryptions {e(j−1)M+i, z

′
i,j} is an encryption of zero, where z′i,j is an encryption of 1− Zi,j .7

Finally, to prove that the sum of degrees of the polynomials {Qj(·)} equals mX , both parties compute
an encryption τ of T =

∑
i,j Zi,j − B −mX . Then P proves that (PK,EncPK(T )) is a Diffie-Hellman

tuple using πDDH.

4. Checking zero polynomials. If all the proofs are verified correctly, then for any j ∈ [B] the parties
compute Cj(zj) where zj ← Zp. The parties call FEqMaskHash with inputs (K, {zj , j, Cj(zj)}j∈[B]). Let
{bj}j∈[B] be P1’s output from this ideal call.8

5. P1 outputs b = 1 only if bj = 0 for all j.

Theorem 4.4 Assume that El Gamal is IND-CPA, then Protocol 6 securely realizes functionality FBins in
the presence of malicious adversaries in the {FDL,FDDH,FEqMaskHash}-hybrid model.

Proof Sketch: Security is easily stated due to the security of the zero-knowledge proofs and functionality
FEqMaskHash. Specifically, the protocol enables P1 to verify the following two properties on the masked
polynomials {Cj(·) = (cj0, . . . , c

j
M−1)}j∈[B]. First, that the overall number of polynomial degrees is mX +

B, which implies that P0 used at most mX set elements when creating these polynomials. This is verified by
ensuring that f was correctly constructed and by the soundness of the zero knowledge proofs πDL and πDDH.
Specifically, if one of the elements in f is incorrect then P0 will be caught with all but negligible probability.
Denote by ci the ciphertext that encrypts fi and say that fτ ̸= PRFK(τ) for some τ ∈ [0, ...,BM − 1].
Then the probability that

BM−1∏
i=0

PRFK(i)z
i
=

BM−1∏
i=0

fzi

i

7We wish to avoid the case where e(j−1)M+i is an encryption of a non-zero value while z′i,j encrypts zero.
8Note that zj may be an element that is not mapped to the jth bin.
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implies the probability that

fτ =

( BM−1∏
i=0

PRFK(i)z
i −

BM−1∏
i=0,i̸=τ

fzi

i

)(zτ)−1

which holds with negligible probability due to the random choice of z. Next, in Step 3, P0 proves that
it constructed the sequence of ciphertexts zi,j correctly by demonstrating that non-zero values are always
mapped to ciphertexts that encrypt 1 and that this sequence is a monotonically non-increasing.

Second, P0 proves that none of the masked polynomials is the zero polynomial. This is shown by
substituting a random element zj in Cj(·). Note that zj is a root of Cj(·) only with negligible probability.
Therefore, the probability that Cj(zj) = 0 condition on the even that zj is not a root of Cj(·) is also
negligible due to the random choice of zj .

The efficiency of our protocol is dominated by Steps 2 and 4, where in the former step the parties
compute the closed form efficiency relative to the set f in time O(BM) = O(mX) and in the latter step the
parties substitute a random element in every polynomial Cj . Overall, the overhead of this step relative to
PRF PRF1 implies O(B) = O(mX) group elements and modular exponentiations. For PRF PRF2 this
step implies O(B logmX) = O((mX\ log logmX) · logmX) cost; see a discussion below.

4.1.2 A Secure Protocol for FEqMaskHash

The next protocol is designed in order to compare the result of P1’s polynomial evaluations on the set Y
with the masking polynomials. Basically, for every y ∈ Y , P1 computes first Ch(y)(y). The parties then run
a protocol for comparing {Ch(y)(y)}y∈Y with {R̃h(y)(y)}y∈Y . To do so, P1 must also input the value h(y)
which determines the bin’s name. Nevertheless, we do not require from the parties to mutually compute h(y)
since that would imply a far less efficient protocol. Instead, we demonstrate that P1 cannot learn additional
information by entering an inconsistent bin number. Finally, for every j, P1 outputs 1 only if equality holds.

More formally, we define functionality FEqMaskHash by (K, {y, h(y), Ch(y)(y)}y∈Y ) 7→ (−, {bj}j),
where bj = 1 if Ch(y)(y) =

∏h(y)M−1
i=0 PRFK(i)y

i
/∏(h(y)−1)M−1

i=0 PRFK(i)y
i
. The actual implemen-

tation of this functionality depends on the underlying PRF. We consider two different implementations here.
First, considering our protocol from Section 3.3 designed for PRF1, an analogue protocol for our purposes
can be similarly designed with the modification that the parties now compare Ch(y)(y) against the result of
the following formula evaluation,

g
k0

(
(k1x)

(h(y)+1)M−1−(k1x)
h(y)M−1

)
k1x−1

where h(y) is only known to P1. Note that our protocol from Section 3.3 does not need to rely on the fact
that both parties know the polynomial degree d for computing this formula. It is sufficient to prove that
the computation of some ciphertext c to the power of h(y) is consistent with a ciphertext encrypting gh(y),
where such a ciphertext can be provided by P1. See this protocol from Section 3.3 and the ZK proof πEq for
more details. The overall overhead of the modified protocol is also constant.

Next, considering the unmasking protocol for function PRF2, the parties compute the following for-
mula that corresponds to the masking of the polynomial that is associated with bin h(y),

gk0
(
1+k1,x

)(
1+k2x2

)
...
(
1+kmx2log(h(y)M−1)

)/
gk0
(
1+k1,x

)(
1+k2x2

)
...
(
1+kmx22

log((h(y)−1)M−1))
.

Note that computing this formula requires O(logmX) exponentiations on the worst case if the bin number
implies a high value so that h(y)M, which determines the polynomial degree, is O(mX).
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Security is stated as follows. If P0 is corrupted then security follows similarly to the security proof of
the protocols implementing FMaskPoly (Section 3.3) since P0 enters the same input for both functionalities
and runs the same computations with respect to its PRF key. The interesting and less trivial corruption case
is of P1. We consider two bad events here: (1) A corrupted P1 enters y, h′ for which h′ ̸= h(y). This implies
that the parties will not compute the correct unmasking. (2) A corrupted P1 enters consistent y, h(y), but an
incorrect value Ch(y)(y). Note that upon extracting P1’s input to the protocol execution, the simulator can
always tell whether this input corresponds to the first or the second case, or neither.

Specifically, in the first case the parties compute the unmasking on y for which element y in not allocated
to the specified bin h′. This implies that P1 would always obtain 0 from the protocol execution unless it
correctly guesses R̃h′(y), which only occurs with a negligible probability due to the security of the PRF.
Therefore we can successfully simulate this case by always returning zero. We further note that the security
argument of the later case boils down to the security presented in the proof for a single polynomial shown in
the proof of Theorem 4.2, since in this case P1 enters h(y) that is consistent with y so the parties compute
the correct masking for y.

4.1.3 Using More than One Hash Function

In some cases, such as for balanced allocation hash function [ABKU99], better performance are obtained
by using a pair of hash functions h1, h2, which allocate elements into two distinct bins. That is, the input to
the functionality are defined by (K, {y, h1(y), h2(y), Ch(y)(y)}y∈Y ) 7→ (−, {bj}j). This poses a problem
in our setting since a corrupted P1 may deviate from the protocol by substituting a different element with
respect to each hash function, and learn some information about P0’s input. Specifically, if P1 learns that
some element y ∈ X was not allocated to h1(y) it can conclude that P0 has M additional elements that
are already mapped into bin h1(y). Note that this leaked information cannot be simulated since it depends
on the real input X . In this case we need to verify that P1 indeed maps the same element into both bins
correctly. A simple observation shows that if this is not the case then the simulation fails only for elements
that are in the intersection. Meaning, there exists a bin for which the membership result is positive (since
otherwise the adversary anyway learns 0, and it cannot distinct the cases of non-membership and incorrect
behaviour). We thus define the polynomials slightly different, forcing correct behaviour.

Specifically, the polynomial Qj(·) that is associated with the set of elements Bj (namely, the elements
that are mapped to the jth bin) is defined as follows. For each x ∈ Bj , set Qj(x) = gh1(x)+h2(x) where
h1(x) and h2(x) are viewed as elements in Zp. Next, in the unmasking phase, for any tuple (y, h1, h2, Cy)

entered by P1, the parties compare Cy with both
(∏h1M−1

i=0 PRFK(i)y
i
/∏(h1−1)M−1

i=0 PRFK(i)y
i) · gh1·h2

and
(∏h2M−1

i=0 PRFK(i)y
i
/∏(h2−1)M−1

i=0 PRFK(i)y
i) · gh1·h2 such that the functionality returns 1 to P1 if

equality holds with respect to one of the comparisons. Therefore, P1 will learn that an element y ∈ X only
if it entered h1 and h2 such that h1 + h2 = h1(y) + h2(y). Note that this implies that if one of the h1, h2
values is inconsistent with h1(y), h2(y) yet equality holds, then the other value is also inconsistent with high
probability. In this case, P1’s output will always be 0 since the incorrect polynomials will be unmasked.

We further need to claim that for any y /∈ X the protocol returns 0 with overwhelming probability.
Specifically, we need to claim that the probability that either Qh1(y)(y) = gh1(y)+h2(y) or Qh2(y)(y) =

gh1(y)+h2(y), is negligible. In order to simplify our argument, we slightly modify our construction and fix
Qj(x) = PRFK(gh1(x)+h2(x)) for any x ∈ Bj using a PRF K key that is mutually picked by both parties.
In this case, we can easily claim that the probability that the protocol returns 1 for y /∈ X is negligible
since that implies that either Qh1(y)(y) or Qh2(y)(y) equal the pseudorandom value PRFK(gh1(y)+h2(y)) for
y /∈ X . We stress that the PRF key for this purpose can be publicly known since pseudorandomness is still
maintained as long as the algorithm for generating the bin polynomials does not use this key. We further note
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that both algebraic PRFs that we consider in this paper can be easily evaluated over an encrypted plaintext
given the PRF key since it only require linear operations.

Finally, a similar solution can be easily adapted for Cuckoo hashing with a stash [KMW08] (by treating
the stash as a third polynomial). Nevertheless, Cuckoo hashing using a stash suffers from the following
drawback. It has been proven in [KMW08] that for any constant s, using a stash of size s implies an
overflow with probability O(ns) (taken over the choice of the hash functions). Specifically, if the algorithm
aborts whenever the original choice of hash functions results in more than s items being moved to the stash,
then this means that the algorithm aborts with probability of at most O(ns). Consequently, P1 can identify
with that probability whether a specific potential input of P0 does not agree with the hash functions h1 and
h2. This probability is low but not negligible. On the other hand, Broder and Mitzenmacher [BM01] have
shown for balanced allocations hash function that asymptotically, when mapping n items into n bins, the
number of bins with i or more items falls approximately like 22.6i. This means that ifM = ω(log log n)
then except with negligible probability no bin will be of size greater thanM. Nevertheless, (ignoring the
abort probability), Cuckoo hashing performs better than balanced allocation hash functions, and by tuning
the parameters accordingly this abort probability can be ignored for most practical applications.

4.1.4 Efficiency

The efficiency of our protocol depends on the parametersB = O(mX/ log logmX) andM = O(log logmX)
that are specified by the underlying hash function, as well as the PRF implementation that induce the over-
head of the implementations of FBins and FEqMaskHash. Concretely, when implementing the algebraic PRF
with PRF1 the number of exponentiations computed by the parties is O(BM + mYM) = O(mX +
mY log logmX), whereas the number of transmitted group elements is O(BM +mY ) = O(mX +mY ).
Moreover, implementing the algebraic PRF using PRF2 implies the overhead of O(mX + mY logmX)
exponentiations and the communication is as above.

5 Committed Oblivious PRF Evaluation

The oblivious PRF evaluation functionality FPRF is an important functionality that is defined by (K,x) 7→
(−,PRFK(x)). One known example for a protocol that implements FPRF is the instantiation based on
the Naor-Reingold pseudorandom function [NR97] (specified in Section 3.1.2), that is implemented by the
protocol presented in [FIPR05] (and proven secure in the malicious setting in [HL10a]). This protocol
involves executing an oblivious transfer for every bit of the input x. Nevertheless, it has major drawback
since it does not enforce the usage of the same key for multiple evaluations, which is often required. In
this section, we observe first that the algebraic closed form efficiency of PRFs PRF1 and PRF2, specified
in Section 3.1, are PRFs as well. Moreover, the protocols for securely evaluating these functions induce
efficient implementations for the committed oblivious PRF evaluation functionality with respect to these
new PRFs in the presence of adaptive inputs. This is because the PRF evaluations protocols are implemented
with respect to the same set of key commitments. We formally define this functionality in Figure 1.

More formally, let PRF be an algebraic PRF from a domain {0, 1}m into a group G. Then, define the
new function PRF′ : Zp 7→ G by PRF′K(x) =

∏l
i=0[PRFK(i)]x

i
. Note that the domain size of PRF′ is

bounded by l+1, since upon observing l+1 evaluations of PRF′ it is possible to interpolate the coefficients
of the polynomial {PRFK(i)}i (in the exponent). On the other hand, it is easy to verify that if l + 1 ≤ 2m

then PRF′ is a PRF.

Theorem 5.1 Assume that F : {0, 1}m 7→ G is a PRF, then PRF′ is a PRF for (l + 1) ≤ 2m.

26



Functionality FCPRF

Functionality FCPRF communicates with with parties P0 and P1, and adversary SIM.

1. Upon receiving a message (key,K) from P0, send message key to SIM and record K.

2. Upon receiving (input, x) from P1, send message input to adversary SIM. Upon receiving an
approve message, send PRFK(x) to P1. Otherwise, send ⊥ to P1 and abort.

Figure 1: The committed oblivious PRF evaluation functionality.

Proof: Observe first that the PRFK(i) values within PRF′ can be replaced with truly random values in
G due to the pseudorandom property of PRF. Namely, consider a hybrid game and a function F̃ ′ such
that instead of evaluating PRFK(i) for a new input i, a random ri ← G is picked. This implies that
˜PRF

′
K(x) =

∏l
i=0 r

xi

i . Note that for (l + 1) ≤ 2m the outputs of PRF′ and F̃ ′ are indistinguishable. Thus,
the proof boils down to a probabilistic argument claiming that the probability an adversary distinguishes the
hybrid function from a truly random function is negligible since the distributions of PRF′ with random ri’s
and a truly random function are identically distributed.

We implement PRF′ using the two PRFs from Section 3.1.1 and obtain two new PRF constructions
under the strong-DDH and DDH assumptions. Let K = (k0, k1) be the key for the PRF PRF1 with the
strong-DDH based security, and recall that the closed form efficiency for this function is defined by

PRF′K(x) = CFEvalh(x,K) = g
k0(k

d+1
1 xd+1−1)

k1x−1 .

This implies that PRF′ only requires a constant number of modular exponentiations. See Section 3.3 for
secure implementations of obliviously evaluating PRF′. Next, let K = (k0, . . . , km) be the key for the
Naor-Reingold PRF, and recall that the closed form efficiency of this function is defined by

PRF′K(x) = CFEvalh,z(x,K) = gk0(1+k1,x)(1+k2x2)...(1+kmx2m )

which requires O(log l) = O(m) operations, namely, a logarithmic number of operations in the domain size
where x is an m-bits string. This is the same order of overhead induced by the [FIPR05] implementation
that requires an OT for each input bit. Nevertheless, our construction has the advantage that it also achieves
easily the property of a committed key since multiple evaluations can be computed with respect to the
same committed PRF key. Plugging-in our protocol inside the protocols for keyword search, OT with
adaptive queries [FIPR05] and set-intersection [HL10a] implies security against malicious adversaries fairly
immediately. It is further useful for search functionalities as demonstrated below.

5.1 The Set-Intersection Protocol

We continue with describing our set-intersection protocol. Informally, P0 generates a PRF key for PRF and
evaluates this function on its set X . It then sends the evaluation results to P1 and the parties engage in a com-
mitted oblivious PRF protocol that evaluates PRF on the set Y . P1 then concludes the intersection. In order
to handle a technicality in the security proof, we require that P0 must generate its PRF key independently of
its input X , since otherwise it may maliciously pick a secret key that implies collisions on elements from X
and Y , causing the simulation to fail. We ensure key independence by asking the parties to mutually gener-
ate the PRF key after P0 has committed to its input. Then upon choosing the PRF key, the parties invoke two
variations of functionality FCPRF, denoted by F0

CPRF and F1
CPRF. Formally, we define functionality F0

CPRF
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as follows: ((K, (x1, . . . , xmX ), R), (cKEY, (c1, . . . , cmX ), PK)) 7→ (−, (PRFK(x1), . . . ,PRFK(xmX )))
only if ci encrypts xi for all i and cKEY is a commitment of K where verification is carried out using ran-
domness R. In the final step, the parties call functionality F1

CPRF in order to evaluate the PRF on the set Y
and is defined by ((K,R), (cKEY, (y1, . . . , ymY ))) 7→ (−, (PRFK(y1), . . . ,PRFK(ymY ))) only if cKEY is a
commitment of K where verification is carried out using randomness R. In both executions the output is
given to P1 that computes the intersection of the results.

Implementing F0
CPRF and F1

CPRF. Implantation-wise, there is not much of a difference between the pro-
tocols for the two functionalities, which mainly differ due to the identity of the party that enters the input
values to the PRF (where the same committed key is used for both protocol executions). We note that the
realization of F0

CPRF and F1
CPRF can be carried out securely based on the implementations of the closed

form efficiency functions shown in Section 3.3, since our committed PRFs are based on these functions.
More concretely, the difference with respect to functionality F0

CPRF is that now when P0 is corrupted the
simulator needs to extract the randomness used for committing to the PRF key and the xi’s elements which
can be achieved using the proof of knowledge πDL since the parties use the El Gamal PKE. Specifically, P0

proves the knowledge of the discrete logarithm of (c1, . . . cmX ) with respect to a generator g, by invoking
an ideal execution of FDL on input {((g, ci), logg ci)}i∈[mX ].9 The input of P1 for FDL is {(g, ci)}i∈[mX ].
In case P1 does not receive an “accept” message from FDL it aborts. Next, the parties continue with the
PRF evaluations where the ZK proofs are carried out with respect to the same key commitment. We note
that extracting the PRF key and the set (x1, . . . , xmX ) is already implied by the protocols from Section 3.3
due to the ZK proofs of knowledge. Finally, the implementation of F1

CPRF follows similarly but without the
additional proof we added above for F0

CPRF in order to extract the randomness of the committed input.

Next, we describe our set-intersection protocol using committed oblivious PRF.

Protocol 7 (Protocol π∩ with malicious security from committed oblivious PRF.)

• Input: Party P0 is given a set X of size mX . Party P1 is given a set Y of size mY . Both parties are given a
security parameter 1n.

• The protocol:

1. Distributed key generation. P0 and P1 run protocol πKeyGen(1
n, 1n) in order to generate additive El

Gamal public key PK = ⟨G, p, g, h⟩where the corresponding shares of the secret key SK are (SK0, SK1).

2. Input commitment and PRF key generation. P0 sends encryptions of its input X under PK; denote
this set of ciphertexts by C = (c1, . . . cmX ).
P0 invokes (K, param)← KeyGen(1n, d = log(mX+mY )) where param includes a group description
G of prime order p and a generator g, and sends P1 param and a ciphertext EncPK(K;R).
P1 picks a new key (K ′, param) ← KeyGen(1n, d = log(mX +mY )) and sends it to P0. The parties
then compute the encryption cKEY of K̃ = KK ′, relying on the homomorphic property of El Gamal.

3. PRF evaluations on X. The parties call functionality F0
CPRF where P0 enters the set X , key K̃ and

randomness R and P1 enters C, cKEY and PK. Denote by PRFX = {PRF′
K̃
(x)}x∈X the output of P1

from this ideal call only if C is a vector of ciphertexts that encrypts X and cKEY is a commitment of K̃,
where verification is computed using randomness R.

4. Oblivious PRF evaluations on Y. The parties call functionality F1
CPRF where P0 enters the key K̃ and

randomness R and P1 enters the commitment cKEY and the set Y . Denote by PRFY = {fy}y∈Y the
output of P1 from this ideal call only if cKEY is a commitment of K̃ where verification is computed using
randomness R.
P1 outputs all y ∈ Y for which fy ∈ PRFX .

9We abuse notation and write log c to denote the discrete logarithm of the two group elements in ciphertext c.
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Theorem 5.2 Assume PRF′K(·) is a PRF defined as above and that El Gamal is IND-CPA, then Protocol 7
securely realizes functionality F∩ in the presence of malicious adversaries in the {FDL,F0

CPRF,F1
CPRF}-

hybrid model.

Proof: We prove security for each corruption case separately. We assume that the simulator is given mX

and mY as part of its auxiliary input.

P0 is corrupted. Let A be a PPT adversary corrupting party P0, we design a PPT simulator SIM that
generates the view of A as follows.

1. Given (1n, X, z), SIM engages in an execution of πKeyGen(1
n, 1n) with A. Denote the outcome by

PK.

2. Upon receiving from A its commitment for the PRF key K ← KeyGen(1n, d = log(mX + mY )),
SIM picks a new key share K ′ and sends it toA using PK. Denote the combined key by K̃ = KK ′.

3. SIM extracts the adversary’s input X ′ from the input to the ideal call F0
CPRF. It then sends X ′ to the

trusted party and completes the execution as would the honest P1 do on an arbitrary set.

In the hybrid setting, computational indistinguishability between the hybrid and simulated executions is
trivially claimed since the adversary does not receive any message from P1 that depends on Y . An important
observation here is that the probability of the event for which there exists y ∈ Y such that y /∈ X ′ and yet
PRF

K̃
(y) ∈ PRFX′ is negligible, since the key K̃ is picked independently of the set X ′. This argument

follows from similarly to the proof in [HL10a] and implies that P1’s output in both executions is identical
condition that the above event does not occur.

P1 is corrupted. Let A be a PPT adversary corrupting party P1, we design a PPT simulator SIM that
generates the view of A as follows.

1. Given (1n, Y, z), SIM engages in an execution of πKeyGen(1
n, 1n) with A. Denote the outcome by

PK.

2. SIM picks a PRF key share K ← KeyGen(1n, d = log(mX +mY )) and sends its encryption to A
using PK. Upon receiving A’s key share K ′ the simulator sets the combined key by K̃ = KK ′.

3. SIM picks a set of mX arbitrary elements XSIM from Zp. It then emulates the ideal call F0
CPRF and

hands the adversary a random set U of size mX and proper length.

4. Finally, the simulator extracts the adversary’s input Y ′ to the ideal call F1
CPRF and sends this set to

the trusted party, receiving back Z = X ∩ Y ′. The simulator completes the execution as follows. For
each element y′ ∈ Y ′ ∩ Z it programs the ideal answer of F1

CPRF to be r ∈ U where r is picked from
the remaining elements from the set U that were not picked thus far. Otherwise, the simulator returns
a fresh random element from Zp.

Security here follows from the IND-CPA security of the El Gamal PKE and the security of the PRF. That
is, the simulated view is different from the hybrid view relative to the encrypted input of P0 and the fact
that the simulator uses a random function to evaluate the sets in X ′

SIM and Y ′. Therefore, the proof can
be shown by defining a hybrid game where in the first game the simulator encrypts P0’s real input X but
completes the simulation as in the original simulation. Indistinguishability between the simulation and the
hybrid game follows easily by a reduction to the IND-CPA security of El Gamal since the simulator never
uses the secret key of the encryption scheme. Indistinguishability between the hybrid game and the hybrid
execution follows by a reduction to the pseudorandomness of the PRF.
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Efficiency. The overhead of protocol 7 depends on the implementations of F0
CPRF and F1

CPRF discussed
above. Our protocol obtains O(mX + mY ) communication and computation overheads under the strong-
DDH assumption and O((mX + mY ) log(mX + mY )) overheads under the DDH assumption, where the
former analysis matches the [JL09] analysis (such that both constructions rely on dynamic assumptions).

5.2 Search Functionalities

In search functionalities a receiver searches in a sender’s database, retrieving the appropriate record(s)
according to some search query. The database for search functionalities can be described by pairs of
queries/records {(qi, Ti)}i such that the answer to a query qi is a record Ti.10 In a private setting we need to
ensure that nothing beyond these records leaks to the receiver, while the sender does not learn anything about
the receiver’s search queries. Committed oblivious PRF evaluation is a useful tool for securely implement-
ing various search functionalities [FIPR05]. First, in the setup phase the database is encoded and handed to
the receiver. That is, for each query qi the sender defines the pair (PRFK(qi∥1),PRFK(qi∥2)⊕Ti). Next, in
the query phase the parties run a committed oblivious PRF evaluation protocol twice such that the sender in-
puts K and the receiver inputs a query q. The receiver’s output are the values PRFK(q∥1) and PRFK(q∥2),
where the first outcome is used to find the encrypted record while the second outcome is used to extract
the record. (Alternative implementations involve a single invocation of PRF by splitting PRFK(q) into two
parts). Examples for such functionalities are keyword search, oblivious transfer with adaptive queries and
pattern matching (and all its variants). The functionality of committed oblivious PRF is important in this
context since the sender must be enforced to use the same PRF key.
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A Secure Two-Party Computation

We briefly present the standard definition for secure multiparty computation and refer to [Gol04, Chapter 7]
for more details and motivating discussions. A two-party protocol problem is cast by specifying a random
process that maps pairs of inputs to pairs of outputs (one for each party). We refer to such a process as a
functionality and denote it f : {0, 1}∗×{0, 1}∗ → {0, 1}∗×{0, 1}∗, where f = (f1, f2). That is, for every
pair of inputs (x, y), the output-vector is a random variable (f1(x, y), f2(x, y)) ranging over pairs of strings
where P1 receives f1(x, y) and P2 receives f2(x, y). We use the notation (x, y) 7→ (f1(x, y), f2(x, y)) to
describe a functionality.

We prove the security of our protocols in the settings of semi-honest and malicious computationally
bounded adversaries. Security is analyzed by comparing what an adversary can do in a real protocol execu-
tion to what it can do in an ideal scenario. In the ideal scenario, the computation involves an incorruptible
trusted third party to whom the parties send their inputs. The trusted party computes the functionality on
the inputs and returns to each party its respective output. Informally, the protocol is secure if any adversary
interacting in the real protocol (i.e., where no trusted third party exists) can do no more harm than what it
could do in the ideal scenario.

A.1 The Semi-Honest Setting

In this model the adversary controls one of the parties and follows the protocol specification. However, it
may try to learn more information than allowed by looking at the transcript of messages that it received
and its internal state. Let f = (f1, f2) be a two-party functionality and let π be a two-party protocol for
computing f . The view of the first party in an execution of π on inputs (x, y) is

Viewπ,1(x, y) = (x, r1,m1, . . . ,mt),

where r1 is the content of the first party’s internal random tape, and mi represents the ith message that it
received. The output of the first party in an execution of π on (x, y) is denoted Outputπ,1(x, y) and can
be computed from Viewπ,1(x, y). Similarly, Viewπ,2(x, y)(y, r2,m1, . . . ,mt) where r2 is second party’s
randomness and mi is the ith message it received. The output of the second party can be computed from her
view and is denoted Outputπ,2(x, y).

Definition A.1 Let f and π be as above. Protocol π is said to securely compute f in the presence of semi-
honest adversaries if there exist probabilistic polynomial-time algorithms SIM1 and SIM2 such that

(SIM1(x, f1(n, x, y)), f2(n, x, y))n∈N,x,y∈{0,1}∗
c≈ {(Viewπ,1(n, x, y),Outputπ,2(n, x, y))}n∈N,x,y∈{0,1}∗

(f1(n, x, y),SIM2(y, f2(n, x, y)))n∈N,x,y∈{0,1}∗
c
≈ {(Outputπ,1(n, x, y), (Viewπ,2(n, x, y)))}n∈N,x,y∈{0,1}∗

where n is the security parameter.
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A.2 The Malicious Setting

Execution in the ideal model. In an ideal execution, the parties submit inputs to a trusted party, that
computes the output. An honest party receives its input for the computation and just directs it to the trusted
party, whereas a corrupted party can replace its input with any other value of the same length. Since we
do not consider fairness, the trusted party first sends the outputs of the corrupted parties to the adversary,
and the adversary then decides whether the honest parties would receive their outputs from the trusted party
or an abort symbol ⊥. Let f be a two-party functionality where f = (f1, f2), let A be a non-uniform
probabilistic polynomial-time machine, and let I ⊂ [2] be the set of corrupted parties (either P1 is corrupted
or P2 is corrupted or neither). Then, the ideal execution of f on inputs (x, y), auxiliary input z to A and
security parameter n, denoted IDEALf,A(z),I(n, x, y), is defined as the output pair of the honest party and
the adversary A from the above ideal execution.

Execution in the real model. In the real model there is no trusted third party and the parties interact
directly. The adversary A sends all messages in place of the corrupted party, and may follow an arbitrary
polynomial-time strategy. The honest parties follow the instructions of the specified protocol π.

Let f be as above and let π be a two-party protocol for computing f . Furthermore, let A be a non-
uniform probabilistic polynomial-time machine and let I be the set of corrupted parties. Then, the real exe-
cution of π on inputs (x, y), auxiliary input z toA and security parameter n, denoted REALπ,A(z),I(n, x, y),
is defined as the output vector of the honest parties and the adversary A from the real execution of π.

Security as emulation of a real execution in the ideal model. Having defined the ideal and real models,
we can now define security of protocols. Loosely speaking, the definition asserts that a secure party protocol
(in the real model) emulates the ideal model (in which a trusted party exists). This is formulated by saying
that adversaries in the ideal model are able to simulate executions of the real-model protocol.

Definition A.2 Let f and π be as above. Protocol π is said to securely compute f with abort in the presence
of malicious adversaries if for every non-uniform probabilistic polynomial-time adversary A for the real
model, there exists a non-uniform probabilistic polynomial-time adversary SIM for the ideal model, such
that for every I ⊂ [2],{

IDEALf,SIM(z),I(n, x, y)
}
n∈N,x,y,z∈{0,1}∗

c≈
{

REALπ,A(z),I(n, x, y)
}
n∈N,x,y,z∈{0,1}∗

where n is the security parameter.

The F-hybrid model. In order to construct some of our protocols, we will use secure two-party protocols
as subprotocols. The standard way of doing this is to work in a “hybrid model” where parties both interact
with each other (as in the real model) and use trusted help (as in the ideal model). Specifically, when
constructing a protocol π that uses a subprotocol for securely computing some functionality F , we consider
the case that the parties run π and use “ideal calls” to a trusted party for computing F . Upon receiving the
inputs from the parties, the trusted party computes F and sends all parties their output. Then, after receiving
these outputs back from the trusted party the protocol π continues.

Let F be a functionality and let π be a two-party protocol that uses ideal calls to a trusted party comput-
ing F . Furthermore, letA be a non-uniform probabilistic polynomial-time machine. Then, the F-hybrid ex-
ecution of π on inputs (x, y), auxiliary input z toA and security parameter n, denoted HYBRIDπF ,A(z)(n, x, y),
is defined as the output vector of the honest parties and the adversaryA from the hybrid execution of π with
a trusted party computing F . By the composition theorem of [Can00] any protocol that securely implements
F can replace the ideal calls to F .
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