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Abstract

In this work we present two new methods for approximating
the Kullback-Liebler (KL) divergence between two mix-
tures of Gaussians. The first method is based on matching
between the Gaussian elements of the two Gaussian mixture
densities. The second method is based on the unscented
transform. The proposed methods are utilized for image
retrieval tasks. Continuous probabilistic image modeling
based on mixtures of Gaussians together with KL measure
for image similarity, can be used for image retrieval tasks
with remarkable performance. The efficiency and the per-
formance of the KL approximation methods proposed are
demonstrated on both simulated data and real image data
sets. The experimental results indicate that our proposed
approximations outperform previously suggested methods.
Keywords: image similarity; Kullback-Liebler divergence,
mixture of Gaussians, unscented transformation.

1 Introduction

Image matching is an important component in many appli-
cations that require comparing images based on their con-
tent. The most important examples are image data base re-
trieval systems. Image matching techniques can be clas-
sified according to two parameters. The first is the image
representation method and the second is a definition of ap-
propriate distance measure to compare between images in
the selected representation space. A standard representation
method is color histogram. The advantages and disadvan-
tages of this method are well studied and many variations
exist. A variety of measures have been proposed for dis-
similarity between two histograms (e.g.χ2 statistics, KL-
divergence) [9]. An alternative image representation is a
continuous probabilistic framework based on a Mixture of
Gaussians model (MoG) [1] [3]. The KL-divergence is a
natural dissimilarity measure between two images repre-
sented by mixture of Gaussians. However, since there is

no closed form expression for the KL-divergence between
two MoGs, computing this distance measure is done using
Monte-Carlo simulations. Monte-Carlo simulations may
cause a significant increase in computational complexity
which can be a major drawback in real content based image
retrieval systems. In this work we aim to solve this draw-
back by presenting two new methods for the approximation
of the KL-divergence between two mixtures of Gaussians.
The first one is an improved version of the approximation
suggested by Vasconcelos [10]. The method is based on
matching between the Gaussian elements of the two MoG
densities and on the existence of a closed form solution
for the KL-divergence between two Gaussians. The sec-
ond method demands a little more processing time but gives
much better results. It is based on the unscented transform
introduced by Juiler and Uhlmann [4]. The rest of the paper
is organized as follows. Image modeling via a mixture of
Gaussians is reviewed in Section 2. In Section 3 we pro-
pose an easily computed approximation of the KL-distance
between two mixtures of Gaussians. In Section 4 we pro-
pose an alternative approximation based on the unscented
transform mechanism. In Section 5 we compare both the
performance and the computational efficiency of the vari-
ous KL-divergence approximations. The comparison is per-
formed on both simulated data and MoG densities obtained
from modeling real images.

2 Image Modelling via MoG

We model an image as a set of coherent regions. Each ho-
mogeneous region in the image plane is represented by a
Gaussian distribution, and the set of all the regions in the
image is represented by a Gaussian mixture model. The im-
age is, therefore, viewed as an instance of the generative
mixture of Gaussians model. We focus here on the color
feature. In particular we model each image as a mixture of
Gaussians in the color feature space. It should be noted that
the representation model is a general one, and can incorpo-
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Figure 1: Input image (left). Image modeling via a mix-
ture of Gaussians (center). Image segmentation using the
learned model (right).

rate any desired feature space (such as texture, and shape) or
combination thereof. Color features are extracted by repre-
senting each pixel with a three-dimensional color descriptor
in a selected color space. In this work we choose to work
in the (L,a,b) color space which was shown to be approx-
imately perceptually uniform by Wyszecki and Stiles [11],
thus distances in this space are meaningful. In order to in-
clude spatial information, the(x, y) position of the pixel is
appended to the feature vector. Including the position en-
ables a localized representation. Each pixel is represented
by a five-dimensional feature vector (L,a,b,x,y). Pixels are
grouped into homogeneous regions, by grouping the feature
vectors in the selected five-dimensional feature space. The
Expectation-Maximization (EM) algorithm is used to deter-
mine the maximum likelihood parameters of a mixture ofk
Gaussians. The Minimum Description Length (MDL) prin-
ciple serves to select among values ofk. In our experiments,
k ranges from 4 to 8. Figure 1 shows an example of learning
a MoG model for a given input image. In this visualization
the Gaussian mixture is shown as a set of ellipsoids. Each
ellipsoid represents the support, mean color and spatial lay-
out, of a particular Gaussian in the image plane. Using the
learned model (center) each pixel of the original image is
affiliated with the most probable Gaussian, providing for a
probabilistic image segmentation (right).

Given the representation of an image by a density func-
tion, we can define a similarity measure between two im-
ages as the Kullback-Liebler divergence [8] between the re-
spective density models of the images. In the case of dis-
crete (histogram) representations, the KL-divergence can be
easily obtained. However, there is no closed-form expres-
sion for the KL-divergence between two mixtures of Gaus-
sians. We can use, instead, Monte-Carlo simulations to ap-
proximate the KL-divergence between two MoGs,f andg:

KL(f ||g) =
∫

f log
f

g
≈ 1

n

n∑
t=1

log
f(xt)
g(xt)

such thatx1, ..., xn are sampled fromf(x). The problem
with this approach is that it can not be used in image re-
trieval systems due to its large complexity. In the following
sections we present two alternative deterministic approxi-
mations that can be computed much more efficiently than
the Monte-Carlo based method.

3 Matching based Approximation

Let f(x) =
∑n

i=1 αifi(x) and g(x) =
∑m

j=1 βjgj(x)
be two mixture densities such thatα = {α1, ..., αn} and
β = {β1, ..., βm} are discrete distributions andfi, gj are
arbitrary continuous densities. Assume that it is not pos-
sible to obtain a closed-form expression for the Kullback-
Liebler divergenceKL(f ||g) but there is an analytical way
to compute the KL-divergence between each pair of com-
ponentsfi, gj . In this section we present and motivate an
approximated expression forKL(f ||g) based on the KL-
divergence between the mixtures componentsKL(fi||gj).

The convexity of the KL-divergence [2] implies that:

KL(
n∑

i=1

αifi||
m∑

j=1

βjgj) ≤
∑

i,j

αiβjKL(fi||gj).

The resultant weighted average approximation is one possi-
ble approximation for the KL-divergence. This approxima-
tion is too crude, however, especially when each mixture
density is composed of distributions which are unimodal
and the modes are far apart. A better approximation can be
obtained by matching asinglecomponent ofg(x) to each
component off(x). A matching function between the com-
ponents off(x) andg(x) is needed.

We propose the following, matching-based approxima-
tion:

KL(f ||g) =
n∑

i=1

αi

∫
fi log f −

n∑

i=1

αi

∫
fi log g ≈

n∑

i=1

αi

∫
fi log αifi −

n∑

i=1

αi max
j

∫
fi log βjgj

=
n∑

i=1

αi min
j

(
KL(fi||gj) + log

αi

βj

)
.

This approximation is based on the assumption that the term
in the sum

∑
j βjgj that is most proximal tofi dominates

the integral
∫

fi log g.
The proposed approximation yields a matching function

between elements off and elements ofg. Define the match-
ing functionπ : {1, ..., n} → {1, ..., m} between the com-
ponents off(x) and the components ofg(x) as follows:

π(i) = arg min
j

(KL(fi||gj)− log βj). (1)

Utilizing π we can write the suggested approximation in the
following way:

KLmatch(f ||g) =
n∑

i=1

αi

(
KL(fi||gπ(i)) + log

αi

βπ(i)

)
.

(2)
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Figure 2: A possible match between a mixture of 3 Gaus-
sians and a mixture of 4 Gaussians

Figure 2 shows a possible matching function. Several com-
ponents off may be matched to the same component ofg.
There can be components ofg that no component off is
matched to.

We focus next on the image retrieval application. The
following situation is common in image retrieval systems.
Given a query mixture densityf and a family of mixture
densities{gt}, we want to affiliatef to the density that min-
imizes the distance criterionKL(f ||gt) (for a content-based
image retrieval system in which mixture densities are used
as the image models and the KL measure is used as the dis-
tance measure, see [3]). Since

arg min
t

KL(f ||gt) = arg max
t

n∑

i=1

αi

∫
fi log gt (3)

for each MoGg, we need only to evaluate
∫

f log g. We can
apply the approximation:

∫
fi log(

m∑

j=1

βjgj) ≥ max
j

∫
fi log βjgj

to obtain a lower bound approximation:

∫
f log g =

n∑

i=1

αi

∫
fi log g ≈

n∑

i=1

αi

∫
fi log(βπ(i)·gπ(i))

whereπ is the matching function defined in expression (1).
The suggested approximation will be justified empiri-

cally in section 5. As a motivation for the approximation,
we show next that the proposed approximation (Equation
2) can be viewed as a KL-divergence between thecomplete
versionsof the two MoGs.

A mixture modelf(x) =
∑n

i=1 αifi(x) can be viewed
as a two step model. In the first step we sample a latent
discrete random variableI according top(I = i) = αi.
In the second step we sample the observed continuous ran-
dom variablex according tof(x|i) = fi(x). The complete

data is the union of the latent and the observed data. The
complete data density function associated with the mixture
densityf(x) is f(i, x) = f(i)f(x|i) = αifi(x). Note that
if the latent variables off andg share the same alphabet
(i.e. n = m) then the KL-divergence between the complete
data densities associated withf andg is well defined and
has the following closed form expression:

KL(f(i, x)||g(i, x)) = KL(f(i)||g(i))+KL(f(x|i)||g(x|i))

= KL(α||β) +
n∑

i=1

αiKL(fi||gi)

such that:

KL(α||β) =
n∑

i=1

αi log
αi

βi
.

The chain rule for relative entropy [2] implies that:

KL(f(x)||g(x)) ≤ KL(f(i, x)||g(i, x)).

Thus we obtain an upper bound forKL(f ||g). Since the
MoG g(x) is invariant to a permutation of the alphabet of
the hidden random variable we can obtain a tighter bound:

KL(f(x)||g(x)) ≤ min
s

n∑

i=1

αi(KL(fi||gs(i)) + log
αi

βs(i)
)

such that the minimization is performed over all then! per-
mutations on the set{1, ..., n}. This approximation, which
is suitable only for the special casen=m, can be computed
by the assignment algorithm [7] whose complexity is high
(O(n3)).

We return to the general case whereg =
∑m

j=1 βjgj .
Let π be the matching function defined in expression (1).
We can build a new mixture density:

gπ(x) =
1

Cπ

n∑

i=1

βπ(i) · gπ(i)(x)

such thatCπ is the normalization scalar
∑n

i=1 βπ(i). The
MoG gπ is a mixture density composed of the components
of g and it has the same number of components asf(x).
Standard information theory manipulations reveal that the
proposed approximation (Equation 2) can be rewritten in
the following way:

KLmatch(f ||g) = KL(f(i, x)||gπ(i, x))− log(Cπ)

such thatf(i, x) is the density of the complete data includ-
ing the hidden discrete variable of the mixture density, i.e.
f(i, x) = αifi(x) andgπ(i, x) = 1

Cπ
βπ(i)gπ(i)(x).

Therefore, the proposed approximation is based on two
principles. The first one is a matching between each compo-
nent off(x) to one of the components ofg(x). The match-
ing function ensures that the hidden variables of the two
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mixture models are defined on the same alphabet such that
it is meaningful to consider the KL-divergence between the
complete data version of the densities. The second point
in the suggested formula is approximating the distance be-
tween two mixture densities by the distance of the density
functions of the associated complete data densities.

So far we developed an approximation method for a gen-
eral mixture model. We shall now concentrate on the case
which is mixture of Gaussians (MoG). The KL-divergence
between the GaussiansN(µ1, Σ1) andN(µ2, Σ2) is:

1
2
(log

|Σ2|
|Σ1|+Tr(Σ−1

2 Σ1)+(µ1−µ2)T Σ−1
2 (µ1−µ2)). (4)

Given two mixture of Gaussians

f =
n∑

i=1

αiN(µ1,i, Σ1,i) and g =
m∑

j=1

βjN(µ2,j , Σ2,j)

we can plug expression (4) into approximation (2) to ob-
tain the approximation of the KL-divergence for the case of
MoG.

Another approximation of the KL-divergence between
two MoGs was suggested by Vasconcelos [10]. The method
is similar to the one presented in this section. The only
difference is that the matching functionπ between the ele-
ments of the two MoGs, used in [10], is based on the Ma-
halanobis distance:

π(i) = arg min
j

(
(µ1,i − µ2,j)T Σ−1

2,j(µ1,i − µ2,j)
)

(5)

where as in our approach:

π(i) = arg min
j

(1
2
(log

|Σ2,j |
|Σ1,i| + Tr(Σ−1

2,jΣ1,i)+

(µ1,i − µ2,j)T Σ−1
2,j(µ1,i − µ2,j))− log βj

)
.

In section 5 we empirically compare the performance of
these two variants.

4 Unscented Transform based Ap-
proximation

The matching based method approximates well the KL-
divergence if the Gaussian elements are far apart. However,
if there is a significant overlap between the Gaussian ele-
ments, then the match of a single component ofg(x) with
each component off(x) becomes less accurate. Replacing
the deterministic matching by a stochastic one doesn’t help
since we can easily observe that the matching approxima-
tion (2) can be written as:

KLmatch(f ||g) = min
Ψ

n∑

i=1

m∑

j=1

αiΨij(log
αi

βj
+KL(fi||gj))

such thatΨ is an×m stochastic matrix, i.e. the minimiza-
tion over all the stochastic matrices yields a deterministic
matching.

To handle overlapping situations we propose another ap-
proximation based on the unscented transform. The un-
scented transformation is a method for calculating the statis-
tics of a random variable which undergoes a non-linear
transformation [4]. It is successfully used for nonlinear
filtering. The Unscented Kalman filter (UKF) [5] is more
accurate, more stable and far easier to implement than the
extended Kalman filter (EKF). In cases where the process
noise is Gaussian it is also better than the particle filter
which is based on Monte-Carlo simulations. Unlike the
EKF which uses the first order term of the Taylor expansion
of the non-linear function, the UKF uses the true nonlinear
function and approximates the distribution of the function
output. In this section we show how we can utilize the un-
scented transform mechanism to obtain an approximation
for the KL-divergence between two MoGs. Letx be ad-
dimensional normal random variablex ∼ f(x) = N(µ, Σ)
and leth(x) : Rd → R be an arbitrary non-linear function.
We want to approximate the expectation ofh(x) which is∫

f(x)h(x)dx. The unscented transform approach is the
following. A set of 2d “sigma” points are chosen as fol-
lows:

xk = µ + (
√

dΣ)k k = 1, ..., d

xd+k = µ− (
√

dΣ)k k = 1, ..., d

such that(
√

Σ)k is thek-th column of the matrix square root
of Σ. Let UDUT be the singular value decomposition of
Σ, such thatU = {U1, ..., Ud} andD = diag{λ1, ..., λd}
then (

√
Σ)k =

√
λkUk. These sample points completely

capture the true mean and variance off(x) (see Figure 3).
The uniform distribution over the points{xk}2d

k=1 has mean
µ and covariance matrixΣ. Given the “sigma” points we
define the following approximation:

∫
f(x)h(x)dx ≈ 1

2d

2d∑

k=1

h(xk). (6)

Although this approximation algorithm resembles a Monte-
Carlo method, no random sampling is used thus only a small
number of points are required. The basic unscented method
can be generalized. The mean of the Gaussian distribution
µ can be also included in the set of sigma points. Scaling
parameters can provide an extra degree of freedom to con-
trol the scaling of the sigma points further or towardsµ [6].
In the implementation presented in this paper in which the
dimensionality of the distributions is five (see Section 2),
includingµ in the set of sigma point did not cause any im-
provement in performance.

It can be verified that ifh(x) is a quadratic function then
the approximation is precise. For example in the case of
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Figure 3: The sigma points of the unscented transform

h(x) = log N(µ2, Σ2), h(x) is a quadratic function ofx.
Hence expression (6) is a method, alternative to expression
(4), to compute the exact KL-divergence between two Gaus-
sian distributions. In the case thath(x) is the log density
function of MoG, expression (6) is an approximation. Given
two mixtures of Gaussians:

f =
n∑

i=1

αiN(µ1,i, Σ1,i) and g =
m∑

j=1

βjN(µ2,j , Σ2,j)

the approximation of
∫

f log g based on the unscented
transform is:

1
2d

n∑

i=1

αi

2d∑

k=1

log g(xi,k)

such that:

xi,k = µ1,i + (
√

dΣ1,i)k k = 1, ..., d, (7)

xi,d+k = µ1,i − (
√

dΣ1,i)k k = 1, ..., d.

5 Experimental Evaluation

In order to compare the accuracy of the proposed approxi-
mations as well as their processing efficiency we conducted
the following simulation of a retrieval task based on image
similarity. In each retrieval session we sample a random
MoG f as a query object and four other random MoGs{gt}
as a data-set. The task is to find for a givenf , the member
of the data-set that is most similar to it, i.e., the retrieval task
is to find:

arg min
t

KL(f ||gt) = arg max
t

∫
f log gt.

Gaussian mixture models were randomly sampled accord-
ing to the following rules. The number of Gaussians within

ε MC-100 Mahalanobis KL unscented
match match

0.0001 99 99 99 100
0.0004 98 98 98 99
0.0016 97 96 97 99
0.0064 96 91 95 99
0.0256 94 83 91 96
0.1024 92 68 84 93
0.4096 86 58 74 90
0.8192 83 53 73 86
Relative

time 1.0 0.04 0.07 0.46

Table 1: Comparison between retrieval simulation results
using different approximations to the KL-divergence be-
tween mixture of Gaussians

the MoG was chosen uniformly in the range 4-8. The di-
mension of all the Gaussians was 5. For each Gaussian
N(µ, Σ), µ was sampled fromN(0, I) andΣ was sampled
from the Wishart distribution as follows. The entries of a
matrixA5×5 were independently sampled fromN(0, 1) and
we setΣ = εAAT . The parameterε controls the size of the
covariance matrices. As we decreaseε, the Gaussians that
compose the MoG are further apart. Hence approximating
the KL-divergence using matching between the Gaussians
becomes more relevant. The approximations we compare
are: the Mahalanobis based matching method, denoted as
Mahalanobis-match (Expression (5)), our matching based
approximation, denoted as KL-match, (Expressions (2) and
(4)), the unscented transform approximation described in
section 4, and a Monte-Carlo simulation based on 100 sam-
ples. We considered the retrieval results based on a Monte-
Carlo simulation using 10,000 samples as the ground truth.
For each of the four approximation methods we count the
percentage of retrieval results that are consistent with the
ground truth. For eachε that appears in Table 1, the simu-
lated retrieval task was repeated 10,000 times. All the ap-
proximations were done to the expression

∫
f log gt.

Table 1 summarizes the comparison results. The best
results were obtained via the unscented approximation, fol-
lowed by the results obtained via the 100-sample Monte-
Carlo simulation. Asε is increased the Gaussians become
closer to each other and the overlapping between them in-
creases. Approximating the KL-divergence by matching
a single Gaussian ofg to each Gaussian component off
becomes less accurate in that case, as can be seen from
the results of the Mahalanobis-match and the KL-match.
In all the tests that were conducted, the KL-match variant
of approximation via Gaussian matching outperforms the
Mahalanobis-match. The bottom row of Table 1 indicates
the relative processing time needed to compute

∫
f log g for

each approximation method. The most efficient results are
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ε MC-100 Mahalanobis KL unscented
match match

0.025 0.042 1.17 0.18 0.025
0.100 0.062 1.48 0.42 0.043
0.400 0.089 3.27 0.67 0.067

Table 2: Proximity to the true KL-divergence

those obtained by the Mahalanobis-match approximation1.
A trade-off exists between efficiency and retrieval perfor-
mance. This trade-off strongly depends on the nature of the
Gaussian mixtures.

A more straight-forward criterion for the quality of an
approximation is its proximity to the true value of the KL-
divergence. The proximity is measured as the average of the
following metric:

|KLapproximate(f ||g)−KLtrue(f ||g)|
KLtrue(f ||g)

.

Table 2 presents the accuracy result for severalε values. As
in the former experiment it can be seen that as the value of
ε increases the accuracy of each of the KL-divergence ap-
proximations decreases. The most accurate approximation
is the unscented based approximation. The worst results are
those obtained by the Mahalanobis-match approximation.

In the final set of experiments we evaluate the retrieval
results created by the various approximations using preci-
sion versus recall (PR) curves. Recall measures the abil-
ity of retrieving all relevant or perceptually similar items
in the database. It is defined as the ratio between the
number of perceptually similar items retrieved and the to-
tal relevant items in the database. Precision measures the
retrieval accuracy and is defined as the ratio between the
number of relevant or perceptually similar items retrieved
and the total number of items retrieved. The database used
throughout the experiments consists of 1460 images selec-
tively hand-picked from the COREL database to create 16
categories. The images within each category have similar
colors and color spatial layout, and can be labelled with a
high-level semantic description. In the following experi-
ment we averaged retrieval results for 320 images, 20 im-
ages drawn randomly from each of the 16 labelled cate-
gories we have in the database. PR curves were calcu-
lated for 10,20,30,40,50, and 60 retrieved images. Figure
4 shows the PR curves obtained by each of the approxima-
tions. It can be seen that the retrieval results obtain via the
unscented based approximation are similar to the retrieval
results obtained via 500-sample Monte-Carlo simulations.

1It should be noted that when comparing computational complexity be-
tween the proposed approximations, we assume that any computational
step needed for the approximation that can be done on a single image (e.g.
inverting the Gaussian matrix, choosing the “sigma” point) is considered
as a pre-processing step which is done as part of the MoG model learning.

The proposed matching based approximation (KL-match)
significantly outperforms the Mahalanobis-matching based
method (Mahalanobis-match).
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MC−500
unscented
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Figure 4: Precision vs recall for evaluating retrieval results
for different KL-divergence approximations.

Figure 5 displays the first 20 images retrieved by each of
the KL approximations, for an example query taken from
the Tigers category. The best retrieval results are ob-
tained as before via the Monte-Carlo simulation and the un-
scented based approximation. In these two cases more im-
ages within the first 20 retrieved images are from the same
category as the query.

6 Conclusions

In this paper we described two new methods for approxi-
mating the KL-divergence between mixture densities. The
first (match-based) method can be applied to any mixture
density while the second (unscented) is tailored for mix-
tures of Gaussian densities. The efficiency and the perfor-
mance of these methods were demonstrated on image re-
trieval tasks on a large database. In all the experiments con-
ducted, the unscented approximation achieves the best re-
sults, results that are very close to large sample Monte-Carlo
based ground truth. The Kl-match based approximation is
faster but less accurate than the unscented based method. A
future research direction can be to combine the two approx-
imation methods into a single scheme: In order to approxi-
mateKL(f ||g), we can check separately for each Gaussian
componentfi whether the matching based approximation
is accurate enough. This is the case if the component ofg
matched tofi is significantly closer tofi as compared to
the other components ofg. Otherwise we can utilize the
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Query

MC − 500

unscented

KL−match

Mahalanobis−match

Figure 5: Retrieval example for a query image taken from
theTigers category.

unscented based approximation to computeKL(fi||g). Ef-
ficient approximation of the KL-divergence between MoGs
is a major step towards continuous and probabilistic image
retrieval systems.
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